1
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
2
|
Ren X, Qin Y, Zhang Y, Xie J, Diao X, Altaf MM. Regional distribution differences of antibiotics in tropical marine aquaculture area: Insights into antibiotic management and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176391. [PMID: 39304153 DOI: 10.1016/j.scitotenv.2024.176391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In recent years, global demand for marine aquaculture products has led to a significant rise in antibiotic use, particularly in tropical coastal aquaculture areas However, research on antibiotic residues in these environments remains limited, hindering a comprehensive understanding of their environmental presence and associated risks. This study investigates the regional distribution, ecological risks, and sources of 44 antibiotics in seawater across four coastal aquaculture areas in Hainan island (Wenchang, Sanya, Danzhou, and Wanning). Among the 44 antibiotics tested across 42 sampling sites, all were detected with a 100 % detection rate. Antibiotics such as Trimethoprim (TMP), Sulfanitran (APNPS), Sulfaquinoxaline (SQ), Sulfadimethoxine (SDT), Chloramphenicol (CHP), and Florfenicol (FLO) were consistently detected across all sampling sites. Total concentrations of detected antibiotics ranged from 0 to 818.79 ng.L-1, with sulfonamide antibiotics ranging from 0 to 629.49 ng.L-1, chloramphenicol antibiotics from 0 to 87.39 ng.L-1, tetracyclines from 0 to 221.39 ng.L-1, and fluoquinolones from 0 to 272.08 ng.L-1. The highest levels of antibiotic pollution were observed at the W5 sampling site in Wenchang, attributed to aquaculture wastewater discharge, while no antibiotics were found at D12 in Danzhou. In these regions, source analysis identified aquaculture and domestic sewage as the primary contributors to antibiotic pollution in these regions. Correlation analysis with environmental factors revealed significant influences of factors such as SAL, kPa, TN, SPC, and pH on sulfonamide and chloramphenicol antibiotics. Health risk assessment indicated moderate to high risks to aquatic organisms from antibiotics like NOR, CIP, ENR, OFL, TMP, and SMX in the study areas, underscoring the need for preventive measures, stricter regulation of antibiotic use, and enhanced ecological risk monitoring in aquaculture regions. This study provides critical insights into antibiotic contamination in Hainan's coastal aquaculture areas, highlighting the urgent need for further research into the occurrence and ecological impacts of these emerging pollutants in marine environments.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Ecological, Hainan University, Haikou, Hainan 570228, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
| | - Jia Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou, Hainan 570228, China.
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Manbohi A, Rahnama R, Taheri M, Hamzeh MA, Hamzehpour A. Antibiotics in surface waters of the south caspian sea: Occurrence, spatial distribution and ecological risks. ENVIRONMENTAL RESEARCH 2024; 261:119709. [PMID: 39084508 DOI: 10.1016/j.envres.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Marine environments play a crucial role in absorbing land-based pollutants. While the presence of pharmaceuticals in various marine settings worldwide is well-documented, there is a lack of data regarding pharmaceutical occurrence in the south Caspian Sea. This study examined the presence and spatial distribution of 14 antibiotics in the surface waters of the south Caspian Sea during summer of 2020. Our findings revealed that antibiotics were widespread in this region, with total concentrations reaching up to 3499.9 ng/L. The detection frequencies of the studied antibiotics ranging from 22.0% to 67.0%. Trimethoprim, ofloxacin, and sulfamethoxazole were commonly detected, with detection frequencies exceeding 56.0%. Ofloxacin (235.8 ng/L) and Erythromycin-H2O (2.3 ng/L) had the highest and lowest detected concentrations among the studied antibiotics. Furthermore, fluoroquinolones exhibited notably higher concentrations compared to other antibiotic groups. The highest concentrations of most antibiotics were found in surface waters collected from Ramsar and Chalus stations, located in the middle section of the coastline. Across all transects, the distribution of antibiotics exhibited a decreasing trend towards the sea, indicating that coastal and inland aquaculture, as well as municipal wastewaters, were probably the primary sources of antibiotics in this area. Multivariate analysis revealed that antibiotics, phosphate, nitrate, and COD were all positively correlated with stations Ram-1, Ram-20, Cha-1, Cha-20, and Tor-1, where the highest antibiotic levels were recorded. Risk assessment indicated that clarithromycin, ofloxacin and enrofloxacin posed medium to high risks to aquatic organisms. These findings offer essential baseline information and valuable insights for the comparative assessment of future antibiotic data in the south Caspian Sea.
