1
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Natural Immunity against HIV-1: Progression of Understanding after Association Studies. Viruses 2022; 14:v14061243. [PMID: 35746714 PMCID: PMC9227919 DOI: 10.3390/v14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Natural immunity against HIV has been observed in many individuals in the world. Among them, a group of female sex workers enrolled in the Pumwani sex worker cohort remained HIV uninfected for more than 30 years despite high-risk sex work. Many studies have been carried out to understand this natural immunity to HIV in the hope to develop effective vaccines and preventions. This review focuses on two such examples. These studies started from identifying immunogenetic or genetic associations with resistance to HIV acquisition, and followed up with an in-depth investigation to understand the biological relevance of the correlations of protection, and to develop and test novel vaccines and preventions.
Collapse
|
3
|
Transient Increases in Inflammation and Proapoptotic Potential Are Associated with the HESN Phenotype Observed in a Subgroup of Kenyan Female Sex Workers. Viruses 2022; 14:v14030471. [PMID: 35336878 PMCID: PMC8948937 DOI: 10.3390/v14030471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Interferon (IFN) -stimulated genes (ISGs) are critical effectors of IFN response to viral infection, but whether ISG expression is a correlate of protection against HIV infection remains elusive. A well-characterized subcohort of Kenyan female sex workers, who, despite being repeatedly exposed to HIV-1 remain seronegative (HESN), exhibit reduced baseline systemic and mucosal immune activation. This study tested the hypothesis that regulation of ISGs in the cells of HESN potentiates a robust antiviral response against HIV. Transcriptional profile of a panel of ISGs with antiviral function in PBMC and isolated CD4+ T cells from HESN and non-HESN sex worker controls were defined following exogenous IFN-stimulation using relative RT-qPCR. This study identified a unique profile of proinflammatory and proapoptotic ISGs with robust but transient responses to exogenous IFN-γ and IFN-α2 in HESN cells. In contrast, the non-HESN cells had a strong and prolonged proinflammatory ISG profile at baseline and following IFN challenge. Potential mechanisms may include augmented bystander apoptosis due to increased TRAIL expression (16-fold), in non-HESN cells. The study also identified two negative regulators of ISG induction associated with the HESN phenotype. Robust upregulation of SOCS-1 and IRF-1, in addition to HDM2, could contribute to the strict regulation of proinflammatory and proapoptotic ISGs in HESN cells. As reducing IRF-1 in the non-HESN cells resulted in the identified HESN ISG profile, and decreased HIV susceptibility, the unique HESN ISG profile could be a correlate of protection against HIV infection.
Collapse
|
4
|
Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov 2021; 7:89. [PMID: 34580278 PMCID: PMC8476510 DOI: 10.1038/s41421-021-00321-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 outbreak has been declared by World Health Organization as a worldwide pandemic. However, there are many unknowns about the antigen-specific T-cell-mediated immune responses to SARS-CoV-2 infection. Here, we present both single-cell TCR-seq and RNA-seq to analyze the dynamics of TCR repertoire and immune metabolic functions of blood T cells collected from recently discharged COVID-19 patients. We found that while the diversity of TCR repertoire was increased in discharged patients, it returned to basal level ~1 week after becoming virus-free. The dynamics of T cell repertoire correlated with a profound shift of gene signatures from antiviral response to metabolism adaptation. We also demonstrated that the top expanded T cell clones (~10% of total T cells) display the key anti-viral features in CD8+ T cells, confirming a critical role of antigen-specific T cells in fighting against SARS-CoV-2. Our work provides a basis for further analysis of adaptive immunity in COVID-19 patients, and also has implications in developing a T-cell-based vaccine for SARS-CoV-2.
Collapse
|
5
|
The Potential Role of FREM1 and Its Isoform TILRR in HIV-1 Acquisition through Mediating Inflammation. Int J Mol Sci 2021; 22:ijms22157825. [PMID: 34360591 PMCID: PMC8346017 DOI: 10.3390/ijms22157825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.
Collapse
|
6
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
7
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
8
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
9
|
Bien SA, Wojcik GL, Hodonsky CJ, Gignoux CR, Cheng I, Matise TC, Peters U, Kenny EE, North KE. The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annu Rev Genomics Hum Genet 2019; 20:181-200. [PMID: 30978304 DOI: 10.1146/annurev-genom-091416-035517] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen a technological revolution in human genetics that has empowered population-level investigations into genetic associations with phenotypes. Although these discoveries rely on genetic variation across individuals, association studies have overwhelmingly been performed in populations of European descent. In this review, we describe limitations faced by single-population studies and provide an overview of strategies to improve global representation in existing data sets and future human genomics research via diversity-focused, multiethnic studies. We highlight the successes of individual studies and meta-analysis consortia that have provided unique knowledge. Additionally, we outline the approach taken by the Population Architecture Using Genomics and Epidemiology (PAGE) study to develop best practices for performing genetic epidemiology in multiethnic contexts. Finally, we discuss how limiting investigations to single populations impairs findings in the clinical domain for both rare-variant identification and genetic risk prediction.
Collapse
Affiliation(s)
- Stephanie A Bien
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Genevieve L Wojcik
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Chani J Hodonsky
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado 80045, USA;
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA;
| | - Tara C Matise
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08554, USA;
| | - Ulrike Peters
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
10
|
Davi C, Pastor A, Oliveira T, Neto FBDL, Braga-Neto U, Bigham AW, Bamshad M, Marques ETA, Acioli-Santos B. Severe Dengue Prognosis Using Human Genome Data and Machine Learning. IEEE Trans Biomed Eng 2019; 66:2861-2868. [PMID: 30716030 DOI: 10.1109/tbme.2019.2897285] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dengue has become one of the most important worldwide arthropod-borne diseases. Dengue phenotypes are based on laboratorial and clinical exams, which are known to be inaccurate. OBJECTIVE We present a machine learning approach for the prediction of dengue fever severity based solely on human genome data. METHODS One hundred and two Brazilian dengue patients and controls were genotyped for 322 innate immunity single nucleotide polymorphisms (SNPs). Our model uses a support vector machine algorithm to find the optimal loci classification subset and then an artificial neural network (ANN) is used to classify patients into dengue fever or severe dengue. RESULTS The ANN trained on 13 key immune SNPs selected under dominant or recessive models produced median values of accuracy greater than 86%, and sensitivity and specificity over 98% and 51%, respectively. CONCLUSION The proposed classification method, using only genome markers, can be used to identify individuals at high risk for developing the severe dengue phenotype even in uninfected conditions. SIGNIFICANCE Our results suggest that the genetic context is a key element in phenotype definition in dengue. The methodology proposed here is extendable to other Mendelian based and genetically influenced diseases.
Collapse
|
11
|
Fourcade L, Poudrier J, Roger M. Natural Immunity to HIV: A Template for Vaccine Strategies. Viruses 2018; 10:v10040215. [PMID: 29690575 PMCID: PMC5923509 DOI: 10.3390/v10040215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022] Open
Abstract
Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Johanne Poudrier
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michel Roger
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
12
|
Mackelprang RD, Bamshad MJ, Chong JX, Hou X, Buckingham KJ, Shively K, deBruyn G, Mugo NR, Mullins JI, McElrath MJ, Baeten JM, Celum C, Emond MJ, Lingappa JR. Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog 2017; 13:e1006703. [PMID: 29108000 PMCID: PMC5690691 DOI: 10.1371/journal.ppat.1006703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/16/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022] Open
Abstract
Host genetic variation modifying HIV-1 acquisition risk can inform development of HIV-1 prevention strategies. However, associations between rare or intermediate-frequency variants and HIV-1 acquisition are not well studied. We tested for the association between variation in genic regions and extreme HIV-1 acquisition phenotypes in 100 sub-Saharan Africans with whole genome sequencing data. Missense variants in immunoglobulin-like regions of CD101 and, among women, one missense/5' UTR variant in UBE2V1, were associated with increased HIV-1 acquisition risk (p = 1.9x10-4 and p = 3.7x10-3, respectively, for replication). Both of these genes are known to impact host inflammatory pathways. Effect sizes increased with exposure to HIV-1 after adjusting for the independent effect of increasing exposure on acquisition risk. TRIAL REGISTRATION ClinicalTrials.gov NCT00194519; NCT00557245.
