1
|
Noriega L, Yang CY, Wang CH. Brown Fat and Nutrition: Implications for Nutritional Interventions. Nutrients 2023; 15:4072. [PMID: 37764855 PMCID: PMC10536824 DOI: 10.3390/nu15184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brown and beige adipocytes are renowned for their unique ability to generate heat through a mechanism known as thermogenesis. This process can be induced by exposure to cold, hormonal signals, drugs, and dietary factors. The activation of these thermogenic adipocytes holds promise for improving glucose metabolism, reducing fat accumulation, and enhancing insulin sensitivity. However, the translation of preclinical findings into effective clinical therapies poses challenges, warranting further research to identify the molecular mechanisms underlying the differentiation and function of brown and beige adipocytes. Consequently, research has focused on the development of drugs, such as mirabegron, ephedrine, and thyroid hormone, that mimic the effects of cold exposure to activate brown fat activity. Additionally, nutritional interventions have been explored as an alternative approach to minimize potential side effects. Brown fat and beige fat have emerged as promising targets for addressing nutritional imbalances, with the potential to develop strategies for mitigating the impact of metabolic diseases. Understanding the influence of nutritional factors on brown fat activity can facilitate the development of strategies to promote its activation and mitigate metabolic disorders.
Collapse
Affiliation(s)
- Lloyd Noriega
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
2
|
Elango R. Tolerable Upper Intake Level for Individual Amino Acids in Humans: A Narrative Review of Recent Clinical Studies. Adv Nutr 2023; 14:885-894. [PMID: 37062432 PMCID: PMC10334138 DOI: 10.1016/j.advnut.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Individual amino acids are widely popular as supplements because of various perceived and real health benefits. However, currently, there are no recommendations set by national health agencies for tolerable upper intake levels (UL) for amino acids because of a lack of well-conducted human dose-response trials. In the past decade, under the initiative of the International Council on Amino Acid Science, a nonprofit organization, a series of UL human clinical studies were conducted. The goal of this narrative review is to summarize the studies on 6 essential amino acids (leucine, tryptophan, methionine, lysine, histidine, and phenylalanine), 2 nonessential amino acids (arginine and serine), and 2 nonproteinogenic amino acids (ornithine and citrulline) and provide the first set of ULs. A brief background of the concept of the DRI framework of UL, the concept of UL for amino acids, and a perspective of the results are also provided. The data suggest that in relatively healthy adult individuals, the tested amino acids are well tolerated, and ULs, or the no-observed-adverse-effect-level (NOAEL), lowest-observed-adverse-effect-level (LOAEL), can be determined. The ULs were for leucine-young (35 g/d), tryptophan (4.5 g/d), and leucine-elderly (30 g/d); NOAEL and LOAEL for methionine at 3.2 and 6.4 g/d, respectively; NOAEL for arginine (30 g/d); NOAEL and LOAEL for lysine at 6 and 7.5 g/d, respectively; NOAEL and LOAEL for histidine at 8 and 12 g/d, respectively; and NOAEL for phenylalanine (12 g/d), serine (12 g/d), ornithine (12 g/d) and citrulline (24 g/d). This first set of human UL data are hoped to help national and international agencies set safety standards for supplemental amino acids.
Collapse
Affiliation(s)
- Rajavel Elango
- Department of Pediatrics, University of British Columbia, British Columbia, Canada; British Columbia Children's Hospital Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
3
|
Gut microbiota mediates the anti-obesity effect of intermittent fasting by inhibiting intestinal lipid absorption. J Nutr Biochem 2023; 116:109318. [PMID: 36924854 DOI: 10.1016/j.jnutbio.2023.109318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
The prevention and treatment of obesity have been one of the most difficult problems in the world. Intermittent fasting (IF) has received wide attention as an effective diet strategy. Existing studies have shown that IF could improve obesity and diabetes-related metabolic disorders. Here, we show that IF can change the composition and metabolic function of intestinal microbes, and reduce lipid absorption by inhibiting PI3K/AKT signaling pathway, with the participation of arginine. Arginine concentration in feces of fasted mice is inversely correlated with Akkermansia muciniphila abundance. Antibiotic-induced clearance of intestinal microbiota greatly inhibits the effect of IF. Furthermore, the colonization test of Akkermansia muciniphila again activates the browning of white adipose tissue and restores the improvement of metabolism to alleviate obesity. These phenomena indicate that every-other-day fasting regimen inhibits intestinal lipid absorption and promotes the browning of white adipose tissue in mice to ameliorate the risk of obesity and metabolic disorders through the microbial flora-metabolite-fat signaling axis. And the above results demonstrate new directions for the treatment of obesity and other metabolic disorders.
Collapse
|
4
|
KIANI AYSHAKARIM, BONETTI GABRIELE, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, FIORETTI FRANCESCO, NODARI SAVINA, CONNELLY STEPHENTHADDEUS, BERTELLI MATTEO. Dietary supplements for improving nitric-oxide synthesis. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E239-E245. [PMID: 36479475 PMCID: PMC9710401 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an essential component of the human body, involved in blood vessel dilation, stimulation of hormone release, signaling and regulation of neurotransmission. Nitric oxide is synthesized by nitric-oxide-synthase-dependent and -independent pathways. Nitric oxide supplementation improves cardiac health, enhances performance during exercise, reduces high blood pressure during pregnancy, reduces erectile dysfunction and improves healing processes and respiratory response. Nitric-oxide-associated benefits are mostly apparent in untrained or moderately trained individuals. L-arginine and L-citrulline supplementation contributes to nitric oxide levels because L-arginine is directly involved in NO synthesis, whereas L-citrulline acts as an L-arginine precursor that is further converted to NO by a reaction catalyzed by NO synthase. L-arginine supplements increase respiratory response and enhance performance during exercise, while L-citrulline with malate and other molecules increase working capacity. Various studies involving beetroot juice have reported a significant increase in plasma nitrite levels, regarded as markers of NO, after intake of beetroot juice. Although NO supplementation may have mild to moderate side-effects, using smaller or divided doses could avoid some of these side-effects. Since nitric oxide supplementation may worsen certain health conditions and may interfere with certain medicines, it should only be taken under medical supervision.
