1
|
Simonson BT, Jiang Z, Ryan JF, Jegla T. Ctenophores and parahoxozoans independently evolved functionally diverse voltage-gated K+ channels. J Gen Physiol 2025; 157:e202413740. [PMID: 40100064 PMCID: PMC11917167 DOI: 10.1085/jgp.202413740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The ctenophore species Mnemiopsis leidyi is known to have a large set of voltage-gated K+ channels, but little is known about the functional diversity of these channels or their evolutionary history in other ctenophore species. Here, we searched the genomes of two additional ctenophore species, Beroe ovata and Hormiphora californensis, for voltage-gated K+ channels and functionally expressed a subset of M. leidyi channels. We found that the last common ancestor of these three disparate ctenophore lineages probably had at least 33 voltage-gated K+ channels. Two of these genes belong to the EAG family, and the remaining 31 belong to the Shaker family and form a single clade within the animal/choanoflagellate Shaker phylogeny. We additionally found evidence for 10 of these Shaker channels in a transcriptome of the early branching ctenophore lineage Euplokamis dunlapae, suggesting that the diversification of these channels was already underway early in ctenophore evolution. We functionally expressed 16 Mnemiopsis Shakers and found that they encode a diverse array of voltage-gated K+ conductances with functional orthologs for many classic Shaker family subtypes found in cnidarians and bilaterians. Analysis of Mnemiopsis transcriptome data show these 16 Shaker channels are expressed in a wide variety of cell types, including neurons, muscle, comb cells, and colloblasts. Ctenophores therefore appear to have independently evolved much of the voltage-gated K+ channel diversity that is shared between cnidarians and bilaterians.
Collapse
Affiliation(s)
- Benjamin T Simonson
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Zhaoyang Jiang
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida , St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Timothy Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| |
Collapse
|
2
|
Kuhnhäuser BG, Bates CD, Dransfield J, Geri C, Henderson A, Julia S, Lim JY, Morley RJ, Rustiami H, Schley RJ, Bellot S, Chomicki G, Eiserhardt WL, Hiscock SJ, Baker WJ. Island geography drives evolution of rattan palms in tropical Asian rainforests. Science 2025; 387:1204-1209. [PMID: 40080567 DOI: 10.1126/science.adp3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
Distributed across two continents and thousands of islands, the Asian tropics are among the most species-rich areas on Earth. The origins of this diversity, however, remain poorly understood. Here, we reveal and classify contributions of individual tropical Asian regions to their overall diversity by leveraging species-level phylogenomic data and new fossils from the most species-rich Asian palm lineage, the rattans and relatives (Arecaceae, Calamoideae). Radiators (Borneo) generate and distribute diversity, incubators (Indochina, New Guinea, and Sulawesi) produce diversity in isolation, corridors (Java, Maluku, Sumatra, and the Thai-Malay Peninsula) connect neighboring regions, and accumulators (Australia, India, Palawan, and the Philippines) acquire diversity generated elsewhere. These contrasting contributions can be explained by differences in region size and isolation, elucidating how the unique island-dominated geography of the Asian tropics drives their outstanding biodiversity.
Collapse
Affiliation(s)
- Benedikt G Kuhnhäuser
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Connie Geri
- Sarawak Forestry Corporation, Jalan Sungai Tapang, Kota Sentosa, Kuching, Sarawak, Malaysia
| | | | - Sang Julia
- Sarawak Herbarium, Forest Department Sarawak, Jalan Datuk Amar Kalong Ningkan, Kuching, Malaysia
| | - Jun Ying Lim
- Centre for Nature-based Climate Solutions and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Robert J Morley
- Palynova Ltd, Littleport, UK
- Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey, UK
| | - Himmah Rustiami
- Herbarium Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia
| | - Rowan J Schley
- Department of Geography, University of Exeter, Exeter, UK
| | | | | | - Wolf L Eiserhardt
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - William J Baker
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Pardo-Roa C, Nelson MI, Ariyama N, Aguayo C, Almonacid LI, Gonzalez-Reiche AS, Muñoz G, Ulloa M, Ávila C, Navarro C, Reyes R, Castillo-Torres PN, Mathieu C, Vergara R, González Á, González CG, Araya H, Castillo A, Torres JC, Covarrubias P, Bustos P, van Bakel H, Fernández J, Fasce RA, Johow M, Neira V, Medina RA. Cross-species and mammal-to-mammal transmission of clade 2.3.4.4b highly pathogenic avian influenza A/H5N1 with PB2 adaptations. Nat Commun 2025; 16:2232. [PMID: 40044729 PMCID: PMC11882949 DOI: 10.1038/s41467-025-57338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses (HPAIV) belonging to lineage 2.3.4.4b emerged in Chile in December 2022, leading to mass mortality events in wild birds, poultry, and marine mammals and one human case. We detected HPAIV in 7,33% (714/9745) of cases between December 2022-April 2023 and sequenced 177 H5N1 virus genomes from poultry, marine mammals, a human, and wild birds spanning >3800 km of Chilean coastline. Chilean viruses were closely related to Peru's H5N1 outbreak, consistent with north-to-south spread down the Pacific coastline. One human virus and nine marine mammal viruses in Chile had the rare PB2 D701N mammalian-adaptation mutation and clustered phylogenetically despite being sampled 5 weeks and hundreds of kilometers apart. These viruses shared additional genetic signatures, including another mammalian PB2 adaptation (Q591K, n = 6), synonymous mutations, and minor variants. Several mutations were detected months later in sealions in the Atlantic coast, indicating that the pinniped outbreaks on the west and east coasts of South America are genetically linked. These data support sustained mammal-to-mammal transmission of HPAIV in marine mammals over thousands of kilometers of Chile's Pacific coastline, which subsequently continued through the Atlantic coastline.
Collapse
Affiliation(s)
- Catalina Pardo-Roa
- Department of Child and Adolescent Health, School of Nursing, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Emory Center of Excellence of Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Center for Research, on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, NY, USA
| | - Naomi Ariyama
- Emory Center of Excellence of Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Leonardo I Almonacid
- Molecular Bioinformatics Laboratory, Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana S Gonzalez-Reiche
- Center for Research, on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriela Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mauricio Ulloa
- Servicio Nacional de Pesca y Acuicultura (SERNAPESCA), Santiago, Chile
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety, Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Carlos Navarro
- Servicio Nacional de Pesca y Acuicultura (SERNAPESCA), Santiago, Chile
| | - Rodolfo Reyes
- Servicio Nacional de Pesca y Acuicultura (SERNAPESCA), Santiago, Chile
| | - Pablo N Castillo-Torres
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Emory Center of Excellence of Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | | | | | | | | | - Hugo Araya
- Servicio Agrícola y Ganadero (SAG), Santiago, Chile
| | - Andrés Castillo
- Molecular Genetic Subdepartment, Public Health Institute of Chile, Santiago, Chile
| | | | - Paulo Covarrubias
- Molecular Genetic Subdepartment, Public Health Institute of Chile, Santiago, Chile
| | - Patricia Bustos
- Section of Respiratory and Exanthematic Viruses, Public Health Institute of Chile, Santiago, Chile
| | - Harm van Bakel
- Center for Research, on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Fernández
- Molecular Genetic Subdepartment, Public Health Institute of Chile, Santiago, Chile
| | - Rodrigo A Fasce
- Section of Respiratory and Exanthematic Viruses, Public Health Institute of Chile, Santiago, Chile
| | | | - Víctor Neira
- Emory Center of Excellence of Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA.
- Center for Research, on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, NY, USA.
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Rafael A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Emory Center of Excellence of Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA.
- Center for Research, on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, NY, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Shen J, Liu S, Liu S, Shen S, Lei M, Xu Q, Li W, He Q, Xu X, Cai X. Genomic surveillance and evolution of Getah virus. Virus Evol 2025; 11:veaf007. [PMID: 39989716 PMCID: PMC11844246 DOI: 10.1093/ve/veaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
Getah virus (GETV), a member of the Alphaviruses, has spread widely and is expanding its host range worldwide, posing a serious threat to public health safety and the farming industry. However, genetic monitoring of GETV is inadequate, and its evolution and transmission remain unclear. This study employed reverse transcription-polymerase chain reaction to screen pig tissue samples for the presence of GETV. Subsequent steps included DNA sequencing, phylogenetic analysis, and selection pressure assessments to elucidate the evolutionary history and transmission patterns of the virus. A total of 1382 samples were examined, with a positivity rate of 4.12% (95% confidence interval: 3.07%-5.17%) from 2022 to 2023. Subsequently, seven GETV strains were isolated and identified. A phylogenetic tree was constructed, which showed that all seven strains belonged to Group III. Phylodynamic analysis revealed that GETV evolved rapidly. Additionally, eight amino acid sites within the GETV E2 protein were identified as being under positive selection. These data provide insight into the epidemiology and evolution of GETV.
Collapse
Affiliation(s)
- Jiaqi Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaogui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shiqiang Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shiyi Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingkai Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
5
|
Gustani-Buss EC, Salehi-Vaziri M, Lemey P, Thijssen M, Fereydouni Z, Ahmadi Z, Ranst MV, Maes P, Pourkarim MR, Maleki A. Dispersal dynamics and introduction patterns of SARS-CoV-2 lineages in Iran. Virus Evol 2025; 11:veaf004. [PMID: 39926479 PMCID: PMC11803630 DOI: 10.1093/ve/veaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Understanding the dispersal patterns of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) lineages is crucial to public health decision-making, especially in countries with limited access to viral genomic sequencing. This study provides a comprehensive epidemiological and phylodynamic perspective on SARS-CoV-2 lineage dispersal in Iran from February 2020 to July 2022. We explored the genomic epidemiology of SARS-CoV-2 combining 1281 genome sequences with spatial data in a phylogeographic framework. Our analyses shed light on multiple international imports seeding subsequent waves and on domestic dispersal dynamics. Lineage B.4 was identified to have been circulating in Iran, 29 days (95% highest probability density interval: 21-47) before non-pharmaceutical interventions were implemented. The importation dynamics throughout subsequent waves were primarily driven from the country or region where the variant was first reported and gradually shifted to other regions. At the national level, Tehran was the main source of dissemination across the country. Our study highlights the crucial role of continuous genomic surveillance and international collaboration for future pandemic preparedness and efforts to control viral transmission.