Collapse
Affiliation(s)
- Romel D. Mackelprang
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Jessica X. Chong
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Kathryn Shively
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Guy deBruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, United States of America
- Partners in Health Research and Development, Kenya Medical Research Institute, Thika, Kenya
| | - James I. Mullins
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Microbiology, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
| | - M. Juliana McElrath
- Department of Medicine, University of Washington, Seattle, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, United States of America
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
- * E-mail:
| | | |
Collapse
|
13
|
Fulcher JA, Romas L, Hoffman JC, Elliott J, Saunders T, Burgener AD, Anton PA, Yang OO. Highly Human Immunodeficiency Virus-Exposed Seronegative Men Have Lower Mucosal Innate Immune Reactivity. AIDS Res Hum Retroviruses 2017; 33:788-795. [PMID: 28503933 DOI: 10.1089/aid.2017.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Risk of HIV acquisition varies, and some individuals are highly HIV-1-exposed, yet, persistently seronegative (HESN). The immunologic mechanisms contributing to this phenomenon are an area of intense interest. As immune activation and inflammation facilitate disease progression in HIV-1-infected persons and gastrointestinal-associated lymphoid tissue is a highly susceptible site for transmission, we hypothesized that reduced gut mucosal immune reactivity may contribute to reduced HIV-1 susceptibility in HESN men with a history of numerous rectal sexual exposures. To test this, we used ex vivo mucosal explants from freshly acquired colorectal biopsies from healthy control and HESN subjects who were stimulated with specific innate immune ligands and inactivated whole pathogens. Immune reactivity was then assessed via cytokine arrays and proteomic analysis. Mucosal immune cell compositions were quantified via immunohistochemistry. We found that explants from HESN subjects produced less proinflammatory cytokines compared with controls following innate immune stimulation; while noninflammatory cytokines were similar between groups. Proteomic analysis identified several immune response proteins to be differentially expressed between HIV-1-stimulated HESN and control explants. Immunohistochemical examination of colorectal mucosa showed similar amounts of T cells, macrophages, and dendritic cells between groups. The results of this pilot study suggest that mucosal innate immune reactivity is dampened in HESN versus control groups, despite presence of similar densities of immune cells in the colorectal mucosa. This observed modulation of the rectal mucosal immune response may contribute to lower risk of mucosal HIV-1 transmission in these individuals.
Collapse
Affiliation(s)
- Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laura Romas
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Jennifer C. Hoffman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julie Elliott
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Terry Saunders
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Peter A. Anton
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
14
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Abdulhaqq SA, Zorrilla C, Kang G, Yin X, Tamayo V, Seaton KE, Joseph J, Garced S, Tomaras GD, Linn KA, Foulkes AS, Azzoni L, VerMilyea M, Coutifaris C, Kossenkov AV, Showe L, Kraiselburd EN, Li Q, Montaner LJ. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes. Mucosal Immunol 2016; 9:1027-38. [PMID: 26555708 PMCID: PMC4864149 DOI: 10.1038/mi.2015.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023]
Abstract
Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: P<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSWs also had increased levels of interferon-ɛ (IFNɛ) gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses.
Collapse
Affiliation(s)
| | - Carmen Zorrilla
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | - Guobin Kang
- University of Nebraska, School of Biological Sciences and Nebraska Center for Virology, Lincoln, NE 68583
| | | | - Vivian Tamayo
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | - Kelly E. Seaton
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710
| | | | - Sheyla Garced
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | | | - Kristin A. Linn
- Department of Biostatistics and Epidemiology University of Pennsylvania Philadelphia, PA 19104
| | - Andrea S. Foulkes
- University of Massachusetts, Division of Biostatistics and Epidemiology, Amherst, MA 01003
| | | | | | | | | | | | | | - Qingsheng Li
- University of Nebraska, School of Biological Sciences and Nebraska Center for Virology, Lincoln, NE 68583
| | | |
Collapse
|
16
|
Tumor Suppressor Interferon-Regulatory Factor 1 Counteracts the Germinal Center Reaction Driven by a Cancer-Associated Gammaherpesvirus. J Virol 2015; 90:2818-29. [PMID: 26719266 DOI: 10.1128/jvi.02774-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that are associated with the development of B cell lymphomas. Gammaherpesviruses employ multiple mechanisms to transiently stimulate a broad, polyclonal germinal center reaction, an inherently mutagenic stage of B cell differentiation that is thought to be the primary target of malignant transformation in virus-driven lymphomagenesis. We found that this gammaherpesvirus-driven germinal center expansion was exaggerated and lost its transient nature in the absence of interferon-regulatory factor 1 (IRF-1), a transcription factor with antiviral and tumor suppressor functions. Uncontrolled and persistent expansion of germinal center B cells led to pathological changes in the spleens of chronically infected IRF-1-deficient animals. Additionally, we found decreased IRF-1 expression in cases of human posttransplant lymphoproliferative disorder, a malignant condition associated with gammaherpesvirus infection. The results of our study define an unappreciated role for IRF-1 in B cell biology and provide insight into the potential mechanism of gammaherpesvirus-driven lymphomagenesis. IMPORTANCE Gammaherpesviruses establish lifelong infection in most adults and are associated with B cell lymphomas. While the infection is asymptomatic in many hosts, it is critical to identify individuals who may be at an increased risk of virus-induced cancer. Such identification is currently impossible, as the host risk factors that predispose individuals toward viral lymphomagenesis are poorly understood. The current study identifies interferon-regulatory factor 1 (IRF-1) to be one of such candidate host factors. Specifically, we found that IRF-1 enforces long-term suppression of an inherently mutagenic stage of B cell differentiation that gammaherpesviruses are thought to target for transformation. Correspondingly, in the absence of IRF-1, chronic gammaherpesvirus infection induced pathological changes in the spleens of infected animals. Further, we found decreased IRF-1 expression in human gammaherpesvirus-induced B cell malignancies.
Collapse
|
17
|
Reducing IRF-1 to Levels Observed in HESN Subjects Limits HIV Replication, But Not the Extent of Host Immune Activation. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e259. [PMID: 26506037 PMCID: PMC4881757 DOI: 10.1038/mtna.2015.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
Cells from women who are epidemiologically deemed resistant to HIV infection exhibit a 40-60% reduction in endogenous IRF-1 (interferon regulatory factor-1), an essential regulator of host antiviral immunity and the early HIV replication. This study examined the functional consequences of reducing endogenous IRF-1 on HIV-1 replication and immune response to HIV in natural HIV target cells. IRF-1 knockdown was achieved in ex vivo CD4(+) T cells and monocytes with siRNA. IRF-1 level was assessed using flow cytometry, prior to infection with HIV-Bal, HIV-IIIB, or HIV-VSV-G. Transactivation of HIV long terminal repeats was assessed by p24 secretion (ELISA) and Gag expression (reverse transcription-polymerase chain reaction (RT-PCR)). The expression of IRF-1-regulated antiviral genes was quantitated with RT-PCR. A modest 20-40% reduction in endogenous IRF-1 was achieved in >87% of ex vivo-derived peripheral CD4(+) T cells and monocytes, resulted in >90% reduction in the transactivation of the HIV-1 genes (Gag, p24) and, hence, HIV replication. Curiously, these HIV-resistant women demonstrated normal immune responses, nor an increased susceptibility to other infection. Similarly, modest IRF-1 knockdown had limited impact on the magnitude of HIV-1-elicited activation of IRF-1-regulated host immunologic genes but resulted in lessened duration of these responses. These data suggest that early expression of HIV-1 genes requires a higher IRF-1 level, compared to the host antiviral genes. Together, these provide one key mechanism underlying the natural resistance against HIV infection and further suggest that modest IRF-1 reduction could effectively limit productive HIV infection yet remain sufficient to activate a robust but transient immune response.