Collapse
Affiliation(s)
| | - GABRIELE BONETTI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Gabriele Bonetti, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | | | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
5
|
Kalezic A, Korac A, Korac B, Jankovic A. l-Arginine Induces White Adipose Tissue Browning-A New Pharmaceutical Alternative to Cold. Pharmaceutics 2022; 14:pharmaceutics14071368. [PMID: 35890263 PMCID: PMC9324995 DOI: 10.3390/pharmaceutics14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The beneficial effects of l-arginine supplementation in obesity and type II diabetes involve white adipose tissue (WAT) reduction and increased substrate oxidation. We aimed to test the potential of l-arginine to induce WAT browning. Therefore, the molecular basis of browning was investigated in retroperitoneal WAT (rpWAT) of rats exposed to cold or treated with 2.25% l-arginine for 1, 3, and 7 days. Compared to untreated control, levels of inducible nitric oxide (NO) synthase protein expression and NO signaling increased in both cold-exposed and l-arginine-treated groups. These increases coincided with the appearance of multilocular adipocytes and increased expression levels of uncoupling protein 1 (UCP1), thermogenic and beige adipocyte-specific genes (Cidea, Cd137, and Tmem26), mitochondriogenesis markers (peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α, mitochondrial DNA copy number), nuclear respiratory factor 1, PPARα and their respective downstream lipid oxidation enzymes after l-arginine treatment. Such browning phenotype in the l-arginine-treated group was concordant with end-course decreases in leptinaemia, rpWAT mass, and body weight. In conclusion, l-arginine mimics cold-mediated increases in NO signaling in rpWAT and induces molecular and structural fingerprints of rpWAT browning. The results endorse l-arginine as a pharmaceutical alternative to cold exposure, which could be of great interest in obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11060 Belgrade, Serbia;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
- Correspondence: ; Tel.: +381-11-2078-307
| |
Collapse
|
6
|
Fonseca LDS, Lanferdini E, Moreira RHR, Chaves RF, Perazolli PH, de Paula YH, Rennó LN, Garbossa CAP, Cantarelli VDS, de Abreu MLT. Arginine supplementation in the feed of gestating sows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ren G, Hwang PTJ, Millican R, Shin J, Brott BC, van Groen T, Powell CM, Bhatnagar S, Young ME, Jun HW, Kim JA. Subcutaneous Administration of a Nitric Oxide-Releasing Nanomatrix Gel Ameliorates Obesity and Insulin Resistance in High-Fat Diet-Induced Obese Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19104-19115. [PMID: 35467831 PMCID: PMC9233978 DOI: 10.1021/acsami.1c24113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | - Juhee Shin
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brigitta C. Brott
- Endomimetics, LLC, Birmingham, AL 35242
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas van Groen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Martin E. Young
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL 35242
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeong-a Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
8
|
Wang J, Onogi Y, Krueger M, Oeckl J, Karlina R, Singh I, Hauck SM, Feederle R, Li Y, Ussar S. PAT2 regulates vATPase assembly and lysosomal acidification in brown adipocytes. Mol Metab 2022; 61:101508. [PMID: 35513259 PMCID: PMC9114668 DOI: 10.1016/j.molmet.2022.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Brown adipocytes play a key role in maintaining body temperature as well as glucose and lipid homeostasis. However, brown adipocytes need to adapt their thermogenic activity and substrate utilization to changes in nutrient availability. Amongst the multiple factors influencing brown adipocyte activity, autophagy is an important regulatory element of thermogenic capacity and activity. Nevertheless, a specific sensing mechanism of extracellular amino acid availability linking autophagy to nutrient availability in brown adipocytes is unknown. METHODS To characterize the role of the amino acid transporter PAT2/SLC36A2 in brown adipocytes, loss or gain of function of PAT2 were studied with respect to differentiation, subcellular localization, lysosomal activity and autophagy. Activity of vATPase was evaluated by quenching of EGFP fused to LC3 or FITC-dextran loaded lysosomes in brown adipocytes upon amino acid starvation, whereas the effect of PAT2 on assembly of the vATPase was investigated by Native-PAGE. RESULTS We show that PAT2 translocates from the plasma membrane to the lysosome in response to amino acid withdrawal. Loss or overexpression of PAT2 impair lysosomal acidification and starvation induced S6K re-phosphorylation, as PAT2 facilitates the assembly of the lysosomal vATPase, by recruitment of the cytoplasmic V1 subunit to the lysosome. CONCLUSION PAT2 is an important sensor of extracellular amino acids and regulator of lysosomal acidification in brown adipocytes.
Collapse
Affiliation(s)
- Jiefu Wang
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Josef Oeckl
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Ruth Karlina
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Inderjeet Singh
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Regina Feederle
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Monoclonal Antibody Core Facility, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
9
|
Zhang CZ, Sang D, Wu BS, Li SL, Zhang CH, Jin L, Li JX, Gu Y, Ga NMR, Hua M, Sun HZ. Effects of dietary supplementation with N-carbamylglutamate on maternal endometrium and fetal development during early pregnancy in Inner Mongolia white cashmere goats. Anim Sci J 2022; 93:e13693. [PMID: 35258155 DOI: 10.1111/asj.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of dietary supplementation with N-carbamylglutamate (NCG) on maternal endometrium and fetal development during early pregnancy of Inner Mongolia white cashmere goats. Forty-eight pregnant Inner Mongolia white cashmere goats (average age 3 years old, average lactation parity 2, and average body weight 43.81 ± 2.66 kg) were randomly allocated to three groups: a basal diet (control group, n = 16), a basal diet plus 0.30-g NCG/d (NCG1 group, n = 16), and a basal diet plus 0.40-g NCG/d (NCG2 group, n = 16). All of the does were housed in individual pens and the NCG treatment was conducted from Days 0 to 90 of pregnancy. At Days 17 and 90 of pregnancy, six representative pregnant does in each group were slaughtered. The current study results demonstrated that maternal NCG administration during early pregnancy effectively increased the arginine family of amino acids and the glucogenic amino acids concentrations and promoted the mRNA expression of osteopontin (OPN), αv and β3 integrins, and endometrial development of Inner Mongolia white cashmere goats. The supplementation improved the fetal brown adipose tissue (BAT) stores and the mRNA expression of UCP-1 and BMP7, thereby helping to the fetal early development.