Collapse
Affiliation(s)
- Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran.
| | - Reza Rahnama
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mohammad Ali Hamzeh
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| |
Collapse
|
4
|
Sørensen L, Hovsbakken IA, Wielogorska E, Creese M, Sarno A, Caban M, Sokolowski A, Øverjordet IB. Impact of seawater temperature and physical-chemical properties on sorption of pharmaceuticals, stimulants, and biocides to marine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124838. [PMID: 39214444 DOI: 10.1016/j.envpol.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pharmaceuticals, stimulants, and biocides enter the environment via wastewater from urban, domestic, and industrial areas, in addition to sewage, aquaculture and agriculture runoff. While some of these compounds are easily degradable in environmental conditions, others are more persistent, meaning they are less easily degraded and can stay in the environment for long periods of time. By exploring the adsorptive properties of a wide range of pharmaceuticals, stimulants, and biocides onto particles relevant for marine conditions, we can better understand their environmental behaviour and transport potential. Here, the sorption of 27 such compounds to inorganic (kaolin) and biotic (the microalgae Cryptomonas baltica) marine particles was investigated. Only two compounds sorbed to microalgae, while 23 sorbed to kaolin. The sorption mechanisms between select pharmaceuticals and stimulants and kaolin was assessed through exploring adsorption kinetics (caffeine, ciprofloxacin, citalopram, fluoxetine, and oxolinic acid) and isotherms (ciprofloxacin, citalopram, and fluoxetine). Temperature was shown to have a significant impact on partitioning, and the impact was more pronounced closer to maximum sorption capacity for the individual compounds.
Collapse
Affiliation(s)
- Lisbet Sørensen
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway.
| | - Ingrid Alver Hovsbakken
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Department of Chemistry, Trondheim, Norway
| | - Ewa Wielogorska
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Mari Creese
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Antonio Sarno
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Magda Caban
- University of Gdansk, Department of Environmental Analysis, Faculty of Chemistry, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Sokolowski
- University of Gdansk, Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, Al. Marszałka J. Piłsudskiego, 81-378, Gdynia, Poland
| | | |
Collapse
|
5
|
Newman BK, Velayudan A, Petrović M, Álvarez-Muñoz D, Čelić M, Oelofse G, Colenbrander D, le Roux M, Ndungu K, Madikizela LM, Chimuka L, Richards H. Occurrence and potential hazard posed by pharmaceutically active compounds in coastal waters in Cape Town, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174800. [PMID: 39009155 DOI: 10.1016/j.scitotenv.2024.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer. Salicylic acid was the most widespread PhAC in each season. At least one PhAC was found at each site in each survey. The largest number found at a site was 22 at Lifebox23 Beach in winter and 23 at Macassar Beach and in the Black and Diep Rivers in summer. These sites are strongly directly or indirectly affected by wastewater treatment plant discharges. The range in ΣPhAC concentrations was 41 ng L-1 to 9.3 μg L-1 in winter and 109 ng L-1 to 18.9 μg L-1 in summer. The hazard posed by PhACs was estimated using Predicted No Effect Concentrations (PNEC) from several sources. Hazard Quotients (HQs) for numerous PhACs were >1, and for several even >10, including azithromycin, cimetidine, clarithromycin, erythromycin, and ibuprofen. The highest hazards were at coastal sites strongly indirectly affected by wastewater treatment plant discharges. Azithromycin, trimethoprim, and sulfamethoxazole at some sites may have promoted antibiotic resistance in bacteria, while irbesartan at some sites might have posed a hazard to fish according to the fish plasma model. The concentrations of several PhACs at some coastal sites are higher than concentrations reported in estuarine, coastal, and marine waters in other parts of the world.