Collapse
|
18
|
Herbeck J, Ghorai S, Chen L, Rinaldo CR, Margolick JB, Detels R, Jacobson L, Wolinsky S, Mullins JI. p21(WAF1/CIP1) RNA expression in highly HIV-1 exposed, uninfected individuals. PLoS One 2015; 10:e0119218. [PMID: 25746435 PMCID: PMC4352077 DOI: 10.1371/journal.pone.0119218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Some individuals remain HIV-1 antibody and PCR negative after repeated exposures to the virus, and are referred to as HIV-exposed seronegatives (HESN). However, the causes of resistance to HIV-1 infection in cases other than those with a homozygous CCR5Δ32 deletion are unclear. We hypothesized that human p21WAF1/CIP1 (a cyclin-dependent kinase inhibitor) could play a role in resistance to HIV-1 infection in HESN, as p21 expression has been associated with suppression of HIV-1 in elite controllers and reported to block HIV-1 integration in cell culture. We measured p21 RNA expression in PBMC from 40 HESN and 40 low exposure HIV-1 seroconverters (LESC) prior to their infection using a real-time PCR assay. Comparing the 20 HESN with the highest exposure risk (median = 111 partners/2.5 years prior to the 20 LESC with the lowest exposure risk (median = 1 partner/2.5 years prior), p21 expression trended higher in HESN in only one of two experiments (P = 0.11 vs. P = 0.80). Additionally, comparison of p21 expression in the top 40 HESN (median = 73 partners/year) and lowest 40 LESC (median = 2 partners/year) showed no difference between the groups (P = 0.84). There was a weak linear trend between risk of infection after exposure and increasing p21 gene expression (R2 = 0.02, P = 0.12), but again only in one experiment. Hence, if p21 expression contributes to the resistance to viral infection in HESN, it likely plays a minor role evident only in those with extremely high levels of exposure to HIV-1.
Collapse
Affiliation(s)
- Joshua Herbeck
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Suvankar Ghorai
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Charles R. Rinaldo
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Roger Detels
- Department of Epidemiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisa Jacobson
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Steven Wolinsky
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mx2 expression is associated with reduced susceptibility to HIV infection in highly exposed HIV seronegative Kenyan sex workers. AIDS 2015; 29:35-41. [PMID: 25562491 DOI: 10.1097/qad.0000000000000490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Recent studies have identified Mx2 as a novel HIV-1 innate restriction factor that inhibits proviral integration. A pilot proteomic study of immune cells from highly exposed HIV-seronegative (HESN) individuals enrolled in the Pumwani sex worker cohort identified Mx1 as potential correlate of HIV protection. A detailed population level analysis of Mx1 and Mx2 expression and their role in reduced susceptibility to HIV infection in HESN women was conducted. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from 102 HESN women and 100 high-risk negative controls enrolled in a Nairobi-based sex worker cohort. Whole-cell lysates were prepared and analyzed for Mx1 and Mx2 expression by commercial ELISA. Bivariate and multiple linear regression analyses were conducted to account for confounding epidemiological factors. RESULTS Mx2, but not Mx1, was found to be significantly overexpressed in HESN women compared with high-risk negative controls (P = 0.027). After multiple linear regression analysis, accounting for age, menopause, pregnancy, Depo-Provera use, recent infections and medication usage, Mx2 expression remained significantly overexpressed in the PBMC of HESN women (P = 0.05). Additionally, an interaction model analysis indicated that HESN women who use Depo-Provera have 2.6-fold higher levels of Mx2 than any other group (P < 0.001). No associations with Mx1 expression were observed. CONCLUSION This is the first epidemiological report of Mx2 and its association with altered susceptibility to HIV infection in HESN women. Additionally, we show that HESN women who use Depo-Provera have the highest levels of Mx2 expression, highlighting a possible mechanism for hormonal modulation of HIV susceptibility.
Collapse
|
20
|
Kagoné TS, Bisseye C, Méda N, Testa J, Pietra V, Kania D, Yonli AT, Compaoré TR, Nikiéma JB, de Souza C, Simpore J. A variant of DC-SIGN gene promoter associated with resistance to HIV-1 in serodiscordant couples in Burkina Faso. ASIAN PAC J TROP MED 2014; 7S1:S93-6. [PMID: 25312200 DOI: 10.1016/s1995-7645(14)60211-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To study the involvement of variations in 4 genes associated with susceptibility and/or protection against HIV-1 in serodiscordant couples in Burkina Faso, namely, genes encoding HLA-B57, interferon regulatory factor 1 (IRF1), dendritic cell-specific ICAM3-grabbing nonintegrin (DC-SIGN) and CCR5 delta 32 (CCR5Δ32). METHODS Two DC-SIGN and two IRF1 single nucleotide polymorphisms (SNPs) as well as HLA-B57*01 and CCR5Δ32 alleles were genotyped in 51 serodiscordant couples in Burkina Faso. DC-SIGN, IRF1 and HLA-B57*01 genotyping was carried out by real time PCR using TaqMan assays (Applied Biosystems, USA and Sacace Biotechnologies, Italy). CCR5Δ32 deletion was investigated by PCR. RESULTS The two SNPs of DC-SIGN promoter showed a significant genotypic difference in serodiscordant couples. After multivariate analysis, only the association between DC-SIGN rs2287886 and HIV-1 remained significant (P<0.01). No association was found between IRF1 SNPs and HIV-1 infection. CCR5Δ32 wild type allele was found in 100% of serodiscordant couples. A high frequency of HLA-B57*01 allele was found in the HIV-positive (78%) compared with HIV-negative group (51%), however this difference was no longer significant after the correction of the sex confounding effect in the logistic regression model. CONCLUSIONS Our study suggests a protective role of a variation of DC-SIGN promoter and genetic resistance to HIV-1 in serodiscordant couples in Burkina Faso.