Collapse
Affiliation(s)
- Chong Zhi Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Dan Sang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bao Sheng Wu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Sheng Li Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chun Hua Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Lu Jin
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jin Xia Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ying Gu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Na Mei Ri Ga
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Mei Hua
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Hai Zhou Sun
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
10
|
Mohammadi K, Alizadeh Sani M, Nattagh‐Eshtivani E, Yaribash S, Rahmani J, Shokrollahi Yancheshmeh B, Julian McClements D. A systematic review and meta-analysis of the impact of cornelian cherry consumption on blood lipid profiles. Food Sci Nutr 2021; 9:4629-4638. [PMID: 34401109 PMCID: PMC8358377 DOI: 10.1002/fsn3.2416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Polyphenolic and flavonoid compounds are claimed to improve blood lipid profiles and to provide protective effects against cardiovascular disease. For this reason, we conducted a systematic review and meta-analysis of studies that comprehensively investigated the effects of cornelian cherry supplementation on lipid profiles in rat models. Up to December 2020, 855 articles were screened, and finally, seven articles were selected as eligible for the meta-analysis. This meta-analysis revealed that cornelian cherry supplementation significantly decreased low-density lipoprotein (LDL) (WMD = -6.38 mg/dl; 95% CI, -9.93 to-2.84; p < .001), triglyceride (TG) (WMD = -52.36 mg/dl; 95% CI, -80.50 to -24.22; p < .005), and cholesterol level (WMD = -37.16 mg/dl; 95% CI, -51.19 to -23.13; p < .005) in treated rats compared with control groups. A nonsignificant increase in high-density lipoprotein (HDL) level was observed (WMD = 4.21 mg/dl; 95% CI, -3.25 to 11.66; p = .268). These results suggest that cherry supplementation may have health effects by modifying lipid profiles. However, there is a need for more well-controlled human clinical trials to make more definitive conclusions about the potential health benefits of cherry supplementation.
Collapse
Affiliation(s)
- Keyhan Mohammadi
- Department of Clinical PharmacyFaculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and HygieneSchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Shakila Yaribash
- Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Jamal Rahmani
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsFaculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | | | | |
Collapse
|
11
|
Impact of Dietary Crude Protein Level on Hepatic Lipid Metabolism in Weaned Female Piglets. Animals (Basel) 2021; 11:ani11061829. [PMID: 34207398 PMCID: PMC8235084 DOI: 10.3390/ani11061829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary It has been reported that a high crude protein diet could reverse the diet-induced lipid accumulation in the liver of mice and rodents. However, in vivo data supporting a functional role of a high crude protein diet on hepatic lipid metabolism-associated genes and proteins in weaned piglets is not available. In the present study, we aimed to provide a mechanistic insight into alterations in the hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis in response to different dietary crude protein levels. Our results demonstrated that dietary crude protein could regulate hepatic lipid metabolism through regulating hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis. The result indicated an important role of dietary crude protein in regulating hepatic lipid metabolism in weaned piglets. Abstract Amino acids serve not only as building blocks for proteins, but also as substrates for the synthesis of low-molecular-weight substances involved in hepatic lipid metabolism. In the present study, eighteen weaned female piglets at 35 days of age were fed a corn- and soybean meal-based diet containing 20%, 17%, or 14% crude protein (CP), respectively. We found that 17% or 20% CP administration reduced the triglyceride and cholesterol concentrations, while enhanced high-density lipoprotein cholesterol (HDL-C) concentration in serum. Western blot analysis showed that piglets in the 20% CP group had higher protein abundance of hormone-sensitive triglyceride lipase (HSL) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), as compared with other groups. Moreover, the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBPF1), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) were lower in the 17% or 20% CP group, compared with those of the piglets administered with 14% CP. Of note, the mRNA level of acetyl-CoA carboxylase alpha (ACACα) was lower in the 17% CP group, compared with other groups. Additionally, the mRNA level of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor alpha α (PPARα), glucose-6-phosphatase catalytic subunit (G6PC), and phosphoenolpyruvate carboxykinase 1 (PKC1) in the liver of piglets in the 20% CP group were higher than those of the 14% CP group. Collectively, our results demonstrated that dietary CP could regulate hepatic lipid metabolism through altering hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis.
Collapse
|
12
|
Zeinali Khosroshahi M, Asbaghi O, Moradi S, Rezaei kelishadi M, Kaviani M, Mardani M, Jalili C. The effects of supplementation with L-arginine on anthropometric indices and body composition in overweight or obese subjects: A systematic review and meta-analysis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Li J, Li J, Zhao WG, Sun HD, Guo ZG, Liu XY, Tang XY, She ZF, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive proteomics and functional annotation of mouse brown adipose tissue. PLoS One 2020; 15:e0232084. [PMID: 32374735 PMCID: PMC7202602 DOI: 10.1371/journal.pone.0232084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| | - Hai-Dan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zheng-Guang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhu-Fang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| |
Collapse
|
14
|
Supplementation of L-Arginine, L-Glutamine, Vitamin C, Vitamin E, Folic Acid, and Green Tea Extract Enhances Serum Nitric Oxide Content and Antifatigue Activity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8312647. [PMID: 32351605 PMCID: PMC7171648 DOI: 10.1155/2020/8312647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
It has been reported that abundant nitric oxide content in endothelial cells can increase exercise performance. The purpose of this study was to evaluate the potential beneficial effects of a combined extract comprising L-arginine, L-glutamine, vitamin C, vitamin E, folic acid, and green tea extract (LVFG) on nitric oxide content to decrease exercise fatigue. Male ICR (Institute of Cancer Research) mice were randomly divided into 4 groups and orally administered LVFG for 4 weeks. The 4-week LVFG supplementation significantly increased serum nitric oxide content in the LVFG-1X and LVFG-2X groups. Antifatigue activity and exercise performance were evaluated using forelimb grip strength, exhaustive swimming test, and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after an acute swimming exercise. LVFG supplementation dose-dependently improved exercise performance and nitric oxide content, and it dose-dependently decreased serum ammonia and CK activity after exhaustive swimming test. LVFG's antifatigue properties appear to manifest by preserving energy storage (as blood glucose) and increasing nitric oxide content. Taken together, our results show that LVFG could have the potential for alleviating physical fatigue due to its pharmacological effect of increasing serum nitric oxide content.