Collapse
Affiliation(s)
- Brent Kenneth Newman
- Coastal Systems and Earth Observation Research Group, Council for Scientific and Industrial Research (CSIR), Postnet Suite 367, Private Bag X10, Musgrave Road, Durban 4062, South Africa.; Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa.
| | - Anisha Velayudan
- Coastal Systems and Earth Observation Research Group, Council for Scientific and Industrial Research (CSIR), Postnet Suite 367, Private Bag X10, Musgrave Road, Durban 4062, South Africa
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Diana Álvarez-Muñoz
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Mira Čelić
- Catalan Institute for Water Research (ICRA)-CERCA, C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Gregg Oelofse
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Darryl Colenbrander
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Maria le Roux
- Environmental Management Department, Coastal Management Branch, P.O. Box 16548, Vlaeberg, Cape Town 8018, South Africa
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349 Oslo, Norway
| | - Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
6
|
Navon G, Nordland O, Kaplan A, Avisar D, Shenkar N. Detection of 10 commonly used pharmaceuticals in reef-building stony corals from shallow (5-12 m) and deep (30-40 m) sites in the Red Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124698. [PMID: 39122171 DOI: 10.1016/j.envpol.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olivia Nordland
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
7
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
9
|
Dube N, Smolarz K, Sokołowski A, Świeżak J, Øverjordet IB, Ellingsen I, Wielogórska E, Sørensen L, Walecka D, Kwaśniewski S. Human pharmaceuticals in the arctic - A review. CHEMOSPHERE 2024; 364:143172. [PMID: 39182731 DOI: 10.1016/j.chemosphere.2024.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Pharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota. Thus, to understand the standing of current research on the origin, transport, bioaccumulation and impacts of pharmaceutical pollution on the Arctic marine ecosystem, this study collates research from the early 2000s to the end of 2023 to act as a baseline for future research. The study highlights the fact that there is an evident threat to the Arctic marine ecosystem due to pharmaceutical pollution. It also shows that the impacts of pharmaceuticals within the Arctic ocean are not well studied.
Collapse
Affiliation(s)
- Neil Dube
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Adam Sokołowski
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Ida Beathe Øverjordet
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ingrid Ellingsen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ewa Wielogórska
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Dominika Walecka
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Sławomir Kwaśniewski
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
10
|
Wang L, Lu X, Xing Z, Teng X, Wang S, Liu T, Zheng L, Wang X, Qu J. Macrogenomics Reveals Effects on Marine Microbial Communities during Oplegnathus punctatus Enclosure Farming. BIOLOGY 2024; 13:618. [PMID: 39194557 DOI: 10.3390/biology13080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: Laizhou Bay is an important aquaculture area in the north of China. Oplegnathus punctatus is one of the species with high economic benefits. In recent years, the water environment of Laizhou Bay has reached a mild eutrophication level, while microorganisms are an important group between the environment and species. In this study, we evaluated alterations in environmental elements, microbial populations, and antibiotic resistance genes (ARGs) along with their interconnections during Oplegnathus punctatus net culture. (2) Methods: A total of 142 samples from various water layers were gathered for metagenome assembly analysis. Mariculture increases the abundance of microorganisms in this culture area and makes the microbial community structure more complex. The change had more significant effects on sediment than on seawater. (3) Results: Certain populations of cyanobacteria and Candidatus Micrarchaecta in seawater, and Actinobacteria and Thaumarchaeota in sediments showed high abundance in the mariculture area. Antibiotic resistance genes in sediments were more sensitive to various environmental factors, especially oxygen solubility and salinity. (4) Conclusions: These findings highlight the complex and dynamic nature of microorganism-environment-ARG interactions, characterized by regional specificity and providing insights for a more rational use of marine resources.