Collapse
Affiliation(s)
- Thérèse Samdapawindé Kagoné
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso; Centre MURAZ Bobo-Dioulasso, Burkina Faso
| | - Cyrille Bisseye
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso; Laboratory of Molecular and Cellular Biology, University of Science and Technique of Masuku (USTM), Franceville, Gabon.
| | | | - Jean Testa
- Centre MURAZ Bobo-Dioulasso, Burkina Faso
| | | | | | - Albert Théophane Yonli
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso
| | - Tegwindé Rebeca Compaoré
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso
| | - Jean Baptiste Nikiéma
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso
| | | | - Jacques Simpore
- Biomolecular Research Center Pietro Annigoni CERBA/Labiogene University of Ouagadougou, Burkina Faso
| |
Collapse
|
21
|
Sironi M, Biasin M, Cagliani R, Gnudi F, Saulle I, Ibba S, Filippi G, Yahyaei S, Tresoldi C, Riva S, Trabattoni D, De Gioia L, Lo Caputo S, Mazzotta F, Forni D, Pontremoli C, Pineda JA, Pozzoli U, Rivero-Juarez A, Caruz A, Clerici M. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection. Mol Biol Evol 2014; 31:2402-14. [PMID: 24930137 DOI: 10.1093/molbev/msu193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The protein product of the myxovirus resistance 2 (MX2) gene restricts HIV-1 and simian retroviruses. We demonstrate that MX2 evolved adaptively in mammals with distinct sites representing selection targets in distinct branches; selection mainly involved residues in loop 4, previously shown to carry antiviral determinants. Modeling data indicated that positively selected sites form a continuous surface on loop 4, which folds into two antiparallel α-helices protruding from the stalk domain. A population genetics-phylogenetics approach indicated that the coding region of MX2 mainly evolved under negative selection in the human lineage. Nonetheless, population genetic analyses demonstrated that natural selection operated on MX2 during the recent history of human populations: distinct selective events drove the frequency increase of two haplotypes in the populations of Asian and European ancestry. The Asian haplotype carries a susceptibility allele for melanoma; the European haplotype is tagged by rs2074560, an intronic variant. Analyses performed on three independent European cohorts of HIV-1-exposed seronegative individuals with different geographic origin and distinct exposure route showed that the ancestral (G) allele of rs2074560 protects from HIV-1 infection with a recessive effect (combined P = 1.55 × 10(-4)). The same allele is associated with lower in vitro HIV-1 replication and increases MX2 expression levels in response to IFN-α. Data herein exploit evolutionary information to identify a novel host determinant of HIV-1 infection susceptibility.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Federica Gnudi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Salomè Ibba
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Sarah Yahyaei
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Claudia Tresoldi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Stefania Riva
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | | | | | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Juan Antonio Pineda
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, Seville, Spain
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Antonio Rivero-Juarez
- Maimonides Institut for Biomedical Research (IMIBIC), Reina Sofia Universitary Hospital, University of Cordoba, Cordoba, Spain
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, ItalyDon C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| |
Collapse
|
22
|
Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol 2014; 72:219-27. [PMID: 24428610 DOI: 10.1111/aji.12202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Resistance to HIV-1 infection in HIV-1-exposed sero-negative (HESN) persons offers a promising opportunity to identify mechanisms of 'natural' protection. Unique features of the mucosa in particular may contribute to this protection. Here, we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1 neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
23
|
Lajoie J, Kimani M, Plummer FA, Nyamiobo F, Kaul R, Kimani J, Fowke KR. Association of sex work with reduced activation of the mucosal immune system. J Infect Dis 2014; 210:319-29. [PMID: 24421257 DOI: 10.1093/infdis/jiu023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. METHODS Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. RESULTS Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P < .001), ITAC (P < .001), MIG (p.0001), IL-1α (P < .001), IL-1β (P < .001), IL-1Rα (P = .0002), IL-6 (P < .001), IL-8 (P < .001), IL-10 (P = .01), IP-10 (P = .0001), MDC (P < .001), MIP-1α, (P < .001), MIP-1β (P = .005), MCP-1 (P = .03), and TNF-α (P = .006). Significant differences were noted as early as 1 year following initiation of sex work and increased with duration of sex work. CONCLUSION This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women.
Collapse
Affiliation(s)
- Julie Lajoie
- Department of Medical Microbiology, University of Manitoba
| | | | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba Public Health Agency of Canada Department of Community Health Sciences, University of Manitoba
| | | | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba Kenyan AIDS Control Program, Nairobi, Kenya University of Nairobi Institute for Tropical and Infectious Diseases
| | - Keith R Fowke
- Department of Medical Microbiology, University of Manitoba Department of Community Health Sciences, University of Manitoba Department of Medical Microbiology, University of Nairobi
| |
Collapse
|
24
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Mugri RN, Ngwai AN, Rockett KA, Mbunwe E, Besingi RN, Clark TG, Kwiatkowski DP, Achidi EA. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One 2013; 8:e81071. [PMID: 24312262 PMCID: PMC3842328 DOI: 10.1371/journal.pone.0081071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022] Open
Abstract
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.
Collapse
Affiliation(s)
- Tobias O. Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- * E-mail:
| | | | - Clarisse Njua-Yafi
- Department of Animal Biology and Physiology, University of Yaounde I, Yaounde, Cameroon
| | - Regina N. Mugri
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Andre N. Ngwai
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric Mbunwe
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Richard N. Besingi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric A. Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | | |
Collapse
|
25
|
Card CM, Ball TB, Fowke KR. Immune quiescence: a model of protection against HIV infection. Retrovirology 2013; 10:141. [PMID: 24257114 PMCID: PMC3874678 DOI: 10.1186/1742-4690-10-141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
Aberrant immune activation is a strong correlate of HIV disease progression, but little is known about how immune activation alters susceptibility to HIV infection. Susceptibility to HIV infection varies between individuals, but the immunological determinants of HIV transmission are not well understood. Here, we present evidence from studies of HIV transmission in the context of clinical trials and HIV-exposed seronegative (HESN) cohorts that implicates elevated immune activation as a risk factor for acquiring HIV. We propose a model of protection from infection based on a phenotype of low baseline immune activation referred to as immune quiescence. Immune quiescence is evidenced by reduced expression of T cell activation markers, low levels of generalized gene transcription and low levels of proinflammatory cytokine and chemokine production in the periphery and genital mucosa of HESN. Since HIV preferentially replicates in activated CD4+ T cells, immune quiescence may protect against infection by limiting HIV target cell availability. Although the determinants of immune quiescence are unclear, several potential factors have been identified that may be involved in driving this phenotype. HESN were shown to have elevated proportions of regulatory T cells (Tregs), which are known to suppress T cell activation. Likewise, proteins involved in controlling inflammation in the genital tract have been found to be elevated in HESN. Furthermore, expression of interferon regulatory factor 1 (IRF-1) is reduced in HESN as a consequence of genetic polymorphisms and differential epigenetic regulation. Since IRF-1 is an important regulator of immune responses, it may play a role in maintaining immune quiescence. Based on this model, we propose a novel avenue for HIV prevention targeted based on reducing host mucosal immune activation.
Collapse
|
26
|
Sivro A, Su RC, Plummer FA, Ball TB. HIV and interferon regulatory factor 1: a story of manipulation and control. AIDS Res Hum Retroviruses 2013; 29:1428-33. [PMID: 23984938 DOI: 10.1089/aid.2013.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the interferon regulatory factor (IRF) family control the expression of numerous proteins, many of which are central to regulating host immune responses. IRF1 is one of the central mediators of the innate and adaptive immune responses required for antigen processing and presentation, Th1/Th2 differentiation, and natural killer (NK) cell and macrophage function. Many viruses have evolved mechanisms to target the IRF1 pathway in order to promote viral pathogenesis. During early HIV infection, IRF1 acts as a double-edged sword, critical for driving viral replication as well as eliciting antiviral responses. In this review, we describe the strategies that HIV-1 has evolved to modulate IRF1 in order to enhance viral replication and to disarm the host immune system. IRF1 has been shown to be an important factor in natural protection against HIV in highly exposed seronegative (HESN) individuals and is crucial in regulating the initial stages of HIV replication and HIV disease progression, as well as the establishment of latency. An understanding of how the protective effects of IRF1 responses are controlled in HESN individuals, naturally resistant to HIV infection, may provide important clues on how to regain control of HIV and tip the balance of immunity in favor of the host, or provide new opportunities to eliminate HIV in its host altogether.