Collapse
|
15
|
Mariotti F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv Nutr 2019; 10:S351-S366. [PMID: 31728490 PMCID: PMC6855969 DOI: 10.1093/advances/nmy110] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
The sources or types of protein in the diet have long been overlooked regarding their link to cardiometabolic health. The picture is complicated by the fact that animal and plant proteins are consumed along with other nutrients and substances which make up the "protein package" so plant and animal protein come with clear nutrient clusters. This review aimed at deciphering the relation between plant and animal protein and cardiometabolic health by examining different nutritional levels (such as amino acids, protein type, protein foods, protein patterns, and associated overall dietary and nutrient patterns) and varying levels of scientific evidence [basic science, randomized controlled trials (RCTs), observational data]. Plant protein in Western countries is a robust marker of nutrient adequacy of the diet, whereas the contribution of animal protein is highly heterogeneous. Yet recent data from large cohorts have confirmed that total and animal proteins are associated with the risk of cardiovascular disease and diabetes, even when fully adjusting for lifestyle and dietary or nutritional factors. Here again, there is marked variability depending on the type of animal protein. Protein from processed red meat and total red meat on the one hand, and from legumes, nuts, and seeds on the other, are often reported at the extremes of the risk range. RCTs using purified proteins have contributed little to the topic to date, inasmuch as the findings cannot readily be extrapolated to current or near-future diets, but RCTs studying whole protein foods have shown a beneficial effect of pulses. Despite the fact that many of the benefits of plant protein reported in observational or interventional studies may stem from the protein package that they convey and the nutrients that they displace, there are also important indications that protein per se may affect cardiometabolic health via the many amino acids that are present in typically contrasting levels in plant compared with animal proteins.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
16
|
Boon MR, Hanssen MJW, Brans B, Hülsman CJM, Hoeks J, Nahon KJ, Bakker C, van Klinken JB, Havekes B, Schaart G, Jazet IM, Rensen PCN, van Marken Lichtenbelt WD. Effect of L-arginine on energy metabolism, skeletal muscle and brown adipose tissue in South Asian and Europid prediabetic men: a randomised double-blinded crossover study. Diabetologia 2019; 62:112-122. [PMID: 30377712 PMCID: PMC6290676 DOI: 10.1007/s00125-018-4752-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Individuals of South Asian origin are at increased risk of developing type 2 diabetes mellitus and associated comorbidities compared with Europids. Disturbances in energy metabolism may contribute to this increased risk. Skeletal muscle and possibly also brown adipose tissue (BAT) are involved in human energy metabolism and nitric oxide (NO) is suggested to play a pivotal role in regulating mitochondrial biogenesis in both tissues. We aimed to investigate the effects of 6 weeks of supplementation with L-arginine, a precursor of NO, on energy metabolism by BAT and skeletal muscle, as well as glucose metabolism in South Asian men compared with men of European descent. METHODS We included ten Dutch South Asian men (age 46.5 ± 2.8 years, BMI 30.1 ± 1.1 kg/m2) and ten Dutch men of European descent, that were similar with respect to age and BMI, with prediabetes (fasting plasma glucose level 5.6-6.9 mmol/l or plasma glucose levels 2 h after an OGTT 7.8-11.1 mmol/l). Participants took either L-arginine (9 g/day) or placebo orally for 6 weeks in a randomised double-blind crossover study. Participants were eligible to participate in the study when they were aged between 40 and 55 years, had a BMI between 25 and 35 kg/m2 and did not have type 2 diabetes. Furthermore, ethnicity was defined as having four grandparents of South Asian or white European origin, respectively. Blinding of treatment was done by the pharmacy (Hankintatukku) and an independent researcher from Leiden University Medical Center randomly assigned treatments by providing a coded list. All people involved in the study as well as participants were blinded to group assignment. After each intervention, glucose tolerance was determined by OGTT and basal metabolic rate (BMR) was determined by indirect calorimetry; BAT activity was assessed by cold-induced [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-computed tomography scanning. In addition, a fasting skeletal muscle biopsy was taken and analysed ex vivo for respiratory capacity using a multisubstrate protocol. The primary study endpoint was the effect of L-arginine on BAT volume and activity. RESULTS L-Arginine did not affect BMR, [18F]FDG uptake by BAT or skeletal muscle respiration in either ethnicity. During OGTT, L-arginine lowered plasma glucose concentrations (AUC0-2 h - 9%, p < 0.01), insulin excursion (AUC0-2 h - 26%, p < 0.05) and peak insulin concentrations (-26%, p < 0.05) in Europid but not South Asian men. This coincided with enhanced cold-induced glucose oxidation (+44%, p < 0.05) in Europids only. Of note, in skeletal muscle biopsies several respiration states were consistently lower in South Asian men compared with Europid men. CONCLUSIONS/INTERPRETATION L-Arginine supplementation does not affect BMR, [18F]FDG uptake by BAT, or skeletal muscle mitochondrial respiration in Europid and South Asian overweight and prediabetic men. However, L-arginine improves glucose tolerance in Europids but not in South Asians. Furthermore, South Asian men have lower skeletal muscle oxidative capacity than men of European descent. FUNDING This study was funded by the EU FP7 project DIABAT, the Netherlands Organization for Scientific Research, the Dutch Diabetes Research Foundation and the Dutch Heart Foundation. TRIAL REGISTRATION ClinicalTrials.gov NCT02291458.
Collapse
Affiliation(s)
- Mariëtte R Boon
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.
- Dept of Medicine, Division of Endocrinology, post zone C7Q, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, the Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Mark J W Hanssen
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Boudewijn Brans
- Dept of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Cindy J M Hülsman
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joris Hoeks
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kimberly J Nahon
- Dept of Medicine, Division of Endocrinology, post zone C7Q, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte Bakker
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jan B van Klinken
- Dept of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas Havekes
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
- Dept of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gert Schaart
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ingrid M Jazet
- Dept of Medicine, Division of Endocrinology, post zone C7Q, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, the Netherlands
| | - Patrick C N Rensen
- Dept of Medicine, Division of Endocrinology, post zone C7Q, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter D van Marken Lichtenbelt
- Dept of Human Biology & Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
17
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Oral arginine supplementation protects female mice from the onset of non-alcoholic steatohepatitis. Amino Acids 2017; 49:1215-1225. [PMID: 28434046 PMCID: PMC5487836 DOI: 10.1007/s00726-017-2423-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Dietary arginine (Arg) supplementation has been proposed to have positive effects on the development of liver diseases. In the present study, we investigate if an oral Arg supplementation in diet protects mice fed a fructose, fat and cholesterol enriched Western-style diet (WSD) from the development of non-alcoholic steatohepatitis (NASH). Female C57BL/6J mice were fed a liquid control diet or a liquid WSD ± Arg (2.49 g/kg body weight/day) for 6 weeks. Indices of liver injury, glucose metabolism and intestinal permeability were determined. While Arg supplementation had no effects on body weight gain, fasting blood glucose levels were significantly lower in WSD+Arg-fed mice than in C+Arg-fed animals. WSD-fed mice developed liver steatosis accompanied with inflammation, both being significantly attenuated in WSD+Arg-fed mice. These effects of Arg supplementation went along with a protection against WSD-induced decreased tight junction protein levels in the upper parts of the small intestine, increased levels of bacterial endotoxin in portal plasma as well as increased hepatic toll-like receptor-4 mRNA and 4-hydroxynonenal protein adduct levels. In conclusion, Arg supplementation may protect mice from the development of NASH.