Collapse
Affiliation(s)
- Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tianyi Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
11
|
Kötke D, Gandrass J, Bento CP, Ferreira CS, Ferreira AJ. Occurrence and environmental risk assessment of pharmaceuticals in the Mondego river (Portugal). Heliyon 2024; 10:e34825. [PMID: 39157411 PMCID: PMC11328081 DOI: 10.1016/j.heliyon.2024.e34825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
In this case study pharmaceuticals were analysed in the Mondego river (Portugal) and their environmental risk assessed by means of risk quotients based on an extensive retrieval of ecotoxicological data for freshwater and saltwater species. The Mondego river crosses Coimbra, the most populated city in the Portuguese Centro Region hosting a complex of regional hospitals. Environmentally relevant and prioritised pharmaceuticals were investigated in this study and their potential hazards were evaluated by conducting a separate risk assessment for the freshwater and estuary parts of the examined river section. A target analysis approach with method detection limits down to 0.01 ng L-1 was used to determine pharmaceuticals. Twenty-one prioritised target analytes out of seven therapeutical classes (antibiotics, iodinated X-ray contrast media (ICM), analgesics, lipid reducers, antiepileptics, anticonvulsants, beta-blockers) were investigated by applying ultra-high pressure liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionisation source. The relative pattern of pharmaceuticals along the middle to the lower Mondego showed a quite uniform picture while an approximately 40fold increase of absolute concentrations was observed downstream of the wastewater treatment plant (WWTP) discharge of Coimbra. The most frequently measured substance groups were the ICM, represented by the non-ionic ICM iopromide (βmin: 3.03 ng L-1 - βmax: 2,810 ng L-1). Environmentally more critical substances such as carbamazepine, diclofenac, and bezafibrate, with concentrations up to and 52.6 ng L-1, 59.8 ng L-1, and 10.2 ng L-1 respectively, may potentially affect aquatic wildlife. Carbamazepine revealed elevated risk quotients (RQs >1) along the middle and lower Mondego with a maximum RQ of 53 downstream of Coimbra. Especially for saltwater species, carbamazepine and clarithromycin pose high potential risks. Especially in periods of low water discharge of the Mondego river, other pharmaceuticals as diclofenac and bezafibrate may pose additional risks downstream of the WWTP.
Collapse
Affiliation(s)
- Danijela Kötke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Célia P.M. Bento
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
- Wageningen Environmental Research, Wageningen UR, 6708 PB, Wageningen, the Netherlands
| | - Carla S.S. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - António J.D. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
| |
Collapse
|
12
|
Schultze S, Langva HK, Wei J, Chatzigeorgiou M, Rundberget JT, Hessen DO, Ruus A, Andersen T, Borgå K. Do DOM quality and origin affect the uptake and accumulation of a lipid-soluble contaminant in a filter feeding ascidian species (Ciona) that can target small particle size classes? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107026. [PMID: 39059104 DOI: 10.1016/j.aquatox.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
The widely reported increase of terrestrial dissolved organic matter (terrDOM) in northern latitude coastal areas ("coastal darkening") can impact contaminant dynamics in affected systems. One potential impact is based on differences in chemical adsorption processes of the molecularly larger terrDOM compared to marine DOM (marDOM) that leads to increased emulsification of lipophilic contaminants with terrDOM. Filter feeders filter large amounts of water and DOM daily and thus are directly exposed to associated contaminants through both respiration and feeding activity. Thus, increased exposure to terrDOM could potentially lead to an increase in bioaccumulation of lipid soluble contaminants in filter feeders. To assess the effect of DOM on bioaccumulation in filter feeders, we exposed the mucous based filter feeding ascidian Ciona intestinalis (formerly known as Ciona intestinalis Type B), to the lipophilic veterinary drug teflubenzuron (log KOW: 5.39) in combination with four DOM treatments: TerrDOM, marDOM, a mix of the two called mixDOM, and seawater without DOM addition. The exposure lasted for 15 days, after which the individuals in all DOM treatments showed a trend towards higher bioaccumulation of Teflubenzuron than those in the seawater control. However, there was considerable overlap in posterior distributions. Against our expectations, marDOM resulted in the highest bioaccumulation factor (BAF), followed by mixDOM, with terrDOM resulting in the lowest BAF except for seawater (kinetic BAF L/kg median, 2.5 %-97.5 % percentile marDOM 94, 74-118; mixDOM 82, 63-104; terrDOM 79; 61-99; seawater 61, 44-79). All BAFs were below the level of concern according to the EU REACH regulation (BAF < 2000 L / kg) and, therefore, likely not environmentally problematic in the examined context. However, the results show that DOM can act as a dietary vector; thus, different combinations of contaminants, DOM, and filter feeding organisms should be tested further.