Collapse
Affiliation(s)
- Aida Sivro
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
27
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
28
|
McLaren PJ, Coulonges C, Ripke S, van den Berg L, Buchbinder S, Carrington M, Cossarizza A, Dalmau J, Deeks SG, Delaneau O, De Luca A, Goedert JJ, Haas D, Herbeck JT, Kathiresan S, Kirk GD, Lambotte O, Luo M, Mallal S, van Manen D, Martinez-Picado J, Meyer L, Miro JM, Mullins JI, Obel N, O'Brien SJ, Pereyra F, Plummer FA, Poli G, Qi Y, Rucart P, Sandhu MS, Shea PR, Schuitemaker H, Theodorou I, Vannberg F, Veldink J, Walker BD, Weintrob A, Winkler CA, Wolinsky S, Telenti A, Goldstein DB, de Bakker PIW, Zagury JF, Fellay J. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls. PLoS Pathog 2013; 9:e1003515. [PMID: 23935489 PMCID: PMC3723635 DOI: 10.1371/journal.ppat.1003515] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size. Comparing the frequency differences between common DNA variants in disease-affected cases and in unaffected controls has been successful in uncovering the genetic component of multiple diseases. This approach is most effective when large samples of cases and controls are available. Here we combine information from multiple studies of HIV infected patients, including more than 6,300 HIV+ individuals, with data from 7,200 general population samples of European ancestry to test nearly 8 million common DNA variants for an impact on HIV acquisition. With this large sample we did not observe any single common genetic variant that significantly associated with HIV acquisition. We further tested 22 variants previously identified by smaller studies as influencing HIV acquisition. With the exception of a deletion polymorphism in the CCR5 gene (CCR5Δ32) we found no convincing evidence to support these previous associations. Taken together these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
Collapse
Affiliation(s)
- Paul J. McLaren
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Cédric Coulonges
- Laboratoire Génomique, Bioinformatique, et Applications, EA4627, Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France
- ANRS Genomic Group (French Agency for Research on AIDS and Hepatitis), Paris, France
| | - Stephan Ripke
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard van den Berg
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Judith Dalmau
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Olivier Delaneau
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Andrea De Luca
- University Division of Infectious Diseases, Siena University Hospital, Siena, Italy
- Institute of Clinical infectious Diseases, Università Cattolica del Sacro Cuore, Roma, Italy
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - David Haas
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Joshua T. Herbeck
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Olivier Lambotte
- INSERM U1012, Bicêtre, France
- University Paris-Sud, Bicêtre, France
- AP-HP, Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital, Bicêtre, France
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Simon Mallal
- Institute for Immunology & Infectious Diseases, Murdoch University and Pathwest, Perth, Australia
| | - Daniëlle van Manen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laurence Meyer
- ANRS Genomic Group (French Agency for Research on AIDS and Hepatitis), Paris, France
- Inserm, CESP U1018, University Paris-Sud, UMRS 1018, Faculté de Médecine Paris-Sud; AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, Le Kremlin Bicêtre, France
| | - José M. Miro
- Infectious Diseases Service. Hospital Clinic – IDIBAPS, University of Barcelona, Barcelona, Spain
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Niels Obel
- Department of Infectious Diseases, The National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stephen J. O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Division of Infectious Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Guido Poli
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, School of Medicine & San Raffaele Scientific Institute, Milan, Italy
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pierre Rucart
- Laboratoire Génomique, Bioinformatique, et Applications, EA4627, Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France
- ANRS Genomic Group (French Agency for Research on AIDS and Hepatitis), Paris, France
| | - Manj S. Sandhu
- Genetic Epidemiology Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Non-Communicable Disease Research Group, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Patrick R. Shea
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ioannis Theodorou
- ANRS Genomic Group (French Agency for Research on AIDS and Hepatitis), Paris, France
- INSERM UMRS 945, Paris, France
| | - Fredrik Vannberg
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jan Veldink
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Amy Weintrob
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Center for Cancer Research, NCI, SAIC-Frederick, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Steven Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - David B. Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paul I. W. de Bakker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Genetics Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Applications, EA4627, Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France
- ANRS Genomic Group (French Agency for Research on AIDS and Hepatitis), Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Interferon regulatory factor 1 polymorphisms previously associated with reduced HIV susceptibility have no effect on HIV disease progression. PLoS One 2013; 8:e66253. [PMID: 23799084 PMCID: PMC3683001 DOI: 10.1371/journal.pone.0066253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Interferon regulatory factor 1 (IRF1) is induced by HIV early in the infection process and serves two functions: transactivation of the HIV-1 genome and thus replication, and eliciting antiviral innate immune responses. We previously described three IRF1 polymorphisms that correlate with reduced IRF1 expression and reduced HIV susceptibility. OBJECTIVE To determine whether IRF1 polymorphisms previously associated with reduced HIV susceptibility play a role in HIV pathogenesis and disease progression in HIV-infected ART-naïve individuals. METHODS IRF1 genotyping for polymorphisms (619, MS and 6516) was performed by PCR in 847 HIV positive participants from a sex worker cohort in Nairobi, Kenya. Rates of CD4+ T cell decline and viral loads (VL) were analyzed using linear mixed models. RESULTS Three polymorphisms in the IRF1, located at 619, microsatellite region and 6516 of the gene, previously associated with decreased susceptibility to HIV infection show no effect on disease progression, either measured by HIV-1 RNA levels or the slopes of CD4 decline before treatment initiation. CONCLUSION Whereas these three polymorphisms in the IRF1 gene protect against HIV-1 acquisition, they appear to exert no discernable effects once infection is established.
Collapse
|
30
|
Abstract
Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.
Collapse
|
31
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Associations of human leukocyte antigen-G with resistance and susceptibility to HIV-1 infection in the Pumwani sex worker cohort. AIDS 2013; 27:7-15. [PMID: 23032415 DOI: 10.1097/qad.0b013e32835ab1f2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the association between human leukocyte antigens (HLA)-G genotypes and resistance or susceptibility to HIV-1. DESIGN A group of sex workers in Pumwani, Kenya can be epidemiologically defined as resistant to HIV-1 infection despite frequent exposure and provide an example of natural protective immunity. HLA class I and II molecules have been shown to be associated with resistance/susceptibility to infection in this cohort. HLA-G is a nonclassical class I allele that is primarily involved in mucosal and inflammatory response, which is of interest in HIV-1 resistance. METHODS In this study, we used a sequence-based typing method to genotype HLA-G for 667 women enrolled in this cohort and examined the influence of HLA-G genotypes on resistance or susceptibility to HIV-1 infection. RESULTS The G*01 : 01:01 genotype was significantly enriched in the HIV-1-resistant women [P = 0.002, Odds ratio: 2.11, 95% confidence interval (CI): 0.259-0.976], whereas the G*01 : 04:04 genotype was significantly associated with susceptibility to HIV-1 infection (P = 0.039, OR:0.502, 95% CI:0.259-0.976). Kaplan-Meier survival analysis correlated with these results. G*01 : 01:01 genotype was associated with significantly lower rate of seroconversion (P = 0.001). Whereas, G*01 : 04:04 genotype was significantly associated with an increased rate of seroconversion (P = 0.013). The associations of these HLA-G alleles are independent of other HLA class I and II alleles identified in this population. CONCLUSION Our study showed that specific HLA-G alleles are associated with resistance or susceptibility to HIV-1 acquisition in this high-risk population. Further studies are needed to understand its functional significance in HIV-1 transmission.
Collapse
|
33
|
Natural Immunity to HIV: a delicate balance between strength and control. Clin Dev Immunol 2012; 2012:875821. [PMID: 23304192 PMCID: PMC3529906 DOI: 10.1155/2012/875821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
Abstract
Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host's capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.