Collapse
|
19
|
Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 2017; 49:957-964. [PMID: 28260165 DOI: 10.1007/s00726-017-2399-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.
Collapse
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Meng Han
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China. .,Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
20
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|
21
|
Liu G, Xiao L, Cao W, Fang T, Jia G, Chen X, Zhao H, Wu C, Wang J. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy. Food Funct 2016; 7:964-74. [PMID: 26732548 DOI: 10.1039/c5fo01486g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P < 0.05) in plasma. Compared with the diquat group, the arginine + diquat group had significantly higher levels of citrate, creatinine, homogentisate, and α-ketoglutarate while lower levels of acetamide, citrulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, propionate, and β-glucose (P < 0.05) in urine. Compared with the diquat group, the N-carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol, hippurate, lactate, N-acetylglutamate, nicotinamide, ornithine, and trigonelline (P < 0.05) in urine. Overall, these results suggest that arginine and N-carbamylglutamate can alter the metabolome associated with energy metabolism, amino acid metabolism, and gut microbiota metabolism under oxidative stress.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
22
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
23
|
Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep 2016; 6:20683. [PMID: 26868870 PMCID: PMC4751613 DOI: 10.1038/srep20683] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.
Collapse
|
24
|
Monti LD, Galluccio E, Fontana B, Spadoni S, Comola M, Marrocco Trischitta MM, Chiesa R, Comi G, Bosi E, Piatti P. Pharmacogenetic influence of eNOS gene variant on endothelial and glucose metabolism responses to L-arginine supplementation: Post hoc analysis of the L-arginine trial. Metabolism 2015; 64:1582-91. [PMID: 26385052 DOI: 10.1016/j.metabol.2015.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/19/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate whether variants of the eNOS gene are associated with endothelial and metabolic responses to L-arginine (L-arg) supplementation. MATERIAL AND METHODS We examined a single nucleotide polymorphism of the eNOS gene (rs753482-A>C) to investigate the effects of this variant on endothelial function (EF), colony-forming unit-endothelial cell (CFU-EC) number, asymmetric-dimethylarginine (ADMA) level, insulin sensitivity index (ISI), and insulin secretion (IS) in a post hoc analysis of the L-arg trial. The L-arg trial (6.4 g/day for 18 months) was a single-center, randomized, double-blind, parallel-group, placebo-controlled, phase III trial in individuals with impaired glucose tolerance and metabolic syndrome. followed by a 12-month extended follow-up period after termination of the study drug (NCT 00917449). RESULTS At baseline, EF, CFU-EC numbers, ADMA levels, and ISI were impaired in subjects carrying minor allele C (both heterozygotes, AC and homozygotes, CC) as compared to subjects carrying major allele A (homozygotes, AA) (p<0.01). Compared to placebo, L-arg increased EF, CFU-EC numbers, and ISI, and improved ADMA levels and IS (p<0.01). The greatest improvements were found in AA subjects treated with L-arg, while the worst results were found in AC+CC subjects treated with placebo. In the placebo-treated subjects, EF, CFU-EC, ISI, and IS were significantly lower and ADMA was significantly higher in AC+CC subjects than in AA subjects. CONCLUSIONS Treatment with L-arg induced similar improvements in EF, CFU-EC numbers, ADMA levels, ISI, and IS in both AA subjects and AC+CC subjects. The presence of minor allele resulted in the worst prognosis in terms of EF, CFU-EC numbers, ADMA levels, ISI, and IS during the 30-month observation period.
Collapse
Affiliation(s)
- Lucilla D Monti
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy.
| | - Elena Galluccio
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy
| | - Barbara Fontana
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy
| | - Serena Spadoni
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy
| | - Mauro Comola
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Roberto Chiesa
- Vascular Surgery, Cardio-Thoraco-Vascular Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Emanuele Bosi
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy
| | - Piermarco Piatti
- Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine,IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
25
|
Unser AM, Mooney B, Corr DT, Tseng YH, Xie Y. 3D brown adipogenesis to create "Brown-Fat-in-Microstrands". Biomaterials 2015; 75:123-134. [PMID: 26496384 DOI: 10.1016/j.biomaterials.2015.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Bridget Mooney
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
26
|
Merlin J, Evans BA, Dehvari N, Sato M, Bengtsson T, Hutchinson DS. Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jon Merlin
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Bronwyn A. Evans
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Nodi Dehvari
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Masaaki Sato
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
- Department of Pharmacology; Monash University; Clayton Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Dana S. Hutchinson
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
- Department of Pharmacology; Monash University; Clayton Australia
| |
Collapse
|
27
|
Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G. Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 2015; 27:1-8. [PMID: 26427799 DOI: 10.1016/j.jnutbio.2015.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Recent findings from human and animal studies indicate that maternal undernutrition or overnutrition affects covalent modifications of the fetal genome and its associated histones that can be carried forward to subsequent generations. An adverse outcome of maternal malnutrition is the development of metabolic syndrome, which is defined as a cluster of disorders including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hypertension and insulin resistance. The transgenerational impacts of maternal nutrition are known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The underlying mechanisms include chromatin remodeling, DNA methylation (occurring at the 5'-position of cytosine residues within CpG dinucleotides), histone modifications (acetylation, methylation, phosphorylation, ubiquitination and sumoylation) and expression and activity of small noncoding RNAs. The enzymes catalyzing these reactions include S-adenosylmethionine-dependent DNA and protein methyltransferases, DNA demethylases, histone acetylase (lysine acetyltransferase), general control nonderepressible 5 (GCN5)-related N-acetyltransferase (a superfamily of acetyltransferase) and histone deacetylase. Amino acids (e.g., glycine, histidine, methionine and serine) and vitamins (B6, B12 and folate) play key roles in provision of methyl donors for DNA and protein methylation. Therefore, these nutrients and related metabolic pathways are of interest in dietary treatment of metabolic syndrome. Intervention strategies include targeting epigenetically disturbed metabolic pathways through dietary supplementation with nutrients (particularly functional amino acids and vitamins) to regulate one-carbon-unit metabolism, antioxidative reactions and gene expression, as well as protein methylation and acetylation. These mechanism-based approaches may effectively improve health and well-being of affected offspring.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; Department of Animal Science and Center for Animal Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