Collapse
Affiliation(s)
- Sabrina Schultze
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway.
| | - Hilde K Langva
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
| | - Jing Wei
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
| | | | - Jan T Rundberget
- Norwegian Institute for Water Research, Økernveien 94, Oslo 0579, Norway
| | - Dag O Hessen
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
| | - Anders Ruus
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway; Norwegian Institute for Water Research, Økernveien 94, Oslo 0579, Norway
| | - Tom Andersen
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
| | - Katrine Borgå
- Department of Biosciences, Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
13
|
Cui K, Wang S, Pei Y, Zhou B. Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173438. [PMID: 38782270 DOI: 10.1016/j.scitotenv.2024.173438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.
Collapse
Affiliation(s)
- Kaixuan Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shumin Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yanzhao Pei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bin Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
14
|
Fumagalli D. Environmental risk and market approval for human pharmaceuticals. Monash Bioeth Rev 2024:10.1007/s40592-024-00195-1. [PMID: 38958879 DOI: 10.1007/s40592-024-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
This paper contributes to the growing discussion about how to mitigate pharmaceutical pollution, which is a threat to human, animal, and environmental health as well as a potential driver of antimicrobial resistance. It identifies market approval of pharmaceuticals as one of the most powerful ways to shape producer behavior and highlights that applying this tool raises ethical issues given that it might impact patients' access to medicines. The paper identifies seven different policy options that progressively give environmental considerations increased priority in the approval process, identifies ethically relevant interests affected by such policies, and makes explicit tensions and necessary tradeoffs between these interests. While arguing that the current European regulation gives insufficient weight to environmental considerations, the paper highlights concerns with the strongest policy options, on the grounds that these may very well endanger patients' access to effective medication.
Collapse
Affiliation(s)
- Davide Fumagalli
- Department Philosophy, Linguistics and Theory of Science, University of Gothenburg, Renstromsgatan 6, 412 55, Gothenburg, Sweden.
| |
Collapse
|
15
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
16
|
Jeyakumar SS, Ponniah JM, Vasudevan J, Muñoz-Sevilla NP, Urrutia-Goyes R, Escobedo-Urias DC, Rodriguez-Espinosa PF. Public views on tourist beach environment from multinational countries and ensuing changes during global epidemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41329-41341. [PMID: 36917386 PMCID: PMC10013292 DOI: 10.1007/s11356-023-26277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
The continuous endemic of the new SARS-CoV-2 virus brought a halt to the world's activities from February 2020. Our study intends to gauge public perceptions on the consequences of post-pandemic changes on the marine environment, particularly as they are related to tourist beach amenities. Totally, 16 nations' knowledge and views on various environmental viewpoints over the effects of epidemic were gathered through public polls live on social media during social confinement in 2020. The results indicate that around 85% of respondents were most concerned about the alarming sights of widespread plastic trash and the increase of dangerous biomedical wastes through wastewater in the marine ecosystem. The outcomes of this study will undoubtedly aid in the establishment of a management strategy and for future studies on the consequences of any epidemic on the beaches.
Collapse
Affiliation(s)
- Sakthi Selvalakshmi Jeyakumar
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de Mexico, Mexico
| | - Jonathan Muthuswamy Ponniah
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de Mexico, Mexico.
| | - Joshua Vasudevan
- School of Architecture Building and Civil Engineering, Loughborough University, Mumfordway, Loughborough, LE11 3TU, UK
| | - Norma Patricia Muñoz-Sevilla
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de Mexico, Mexico
| | - Ricardo Urrutia-Goyes
- Departamento de Ciencias de La Energía y Mecánica, Av. Gral. Rumiñahui S/N, Universidad de Las Fuerzas Armadas ESPE, P.O. Box 171-5-231B, Sangolqui, 171103, Ecuador
| | - Diana Cecilia Escobedo-Urias
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Bulevar Juan de Dios Bátiz Paredes #250, Colonia San Joachin, C.P.81101, Guasave, Sinaloa, Mexico
| | - Pedro Francisco Rodriguez-Espinosa
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de Mexico, Mexico
| |
Collapse
|
17
|
Mezzelani M, Notarstefano V, Panni M, Giorgini E, Gorbi S, Regoli F. Exposure to environmental pharmaceuticals affects the macromolecular composition of mussels digestive glands. Sci Rep 2024; 14:9369. [PMID: 38653774 DOI: 10.1038/s41598-024-59663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy.