Collapse
|
34
|
A genetic polymorphism of FREM1 is associated with resistance against HIV infection in the Pumwani sex worker cohort. J Virol 2012; 86:11899-905. [PMID: 22915813 DOI: 10.1128/jvi.01499-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A subgroup of women enrolled in the Pumwani sex worker cohort remain seronegative and PCR negative for human immunodeficiency virus type 1 despite repeated exposure through high-risk sex work. Studies have shown that polymorphisms of genes involved in antigen presentation and viral restriction factors are associated with resistance to HIV infection. To discover other possible genetic factors underlying this HIV-resistant phenotype, we conducted an exploratory nonbiased, low-resolution, genome-wide single-nucleotide polymorphism (SNP) analysis comparing 60 HIV-resistant women to 48 HIV-infected controls. The SNP minor allele rs1552896, in an intron of FREM1, was significantly associated with the resistant phenotype (P = 1.68 × 10(-5); adjusted P = 2.37 × 10(-4); odds ratio [OR], 9.51; 95% confidence interval [CI], 2.82 to 32.05). We expanded the sample size by genotyping rs1552896 in the Pumwani cohort and comparing 114 HIV-resistant women to 609 HIV-infected controls and confirmed the association (P = 1.7 × 10(-4); OR, 2.67; 95% CI, 1.47 to 4.84). To validate the association in a second cohort, we genotyped 783 women enrolled in a mother-child health study and observed the minor allele of rs1552896 enriched in HIV-uninfected women (n = 488) compared to HIV-infected enrollees (n = 295) (P = 0.036; OR, 1.69; 95% CI, 0.98 to 2.93). Quantitative reverse transcription-PCR showed that FREM1 mRNA was highly expressed in tissues relevant for HIV-1 infection, and immunohistochemical analysis revealed that FREM1 protein is expressed in the ectocervical mucosa of HIV-resistant women. The significant association of rs1552896 with an HIV-resistant phenotype, together with the expression profile of FREM1 in tissues relevant to HIV infection, suggests that FREM1 is a potentially novel candidate gene for resistance to HIV infection.
Collapse
|
35
|
A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol 2012; 5:277-87. [PMID: 22318497 DOI: 10.1038/mi.2012.7] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predominance of HIV-1 sexual transmission requires a greater understanding of the interaction between HIV-1 and the mucosal immune system. The study of HIV-1-exposed seronegative (HESN) individuals serves as a model to identify the correlates of protection and to aid in microbicide development. A total of 22 cytokines/chemokines were analyzed at the systemic and mucosal compartments in 57 HESN, 51 HIV-1-negative, and 67 HIV-1-infected commercial sex workers from Nairobi, Kenya. HESN individuals had significantly lower expression of monokine induced by interferon-γ (MIG), interferon-γ-induced protein 10 (IP-10), and interleukin-1α (IL-1α) in their genital mucosa compared with controls. HESN cytokine expression also distinctly correlates with mucosal antiproteases, suggesting that HESN individuals have a unique pattern of mucosal chemokine/cytokine expression, which may result in reduced trafficking at the mucosa. These data support the immune quiescence model of protection, whereby lower T-cell activation/recruitment at the mucosal compartment reduces HIV-1 target cell numbers and is an important component of natural protection from HIV-1.
Collapse
|
36
|
Schellenberg JJ, Plummer FA. The Microbiological Context of HIV Resistance: Vaginal Microbiota and Mucosal Inflammation at the Viral Point of Entry. Int J Inflam 2012; 2012:131243. [PMID: 22506135 PMCID: PMC3312325 DOI: 10.1155/2012/131243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
Immune activation is increasingly recognized as a critical element of HIV infection and pathogenesis, causing expansion of virus founder populations at the mucosal port of entry and eventual exhaustion of cellular immune effectors. HIV susceptibility is well known to be influenced by concurrent sexually transmitted infections; however, the role of commensal vaginal microbiota is poorly characterized. Bacterial vaginosis (BV) is a risk factor for HIV acquisition in studies worldwide; however, the etiology of BV remains enigmatic, and the mechanisms by which BV increases HIV susceptibility are not fully defined. A model of how vaginal microbiota influences HIV transmission is considered in the context of a well-established cohort of HIV-exposed seronegative (HESN) commercial sex workers (CSW) in Nairobi, Kenya, many of whom have increased levels of anti-inflammatory factors in vaginal secretions and reduced peripheral immune activation (immune quiescence). Elucidation of the relationship between complex microbial communities and inflammatory mucosal responses underlying HIV infection should be a priority for future prevention-focussed research.
Collapse
Affiliation(s)
- John J. Schellenberg
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, 260-727 McDermot Avenue, Winnipeg, MB, Canada R3E 3P5
| | - Francis A. Plummer
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, 260-727 McDermot Avenue, Winnipeg, MB, Canada R3E 3P5
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB, Canada R3E 3R2
- Department of Medical Microbiology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
37
|
Songok EM, Luo M, Liang B, Mclaren P, Kaefer N, Apidi W, Boucher G, Kimani J, Wachihi C, Sekaly R, Fowke K, Ball BT, Plummer FA. Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state. PLoS One 2012; 7:e30048. [PMID: 22291902 PMCID: PMC3266890 DOI: 10.1371/journal.pone.0030048] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022] Open
Abstract
To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN) from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA). Output data was analysed through ArrayAssist software (Agilent, San Jose CA). More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05). Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87%) had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.
Collapse
|
38
|
Lingappa JR, Petrovski S, Kahle E, Fellay J, Shianna K, McElrath MJ, Thomas KK, Baeten JM, Celum C, Wald A, de Bruyn G, Mullins JI, Nakku-Joloba E, Farquhar C, Essex M, Donnell D, Kiarie J, Haynes B, Goldstein D. Genomewide association study for determinants of HIV-1 acquisition and viral set point in HIV-1 serodiscordant couples with quantified virus exposure. PLoS One 2011; 6:e28632. [PMID: 22174851 PMCID: PMC3236203 DOI: 10.1371/journal.pone.0028632] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/11/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Host genetic factors may be important determinants of HIV-1 sexual acquisition. We performed a genome-wide association study (GWAS) for host genetic variants modifying HIV-1 acquisition and viral control in the context of a cohort of African HIV-1 serodiscordant heterosexual couples. To minimize misclassification of HIV-1 risk, we quantified HIV-1 exposure, using data including plasma HIV-1 concentrations, gender, and condom use. METHODS We matched couples without HIV-1 seroconversion to those with seroconversion by quantified HIV-1 exposure risk. Logistic regression of single nucleotide polymorphisms (SNPs) for 798 samples from 496 HIV-1 infected and 302 HIV-1 exposed, uninfected individuals was performed to identify factors associated with HIV-1 acquisition. In addition, a linear regression analysis was performed using SNP data from a subset (n = 403) of HIV-1 infected individuals to identify factors predicting plasma HIV-1 concentrations. RESULTS After correcting for multiple comparisons, no SNPs were significantly associated with HIV-1 infection status or plasma HIV-1 concentrations. CONCLUSION This GWAS controlling for HIV-1 exposure did not identify common host genotypes influencing HIV-1 acquisition. Alternative strategies, such as large-scale sequencing to identify low frequency variation, should be considered for identifying novel host genetic predictors of HIV-1 acquisition.