Collapse
Affiliation(s)
- Emanuele C Gustani-Buss
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Philippe Lemey
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Zahra Ahmadi
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Hemmat Exp.Way, Tehran 14665-1157, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
6
|
Chen Z, Tsui JLH, Cai J, Su S, Viboud C, du Plessis L, Lemey P, Kraemer MUG, Yu H. Disruption of seasonal influenza circulation and evolution during the 2009 H1N1 and COVID-19 pandemics in Southeastern Asia. Nat Commun 2025; 16:475. [PMID: 39774646 PMCID: PMC11707048 DOI: 10.1038/s41467-025-55840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics. During the COVID-19 pandemic, consistent autumn-winter movement waves from Southeastern Asia to temperate regions were interrupted for both subtype/lineages, however the A/H1N1 pandemic only disrupted A/H3N2 spread. We find a higher persistence of A/H3N2 than B/Victoria circulation in Southeastern Asia and identify distinct pandemic-related disruptions in A/H3N2 antigenic evolution between two pandemics, compared to interpandemic levels; similar patterns are observed in B/Victoria using genetic distance. The internal movement structure within Southeastern Asia markedly diverged during the COVID-19 pandemic season, and to a lesser extent, during the 2009 A/H1N1 pandemic season. Our findings provide insights into the heterogeneous impact of two distinct pandemic-related disruptions on influenza circulation, which can help anticipate the effects of future pandemics and potential mitigation strategies on influenza dynamics.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Joseph L-H Tsui
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Jun Cai
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Su
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lefrancq N, Duret L, Bouchez V, Brisse S, Parkhill J, Salje H. Learning the fitness dynamics of pathogens from phylogenies. Nature 2025; 637:683-690. [PMID: 39743587 PMCID: PMC11735385 DOI: 10.1038/s41586-024-08309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems1,2. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships. We use our approach on a broad set of viruses and bacteria (SARS-CoV-2, influenza A subtype H3N2, Bordetella pertussis and Mycobacterium tuberculosis), which include both well-studied and understudied threats to human health. We show that phylowave recovers the main known circulating lineages for each pathogen and that it can detect specific amino acid changes linked to fitness changes. Furthermore, phylowave identifies previously undetected lineages with increased fitness, including three co-circulating B. pertussis lineages. Inference using phylowave is robust to uneven and limited observations. This widely applicable approach provides an avenue to monitor evolution in real time to support public-health action and explore fundamental drivers of pathogen fitness.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Valérie Bouchez
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université de Paris, Paris, France
- National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université de Paris, Paris, France
- National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Marques AD, Hogenauer M, Bauer N, Gibison M, DeMarco B, Sherrill-Mix S, Merenstein C, Collman RG, Gagne RB, Bushman FD. Evolution of SARS-CoV-2 in white-tailed deer in Pennsylvania 2021-2024. PLoS Pathog 2025; 21:e1012883. [PMID: 39854608 PMCID: PMC11781694 DOI: 10.1371/journal.ppat.1012883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/30/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024. To assess viral load and genotypes, RNA was isolated from retropharyngeal lymph nodes and analyzed using RT-qPCR and viral whole genome sequencing. Samples showed a 14.64% positivity rate by RT-qPCR. Analysis showed no association of SARS-CoV-2 prevalence with age, sex, or diagnosis with Chronic Wasting Disease. From the 165 SARS-CoV-2 positive WTD, we recovered 25 whole genome sequences and an additional 17 spike-targeted amplicon sequences. The viral variants identified included 17 Alpha, 11 Delta, and 14 Omicron. Alpha largely stopped circulating in humans around September 2021, but persisted in WTD as recently as March of 2023. Phylodynamic analysis of pooled genomic data from Pennsylvania documents at least 12 SARS-CoV-2 spillovers from humans into WTD, including a recent series of Omicron spillovers. Prevalence was higher in WTD in regions with crop coverage rather than forest, suggesting an association with proximity to humans. Analysis of seasonality showed increased prevalence in winter and spring. Multiple examples of recurrent mutations were identified associated with transmissions, suggesting WTD-specific evolutionary pressures. These data document ongoing infections in white-tailed deer, probable onward transmission in deer, and a remarkable rate of new spillovers from humans.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Hogenauer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Bauer
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Michelle Gibison
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Beatrice DeMarco
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics, and Immunology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, United States of America
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Naveca FG, Almeida TAPD, Souza V, Nascimento V, Silva D, Nascimento F, Mejía M, Oliveira YSD, Rocha L, Xavier N, Lopes J, Maito R, Meneses C, Amorim T, Fé L, Camelo FS, Silva SCDA, Melo AXD, Fernandes LG, Oliveira MAAD, Arcanjo AR, Araújo G, André Júnior W, Carvalho RLCD, Rodrigues R, Albuquerque S, Mattos C, Silva C, Linhares A, Rodrigues T, Mariscal F, Morais MA, Presibella MM, Marques NFQ, Paiva A, Ribeiro K, Vieira D, Queiroz JADS, Passos-Silva AM, Abdalla L, Santos JH, Figueiredo RMPD, Cruz ACR, Casseb LN, Chiang JO, Frutuoso LV, Rossi A, Freitas L, Campos TDL, Wallau GL, Moreira E, Lins Neto RD, Alexander LW, Sun Y, Filippis AMBD, Gräf T, Arantes I, Bento AI, Delatorre E, Bello G. Human outbreaks of a novel reassortant Oropouche virus in the Brazilian Amazon region. Nat Med 2024; 30:3509-3521. [PMID: 39293488 DOI: 10.1038/s41591-024-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The Brazilian western Amazon is experiencing its largest laboratory-confirmed Oropouche virus (OROV) outbreak, with more than 6,300 reported cases between 2022 and 2024. In this study, we sequenced and analyzed 382 OROV genomes from human samples collected in Amazonas, Acre, Rondônia and Roraima states, between August 2022 and February 2024, to uncover the origin and genetic evolution of OROV in the current outbreak. Genomic analyses revealed that the upsurge of OROV cases in the Brazilian Amazon coincides with spread of a novel reassortant lineage containing the M segment of viruses detected in the eastern Amazon region (2009-2018) and the L and S segments of viruses detected in Peru, Colombia and Ecuador (2008-2021). The novel reassortant likely emerged in the Amazonas state between 2010 and 2014 and spread through long-range dispersion events during the second half of the 2010s. Phylodynamics reconstructions showed that the current OROV spread was driven mainly by short-range (< 2 km) movements consistent with the flight range of vectors. Nevertheless, a substantial proportion (22%) of long-range (>10 km) OROV migrations were also detected, consistent with viral dispersion by humans. Our data provide a view of the unprecedented spread and evolution of OROV in the Brazilian western Amazon region.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil.
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Tatiana Amaral Pires de Almeida
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, FCecon, Manaus, Brazil
| | - Victor Souza
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Valdinete Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Dejanane Silva
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Fernanda Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Matilde Mejía
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Yasmin Silva de Oliveira
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Luisa Rocha
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Natana Xavier
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Janis Lopes
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Rodrigo Maito
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Cátia Meneses
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Tatyana Amorim
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | - Luciana Fé
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | | | | | | | | | | | - Ana Ruth Arcanjo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | - Guilherme Araújo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | | | | | - Rosiane Rodrigues
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | | | - Cristiane Mattos
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Ciciléia Silva
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Aline Linhares
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Taynã Rodrigues
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Francy Mariscal
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Márcia Andréa Morais
- Núcleo de Doenças de Transmissão Vetorial, Secretaria Estadual de Saúde do Acre, Rio Branco, Brazil
| | | | | | - Anne Paiva
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Karina Ribeiro
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fiocruz Rondônia, Porto Velho, Brazil
| | | | | | | | | | | | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Vinhal Frutuoso
- Coordenação-Geral de Vigilância de Arboviroses - CGARB, Departamento de Doenças Transmissíveis, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | - Agata Rossi
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Lucas Freitas
- GISAID Global Data Science Initiative, Munich, Germany
| | | | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fiocruz, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | | | | | - Laura W Alexander
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yining Sun
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | - Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana I Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edson Delatorre
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Alkhamis MA, Hussain A, Al-Therban F. Comparative Evolutionary Epidemiology of SARS-CoV-2 Delta and Omicron Variants in Kuwait. Viruses 2024; 16:1872. [PMID: 39772182 PMCID: PMC11680180 DOI: 10.3390/v16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Continuous surveillance is critical for early intervention against emerging novel SARS-CoV-2 variants. Therefore, we investigated and compared the variant-specific evolutionary epidemiology of all the Delta and Omicron sequences collected between 2021 and 2023 in Kuwait. We used Bayesian phylodynamic models to reconstruct, trace, and compare the two variants' demographics, phylogeographic, and host characteristics in shaping their evolutionary epidemiology. The Omicron had a higher evolutionary rate than the Delta. Both variants underwent periods of sequential growth and decline in their effective population sizes, likely linked to intervention measures and environmental and host characteristics. We found that the Delta strains were frequently introduced into Kuwait from East Asian countries between late 2020 and early 2021, while those of the Omicron strains were most likely from Africa and North America between late 2021 and early 2022. For both variants, our analyses revealed significant transmission routes from patients aged between 20 and 50 years on one side and other age groups, refuting the notion that children are superspreaders for the disease. In contrast, we found that sex has no significant role in the evolutionary history of both variants. We uncovered deeper variant-specific epidemiological insights using phylodynamic models and highlighted the need to integrate such models into current and future genomic surveillance programs.
Collapse
Affiliation(s)
- Moh A. Alkhamis
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Abrar Hussain
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Fayez Al-Therban
- Department of Public Health, Ministry of Health, P.O. Box 24923, Kuwait City 13110, Kuwait;
| |
Collapse
|
12
|
Mushegian A, Kreitman A, Nelson MI, Chung M, Mederos C, Roder A, Banakis S, Desormeaux AM, Jean Charles NL, Grant-Greene Y, Marseille S, Pierre K, Lafontant D, Boncy J, Journel I, Buteau J, Juin S, Ghedin E. Genomic analysis of the early COVID-19 pandemic in Haiti reveals Caribbean-specific variant dynamics. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003536. [PMID: 39565753 PMCID: PMC11578445 DOI: 10.1371/journal.pgph.0003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024]
Abstract
Pathogen sequencing during the COVID-19 pandemic has generated more whole genome sequencing data than for any other epidemic, allowing epidemiologists to monitor the transmission and evolution of SARS-CoV-2. However, large parts of the world are heavily underrepresented in sequencing efforts, including the Caribbean islands. We performed genome sequencing of SARS-CoV-2 from upper respiratory tract samples collected in Haiti during the spring of 2020. We used phylogenetic analysis to assess the pandemic dynamics in the Caribbean region and observed that the epidemic in Haiti was seeded by multiple introductions, primarily from the United States. We identified the emergence of a SARS-CoV-2 lineage (B.1.478) from Haiti that spread into North America, as well as evidence of the undocumented spread of SARS-CoV-2 within the Caribbean. We demonstrate that the genomic analysis of a relatively modest number of samples from a severely under-sampled region can provide new insight on a previously unobserved spread of a specific lineage, demonstrating the importance of geographically widespread genomic epidemiology.
Collapse
Affiliation(s)
- Alexandra Mushegian
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allie Kreitman
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha I. Nelson
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Mederos
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allison Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | - Samson Marseille
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Katilla Pierre
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Donald Lafontant
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Ito Journel
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Josiane Buteau
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Stanley Juin
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Heppert JK, Awori RM, Cao M, Chen G, McLeish J, Goodrich-Blair H. Analyses of Xenorhabdus griffiniae genomes reveal two distinct sub-species that display intra-species variation due to prophages. BMC Genomics 2024; 25:1087. [PMID: 39548374 PMCID: PMC11566119 DOI: 10.1186/s12864-024-10858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications. RESULTS Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species. CONCLUSIONS Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | | | - Mengyi Cao
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Grischa Chen
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
14
|
Dhakal A, Si J, Sapkota S, Pauciullo A, Han J, Gorkhali NA, Zhao X, Zhang Y. Whole-genome sequencing reveals genetic structure and adaptive genes in Nepalese buffalo breeds. BMC Genomics 2024; 25:1082. [PMID: 39543523 PMCID: PMC11566569 DOI: 10.1186/s12864-024-10993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Indigenous buffaloes, as the important livestock species contributing to economy of the country, are the lifeline of livelihood in Nepal. They are distributed across diverse geographical regions of the country and have adapted to various feeding, breeding, and management conditions. The larger group of these native buffalo breeds are present in narrow and stiff hilly terrains. Their dispersal indicates a possible environmental adaptation mechanism, which is crucial for the conservation of these breeds. RESULTS We utilized whole-genome sequencing (WGS) to investigate the genetic diversity, population structure, and selection signatures of Nepalese indigenous buffaloes. We compared 66 whole-genome sequences with 118 publicly available sequences from six river and five swamp buffalo breeds. Genomic diversity parameters indicated genetic variability level in the Nepalese buffaloes comparable to those of Indian breeds, and population genetic structure revealed distinct geography-mediated genetic differentiation among these breeds. We used locus-specific branch length analysis (LSBL) for genome-wide scan, which revealed a list of potentially selected genes in Lime and Parkote breeds that inhabit the hilly region. A gene ontology (GO) analysis discovered that many GO terms were associated with cardiac function regulation. Furthermore, complementary analyses of local selection signatures, tissue expression profiles, and haplotype differences identified candidate genes, including KCNE1, CSF1R, and PDGFRB, related to the regulation of cardiac and pulmonary functions. CONCLUSIONS This study is a comprehensive WGS-based genetic analysis of the native Nepalese buffalo breeds. Our study suggested that the Nepalese "hilly" buffaloes, especially the Lime and Parkote breeds, have undergone some characteristic genetic changes and evolved increased cardiac and pulmonary function for their adaptation to the steep hilly terrains of the country.