| |
Collapse
|
18
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Méheust Y, Delord K, Bonnet-Lebrun AS, Raclot T, Vasseur J, Allain J, Decourteillle V, Bost CA, Barbraud C. Human infrastructures correspond to higher Adélie penguin breeding success and growth rate. Oecologia 2024; 204:675-688. [PMID: 38459994 DOI: 10.1007/s00442-024-05523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
Anthropogenic activities generate increasing disturbance in wildlife especially in extreme environments where species have to cope with rapid environmental changes. In Antarctica, while studies on human disturbance have mostly focused on stress response through physiological and behavioral changes, local variability in population dynamics has been addressed more scarcely. In addition, the mechanisms by which breeding communities are affected around research stations remain unclear. Our study aims at pointing out the fine-scale impact of human infrastructures on the spatial variability in Adélie penguin (Pygoscelis adeliae) colonies dynamics. Taking 24 years of population monitoring, we modeled colony breeding success and growth rate in response to both anthropic and land-based environmental variables. Building density around colonies was the second most important variable explaining spatial variability in breeding success after distance from skua nests, the main predators of penguins on land. Building density was positively associated with penguins breeding success. We discuss how buildings may protect penguins from avian predation and environmental conditions. The drivers of colony growth rate included topographical variables and the distance to human infrastructures. A strong correlation between 1-year lagged growth rate and colony breeding success was coherent with the use of public information by penguins to select their initial breeding site. Overall, our study brings new insights about the relative contribution and ecological implications of human presence on the local population dynamics of a sentinel species in Antarctica.
Collapse
Affiliation(s)
- Yann Méheust
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Anne-Sophie Bonnet-Lebrun
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS, 69037, Strasbourg, France
| | - Julien Vasseur
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Jimmy Allain
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Virgil Decourteillle
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
20
|
Maskrey BH, Dean K, Morrell N, Younger A, Turner AD, Katsiadaki I. Seasonal profile of common pharmaceuticals in edible bivalve molluscs. MARINE POLLUTION BULLETIN 2024; 200:116128. [PMID: 38377862 DOI: 10.1016/j.marpolbul.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Pharmaceuticals are recognised as environmental contaminants of emerging concern (CECs) due to their increasing presence in the aquatic environment, along with high bioactivity linked to their therapeutic use. Therefore, information on environmental levels is urgently required. This study examined the presence of a range of common pharmaceuticals in oysters and mussels intended for human consumption from England and Wales using stable isotope dilution tandem mass spectrometry. A range of compounds were detected in bivalve tissue, with the Selective Serotonin Reuptake Inhibitor antidepressant sertraline being most abundant, reaching a maximum concentration of 22.1 ng/g wet weight shellfish tissue. Levels of all pharmaceuticals showed seasonal and geographical patterns. A dietary risk assessment revealed that the levels of pharmaceuticals identified in bivalve molluscs represent a clear hazard, but not a risk for the consumer. This study highlights the requirement for further monitoring of the presence of pharmaceuticals and other CECs in bivalve molluscs.
Collapse
Affiliation(s)
- Benjamin H Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Karl Dean
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Younger
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
21
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
22
|
Adenaya A, Quintero RR, Brinkhoff T, Lara-Martín PA, Wurl O, Ribas-Ribas M. Vertical distribution and risk assessment of pharmaceuticals and other micropollutants in southern North Sea coastal waters. MARINE POLLUTION BULLETIN 2024; 200:116099. [PMID: 38309177 DOI: 10.1016/j.marpolbul.2024.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Pharmaceutical compounds are micropollutants of emerging concern, as well as other classes of chemicals such as UV filters and artificial sweeteners. They enter marine environments via wastewater treatment plants, aquaculture runoff, hospital effluents, and shipping activities. While many studies have investigated the presence and distribution of these pollutants in numerous coastal areas, our study is the first to focus on their occurrence, spatial distribution, and vertical distribution in the sea surface microlayer (SML) and the near-surface layer of marine environments. We analyzed 62 pharmaceutical compounds, one UV filter, and six artificial sweeteners from the SML to the corresponding underlying water (0 cm, 20 cm, 50 cm, 100 cm, and 150 cm) at four stations in the southern North Sea. One station is the enclosed Jade Bay, one is the Weser estuary at Bremerhaven, and the other two stations (NS_7 and NS_8) are in the open German Bight. Jade Bay receives pollutants from surrounding wastewater treatment plants, while the Weser estuary receives pollutants from cities like Bremerhaven, which has dense populations and industrial activities. Concentrations of pharmaceutical compounds were higher in the upper water layers (from the SML to 20 cm). Eleven pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, metoprolol, salicylic acid, clarithromycin, novobiocin, clindamycin, trimethoprim, and tylosin) were detected in >95 % of our samples. One UV filter (benzophenone-4) was found in 83 % and three artificial sweeteners (acesulfame, saccharin, and sucralose) in 100 % of all our samples. All artificial sweeteners posed high risks to the freshwater invertebrate Daphnia magna. Understanding the spatial and vertical distribution of pharmaceuticals and other micropollutants in marine environments may be essential in assessing their dispersal and detection in other aquatic environments.