Collapse
Affiliation(s)
- Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Burgener A, Rahman S, Ahmad R, Lajoie J, Ramdahin S, Mesa C, Brunet S, Wachihi C, Kimani J, Fowke K, Carr S, Plummer F, Ball TB. Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J Proteome Res 2011; 10:5139-49. [PMID: 21973077 DOI: 10.1021/pr200596r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Not all individuals exposed to HIV-1 become infected, and evidence from HIV-1 highly exposed seronegative women (HIV-1-resistant) suggests that mucosal factors in the female genital tract, the first site of contact for the virus, are playing a role. To better understand factors mediating protection from HIV-1, we performed a large clinical study using the tools of systems biology to fully characterize the cervicovaginal mucosa proteome in HIV-1-resistant women. Cervicovaginal lavage fluid was collected from 293 HIV-1-resistant, uninfected, and infected sex workers and analyzed by 2D-LC LTQ-FT-MS. Of the more than 360 unique proteins identified, 41 were differentially abundant (>3-fold cutoff) in HIV-1-resistant women. The majority of over-abundant proteins were antiproteases (>40%), some with described anti-inflammatory and anti-HIV-1 activity. Quantification of specific anti-HIV-1 antiproteases Serpin A1, Serpin A3, and Cystatin B and an epithelial antiprotease A2ML1 found them to be significantly over-abundant in HIV-1-resistant women (p = 0.004; p = 0.046; p = 0.0003; and p = 0.04, respectively). Expression levels were not correlated to sexual practices or other epidemiological factors. Mucosal antiprotease levels correlated with pro-inflammatory cytokine concentration (p = <0.0001), but independently of pro-inflammatory cytokine levels in HIV-1-resistant women including TNF-alpha, IL-1 alpha, IL-1 beta, IL-6, and IL-8. This comprehensive systems biology approach identifies mucosal serpins and cystatins as novel correlates of HIV-1-resistance. This represents the first study characterizing these factors in the female genital tract.
Collapse
Affiliation(s)
- A Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genomics and DNA Variation: Determinants of Susceptibility and Outcomes in Microbial Diseases. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Molecular definition of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol 2011; 77:4066-74. [PMID: 21531840 DOI: 10.1128/aem.02943-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistance to HIV infection in a cohort of commercial sex workers living in Nairobi, Kenya, is linked to mucosal and antiinflammatory factors that may be influenced by the vaginal microbiota. Since bacterial vaginosis (BV), a polymicrobial dysbiosis characterized by low levels of protective Lactobacillus organisms, is an established risk factor for HIV infection, we investigated whether vaginal microbiology was associated with HIV-exposed seronegative (HESN) or HIV-seropositive (HIV(+)) status in this cohort. A subset of 44 individuals was selected for deep-sequencing analysis based on the chaperonin 60 (cpn60) universal target (UT), including HESN individuals (n = 16), other HIV-seronegative controls (HIV-N, n = 16), and HIV(+) individuals (n = 12). Our findings indicate exceptionally high phylogenetic resolution of the cpn60 UT using reads as short as 200 bp, with 54 species in 29 genera detected in this group. Contrary to our initial hypothesis, few differences between HESN and HIV-N women were observed. Several HIV(+) women had distinct profiles dominated by Escherichia coli. The deep-sequencing phylogenetic profile of the vaginal microbiota corresponds closely to BV(+) and BV(-) diagnoses by microscopy, elucidating BV at the molecular level. A cluster of samples with intermediate abundance of Lactobacillus and dominant Gardnerella was identified, defining a distinct BV phenotype that may represent a transitional stage between BV(+) and BV(-). Several alpha- and betaproteobacteria, including the recently described species Variovorax paradoxus, were found to correlate positively with increased Lactobacillus levels that define the BV(-) ("normal") phenotype. We conclude that cpn60 UT is ideally suited to next-generation sequencing technologies for further investigation of microbial community dynamics and mucosal immunity underlying HIV resistance in this cohort.
Collapse
|
42
|
HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 2011; 118:298-308. [PMID: 21411754 DOI: 10.1182/blood-2010-07-297721] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.
Collapse
|
43
|
Common human genetic variants and HIV-1 susceptibility: a genome-wide survey in a homogeneous African population. AIDS 2011; 25:513-8. [PMID: 21160409 DOI: 10.1097/qad.0b013e328343817b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To date, CCR5 variants remain the only human genetic factors to be confirmed to impact HIV-1 acquisition. However, protective CCR5 variants are largely absent in African populations, in which sporadic resistance to HIV-1 infection is still unexplained. We investigated whether common genetic variants associate with HIV-1 susceptibility in Africans. METHODS We performed a genome-wide association study (GWAS) in a population of 1532 individuals from Malawi, a country with high prevalence of HIV-1 infection. Using single-nucleotide polymorphisms (SNPs) present on the genome-wide chip, we also investigated previously reported associations with HIV-1 susceptibility or acquisition. Recruitment was coordinated by the Center for HIV/AIDS Vaccine Immunology at two sexually transmitted infection clinics. HIV status was determined by HIV rapid tests and nucleic acid testing. RESULTS After quality control, the population consisted of 848 high-risk seronegative and 531 HIV-1 seropositive individuals. Logistic regression testing in an additive genetic model was performed for SNPs that passed quality control. No single SNP yielded a significant P value after correction for multiple testing. The study was sufficiently powered to detect markers with genotype relative risk 2.0 or more and minor allele frequencies 12% or more. CONCLUSION This is the first GWAS of host determinants of HIV-1 susceptibility, performed in an African population. The absence of any significant association can have many possible explanations: rarer genetic variants or common variants with weaker effect could be responsible for the resistance phenotype; alternatively, resistance to HIV-1 infection might be due to nongenetic parameters or to complex interactions between genes, immunity and environment.
Collapse
|
44
|
Kaul R, Cohen CR, Chege D, Yi TJ, Tharao W, McKinnon LR, Remis R, Anzala O, Kimani J. Biological factors that may contribute to regional and racial disparities in HIV prevalence. Am J Reprod Immunol 2011; 65:317-24. [PMID: 21223426 DOI: 10.1111/j.1600-0897.2010.00962.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite tremendous regional and subregional disparities in HIV prevalence around the world, epidemiology consistently demonstrates that black communities have been disproportionately affected by the pandemic. There are many reasons for this, and a narrow focus on socio-behavioural causes may be seen as laying blame on affected communities or individuals. HIV sexual transmission is very inefficient, and a number of biological factors are critical in determining whether an unprotected sexual exposure to HIV results in productive infection. This review will focus on ways in which biology, rather than behaviour, may contribute to regional and racial differences in HIV epidemic spread. Specific areas of focus are viral factors, host genetics, and the impact of co-infections and host immunology. Considering biological causes for these racial disparities may help to destigmatize the issue and lead to new and more effective strategies for prevention.
Collapse
Affiliation(s)
- Rupert Kaul
- Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Epigenetic control of IRF1 responses in HIV-exposed seronegative versus HIV-susceptible individuals. Blood 2011; 117:2649-57. [PMID: 21200019 DOI: 10.1182/blood-2010-10-312462] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Not all individuals exposed to HIV become infected. Understanding why these HIV-exposed seronegative individuals remain uninfected will help inform the development of preventative measures against HIV infection. Interferon regulatory factor-1 (IRF1) plays a critical role both in host antiviral immunity and in HIV-1 replication. This study examined IRF1 expression regulation in the ex vivo peripheral blood mononuclear cells of HIV-exposed seronegative commercial sex workers who can be epidemiologically defined as relatively resistant to HIV infection (HIV-R), versus HIV-uninfected, susceptible controls (HIV-S). Whereas HIV-susceptible individuals demonstrated a biphasic, prolonged increase in IRF1 expression after interferon-γ stimulation, HIV-R individuals demonstrated a robust, but transient response. We also found that the IRF1 promoter in HIV-R was primed by increased basal histone deacetylase-2 binding, independently of transcription regulators, STAT1 and nuclear factor-κB/p65, implicating an epigenetic silencing mechanism. Interestingly, the transitory IRF1 response in HIV-R was sufficient in comparable regulation of interleukin-12 and interleukin-4 expression compared with the HIV-susceptible controls. This is the first study characterizing IRF1 responsiveness in individuals who demonstrate altered susceptibility to HIV infection. These data suggest that transitory IRF1 responsiveness in HIV-R may be one of the key contributors to the altered susceptibility to HIV infection during the early stages of primary HIV infection.