Collapse
Affiliation(s)
- Aashish Dhakal
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingfang Si
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Saroj Sapkota
- National Animal Breeding and Genetics Research Centre, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, 10095, Italy
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Neena Amatya Gorkhali
- National Animal Breeding and Genetics Research Centre, Nepal Agricultural Research Council, Lalitpur, Nepal.
| | - Xingbo Zhao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yi Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Uhart MM, Vanstreels RET, Nelson MI, Olivera V, Campagna J, Zavattieri V, Lemey P, Campagna C, Falabella V, Rimondi A. Epidemiological data of an influenza A/H5N1 outbreak in elephant seals in Argentina indicates mammal-to-mammal transmission. Nat Commun 2024; 15:9516. [PMID: 39528494 PMCID: PMC11555070 DOI: 10.1038/s41467-024-53766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
H5N1 high pathogenicity avian influenza virus has killed thousands of marine mammals in South America since 2022. Here we report epidemiological data and full genome characterization of clade 2.3.4.4b H5N1 HPAI viruses associated with a massive outbreak in southern elephant seals (Mirounga leonina) at Península Valdés, Argentina, in October 2023. We also report on H5N1 viruses in concurrently dead terns. Our genomic analysis shows that viruses from pinnipeds and terns in Argentina form a distinct clade with marine mammal viruses from Peru, Chile, Brazil and Uruguay. Additionally, these marine mammal clade viruses share an identical set of mammalian adaptation mutations which were also present in tern viruses. Our combined ecological and phylogenetic data support mammal-to-mammal transmission and occasional mammal-to-bird spillover and suggest multinational transmission of H5N1 viruses in mammals. We reflect that H5N1 viruses becoming more evolutionary flexible and adapting to mammals in new ways could have global consequences for wildlife, humans, and/or livestock.
Collapse
Affiliation(s)
- Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA.
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Argentina.
| | - Ralph E T Vanstreels
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Valeria Olivera
- Instituto de Virología e Innovaciones Tecnológicas, INTA-CONICET, Buenos Aires, Argentina
| | - Julieta Campagna
- Wildlife Conservation Society, Argentina Program, Buenos Aires, Argentina
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Claudio Campagna
- Wildlife Conservation Society, Argentina Program, Buenos Aires, Argentina
| | - Valeria Falabella
- Wildlife Conservation Society, Argentina Program, Buenos Aires, Argentina
| | - Agustina Rimondi
- Instituto de Virología e Innovaciones Tecnológicas, INTA-CONICET, Buenos Aires, Argentina.
- Robert Koch Institute-Alexander von Humboldt fellowship, Berlin, Germany.
| |
Collapse
|
16
|
Chen Z, Tsui JLH, Gutierrez B, Moreno SB, du Plessis L, Deng X, Cai J, Bajaj S, Suchard MA, Pybus OG, Lemey P, Kraemer MUG, Yu H. COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses. Science 2024; 386:eadq3003. [PMID: 39509510 PMCID: PMC11760156 DOI: 10.1126/science.adq3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024]
Abstract
The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular, epidemiological, and international travel data and find that the pandemic's onset led to a shift in the intensity and structure of international influenza lineage movement. During the pandemic, South Asia played an important role as a phylogenetic trunk location of influenza A viruses, whereas West Asia maintained the circulation of influenza B/Victoria. We explore drivers of influenza lineage dynamics across the pandemic period and reasons for the possible extinction of the B/Yamagata lineage. After a period of 3 years, the intensity of among-region influenza lineage movements returned to pre-pandemic levels, with the exception of B/Yamagata, after the recovery of global air traffic, highlighting the robustness of global lineage dispersal patterns to substantial perturbation.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | | | - Bernardo Gutierrez
- Department of Biology, University of Oxford; Oxford, UK
- Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito USFQ; Quito, Ecuador
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich; Basel, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University; Nanjing, China
| | - Jun Cai
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | - Sumali Bajaj
- Department of Biology, University of Oxford; Oxford, UK
| | - Marc A. Suchard
- Departments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles; Los Angeles, CA, USA
| | - Oliver G. Pybus
- Department of Biology, University of Oxford; Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College; London, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven; Leuven, Belgium
| | - Moritz U. G. Kraemer
- Department of Biology, University of Oxford; Oxford, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University; Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University; Shanghai, China
| |
Collapse
|
17
|
Li YT, Ko HY, Hughes J, Liu MT, Lin YL, Hampson K, Brunker K. From emergence to endemicity of highly pathogenic H5 avian influenza viruses in Taiwan. Nat Commun 2024; 15:9348. [PMID: 39472594 PMCID: PMC11522503 DOI: 10.1038/s41467-024-53816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
A/goose/Guangdong/1/96-like (GsGd) highly pathogenic avian influenza (HPAI) H5 viruses cause severe outbreaks in poultry when introduced. Since emergence in 1996, control measures in most countries have suppressed local GsGd transmission following introductions, making persistent transmission in domestic birds rare. However, geographical expansion of clade 2.3.4.4 sublineages has raised concern about establishment of endemic circulation, while mechanistic drivers leading to endemicity remain unknown. We reconstructed the evolutionary history of GsGd sublineage, clade 2.3.4.4c, in Taiwan using a time-heterogeneous rate phylogeographic model. During Taiwan's initial epidemic wave (January 2015 - August 2016), we inferred that localised outbreaks had multiple origins from rapid spread between counties/cities nationwide. Subsequently, outbreaks predominantly originated from a single county, Yunlin, where persistent transmission harbours the trunk viruses of the sublineage. Endemic hotspots determined by phylogeographic reconstruction largely predicted the locations of re-emerging outbreaks in Yunlin. The transition to endemicity involved a shift to chicken-dominant circulation, following the initial bidirectional spread between chicken and domestic waterfowl. Our results suggest that following their emergence in Taiwan, source-sink dynamics from a single county have maintained GsGd endemicity up until 2023, pointing to where control efforts should be targeted to eliminate the disease.
Collapse
Affiliation(s)
- Yao-Tsun Li
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Katie Hampson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Kirstyn Brunker
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
18
|
Sun Y, Xing J, Hong SL, Bollen N, Xu S, Li Y, Zhong J, Gao X, Zhu D, Liu J, Gong L, Zhou L, An T, Shi M, Wang H, Baele G, Zhang G. Untangling lineage introductions, persistence and transmission drivers of HP-PRRSV sublineage 8.7. Nat Commun 2024; 15:8842. [PMID: 39397015 PMCID: PMC11471759 DOI: 10.1038/s41467-024-53076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Despite a rapid expansion of Porcine reproductive and respiratory syndrome virus (PRRSV) sublineage 8.7 over recent years, very little is known about the patterns of virus evolution, dispersal, and the factors influencing this dispersal. Relying on a national PRRSV surveillance project established over 20 years ago, we expand the available genomic data of sublineage 8.7 from China. We perform independent interlineage and intralineage recombination analyses for the entire study period, which showed a heterogeneous recombination pattern. A series of Bayesian phylogeographic analyses uncover the role of Guangdong as an important infection hub within Asia. The spatial spread of PRRSV is highly linked with a composite of human activities and the heterogeneous provincial distribution of the swine industry, largely propelled by the smaller-scale Chinese rural farming systems in the past years. We sequence all four available modified live vaccines (MLVs) and perform genomic analyses with publicly available data, of which our results suggest a key "leaky" period spanning 2011-2017 with two concurrent amino acid mutations in ORF1a 957 and ORF2 250. Overall, our study provides an in-depth overview of the evolution, transmission dynamics, and potential leaky status of HP-PRRS MLVs, providing critical insights into new MLV development.
Collapse
Affiliation(s)
- Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaopeng Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dihua Zhu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
19
|
Vakaniaki EH, Kacita C, Kinganda-Lusamaki E, O'Toole Á, Wawina-Bokalanga T, Mukadi-Bamuleka D, Amuri-Aziza A, Malyamungu-Bubala N, Mweshi-Kumbana F, Mutimbwa-Mambo L, Belesi-Siangoli F, Mujula Y, Parker E, Muswamba-Kayembe PC, Nundu SS, Lushima RS, Makangara-Cigolo JC, Mulopo-Mukanya N, Pukuta-Simbu E, Akil-Bandali P, Kavunga H, Abdramane O, Brosius I, Bangwen E, Vercauteren K, Sam-Agudu NA, Mills EJ, Tshiani-Mbaya O, Hoff NA, Rimoin AW, Hensley LE, Kindrachuk J, Baxter C, de Oliveira T, Ayouba A, Peeters M, Delaporte E, Ahuka-Mundeke S, Mohr EL, Sullivan NJ, Muyembe-Tamfum JJ, Nachega JB, Rambaut A, Liesenborghs L, Mbala-Kingebeni P. Sustained human outbreak of a new MPXV clade I lineage in eastern Democratic Republic of the Congo. Nat Med 2024; 30:2791-2795. [PMID: 38871006 PMCID: PMC11485229 DOI: 10.1038/s41591-024-03130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Outbreaks of monkeypox (mpox) have historically resulted from zoonotic spillover of clade I monkeypox virus (MPXV) in Central Africa and clade II MPXV in West Africa. In 2022, subclade IIb caused a global epidemic linked to transmission through sexual contact. Here we describe the epidemiological and genomic features of an mpox outbreak in a mining region in eastern Democratic Republic of the Congo, caused by clade I MPXV. Surveillance data collected between September 2023 and January 2024 identified 241 suspected cases. Genomic analysis demonstrates a distinct clade I lineage divergent from previously circulating strains in the Democratic Republic of the Congo. Of the 108 polymerase chain reaction-confirmed mpox cases, the median age of individuals was 22 years, 51.9% were female and 29% were sex workers, suggesting a potential role for sexual transmission. The predominance of APOBEC3-type mutations and the estimated emergence time around mid-September 2023 imply recent sustained human-to-human transmission.