Collapse
Affiliation(s)
- Adenike Adenaya
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany.
| | - Ruben Rios Quintero
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, CEI·MAR, Cádiz 11510, Spain
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Pablo A Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, CEI·MAR, Cádiz 11510, Spain
| | - Oliver Wurl
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Mariana Ribas-Ribas
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
23
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
24
|
Alzola-Andres M, Cerveny D, Domingo-Echaburu S, Lekube X, Ruiz-Sancho L, Brodin T, Orive G, Lertxundi U. Pharmaceutical residues in stranded dolphins in the Bay of Biscay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168570. [PMID: 37979850 DOI: 10.1016/j.scitotenv.2023.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
There is a growing concern about the presence of pharmaceuticals on the aquatic environment, while the marine environment has been much less investigated than in freshwater. Marine mammals are suitable sentinel species of the marine environment because they often feed at high trophic levels, have unique fat stores and long lifespan. Some small delphinids in particular serve as excellent sentinel species for contamination in the marine environment worldwide. To the best of our knowledge, no pharmaceuticals have been detected or reported in dolphins so far. In the present study, muscle, liver and blubber samples from three common dolphins (Delphinus delphis) and seven striped dolphins (Stenella coeruleoalba) stranded along the Basque Coast (northern Spain) were collected. A total of 95 pharmaceuticals based on detectability and predicted ability to bioaccumulate in fish were included in the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. At least one pharmaceutical was found in 70 % of the individuals. Only three of the 95 monitored pharmaceuticals were detected in dolphin's tissues. Very low concentrations (<1 ng/g) of orphenadrine and pizotifen were found in liver and promethazine in blubber. Herein, the gap in the knowledge regarding the study organisms and marine environments with respect to pharmaceutical pollution, which demands further research to understand if pharmaceuticals are a threat for these apex predators, is highlighted and discussed.
Collapse
Affiliation(s)
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Leire Ruiz-Sancho
- AMBAR Elkartea Organisation, Ondarreta Ibilbidea z/g, 48620 Plentzia, Bizkaia, Spain
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain.