Collapse
|
46
|
Mertens J, Ramadori G, Mihm S. Functional relevance of the IRF-1 promoter polymorphism rs2549009 on transcriptional activity in a native genomic environment. Hum Mol Genet 2010; 19:4587-94. [PMID: 20846942 DOI: 10.1093/hmg/ddq386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon regulatory factor-1 (IRF-1), a transcription regulator involved both in inducing and in mediating the effects of interferon, is encoded by a highly polymorphic gene in different ethnic populations. Some of these genetic variations have been described to be associated to disease traits in hepatitis C virus and in human immunodeficiency virus infection, including one single-nucleotide polymorphism rs2549009 within the promoter region. This study aimed at investigating the functional relevance of rs2549009 on IRF-1 transcriptional activity in peripheral blood mononuclear cells in its natural genomic environment. Haplotype-specific chromatin immunoprecipitation using antibodies directed against both the transcriptionally inactive and active RNA polymerase II (RNAPII) and allele-specific transcript quantification techniques were applied to ex vivo-derived samples from healthy heterozygous donors. Inactive serine 5 phosphorylated RNAPII was found to be preferentially bound to the rs2549009 A allele in all donors investigated. Active serine 2 phosphorylated (ser2-P) RNAPII, in contrast, was found to be precipitable, depending on the donor, preferentially either with the A or the G promoter variants or without any preference. The ratio of rs2549009 A/G promoter variants engaged by ser2-P RNAPII was closely related to the relative frequency of the respective IRF-1 transcripts, and relative allelic expression was found to be associated to total IRF-1 gene expression. These results provide evidence for a bidirectional IRF-1 gene expression imbalance that appears not to be solely controlled by rs2549009 in cis and may rely on a yet unidentified variant or haplotype or on environmental control in trans.
Collapse
Affiliation(s)
- Jasmin Mertens
- Department of Gastroenterology and Endocrinology, University Medical Center Goettingen, Georg-August-Universitaet, Robert-Koch-Strasse 40, Goettingen, Germany
| | | | | |
Collapse
|
47
|
Burgener A, Sainsbury J, Plummer FA, Ball TB. Systems biology-based approaches to understand HIV-exposed uninfected women. Curr HIV/AIDS Rep 2010; 7:53-9. [PMID: 20425558 DOI: 10.1007/s11904-010-0039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Worldwide HIV infects women more frequently than men, and it is clear that not all exposed to HIV become infected. Several populations of HIV-exposed uninfected (EU) women have been identified, including discordant couples and sex workers. Understanding what provides natural protection in EU women is critical in vaccine or microbicide development. However, correlates of protection in these women are still unclear. Most studies have used classical methods, examining single genes or cellular factors, a mainstay for traditional immunobiology. This reductionist approach may be limited in the information it can provide. Novel technologies are now available that allow us to take a "systems biology" approach, which allows the study of a complex biological system and identifies factors that may provide protection against HIV infection. Herein we report developments in discovery-based systems biology approaches in EU women and how this broadens our understanding of natural protection against HIV-1.
Collapse
Affiliation(s)
- Adam Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
48
|
Abstract
The lack of an efficacious HIV-1 vaccine and the continued emergence of drug-resistant HIV-1 strains have pushed the research community to explore novel avenues for AIDS therapy. Over the last decade, one new avenue that has been realized involves cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit HIV-1 replication. Many of these factors are interferon-induced and inhibit specific stages of the HIV-1 lifecycle that are not targeted by current AIDS therapies. Our understanding of the molecular mechanisms underlying HIV-1 restriction is far from complete, but our current knowledge of these factors offers hope for the future development of novel therapeutic ideas.
Collapse
Affiliation(s)
- Stephen D Barr
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
Ji H, Ball TB, Ao Z, Kimani J, Yao X, Plummer FA. Reduced HIV-1 long terminal repeat transcription in subjects with protective interferon regulatory factor-1 genotype: a potential mechanism mediating resistance to infection by HIV-1. ACTA ACUST UNITED AC 2010; 42:389-94. [PMID: 20100115 DOI: 10.3109/00365540903496536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously described the polymorphism in the interferon regulatory factor-1 (IRF-1) gene as a novel correlate of resistance to HIV-1 infection in a Kenyan female sex worker cohort. However, the underlying mechanisms likely mediating this association remained to be elucidated. The initiation of HIV-1 long terminal repeat (LTR) transcription in peripheral blood mononuclear cells (PBMCs) from subjects with different IRF-1 haplotypes, representing protective, intermediate and the least protective IRF-1 allele combinations, were investigated here. A single-cycle pseudovirus construct expressing vesicular stomatitis virus envelop G-protein (VSV-G) and having an HIV-1 pNL4.3 backbone with luciferase insert was used to infect PBMCs with different IRF-1 haplotypes. The efficiency of early HIV-1 LTR transcription was monitored using a luciferase assay. IRF-1 protein levels induced by the infection were measured by quantitative Western blot. Our results showed that PBMCs with the protective IRF-1 genotype demonstrated significantly lower HIV-1 LTR transcription during the initial stages of infection compared to PBMCs with other haplotypes, which correlated with the kinetics of IRF-1 responsiveness to HIV-1 infection in the cells. It suggests that IRF-1 genotypes alter the efficiency of early HIV-1 LTR transcription, likely via modulating expression of IRF-1. This may represent one mechanism mediating the association between IRF-1 polymorphisms and resistance to HIV-1 infection.
Collapse
Affiliation(s)
- Hezhao Ji
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
HIV viral set point and host immune control in individuals with HIV-specific CD8+ T-cell responses prior to HIV acquisition. AIDS 2010; 24:1449-54. [PMID: 20549840 DOI: 10.1097/qad.0b013e3283391d40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Vaccine-induced CD8(+) T-cell responses in primates have been associated with a reduced simian immunodeficiency virus plasma viral load and enhanced T-cell responses, but cellular vaccines have shown limited success in human trials. We previously described HIV-specific T-cell responses in two groups of highly exposed, persistently seronegative Kenyan female sex workers, and a subset of these participants have subsequently acquired HIV. We examined the impact of pre-existing CD8(+) T-cell responses on post-acquisition outcomes. DESIGN AND METHODS HIV-specific CD8(+) T-cell responses had been examined in highly exposed, persistently seronegative participants from the Pumwani and Kibera cohorts, using a combination of virus-specific lysis, proliferation, interferon-gamma production, or all. Plasma viral load set point and HIV-specific T-cell proliferation and cytokine production were now examined post hoc by blinded investigators in the subset of participants who acquired HIV. RESULTS Pre-acquisition cellular immune assays and post-infection viral load were available for 46 participants, and HIV-specific CD8(+) T-cell responses had been detected in 25 of 46 (54%) participants. Pre-acquisition CD8(+) T-cell responses were associated with a lower post-acquisition HIV viral load set point in both cohorts (pooled analysis, 3.1 vs. 4.1 log(10) RNA copies/ml; P=0.0002) and with enhanced post-acquisition HIV-specific CD8(+) T-cell proliferation (3.8 vs. 1.0%, P=0.03), but with a trend to reduced post-acquisition CD8(+) T-cell interferon-gamma responses. CONCLUSION HIV-specific CD8(+) T-cell responses prior to HIV acquisition were associated with a lower HIV viral load and an altered functional profile of post-acquisition CD8(+) T-cell responses.
Collapse
|