Collapse
Affiliation(s)
- Emmanuel Hasivirwe Vakaniaki
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Cris Kacita
- Hemorrhagic Fever and Monkeypox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Eddy Kinganda-Lusamaki
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
- TransVIHMI (Recherches Translationnelles sur le VIH et les Maladies Infectieuses endémiques et émergentes), Université de Montpellier, French National Research Institute for Sustainable Development (IRD), INSERM, Montpellier, France
| | - Áine O'Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Tony Wawina-Bokalanga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Daniel Mukadi-Bamuleka
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
- Rodolphe Merieux INRB-Goma Laboratory, Goma, Democratic Republic of the Congo
| | - Adrienne Amuri-Aziza
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | | | | | | | - Yves Mujula
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Edyth Parker
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | | | - Sabin S Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Robert S Lushima
- Hemorrhagic Fever and Monkeypox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Jean-Claude Makangara-Cigolo
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | - Prince Akil-Bandali
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Hugo Kavunga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Rodolphe Merieux INRB-Goma Laboratory, Goma, Democratic Republic of the Congo
| | - Ombotimbe Abdramane
- Medical Department, The Alliance for International Medical Action, Goma, Democratic Republic of the Congo
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eugene Bangwen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koen Vercauteren
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nadia A Sam-Agudu
- Department of Pediatrics and Child Health, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- International Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, Nigeria
- Global Pediatrics Program and Division of Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Edward J Mills
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Olivier Tshiani-Mbaya
- Frederick National Laboratory, Leidos Biomedical Research, Clinical Monitoring Research Program Directorate, Frederick, MD, USA
| | - Nicole A Hoff
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Anne W Rimoin
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | | | - Cheryl Baxter
- Centre for Epidemic Response and Innovation, Stellenbosch University, Cape Town, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation, Stellenbosch University, Cape Town, South Africa
| | - Ahidjo Ayouba
- TransVIHMI (Recherches Translationnelles sur le VIH et les Maladies Infectieuses endémiques et émergentes), Université de Montpellier, French National Research Institute for Sustainable Development (IRD), INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI (Recherches Translationnelles sur le VIH et les Maladies Infectieuses endémiques et émergentes), Université de Montpellier, French National Research Institute for Sustainable Development (IRD), INSERM, Montpellier, France
| | - Eric Delaporte
- TransVIHMI (Recherches Translationnelles sur le VIH et les Maladies Infectieuses endémiques et émergentes), Université de Montpellier, French National Research Institute for Sustainable Development (IRD), INSERM, Montpellier, France
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Emma L Mohr
- Department of Pediatrics, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, USA
| | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean B Nachega
- Department of Epidemiology, Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA.
- Department of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Medicine, Division of Infectious Diseases, Stellenbosch University Faculty of Medicine and Health Sciences, Cape Town, South Africa.
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Laurens Liesenborghs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.
- Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| |
Collapse
|
20
|
Bai Y, Xiao J, Moming A, Fu J, Wang J, Zhou M, Chen C, Shi J, Zhang J, Fan Z, Tang S, Wang B, Deng F, Shen S. Identification and characterization of new Siberian subtype of tick-borne encephalitis virus isolates revealed genetic variations of the Chinese strains. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105660. [PMID: 39179014 DOI: 10.1016/j.meegid.2024.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a pathogen that causes febrile infectious diseases and neurological damage to humans. TBEVs are prevalent from Europe to Far Eastern Asia, including Northeastern China. The understanding of TBEV phylogeny in China has been limited owing to insufficient genomic data on Chinese TBEV strains. Here, six TBEV strains were isolated from ticks collected in Inner Mongolia. The transmission electron microscopy revealed spherical particles with an enveloped structure of 50-60 nm in diameter. Phylogenetic analysis showed that, two strains were classified as the Siberian subtype, while the remaining four were identified as the Far Eastern subtype. Migration analyses based on TBEV ORF and envelope (E) protein sequences revealed that Chinese TBEV strains were migrated from Russia and/or Kazakhstan into China. Hulun Buir and Mudanjiang, the northeastern region of China, are considered hotspots with multiple import and export routes of Chinese TBEV strains. These results promote the understanding of TBEV genetic variations and phylogeny in China and suggest the importance of improving investigation of TBEV prevalence, which would instrumental for vaccine design strategies and better preparation for controlling TBEV infection in humans.
Collapse
Affiliation(s)
- Yuan Bai
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Jian Xiao
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abulimiti Moming
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jie Fu
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Min Zhou
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Chuizhe Chen
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou 570311, Hainan Province, China
| | - Junming Shi
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jingyuan Zhang
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhaojun Fan
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shuang Tang
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Bo Wang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou 570311, Hainan Province, China.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China; Hubei Jiangxia Laboratory, 430200 Wuhan, China.
| |
Collapse
|
21
|
Vello F, Filippini F, Righetto I. Bioinformatics Goes Viral: I. Databases, Phylogenetics and Phylodynamics Tools for Boosting Virus Research. Viruses 2024; 16:1425. [PMID: 39339901 PMCID: PMC11437414 DOI: 10.3390/v16091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Computer-aided analysis of proteins or nucleic acids seems like a matter of course nowadays; however, the history of Bioinformatics and Computational Biology is quite recent. The advent of high-throughput sequencing has led to the production of "big data", which has also affected the field of virology. The collaboration between the communities of bioinformaticians and virologists already started a few decades ago and it was strongly enhanced by the recent SARS-CoV-2 pandemics. In this article, which is the first in a series on how bioinformatics can enhance virus research, we show that highly useful information is retrievable from selected general and dedicated databases. Indeed, an enormous amount of information-both in terms of nucleotide/protein sequences and their annotation-is deposited in the general databases of international organisations participating in the International Nucleotide Sequence Database Collaboration (INSDC). However, more and more virus-specific databases have been established and are progressively enriched with the contents and features reported in this article. Since viruses are intracellular obligate parasites, a special focus is given to host-pathogen protein-protein interaction databases. Finally, we illustrate several phylogenetic and phylodynamic tools, combining information on algorithms and features with practical information on how to use them and case studies that validate their usefulness. Databases and tools for functional inference will be covered in the next article of this series: Bioinformatics goes viral: II. Sequence-based and structure-based functional analyses for boosting virus research.
Collapse
Affiliation(s)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (F.V.); (I.R.)
| | | |
Collapse
|
22
|
Magee AF, Holbrook AJ, Pekar JE, Caviedes-Solis IW, Matsen IV FA, Baele G, Wertheim JO, Ji X, Lemey P, Suchard MA. Random-Effects Substitution Models for Phylogenetics via Scalable Gradient Approximations. Syst Biol 2024; 73:562-578. [PMID: 38712512 PMCID: PMC11498053 DOI: 10.1093/sysbio/syae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.
Collapse
Affiliation(s)
- Andrew F Magee
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
| | - Andrew J Holbrook
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
| | - Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California - San Diego, La Jolla, CA, USA
- Department of Biomedical Informatics, University of California - San Diega, La Jolla, CA, USA
| | | | - Fredrick A Matsen IV
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joel O Wertheim
- Department of Medicine, University of California - San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, LA, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Martínez D, Gómez M, Hernández C, Campo-Palacio S, González-Robayo M, Montilla M, Pavas-Escobar N, Tovar-Acero C, Geovo-Arias L, Valencia-Urrutia E, Córdoba-Renteria N, Carrillo-Hernandez MY, Ruiz-Saenz J, Martinez-Gutierrez M, Paniz-Mondolfi A, Patiño LH, Muñoz M, Ramírez JD. Cryptic transmission and novel introduction of Dengue 1 and 2 genotypes in Colombia. Virus Evol 2024; 10:veae068. [PMID: 39347444 PMCID: PMC11429525 DOI: 10.1093/ve/veae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Dengue fever remains as a public health challenge in Colombia, standing as the most prevalent infectious disease in the country. The cyclic nature of dengue epidemics, occurring approximately every 3 years, is intricately linked to meteorological events like El Niño Southern Oscillation (ENSO). Therefore, the Colombian system faces challenges in genomic surveillance. This study aimed to evaluate local dengue virus (DENV) transmission and genetic diversity in four Colombian departments with heterogeneous incidence patterns (department is first-level territorial units in Colombia). For this study, we processed 266 serum samples to identify DENV. Subsequently, we obtained 118 genome sequences by sequencing DENV genomes from serum samples of 134 patients infected with DENV-1 and DENV-2 serotypes. The predominant serotype was DENV-2 (108/143), with the Asian-American (AA) genotype (91/118) being the most prevalent one. Phylogenetic analysis revealed concurrent circulation of two lineages of both DENV-2 AA and DENV-1 V, suggesting ongoing genetic exchange with sequences from Venezuela and Cuba. The continuous migration of Venezuelan citizens into Colombia can contribute to this exchange, emphasizing the need for strengthened prevention measures in border areas. Notably, the time to most recent common ancestor analysis identified cryptic transmission of DENV-2 AA since approximately 2015, leading to the recent epidemic. This challenges the notion that major outbreaks are solely triggered by recent virus introductions, emphasizing the importance of active genomic surveillance. The study also highlighted the contrasting selection pressures on DENV-1 V and DENV-2 AA, with the latter experiencing positive selection, possibly influencing its transmissibility. The presence of a cosmopolitan genotype in Colombia, previously reported in Brazil and Peru, raises concerns about transmission routes, emphasizing the necessity for thorough DENV evolution studies. Despite limitations, the study underscores genomic epidemiology's crucial role in early detection and comprehension of DENV genotypes, recommending the use of advanced sequencing techniques as an early warning system to help prevent and control dengue outbreaks in Colombia and worldwide.
Collapse
Affiliation(s)
- David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra Campo-Palacio
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marina González-Robayo
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marcela Montilla
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Norma Pavas-Escobar
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Catalina Tovar-Acero
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Lillys Geovo-Arias
- Secretaria de Salud departamental Chocó-Laboratorio de Salud Pública, Chocó, Colombia
| | | | | | - Marlen Y Carrillo-Hernandez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Pérez LJ, Baele G, Hong SL, Cloherty GA, Berg MG. Ecological Changes Exacerbating the Spread of Invasive Ticks has Driven the Dispersal of Severe Fever with Thrombocytopenia Syndrome Virus Throughout Southeast Asia. Mol Biol Evol 2024; 41:msae173. [PMID: 39191515 PMCID: PMC11349436 DOI: 10.1093/molbev/msae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus recognized by the World Health Organization as an emerging infectious disease of growing concern. Utilizing phylodynamic and phylogeographic methods, we have reconstructed the origin and transmission patterns of SFTSV lineages and the roles demographic, ecological, and climatic factors have played in shaping its emergence and spread throughout Asia. Environmental changes and fluctuations in tick populations, exacerbated by the widespread use of pesticides, have contributed significantly to its geographic expansion. The increased adaptability of Lineage L2 strains to the Haemaphysalis longicornis vector has facilitated the dispersal of SFTSV through Southeast Asia. Increased surveillance and proactive measures are needed to prevent further spread to Australia, Indonesia, and North America.