28
|
Hou Y, Yin Y, Wu G. Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Exp Biol Med (Maywood) 2015; 240:997-1007. [PMID: 26041391 DOI: 10.1177/1535370215587913] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on growth or nitrogen balance, amino acids (AA) had traditionally been classified as nutritionally essential (indispensable) or non-essential (dispensable) for animals and humans. Nutritionally essential AA (EAA) are defined as either those AA whose carbon skeletons cannot be synthesized de novo in animal cells or those that normally are insufficiently synthesized de novo by the animal organism relative to its needs for maintenance, growth, development, and health and which must be provided in the diet to meet requirements. In contrast, nutritionally non-essential AA (NEAA) are those AA which can be synthesized de novo in adequate amounts by the animal organism to meet requirements for maintenance, growth, development, and health and, therefore, need not be provided in the diet. Although EAA and NEAA had been described for over a century, there are no compelling data to substantiate the assumption that NEAA are synthesized sufficiently in animals and humans to meet the needs for maximal growth and optimal health. NEAA play important roles in regulating gene expression, cell signaling pathways, digestion and absorption of dietary nutrients, DNA and protein synthesis, proteolysis, metabolism of glucose and lipids, endocrine status, men and women fertility, acid-base balance, antioxidative responses, detoxification of xenobiotics and endogenous metabolites, neurotransmission, and immunity. Emerging evidence indicates dietary essentiality of "nutritionally non-essential amino acids" for animals and humans to achieve their full genetic potential for growth, development, reproduction, lactation, and resistance to metabolic and infectious diseases. This concept represents a new paradigm shift in protein nutrition to guide the feeding of mammals (including livestock), poultry, and fish.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
30
|
Safety of long-term dietary supplementation with L-arginine in rats. Amino Acids 2015; 47:1909-20. [PMID: 25948162 DOI: 10.1007/s00726-015-1992-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 02/05/2023]
Abstract
This study was conducted with rats to determine the safety of long-term dietary supplementation with L-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % L-arginine and received drinking water containing L-arginine-HCl (0, 1.8, or 3.6 g L-arginine/kg body-weight/day; n = 10/group). These supplemental doses of L-arginine were equivalent to 0, 286, and 573 mg L-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with L-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. L-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. L-Arginine supplementation reduced plasma levels of leptin. Additionally, L-arginine supplementation increased L-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by L-arginine. Collectively, these results indicate that dietary supplementation with L-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g L-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of L-arginine to humans.
Collapse
|
31
|
Romu T, Elander L, Leinhard OD, Lidell ME, Betz MJ, Persson A, Enerbäck S, Borga M. Characterization of brown adipose tissue by water-fat separated magnetic resonance imaging. J Magn Reson Imaging 2015; 42:1639-45. [PMID: 25914213 DOI: 10.1002/jmri.24931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To evaluate the possibility of quantifying brown adipose tissue (BAT) volume and fat concentration with a high resolution, long echo time, dual-echo Dixon imaging protocol. METHODS A 0.42 mm isotropic resolution water-fat separated MRI protocol was implemented by using the second opposite-phase echo and third in-phase echo. Fat images were calibrated with regard to the intensity of nearby white adipose tissue (WAT) to form relative fat content (RFC) images. To evaluate the ability to measure BAT volume and RFC contrast dynamics, rats were divided into two groups that were kept at 4° or 22°C for 5 days. The rats were then scanned in a 70 cm bore 3.0 Tesla MRI scanner and a human dual energy CT. Interscapular, paraaortal, and perirenal BAT (i/pa/pr-BAT) depots as well as WAT and muscle were segmented in the MRI and CT images. Biopsies were collected from the identified BAT depots. RESULTS The biopsies confirmed that the three depots identified with the RFC images consisted of BAT. There was a significant linear correlation (P < 0.001) between the measured RFC and the Hounsfield units from DECT. Significantly lower iBAT RFC (P = 0.0064) and significantly larger iBAT and prBAT volumes (P = 0.0017) were observed in the cold stimulated rats. CONCLUSION The calibrated Dixon images with RFC scaling can depict BAT and be used to measure differences in volume, and fat concentration, induced by cold stimulation. The high correlation between RFC and HU suggests that the fat concentration is the main RFC image contrast mechanism.
Collapse
Affiliation(s)
- Thobias Romu
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Louise Elander
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Linköping University, Department of Anaesthesiology and Intensive Care and Department of Medical and Health Sciences, Norrköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin E Lidell
- Department of Medical and Clinical Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthias J Betz
- Department of Medical and Clinical Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians University (LMU), Munich, Germany
| | - Anders Persson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Sven Enerbäck
- Department of Medical and Clinical Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Borga
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 2015; 47:925-36. [DOI: 10.1007/s00726-015-1921-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/19/2022]
|
33
|
Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS One 2015; 10:e0117294. [PMID: 25635834 PMCID: PMC4311982 DOI: 10.1371/journal.pone.0117294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01), it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.