Collapse
Affiliation(s)
- Lester J Pérez
- Infectious Disease Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, USA
- Abbott Pandemic Defense Coalition (APDC), Abbott Park, IL, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Evolutionary Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Evolutionary Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Gavin A Cloherty
- Infectious Disease Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, USA
- Abbott Pandemic Defense Coalition (APDC), Abbott Park, IL, USA
| | - Michael G Berg
- Infectious Disease Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, USA
- Abbott Pandemic Defense Coalition (APDC), Abbott Park, IL, USA
| |
Collapse
|
25
|
Smith K, Ayres D, Neumaier R, Wörheide G, Höhna S. Bayesian Phylogenetic Analysis on Multi-Core Compute Architectures: Implementation and Evaluation of BEAGLE in RevBayes With MPI. Syst Biol 2024; 73:455-469. [PMID: 38284268 DOI: 10.1093/sysbio/syae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Phylogenies are central to many research areas in biology and commonly estimated using likelihood-based methods. Unfortunately, any likelihood-based method, including Bayesian inference, can be restrictively slow for large datasets-with many taxa and/or many sites in the sequence alignment-or complex substitutions models. The primary limiting factor when using large datasets and/or complex models in probabilistic phylogenetic analyses is the likelihood calculation, which dominates the total computation time. To address this bottleneck, we incorporated the high-performance phylogenetic library BEAGLE into RevBayes, which enables multi-threading on multi-core CPUs and GPUs, as well as hardware specific vectorized instructions for faster likelihood calculations. Our new implementation of RevBayes+BEAGLE retains the flexibility and dynamic nature that users expect from vanilla RevBayes. In addition, we implemented native parallelization within RevBayes without an external library using the message passing interface (MPI); RevBayes+MPI. We evaluated our new implementation of RevBayes+BEAGLE using multi-threading on CPUs and 2 different powerful GPUs (NVidia Titan V and NVIDIA A100) against our native implementation of RevBayes+MPI. We found good improvements in speedup when multiple cores were used, with up to 20-fold speedup when using multiple CPU cores and over 90-fold speedup when using multiple GPU cores. The improvement depended on the data type used, DNA or amino acids, and the size of the alignment, but less on the size of the tree. We additionally investigated the cost of rescaling partial likelihoods to avoid numerical underflow and showed that unnecessarily frequent and inefficient rescaling can increase runtimes up to 4-fold. Finally, we presented and compared a new approach to store partial likelihoods on branches instead of nodes that can speed up computations up to 1.7 times but comes at twice the memory requirements.
Collapse
Affiliation(s)
- Killian Smith
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Daniel Ayres
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - René Neumaier
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Gert Wörheide
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| |
Collapse
|
26
|
Kernan CE, Robillard T, Martinson SJ, Dong J, Hamel JA, Symes LB, Ter Hofstede HM. Levels of Airborne Sound And Substrate-borne Vibration Calling Are Negatively Related Across Neotropical False-leaf Katydids. Integr Comp Biol 2024; 64:120-133. [PMID: 38664061 DOI: 10.1093/icb/icae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 07/28/2024] Open
Abstract
Animals often signal in multiple sensory modalities to attract mates, but the level of signaling investment in each modality can differ dramatically between individuals and across species. When functionally overlapping signals are produced in different modalities, their relative use can be influenced by many factors, including differences in signal active space, energetic costs, and predation risk. Characterizing differences in total signal investment across time can shed light on these factors, but requires long focal recordings of signal production. Neotropical pseudophylline katydids produce mate advertisement signals as airborne sound and substrate-borne vibration. Airborne calls, produced via stridulation, are extremely short, high-frequency, and longer-range signals. Conversely, substrate-borne calls produced via abdominal tremulation are longer, low-frequency, relatively more energetically costly, and shorter-range signals. To examine patterns of stridulation and tremulation across species and test hypotheses about the drivers of signal use in each modality, we recorded multimodal signaling activity over 24 hours for males from 10 pseudophylline species from a single Panamanian community. We also collected data on demographic and morphological species characteristics, and acoustic features of airborne calls, such as bandwidth, peak frequency, and duration. Finally, we generated a molecular phylogeny for these species and used phylogenetic generalized least squares models to test for relationships between variables while controlling for evolutionary relationships. We found a negative relationship between sound and vibration calling, indicating that substrate-borne vibrational signaling may compensate for reduced airborne signaling in these species. Sound call bandwidth and the proportion of males collected at lights, a proxy for the amount of male movement, also explained a significant amount of variation in sound calling across species, indicating that the overall relationship between the two types of calling signals may be mediated by the specific characteristics of the signals as well as other species traits.
Collapse
Affiliation(s)
- Ciara E Kernan
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Tony Robillard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE-PSL, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France
| | - Sharon J Martinson
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Fish, Wildlife, & Conservation Biology Department, Colorado State University, 711 Oval Drive, Fort Collins, CO 80521, USA
| | - Jiajia Dong
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Tongshan Road 209, 221004, China
| | - Jennifer A Hamel
- Department of Biology, Elon University, 100 Campus Drive, Elon, NC 27244, USA
| | - Laurel B Symes
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Hannah M Ter Hofstede
- Ecology, Evolution, Environment & Society Graduate Program, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá City, Republic of Panamá
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave., Windsor N9B 3P4 Ontario, Canada
| |
Collapse
|
27
|
Jegla T, Simonson BT, Spafford JD. A broad survey of choanoflagellates revises the evolutionary history of the Shaker family of voltage-gated K + channels in animals. Proc Natl Acad Sci U S A 2024; 121:e2407461121. [PMID: 39018191 PMCID: PMC11287247 DOI: 10.1073/pnas.2407461121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
The Shaker family of voltage-gated K+ channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K+ currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor. Here, we show that some choanoflagellates, the closest protozoan sister lineage to animals, also have Shaker family K+ channels. Choanoflagellate Shaker family channels are surprisingly most closely related to the animal Kv2-4 subfamilies which were believed to have evolved only after the divergence of ctenophores and sponges from cnidarians and bilaterians. Structural modeling predicts that the choanoflagellate channels share a T1 Zn2+ binding site with Kv2-4 channels that is absent in Kv1 channels. We functionally expressed three Shakers from Salpingoeca helianthica (SheliKvT1.1-3) in Xenopus oocytes. SheliKvT1.1-3 function only in two heteromultimeric combinations (SheliKvT1.1/1.2 and SheliKvT1.1/1.3) and encode fast N-type inactivating K+ channels with distinct voltage dependence that are most similar to the widespread animal Kv1-encoded A-type Shakers. Structural modeling of the T1 assembly domain supports a preference for heteromeric assembly in a 2:2 stoichiometry. These results push the origin of the Shaker family back into a common ancestor of metazoans and choanoflagellates. They also suggest that the animal common ancestor had at least two distinct molecular lineages of Shaker channels, a Kv1 subfamily lineage predicted from comparison of animal genomes and a Kv2-4 lineage predicted from comparison of animals and choanoflagellates.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - Benjamin T. Simonson
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
28
|
Ardisson M, Girodolle J, De Mita S, Roumet P, Ranwez V. GeCKO: user-friendly workflows for genotyping complex genomes using target enrichment capture. A use case on the large tetraploid durum wheat genome. PLANT METHODS 2024; 20:103. [PMID: 39003455 PMCID: PMC11246579 DOI: 10.1186/s13007-024-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Genotyping of individuals plays a pivotal role in various biological analyses, with technology choice influenced by multiple factors including genomic constraints, number of targeted loci and individuals, cost considerations, and the ease of sample preparation and data processing. Target enrichment capture of specific polymorphic regions has emerged as a flexible and cost-effective genomic reduction method for genotyping, especially adapted to the case of very large genomes. However, this approach necessitates complex bioinformatics treatment to extract genotyping data from raw reads. Existing workflows predominantly cater to phylogenetic inference, leaving a gap in user-friendly tools for genotyping analysis based on capture methods. In response to these challenges, we have developed GeCKO (Genotyping Complexity Knocked-Out). To assess the effectiveness of combining target enrichment capture with GeCKO, we conducted a case study on durum wheat domestication history, involving sequencing, processing, and analyzing variants in four relevant durum wheat groups. RESULTS GeCKO encompasses four distinct workflows, each designed for specific steps of genomic data processing: (i) read demultiplexing and trimming for data cleaning, (ii) read mapping to align sequences to a reference genome, (iii) variant calling to identify genetic variants, and (iv) variant filtering. Each workflow in GeCKO can be easily configured and is executable across diverse computational environments. The workflows generate comprehensive HTML reports including key summary statistics and illustrative graphs, ensuring traceable, reproducible results and facilitating straightforward quality assessment. A specific innovation within GeCKO is its 'targeted remapping' feature, specifically designed for efficient treatment of targeted enrichment capture data. This process consists of extracting reads mapped to the targeted regions, constructing a smaller sub-reference genome, and remapping the reads to this sub-reference, thereby enhancing the efficiency of subsequent steps. CONCLUSIONS The case study results showed the expected intra-group diversity and inter-group differentiation levels, confirming the method's effectiveness for genotyping and analyzing genetic diversity in species with complex genomes. GeCKO streamlined the data processing, significantly improving computational performance and efficiency. The targeted remapping enabled straightforward SNP calling in durum wheat, a task otherwise complicated by the species' large genome size. This illustrates its potential applications in various biological research contexts.
Collapse
Affiliation(s)
- Morgane Ardisson
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France.
| | - Johanna Girodolle
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| | - Stéphane De Mita
- INRAE, CIRAD, Institut Agro, IRD, PHIM, Université Montpellier, Montpellier, France
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| | - Vincent Ranwez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| |
Collapse
|
29
|
Gallego-García P, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Posada D. Dispersal history of SARS-CoV-2 variants Alpha, Delta, and Omicron (BA.1) in Spain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309632. [PMID: 39006420 PMCID: PMC11245079 DOI: 10.1101/2024.07.01.24309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Different factors influence the spread of SARS-CoV-2, from the inherent transmission capabilities of the different variants to the control measurements put in place. Here we studied the introduction of the Alpha, Delta, and Omicron-BA.1 variants of concern (VOCs) into Spain. For this, we collected genomic data from the GISAID database and combined it with connectivity data from different countries with Spain to perform a phylodynamic Bayesian analysis of the introductions. Our findings reveal that the introductions of these VOCs predominantly originated from France, especially in the case of Alpha. As travel restrictions were eased during the Delta and Omicron-BA.1 waves, the number of introductions from distinct countries increased, with the United Kingdom and Germany becoming significant sources of the virus. The largest number of introductions detected corresponded to the Delta wave, which was associated with fewer restrictions and the summer period, when Spain receives a considerable number of tourists. This research underscores the importance of monitoring international travel patterns and implementing targeted public health measures to manage the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
30
|
Gallego-García P, Estévez-Gómez N, De Chiara L, Alvariño P, Juiz-González PM, Torres-Beceiro I, Poza M, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Aja-Macaya P, Ladra S, Moreno-Flores A, Gude-González MJ, Coira A, Aguilera A, Costa-Alcalde JJ, Trastoy R, Barbeito-Castiñeiras G, García-Souto D, Tubio JMC, Trigo-Daporta M, Camacho-Zamora P, Costa JG, González-Domínguez M, Canoura-Fernández L, Glez-Peña D, Pérez-Castro S, Cabrera JJ, Daviña-Núñez C, Godoy-Diz M, Treinta-Álvarez AB, Veiga MI, Sousa JC, Osório NS, Comas I, González-Candelas F, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Agulla A, Bou G, Alonso-García P, Pérez-Del-Molino ML, García-Campello M, Paz-Vidal I, Regueiro B, Posada D. Dispersal history of SARS-CoV-2 in Galicia, Spain. J Med Virol 2024; 96:e29773. [PMID: 38940448 PMCID: PMC11742125 DOI: 10.1002/jmv.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron-BA.1 variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the United States became increasingly significant. The number of detected introductions varied from 96 and 101 for Alpha and Delta to 39 for Omicron-BA.1. Most of these introductions left a low number of descendants (<10), suggesting a limited impact on the evolution of the pandemic in Galicia. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| | | | - Pedro M Juiz-González
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Isabel Torres-Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
- Microbiome and Health Group, Faculty of Sciences, University of A Coruña (UDC), A Coruña, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Susana Ladra
- Database Laboratory, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), A Coruña, Spain
| | | | | | - Amparo Coira
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Antonio Aguilera
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - José J Costa-Alcalde
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Rocío Trastoy
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Gema Barbeito-Castiñeiras
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Daniel García-Souto
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José M C Tubio
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physic Anthropology, Santiago de Compostela, Spain
| | - Matilde Trigo-Daporta
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Pablo Camacho-Zamora
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Juan García Costa
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Luis Canoura-Fernández
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Sonia Pérez-Castro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge J Cabrera
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Daviña-Núñez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Montserrat Godoy-Diz
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Ana Belén Treinta-Álvarez
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Iñaki Comas
- Tuberculosis Genomics Unit, BioMedicine Institute of Valencia, Spanish Research Council (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Andrés Agulla
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pilar Alonso-García
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - María Luisa Pérez-Del-Molino
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Marta García-Campello
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Isabel Paz-Vidal
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Benito Regueiro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
31
|
Djuicy DD, Omah IF, Parker E, Tomkins-Tinch CH, Otieno JR, Yifomnjou MHM, Essengue LLM, Ayinla AO, Sijuwola AE, Ahmed MI, Ope-ewe OO, Ogunsanya OA, Olono A, Eromon P, Yonga MGW, Essima GD, Touoyem IP, Mounchili LJM, Eyangoh SI, Esso L, Nguidjol IME, Metomb SF, Chebo C, Agwe SM, Mossi HM, Bilounga CN, Etoundi AGM, Akanbi O, Egwuenu A, Ehiakhamen O, Chukwu C, Suleiman K, Akinpelu A, Ahmad A, Imam KI, Ojedele R, Oripenaye V, Ikeata K, Adelakun S, Olajumoke B, O’Toole Á, Magee A, Zeller M, Gangavarapu K, Varilly P, Park DJ, Mboowa G, Tessema SK, Tebeje YK, Folarin O, Happi A, Lemey P, Suchard MA, Andersen KG, Sabeti P, Rambaut A, Ihekweazu C, Jide I, Adetifa I, Njoum R, Happi CT. Molecular epidemiology of recurrent zoonotic transmission of mpox virus in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309115. [PMID: 38947021 PMCID: PMC11213044 DOI: 10.1101/2024.06.18.24309115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nigeria and Cameroon reported their first mpox cases in over three decades in 2017 and 2018 respectively. The outbreak in Nigeria is recognised as an ongoing human epidemic. However, owing to sparse surveillance and genomic data, it is not known whether the increase in cases in Cameroon is driven by zoonotic or sustained human transmission. Notably, the frequency of zoonotic transmission remains unknown in both Cameroon and Nigeria. To address these uncertainties, we investigated the zoonotic transmission dynamics of the mpox virus (MPXV) in Cameroon and Nigeria, with a particular focus on the border regions. We show that in these regions mpox cases are still driven by zoonotic transmission of a newly identified Clade IIb.1. We identify two distinct zoonotic lineages that circulate across the Nigeria-Cameroon border, with evidence of recent and historic cross border dissemination. Our findings support that the complex cross-border forest ecosystems likely hosts shared animal populations that drive cross-border viral spread, which is likely where extant Clade IIb originated. We identify that the closest zoonotic outgroup to the human epidemic circulated in southern Nigeria in October 2013. We also show that the zoonotic precursor lineage circulated in an animal population in southern Nigeria for more than 45 years. This supports findings that southern Nigeria was the origin of the human epidemic. Our study highlights the ongoing MPXV zoonotic transmission in Cameroon and Nigeria, underscoring the continuous risk of MPXV (re)emergence.
Collapse
Affiliation(s)
- Delia Doreen Djuicy
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | - Ifeanyi F. Omah
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Edyth Parker
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | - Akeemat Opeyemi Ayinla
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Ayotunde E. Sijuwola
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Muhammad I. Ahmed
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Oludayo O. Ope-ewe
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Olusola Akinola Ogunsanya
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Alhaji Olono
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Philomena Eromon
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | | | - Gael Dieudonné Essima
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | | | | | - Sara Irene Eyangoh
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | - Linda Esso
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Inès Mandah Emah Nguidjol
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Steve Franck Metomb
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Cornelius Chebo
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Samuel Mbah Agwe
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Hans Makembe Mossi
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | - Chanceline Ndongo Bilounga
- Department for the Control of Disease, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
| | | | - Olusola Akanbi
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Abiodun Egwuenu
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | | | - Chimaobi Chukwu
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Kabiru Suleiman
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Afolabi Akinpelu
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Adama Ahmad
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | | | - Richard Ojedele
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Victor Oripenaye
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Kenneth Ikeata
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | | | | | - Áine O’Toole
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
| | - Andrew Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick Varilly
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel J Park
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerald Mboowa
- Africa Centres for Disease Control and Prevention (Africa CDC),Addis Ababa, Ethiopia
| | | | - Yenew Kebede Tebeje
- Africa Centres for Disease Control and Prevention (Africa CDC),Addis Ababa, Ethiopia
| | - Onikepe Folarin
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Pardis Sabeti
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Idriss Jide
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Ifedayo Adetifa
- Nigeria Centre for Disease Control and Prevention., Abuja, Nigeria
| | - Richard Njoum
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
32
|
Parker E, Omah IF, Varilly P, Magee A, Ayinla AO, Sijuwola AE, Ahmed MI, Ope-ewe OO, Ogunsanya OA, Olono A, Eromon P, Tomkins-Tinch CH, Otieno JR, Akanbi O, Egwuenu A, Ehiakhamen O, Chukwu C, Suleiman K, Akinpelu A, Ahmad A, Imam KI, Ojedele R, Oripenaye V, Ikeata K, Adelakun S, Olajumoke B, Djuicy DD, Essengue LLM, Yifomnjou MHM, Zeller M, Gangavarapu K, O’Toole Á, Park DJ, Mboowa G, Tessema SK, Tebeje YK, Folarin O, Happi A, Lemey P, Suchard MA, Andersen KG, Sabeti P, Rambaut A, Njoum R, Ihekweazu C, Jide I, Adetifa I, Happi CT. Genomic epidemiology uncovers the timing and origin of the emergence of mpox in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309104. [PMID: 38947052 PMCID: PMC11213064 DOI: 10.1101/2024.06.18.24309104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Five years before the 2022-2023 global mpox outbreak Nigeria reported its first cases in nearly 40 years, with the ongoing epidemic since driven by sustained human-to-human transmission. However, limited genomic data has left questions about the timing and origin of the mpox virus' (MPXV) emergence. Here we generated 112 MPXV genomes from Nigeria from 2021-2023. We identify the closest zoonotic outgroup to the human epidemic in southern Nigeria, and estimate that the lineage transmitting from human-to-human emerged around July 2014, circulating cryptically until detected in September 2017. The epidemic originated in Southern Nigeria, particularly Rivers State, which also acted as a persistent and dominant source of viral dissemination to other states. We show that APOBEC3 activity increased MPXV's evolutionary rate twenty-fold during human-to-human transmission. We also show how Delphy, a tool for near-real-time Bayesian phylogenetics, can aid rapid outbreak analytics. Our study sheds light on MPXV's establishment in West Africa before the 2022-2023 global outbreak and highlights the need for improved pathogen surveillance and response.
Collapse
Affiliation(s)
- Edyth Parker
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ifeanyi F. Omah
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Patrick Varilly
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Akeemat Opeyemi Ayinla
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Ayotunde E. Sijuwola
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Muhammad I. Ahmed
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Oludayo O. Ope-ewe
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Olusola Akinola Ogunsanya
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Alhaji Olono
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Philomena Eromon
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | | | | | - Olusola Akanbi
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Abiodun Egwuenu
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | - Chimaobi Chukwu
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Kabiru Suleiman
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Afolabi Akinpelu
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Adama Ahmad
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | - Richard Ojedele
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Victor Oripenaye
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Kenneth Ikeata
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | | | - Delia Doreen Djuicy
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | | | | | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Áine O’Toole
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
| | - Daniel J Park
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerald Mboowa
- Africa Centres for Disease Control and Prevention, P.O. Box 3243, Addis Ababa, Ethiopia
| | | | - Yenew Kebede Tebeje
- Africa Centres for Disease Control and Prevention, P.O. Box 3243, Addis Ababa, Ethiopia
| | - Onikepe Folarin
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Pardis Sabeti
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA 02115
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FL, UK
| | - Richard Njoum
- Virology Service, Centre Pasteur du Cameroun, 451 Rue 2005, Yaounde 2, P.O. Box 1274
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Idriss Jide
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Ifedayo Adetifa
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA 02115
| |
Collapse
|
33
|
Bainomugisa A, Pandey S, O'Connor B, Syrmis M, Whiley D, Sintchenko V, Coin LJ, Marais BJ, Coulter C. Sustained transmission over two decades of a previously unrecognised MPT64 negative Mycobacterium tuberculosis strain in Queensland, Australia: a whole genome sequencing study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 47:101105. [PMID: 39022748 PMCID: PMC11253042 DOI: 10.1016/j.lanwpc.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024]
Abstract
Background MPT64 is a key protein used for Mycobacterium tuberculosis (MTB) complex strain identification. We describe protracted transmission of an MPT64 negative MTB strain in Queensland, Australia, and explore genomic factors related to its successful spread. Methods All MPT64 negative strains identified between 2002 and 2022 by the Queensland Mycobacteria Reference Laboratory, and an additional 2 isolates from New South Wales (NSW), were whole genome sequenced. Bayesian modelling and phylogeographical analyses were used to assess their evolutionary history and transmission dynamics. Protein structural modelling to understand the putative functional effects of the mutated gene coding for MPT64 protein was performed. Findings Forty-three MPT64 negative isolates were sequenced, belonging to a single MTB cluster of Lineage 4.1.1.1 strains. Combined with a UK dataset of the same lineage, molecular dating estimated 1990 (95% HPD 1987-1993) as the likely time of strain introduction into Australia. Although the strain has spread over a wide geographic area and new cases linked to the cluster continue to arise, phylodynamic analysis suggest the outbreak peaked around 2003. All MPT64 negative strains had a frame shift mutation (delAT, p.Val216fs) within the MPT64 gene, which confers two major structural rearrangements at the C-terminus of the protein. Interpretation This study uncovered the origins of an MPT64 negative MTB outbreak in Australia, providing a richer understanding of its biology and transmission dynamics, as well as guidance for clinical diagnosis and public health action. The potential spread of MPT64 negative strains undermines the diagnostic utility of the MPT64 immunochromatographic test. Funding This study was funded from an operational budget provided to the Queensland Mycobacterium Reference Laboratory by Pathology Queensland, Queensland Department of Health.