Collapse
Affiliation(s)
- Xianyong Ma
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chuntian Zheng
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Youjun Hu
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21:389-409. [PMID: 25609213 DOI: 10.1093/molehr/gav003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Yang Y, Wu Z, Meininger CJ, Wu G. L-Leucine and NO-mediated cardiovascular function. Amino Acids 2015; 47:435-47. [PMID: 25552397 DOI: 10.1007/s00726-014-1904-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either α-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China,
| | | | | | | |
Collapse
|
36
|
In vitro anti-inflammatory effects of citrulline on peritoneal macrophages in Zucker diabetic fatty rats. Br J Nutr 2014; 113:120-4. [PMID: 25391524 DOI: 10.1017/s0007114514002086] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In type 2 diabetes (T2D) macrophage dysfunction increases susceptibility to infection and mortality. This may result from the associated decreased plasma concentration of arginine, an amino acid that plays an important role in immunity. In vitro, increasing arginine availability leads to an improvement in macrophage function; however, arginine supplementation in diabetic obese patients may be detrimental. The aim of the present study was to assess in vitro whether citrulline, an arginine precursor, could replace arginine in the regulation of macrophage function under a condition of diabetes and obesity. Peritoneal macrophages from diabetic obese or lean rats were incubated for 6 h in an arginine-free medium, in the presence of increasing citrulline concentrations (0·1, 0·5, 1 or 2 mmol/l). Cytokine and NO production was determined. Peritoneal macrophages from either lean or diabetic obese rats produced NO, and at higher levels in the cells from lean rats. In diabetic obese rats, TNF-α production decreased with increasing citrulline concentrations, but was higher than that in the cells from lean rats. In contrast, IL-6 production increased with increasing citrulline concentrations. The present experiment shows that citrulline is effectively used for NO production and regulates cytokine production in macrophages from diabetic obese rats. This effect warrants in vivo evaluation in T2D-related inflammation.
Collapse
|
37
|
Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 2014; 5:34. [PMID: 24999386 PMCID: PMC4082180 DOI: 10.1186/2049-1891-5-34] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
38
|
Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid. Amino Acids 2014; 46:2219-29. [PMID: 24927697 DOI: 10.1007/s00726-014-1762-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/07/2014] [Indexed: 12/29/2022]
Abstract
This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution (1)H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo.
Collapse
|
39
|
Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G. Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 2014; 144:988-95. [PMID: 24670969 DOI: 10.3945/jn.114.192120] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Currently, little is known about the function of arginine in the homeostasis of the intestinal immune system. This study was conducted to test the hypothesis that dietary arginine supplementation may alter intestinal microbiota and innate immunity in mice. Mice were fed a basal diet (containing 0.93% l-arginine; grams per gram) or the basal diet supplemented with 0.5% l-arginine for 14 d. We studied the composition of intestinal microbiota, the activation of innate immunity, and the expression of toll-like receptors (Tlrs), proinflammatory cytokines, and antimicrobials in the jejunum, ileum, or colon of mice. Signal transduction pathway activation in the jejunum and ileum, including TLR4-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase (PI3K)/PI3K-protein kinase B (Akt), was analyzed by Western blotting. Quantitative polymerase chain reaction analysis revealed that arginine supplementation induced (P < 0.05) a shift in the Firmicutes-to-Bacteroidetes ratio to favor Bacteroidetes in the jejunum (0.33 ± 0.04 vs. 1.0 ± 0.22) and ileum (0.20 ± 0.08 vs. 1.0 ± 0.27) compared with the control group. This finding coincided with greater (P < 0.05) activation of the innate immune system, including TLR signaling, as well as expression of proinflammatory cytokines, secretory immunoglobulin A, mucins, and Paneth antimicrobials in the jejunum and ileum. Finally, arginine supplementation reduced (P < 0.05) expression of the proteins for NF-κB, MAPK, and PI3K-Akt signaling pathways but activated (P < 0.05) p38 and c-Jun N-terminal protein kinase in the jejunum and the ileum, respectively. Collectively, dietary arginine supplementation of mice changes the intestinal microbiota, contributing to the activation of intestinal innate immunity through NF-κB, MAPK, and PI3K-phosphorylated Akt signaling pathways.
Collapse
Affiliation(s)
- Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Zemeng Feng
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
40
|
Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu Rev Anim Biosci 2014; 2:387-417. [DOI: 10.1146/annurev-animal-022513-114113] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| |
Collapse
|
41
|
Lorin J, Zeller M, Guilland JC, Cottin Y, Vergely C, Rochette L. Arginine and nitric oxide synthase: regulatory mechanisms and cardiovascular aspects. Mol Nutr Food Res 2014; 58:101-16. [PMID: 23740826 DOI: 10.1002/mnfr.201300033] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/17/2022]
Abstract
L-Arginine (L-Arg) is a conditionally essential amino acid in the human diet. The most common dietary sources of L-Arg are meat, poultry and fish. L-Arg is the precursor for the synthesis of nitric oxide (NO); a key signaling molecule via NO synthase (NOS). Endogenous NOS inhibitors such as asymmetric-dimethyl-L-Arg inhibit NO synthesis in vivo by competing with L-Arg at the active site of NOS. In addition, NOS possesses the ability to be "uncoupled" to produce superoxide anion instead of NO. Reduced NO bioavailability may play an essential role in cardiovascular pathologies and metabolic diseases. L-Arg deficiency syndromes in humans involve endothelial inflammation and immune dysfunctions. Exogenous administration of L-Arg restores NO bioavailability, but it has not been possible to demonstrate, that L-Arg supplementation improved endothelial function in cardiovascular disease such as heart failure or hypertension. L-Arg supplementation may be a novel therapy for obesity and metabolic syndrome. The utility of l-Arg supplementation in the treatment of L-Arg deficiency syndromes remains to be established. Clinical trials need to continue to determine the optimal concentrations and combinations of L-Arg, with other protective compounds such as tetrahydrobiopterin (BH4 ), and antioxidants to combat oxidative stress that drives down NO production in humans.
Collapse
Affiliation(s)
- Julie Lorin
- Laboratoire de Physiopathologie et Pharmacologies Cardio-Métaboliques (LPPCM), Inserm UMR866, Facultés de Médecine et de Pharmacie, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|
42
|
McCoard S, Wards N, Koolaard J, Salerno MS. The effect of maternal arginine supplementation on the development of the thermogenic program in the ovine fetus. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brown adipose tissue (BAT) is a specialised fat store that is metabolised by the newborn lamb to ensure effective adaptation to the cold challenge of the extra-uterine environment. Increasing BAT reserves therefore has the potential to increase neonatal thermogenesis and survival. It is established that arginine supplementation can increase fetal BAT stores but the biological mechanisms involved are unclear. The objective of this study was to test the hypothesis that increased fetal BAT stores resulting from maternal arginine supplementation is mediated by activation of the thermogenic program. Brown adipose tissue was collected from fetuses of ewes supplemented with arginine from 100 to 140 days of gestation. Increased peri-renal fat stores in fetuses from arginine-supplemented ewes was associated with an increase in uncoupling protein 1 (UCP-1) and PRD1-BF-1-RIZ1 homologous domain containing protein-16 expression, but not proliferator-activated receptor gamma or proliferator-activated receptor gamma-co-activator-1α in BAT. The activity of UCP-1 is regulated by hormones including cortisol and thyroid hormones. Cortisol level in fetuses from supplemented sheep was 68% greater than those from control ewes, indicating that cortisol may control upregulation of UCP-1 expression in the ovine neonate. The DNA and RNA concentration in BAT of both groups suggest that increased peri-renal fat stores is not associated with an increase in cell number or number of ribosomes, but rather an increase in the size of individual fat cells. Collectively, these results indicate that maternal arginine supplementation during mid to late gestation improved the thermoregulatory ability of lambs and this could potentially increase their survival in early life.