Collapse
Affiliation(s)
- Arnold Bainomugisa
- Queensland Mycobacterium Reference Laboratory, Brisbane, Queensland, Australia
| | - Sushil Pandey
- Queensland Mycobacterium Reference Laboratory, Brisbane, Queensland, Australia
| | - Bridget O'Connor
- Public Health Intelligence Branch, Department of Health, Brisbane, Queensland, Australia
| | - Melanie Syrmis
- Queensland Mycobacterium Reference Laboratory, Brisbane, Queensland, Australia
| | - David Whiley
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology - Western, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
| | - Lachlan J.M. Coin
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ben J. Marais
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Coulter
- Queensland Mycobacterium Reference Laboratory, Brisbane, Queensland, Australia
- Communicable Diseases Branch, Department of Health, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
35
|
Xiao S, Abade A, Boru W, Kasambara W, Mwaba J, Ongole F, Mmanywa M, Trovão NS, Chilengi R, Kwenda G, Orach CG, Chibwe I, Bwire G, Stine OC, Milstone AM, Lessler J, Azman AS, Luo W, Murt K, Sack DA, Debes AK, Wohl S. New Vibrio cholerae sequences from Eastern and Southern Africa alter our understanding of regional cholera transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.28.24302717. [PMID: 38585829 PMCID: PMC10996759 DOI: 10.1101/2024.03.28.24302717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite ongoing containment and vaccination efforts, cholera remains prevalent in many countries in sub-Saharan Africa. Part of the difficulty in containing cholera comes from our lack of understanding of how it circulates throughout the region. To better characterize regional transmission, we generated and analyzed 118 Vibrio cholerae genomes collected between 2007-2019 from five different countries in Southern and Eastern Africa. We showed that V. cholerae sequencing can be successful from a variety of sample types and filled in spatial and temporal gaps in our understanding of circulating lineages, including providing some of the first sequences from the 2018-2019 outbreaks in Uganda, Kenya, Tanzania, Zambia, and Malawi. Our results present a complex picture of cholera transmission in the region, with multiple lineages found to be co-circulating within several countries. We also find evidence that previously identified sporadic cases may be from larger, undersampled outbreaks, highlighting the need for careful examination of sampling biases and underscoring the need for continued and expanded cholera surveillance across the African continent.
Collapse
Affiliation(s)
- Shaoming Xiao
- Division of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ahmed Abade
- Ministry of Health, Dar es Salaam, Tanzania
- Field Epidemiology and Laboratory Training Program, Nairobi, Kenya
| | - Waqo Boru
- Field Epidemiology and Laboratory Training Program, Nairobi, Kenya
| | | | - John Mwaba
- Center for Infectious Disease Research, Zambia
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | | | | | | | - Roma Chilengi
- Zambia National Public Health Institute, Lusaka, Zambia
| | | | | | | | | | - O Colin Stine
- University of Maryland School of Medicine, Baltimore, USA
| | - Aaron M Milstone
- Division of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Wensheng Luo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kelsey Murt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amanda K Debes
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shirlee Wohl
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
36
|
Zeng J, Du F, Xiao L, Sun H, Lu L, Lei W, Zheng J, Wang L, Shu S, Li Y, Zhang Q, Tang K, Sun Q, Zhang C, Long H, Qiu Z, Zhai K, Li Z, Zhang G, Sun Y, Wang D, Zhang Z, Lycett SJ, Gao GF, Shu Y, Liu J, Du X, Pu J. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J Virol 2024; 98:e0140123. [PMID: 38358287 PMCID: PMC10949427 DOI: 10.1128/jvi.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.
Collapse
Affiliation(s)
- Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fanshu Du
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linna Xiao
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Lu
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ke Zhai
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Geli Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Wang X, Ye X, Li R, Zai X, Hu M, Wang S, Ren H, Jin Y, Xu J, Yue J. Spatio-temporal spread and evolution of Lassa virus in West Africa. BMC Infect Dis 2024; 24:314. [PMID: 38486143 PMCID: PMC10941413 DOI: 10.1186/s12879-024-09200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- Medical College of Guizhou University, Guiyang, 550025, China
| | - Xianwei Ye
- Medical College of Guizhou University, Guiyang, 550025, China
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Mingda Hu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hongguang Ren
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yuan Jin
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Yue
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
38
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. PLoS Comput Biol 2024; 20:e1011640. [PMID: 38551979 PMCID: PMC11006205 DOI: 10.1371/journal.pcbi.1011640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/10/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
| | - Andrew F. Magee
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, California, United States of America
| | - Marc A. Suchard
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, Universtiy of California, Los Angeles, California, United States of America
| |
Collapse
|
39
|
Gräf T, Martinez AA, Bello G, Dellicour S, Lemey P, Colizza V, Mazzoli M, Poletto C, Cardoso VLO, da Silva AF, Motta FC, Resende PC, Siqueira MM, Franco L, Gresh L, Gabastou JM, Rodriguez A, Vicari A, Aldighieri S, Mendez-Rico J, Leite JA. Dispersion patterns of SARS-CoV-2 variants Gamma, Lambda and Mu in Latin America and the Caribbean. Nat Commun 2024; 15:1837. [PMID: 38418815 PMCID: PMC10902334 DOI: 10.1038/s41467-024-46143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.
Collapse
Affiliation(s)
- Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
| | - Alexander A Martinez
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
- National Research System (SNI), National Secretary of Research, Technology and Innovation (SENACYT), Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Mattia Mazzoli
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Vanessa Leiko Oikawa Cardoso
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ-Bahia, Salvador, Brazil
| | | | - Fernando Couto Motta
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leticia Franco
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Lionel Gresh
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jean-Marc Gabastou
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Angel Rodriguez
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Andrea Vicari
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Sylvain Aldighieri
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jairo Mendez-Rico
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Juliana Almeida Leite
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA.
| |
Collapse
|
40
|
Gallego-García P, Estévez-Gómez N, De Chiara L, Alvariño P, Juiz-González PM, Torres-Beceiro I, Poza M, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Aja-Macaya P, Ladra S, Moreno-Flores A, Gude-González MJ, Coira A, Aguilera A, Costa-Alcalde JJ, Trastoy R, Barbeito-Castiñeiras G, García-Souto D, Tubio JMC, Trigo-Daporta M, Camacho-Zamora P, Costa JG, González-Domínguez M, Canoura-Fernández L, Glez-Peña D, Pérez-Castro S, Cabrera JJ, Daviña-Núñez C, Godoy-Diz M, Treinta-Álvarez AB, Veiga MI, Sousa JC, Osório NS, Comas I, González-Candelas F, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Agulla A, Bou G, Alonso-García P, Pérez-Del-Molino ML, García-Campello M, Paz-Vidal I, Regueiro B, Posada D. Dispersal history of SARS-CoV-2 in Galicia, Spain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303385. [PMID: 38463998 PMCID: PMC10925372 DOI: 10.1101/2024.02.27.24303385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| | | | - Pedro M Juiz-González
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Isabel Torres-Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
- Microbiome and Health Group, Faculty of Sciences, University of A Coruña (UDC). Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Susana Ladra
- Database Laboratory, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 A Coruña, Spain
| | | | | | - Amparo Coira
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Antonio Aguilera
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - José J Costa-Alcalde
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Rocío Trastoy
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Gema Barbeito-Castiñeiras
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Daniel García-Souto
- CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. - Department of Zoology, Genetics and Physic Anthropology, 15782, Santiago de Compostela, Spain
| | - José M C Tubio
- CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. - Department of Zoology, Genetics and Physic Anthropology, 15782, Santiago de Compostela, Spain
| | - Matilde Trigo-Daporta
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Pablo Camacho-Zamora
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Juan García Costa
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - María González-Domínguez
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Luis Canoura-Fernández
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Sonia Pérez-Castro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge J Cabrera
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Daviña-Núñez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Montserrat Godoy-Diz
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
| | - Ana Belén Treinta-Álvarez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia, Spanish Research Council (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA - Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA - Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Andrés Agulla
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Pilar Alonso-García
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - María Luisa Pérez-Del-Molino
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Marta García-Campello
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Isabel Paz-Vidal
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Benito Regueiro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
41
|
Sanogo IN, Guinat C, Dellicour S, Diakité MA, Niang M, Koita OA, Camus C, Ducatez M. Genetic insights of H9N2 avian influenza viruses circulating in Mali and phylogeographic patterns in Northern and Western Africa. Virus Evol 2024; 10:veae011. [PMID: 38435712 PMCID: PMC10908551 DOI: 10.1093/ve/veae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Avian influenza viruses (AIVs) of the H9N2 subtype have become widespread in Western Africa since their first detection in 2017 in Burkina Faso. However, the genetic characteristics and diffusion patterns of the H9N2 virus remain poorly understood in Western Africa, mainly due to limited surveillance activities. In addition, Mali, a country considered to play an important role in the epidemiology of AIVs in the region, lacks more comprehensive data on the genetic characteristics of these viruses, especially the H9N2 subtype. To better understand the genetic characteristics and spatio-temporal dynamics of H9N2 virus within this region, we carried out a comprehensive genetic characterization of H9N2 viruses collected through active surveillance in live bird markets in Mali between 2021 and 2022. We also performed a continuous phylogeographic analysis to unravel the dispersal history of H9N2 lineages between Northern and Western Africa. The identified Malian H9N2 virus belonged to the G1 lineage, similar to viruses circulating in both Western and Northern Africa, and possessed multiple molecular markers associated with an increased potential for zoonotic transmission and virulence. Notably, some Malian strains carried the R-S-N-R motif at their cleavage site, mainly observed in H9N2 strains in Asia. Our continuous phylogeographic analysis revealed a single and significant long-distance lineage dispersal event of the H9N2 virus to Western Africa, likely to have originated from Morocco in 2015, shaping the westward diffusion of the H9N2 virus. Our study highlights the need for long-term surveillance of H9N2 viruses in poultry populations in Western Africa, which is crucial for a better understanding of virus evolution and effective management against potential zoonotic AIV strain emergence.
Collapse
Affiliation(s)
- Idrissa Nonmon Sanogo
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
- Faculté d’Agronomie et de Médecine Animale (FAMA), Université de Ségou, Ségou BP 24, Mali
| | - Claire Guinat
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels B-1050, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven BE-3000, Belgium
| | - Mohamed Adama Diakité
- Service diagnostic et recherche Laboratoire Central Vétérinaire, Bamako BP 2295, Mali
| | - Mamadou Niang
- Food and Agriculture Organization of the United Nations (FAO-UN), Emergency Centre for Transboundary Animal Diseases (ECTAD), Regional Office for Africa (RAF), Accra BP 1628, Ghana
| | - Ousmane A Koita
- Laboratoire de Biologie Moléculaire Appliquée, Faculté des Sciences et Techniques (FAST), University of Sciences, Techniques and Technologies of Bamako (USTTB), Mali Université de Bamako, Bamako E 3206, Mali
| | - Christelle Camus
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Mariette Ducatez
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| |
Collapse
|
42
|
Gangavarapu K, Ji X, Baele G, Fourment M, Lemey P, Matsen FA, Suchard MA. Many-core algorithms for high-dimensional gradients on phylogenetic trees. Bioinformatics 2024; 40:btae030. [PMID: 38243701 PMCID: PMC10868298 DOI: 10.1093/bioinformatics/btae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
MOTIVATION Advancements in high-throughput genomic sequencing are delivering genomic pathogen data at an unprecedented rate, positioning statistical phylogenetics as a critical tool to monitor infectious diseases globally. This rapid growth spurs the need for efficient inference techniques, such as Hamiltonian Monte Carlo (HMC) in a Bayesian framework, to estimate parameters of these phylogenetic models where the dimensions of the parameters increase with the number of sequences N. HMC requires repeated calculation of the gradient of the data log-likelihood with respect to (wrt) all branch-length-specific (BLS) parameters that traditionally takes O(N2) operations using the standard pruning algorithm. A recent study proposes an approach to calculate this gradient in O(N), enabling researchers to take advantage of gradient-based samplers such as HMC. The CPU implementation of this approach makes the calculation of the gradient computationally tractable for nucleotide-based models but falls short in performance for larger state-space size models, such as Markov-modulated and codon models. Here, we describe novel massively parallel algorithms to calculate the gradient of the log-likelihood wrt all BLS parameters that take advantage of graphics processing units (GPUs) and result in many fold higher speedups over previous CPU implementations. RESULTS We benchmark these GPU algorithms on three computing systems using three evolutionary inference examples exploring complete genomes from 997 dengue viruses, 62 carnivore mitochondria and 49 yeasts, and observe a >128-fold speedup over the CPU implementation for codon-based models and >8-fold speedup for nucleotide-based models. As a practical demonstration, we also estimate the timing of the first introduction of West Nile virus into the continental Unites States under a codon model with a relaxed molecular clock from 104 full viral genomes, an inference task previously intractable. AVAILABILITY AND IMPLEMENTATION We provide an implementation of our GPU algorithms in BEAGLE v4.0.0 (https://github.com/beagle-dev/beagle-lib), an open-source library for statistical phylogenetics that enables parallel calculations on multi-core CPUs and GPUs. We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (https://github.com/beast-dev/beast-mcmc).
Collapse
Affiliation(s)
- Karthik Gangavarapu
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, United States
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Fourment
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Statistics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
43
|
Trovão NS, Khan SM, Lemey P, Nelson MI, Cherry JL. Comparative evolution of influenza A virus H1 and H3 head and stalk domains across host species. mBio 2024; 15:e0264923. [PMID: 38078770 PMCID: PMC10886446 DOI: 10.1128/mbio.02649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE For decades, researchers have studied the rapid evolution of influenza A viruses for vaccine design and as a useful model system for the study of host/parasite evolution. By performing an exhaustive analysis of hemagglutinin protein (HA) sequences from 49 lineages independently evolving in birds, swine, canines, equines, and humans over the last century, our work uncovers surprising features of HA evolution. In particular, the canine H3 stalk, unlike human H3 and H1 stalk domains, is not evolving slowly, suggesting that evolution in the stalk domain is not universally constrained across all host species. Therefore, a broader multi-host perspective on HA evolution may be useful during the evaluation and design of stalk-targeted vaccine candidates.
Collapse
Affiliation(s)
- Nidia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sairah M Khan
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Cherry
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Balboa RF, Bertola LD, Brüniche-Olsen A, Rasmussen MS, Liu X, Besnard G, Salmona J, Santander CG, He S, Zinner D, Pedrono M, Muwanika V, Masembe C, Schubert M, Kuja J, Quinn L, Garcia-Erill G, Stæger FF, Rakotoarivony R, Henrique M, Lin L, Wang X, Heaton MP, Smith TPL, Hanghøj K, Sinding MHS, Atickem A, Chikhi L, Roos C, Gaubert P, Siegismund HR, Moltke I, Albrechtsen A, Heller R. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat Commun 2024; 15:172. [PMID: 38172616 PMCID: PMC10764920 DOI: 10.1038/s41467-023-44105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Collapse
Affiliation(s)
- Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dietmar Zinner
- Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077, Göttingen, Germany
| | - Miguel Pedrono
- UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lounès Chikhi
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Matteson NL, Hassler GW, Kurzban E, Schwab MA, Perkins SA, Gangavarapu K, Levy JI, Parker E, Pride D, Hakim A, De Hoff P, Cheung W, Castro-Martinez A, Rivera A, Veder A, Rivera A, Wauer C, Holmes J, Wilson J, Ngo SN, Plascencia A, Lawrence ES, Smoot EW, Eisner ER, Tsai R, Chacón M, Baer NA, Seaver P, Salido RA, Aigner S, Ngo TT, Barber T, Ostrander T, Fielding-Miller R, Simmons EH, Zazueta OE, Serafin-Higuera I, Sanchez-Alavez M, Moreno-Camacho JL, García-Gil A, Murphy Schafer AR, McDonald E, Corrigan J, Malone JD, Stous S, Shah S, Moshiri N, Weiss A, Anderson C, Aceves CM, Spencer EG, Hufbauer EC, Lee JJ, King AJ, Ramesh KS, Nguyen KN, Saucedo K, Robles-Sikisaka R, Fisch KM, Gonias SL, Birmingham A, McDonald D, Karthikeyan S, Martin NK, Schooley RT, Negrete AJ, Reyna HJ, Chavez JR, Garcia ML, Cornejo-Bravo JM, Becker D, Isaksson M, Washington NL, Lee W, Garfein RS, Luna-Ruiz Esparza MA, Alcántar-Fernández J, Henson B, Jepsen K, Olivares-Flores B, Barrera-Badillo G, Lopez-Martínez I, Ramírez-González JE, Flores-León R, Kingsmore SF, Sanders A, Pradenas A, White B, Matthews G, Hale M, McLawhon RW, Reed SL, Winbush T, McHardy IH, Fielding RA, Nicholson L, Quigley MM, Harding A, Mendoza A, Bakhtar O, Browne SH, Olivas Flores J, Rincon Rodríguez DG, Gonzalez Ibarra M, Robles Ibarra LC, Arellano Vera BJ, Gonzalez Garcia J, Harvey-Vera A, Knight R, Laurent LC, Yeo GW, Wertheim JO, Ji X, Worobey M, Suchard MA, Andersen KG, Campos-Romero A, Wohl S, Zeller M. Genomic surveillance reveals dynamic shifts in the connectivity of COVID-19 epidemics. Cell 2023; 186:5690-5704.e20. [PMID: 38101407 PMCID: PMC10795731 DOI: 10.1016/j.cell.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.
Collapse
Affiliation(s)
| | - Gabriel W Hassler
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ezra Kurzban
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Madison A Schwab
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Sarah A Perkins
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik Gangavarapu
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Joshua I Levy
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - David Pride
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Peter De Hoff
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Willi Cheung
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Anelizze Castro-Martinez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Veder
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ariana Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cassandra Wauer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Holmes
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jedediah Wilson
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Shayla N Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elijah S Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth W Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Tsai
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Marisol Chacón
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan A Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Phoebe Seaver
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Toan T Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tom Barber
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA; Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | | | - Oscar E Zazueta
- Department of Epidemiology, Secretaria de Salud de Baja California, Tijuana, Baja California, Mexico
| | | | - Manuel Sanchez-Alavez
- Centro de Diagnostico COVID-19 UABC, Tijuana, Baja California, Mexico; Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Abraham García-Gil
- Clinical Laboratory Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | | | - Eric McDonald
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Jeremy Corrigan
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - John D Malone
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Sarah Stous
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Seema Shah
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alana Weiss
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Catelyn Anderson
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Christine M Aceves
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emily G Spencer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emory C Hufbauer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Justin J Lee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Alison J King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik S Ramesh
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kelly N Nguyen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kieran Saucedo
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathleen M Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - Steven L Gonias
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Birmingham
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Natasha K Martin
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Robert T Schooley
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Agustin J Negrete
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Horacio J Reyna
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose R Chavez
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Maria L Garcia
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose M Cornejo-Bravo
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico
| | | | | | | | | | - Richard S Garfein
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Benjamin Henson
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Beatriz Olivares-Flores
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Irma Lopez-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - José E Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Rita Flores-León
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | | | - Alison Sanders
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Allorah Pradenas
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin White
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Gary Matthews
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Matt Hale
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Ronald W McLawhon
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Sharon L Reed
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Terri Winbush
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | - Sara H Browne
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA; Specialist in Global Health, Encinitas, CA, USA
| | - Jocelyn Olivas Flores
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico; University of HealthMx, Tijuana, Baja California, Mexico
| | - Diana G Rincon Rodríguez
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Martin Gonzalez Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Luis C Robles Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tijuana, Baja California, Mexico
| | - Betsy J Arellano Vera
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto Mexicano del Seguro Social, Tijuana, Baja California, Mexico
| | - Jonathan Gonzalez Garcia
- University of HealthMx, Tijuana, Baja California, Mexico; SIMNSA, Tijuana, Baja California, Mexico
| | | | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Marc A Suchard
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Abraham Campos-Romero
- Innovation and Research Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | - Shirlee Wohl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
46
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
47
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564882. [PMID: 37961423 PMCID: PMC10634968 DOI: 10.1101/2023.10.31.564882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
| | - Andrew F. Magee
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Marc A. Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, United States
| |
Collapse
|
48
|
Truszkowski J, Perrigo A, Broman D, Ronquist F, Antonelli A. Online tree expansion could help solve the problem of scalability in Bayesian phylogenetics. Syst Biol 2023; 72:1199-1206. [PMID: 37498209 PMCID: PMC10627553 DOI: 10.1093/sysbio/syad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Bayesian phylogenetics is now facing a critical point. Over the last 20 years, Bayesian methods have reshaped phylogenetic inference and gained widespread popularity due to their high accuracy, the ability to quantify the uncertainty of inferences and the possibility of accommodating multiple aspects of evolutionary processes in the models that are used. Unfortunately, Bayesian methods are computationally expensive, and typical applications involve at most a few hundred sequences. This is problematic in the age of rapidly expanding genomic data and increasing scope of evolutionary analyses, forcing researchers to resort to less accurate but faster methods, such as maximum parsimony and maximum likelihood. Does this spell doom for Bayesian methods? Not necessarily. Here, we discuss some recently proposed approaches that could help scale up Bayesian analyses of evolutionary problems considerably. We focus on two particular aspects: online phylogenetics, where new data sequences are added to existing analyses, and alternatives to Markov chain Monte Carlo (MCMC) for scalable Bayesian inference. We identify 5 specific challenges and discuss how they might be overcome. We believe that online phylogenetic approaches and Sequential Monte Carlo hold great promise and could potentially speed up tree inference by orders of magnitude. We call for collaborative efforts to speed up the development of methods for real-time tree expansion through online phylogenetics.
Collapse
Affiliation(s)
- Jakub Truszkowski
- Department of Biological and Environmental Sciences, University of Gothenburg, P. O. Box 461, SE.405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden
| | - Allison Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, P. O. Box 461, SE.405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden
| | - David Broman
- Department of Computer Science and Digital Futures, KTH Royal Institute of Technology, SE.100 44 Stockholm, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P. O. Box 50007, SE.104 05 Stockholm, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, P. O. Box 461, SE.405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3 RB, UK
| |
Collapse
|
49
|
Ji X, Fisher AA, Su S, Thorne JL, Potter B, Lemey P, Baele G, Suchard MA. Scalable Bayesian Divergence Time Estimation With Ratio Transformations. Syst Biol 2023; 72:1136-1153. [PMID: 37458991 PMCID: PMC10636426 DOI: 10.1093/sysbio/syad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 11/08/2023] Open
Abstract
Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Alexander A Fisher
- Department of Statistical Science, Duke University, 214 Old Chemistry, Durham, NC 27708, USA
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Xiaolingwei District, Nanjing, Jiangsu 210095, China
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Ricks Hall, 1 Lampe Dr, Raleigh, NC 27607, USA
| | - Barney Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Zhou P, Ma B, Gao Y, Xu Y, Li Z, Jin H, Luo R. Epidemiology, genetic diversity, and evolutionary dynamics of Tembusu virus. Arch Virol 2023; 168:262. [PMID: 37773423 DOI: 10.1007/s00705-023-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/02/2023] [Indexed: 10/01/2023]
Abstract
Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yumin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhuofei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|