Collapse
|
43
|
Choi SH, Wickersham TA, Wu G, Gilmore LA, Edwards HD, Park SK, Kim KH, Smith SB. Abomasal infusion of arginine stimulates SCD and C/EBPß gene expression, and decreases CPT1ß gene expression in bovine adipose tissue independent of conjugated linoleic acid. Amino Acids 2013; 46:353-66. [PMID: 24327170 DOI: 10.1007/s00726-013-1622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Based on previous research with bovine peadipocytes, we hypothesized that infusion of arginine into the abomasum of Angus steers stimulates stearoyl-CoA desaturase (SCD) gene expression in bovine subcutaneous (s.c.) adipose tissue, and that this would be attenuated by conjugated linoleic acid (CLA). Growing Angus steers were infused abomasally with L-arginine 50 g/day; n = 13; provided as L-arginine HCl) or L-alanine (isonitrogenous control, 100 g/day; n = 11) for 14 days. For the subsequent 14 days, half of the steers in each amino acid group were infused with CLA (100 g/day). Body weight gain and average daily gain were unaffected (P > 0.15) by infusion of arginine or CLA into the abomasum. The plasma concentrations of cis-9, trans-11 and trans-10, cis-12 CLA were increased CLA infusion (P = 0.001) and infusion of arginine increased plasma arginine (P = 0.01). Compared with day 0, fatty acid synthase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase enzyme activities in s.c. adipose tissue increased by day 14 in steers infused with either alanine or arginine (all P < 0.01). NADP-MDH activity was higher (P = 0.01) in steers infused with arginine than in steers infused with arginine plus CLA by day 28, but lipid synthesis in vitro from glucose and acetate was unaffected by infusion of either arginine or CLA (P > 0.40). By day 28, C/EBPβ and SCD gene expression was higher, and CPT1β gene expression was lower, in s.c. adipose tissue of steers infused with arginine than in steers infused with alanine (±CLA) (P = 0.05). CLA decreased adipose tissue oleic acid (18:1n-9) in alanine- or arginine-infused steers (P = 0.05), although CLA had no effect on SCD gene expression. The data indicate that supplemental arginine promotes adipogenic gene expression and may promote lipid accumulation in bovine adipose tissue. L-Arginine may beneficially improve beef quality for human consumption.
Collapse
Affiliation(s)
- Seong Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hochstedler CM, Leidinger MR, Maher-Sturm MT, Gibson-Corley KN, Meyerholz DK. Immunohistochemical detection of arginase-I expression in formalin-fixed lung and other tissues. J Histotechnol 2013; 36:128-134. [PMID: 25332513 DOI: 10.1179/2046023613y.0000000032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arginases are a family of enzymes that convert L-arginine to L-ornithine and urea. Alterations in expression of the isoform arginase-I are increasingly recognized in lung diseases such as asthma and cystic fibrosis. To define expression of murine arginase-I in formalin-fixed tissues, including lung, an immunohistochemical protocol was validated in murine liver; a tissue that has distinct zonal arginase-I expression making it a useful control. In the lung, arginase-I immunostaining was observed in airway surface epithelium and this decreased from large to small airways; with a preferential staining of ciliated epithelium versus Clara cells and alveolar epithelia. In submucosal glands, the ducts and serous acini had moderate immunostaining, which was absent in mucous cells. Focal immunostaining was observed in alveolar macrophages, endothelial cells, pulmonary vein cardiomyocytes, pulmonary artery smooth muscle, airway smooth muscle and neurons of ganglia of the lung. Arginase-I immunostaining was also detected in other tissues including salivary glands, pancreas, liver, skin, and intestine. Differential immunostaining was observed between sexes in submandibular salivary glands; arginase-I was diffusely expressed in the convoluted granular duct cells of females, but was rarely noted in males. Strain specific differences were not detected. In one mouse with an incidental case of lymphoma, neoplastic lymphocytes lacked arginase-I immunostaining, in contrast to immunostaining detected in non-neoplastic lymphocytes of lymphoid tissues. The use of liver tissue to validate arginase-I immunohistochemistry produced consistent expression patterns in mice and this approach can be useful to enhance consistency of arginase-I immunohistochemical studies.
Collapse
Affiliation(s)
- Christine M Hochstedler
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mary T Maher-Sturm
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Ruan Z, Lv Y, Fu X, He Q, Deng Z, Liu W, Yingli Y, Wu X, Wu G, Wu X, Yin Y. Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose. Amino Acids 2013; 45:877-87. [DOI: 10.1007/s00726-013-1535-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/10/2013] [Indexed: 12/22/2022]
|
46
|
Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013; 45:241-56. [DOI: 10.1007/s00726-013-1515-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
47
|
Functional amino acids in nutrition and health. Amino Acids 2013; 45:407-11. [DOI: 10.1007/s00726-013-1500-6] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 01/15/2023]
|
48
|
Dietary requirements of "nutritionally non-essential amino acids" by animals and humans. Amino Acids 2012; 44:1107-13. [PMID: 23247926 DOI: 10.1007/s00726-012-1444-2] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/02/2012] [Indexed: 01/08/2023]
Abstract
Amino acids are necessary for the survival, growth, development, reproduction and health of all organisms. They were traditionally classified as nutritionally essential or non-essential for mammals, birds and fish based on nitrogen balance or growth. It was assumed that all "non-essential amino acids (NEAA)" were synthesized sufficiently in the body to meet the needs for maximal growth and health. However, there has been no compelling experimental evidence to support this assumption over the past century. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and protect its mucosal integrity. Therefore, based on new research findings, NEAA should be taken into consideration in revising the classical "ideal protein" concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.
Collapse
|