| |
Collapse
|
25
|
Magnuson JT, Sydnes MO, Ræder EM, Schlenk D, Pampanin DM. Transcriptomic profiles of brains in juvenile Atlantic cod (Gadus morhua) exposed to pharmaceuticals and personal care products from a wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169110. [PMID: 38065506 DOI: 10.1016/j.scitotenv.2023.169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway; U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Erik Magnus Ræder
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
26
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS. Understanding pharmaceutical exposure and the potential for effects in marine biota: A survey of bonefish (Albula vulpes) across the Caribbean Basin. CHEMOSPHERE 2024; 349:140949. [PMID: 38096990 DOI: 10.1016/j.chemosphere.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of pharmacological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a metric based on the human therapeutic plasma concentration (HTPC), comparing measured concentrations to a threshold of 1/3 the HTPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was detected in exceedance of the 1/3 HTPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of 11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total) differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3 HTPC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone (27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in marine systems and shows the utility of applying the HTPC to assess the potential for pharmacological effects, and thus quantify impact of exposure at large spatial scales.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - T Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - L Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - A U Perez
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J J Schmitter-Soto
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - J P Lewis
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
27
|
Sokołowski A, Mordec M, Caban M, Øverjordet IB, Wielogórska E, Włodarska-Kowalczuk M, Balazy P, Chełchowski M, Lepoint G. Bioaccumulation of pharmaceuticals and stimulants in macrobenthic food web in the European Arctic as determined using stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168557. [PMID: 37979847 DOI: 10.1016/j.scitotenv.2023.168557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.3 ng g-1 dw) followed by paracetamol (PCT) (51.3 ng g-1 dw) and nicotine (NIC) (37.8 ng g-1 dw). The biomagnification potential was assessed for six target compounds of 13 analytes detected that were quantified with a frequency > 50 % in biological samples. The trophic magnification factor (TMF) ranged between 0.3 and 2.8, and was significant for NIC and CIP. TMF < 1.0 for NIC (0.3; confidence interval, CI 0.1-0.5) indicated that the compound does not accumulate with trophic position. The dilution of pharmaceutical residues in the food web may result from limited intake with dietary route, poor assimilation efficiency and high biotransformation rates in benthic invertebrates. TMF for CIP (2.8, CI 1.2-6.4) suggests trophic magnification, a phenomenon observed previously for several antibiotics in freshwater food webs. Trophic transfer therefore plays a role in controlling concentration of CIP in the Arctic benthic communities and should be considered in environmental risk assessment. Biomagnification potential of diclofenac (DIC; 0.9, CI 0.5-1.7), carbamazepine (CBZ; 0.4, CI 0.1-2.1), caffeine (CAF; 0.9, CI 0.5-1.9) and PCT (1.3, CI 0.7-2.7) was not evident due to large 95 % confidence of their TMFs. This study provides the first evidence of drug bioaccumulation in the Arctic food web and indicates that behaviour of pharmaceuticals varies among target compounds.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marlena Mordec
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | | | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Maciej Chełchowski
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Gilles Lepoint
- Université de Liège, UR FOCUS, Laboratory of Trophic and Isotope Ecology (LETIS), allée du six Août 11, 4000 Liège 1, Belgium
| |
Collapse
|
28
|
Su D, Wei Y, Chelimuge, Ma Y, Chen Y, Liu Z, Ben W, Wang Y. Distribution, ecological risks and priority of pharmaceuticals in the coastal water of Qinhuangdao, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167955. [PMID: 37875199 DOI: 10.1016/j.scitotenv.2023.167955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Although there has been a surge of interest in research focused on the presence of pharmaceuticals in the marine environment, study on the distribution and risks of pharmaceuticals in coastal waters remains inadequately documented due to the specific features of the marine environment, such as strong dilution, high salinity, and complex hydrodynamics. In this study, thirty pharmaceuticals with diverse physicochemical properties were analyzed in a coastal sea with low hydrodynamic energy caused by various artificial structures. The results indicate that 14 compounds were detected in seawater, with concentrations ranging from <1 to 201.4 ng L-1, among which caffeine, metoprolol, and atenolol were detected at high levels. Statistical analysis reveals the prevalence of the most target pharmaceuticals with downward trends in concentrations from estuary to offshore region, demonstrating the significant impacts of riverine inputs on the coastal water. Nevertheless, the distribution patterns of caffeine and atenolol were intricate, suggesting that they may have also originated from other unknown sources. A newly-developed method combining risk quotient (RQ) and species sensitivity distribution (SSD) models was used in ecological risk assessment. The results indicate generally higher risks of target pharmaceuticals in the estuary compared to the offshore region, with caffeine, carbamazepine, and norfloxacin identified as the top three priority pollutants.
Collapse
Affiliation(s)
- Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yuhong Wei
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Chelimuge
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China.
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| |
Collapse
|
29
|
Castaño-Ortiz JM, Gil-Solsona R, Ospina-Álvarez N, Alcaraz-Hernández JD, Farré M, León VM, Barceló D, Santos LHMLM, Rodríguez-Mozaz S. Fate of pharmaceuticals in the Ebro River Delta region: The combined evaluation of water, sediment, plastic litter, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167467. [PMID: 37778570 DOI: 10.1016/j.scitotenv.2023.167467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The increasing consumption of pharmaceuticals, alongside their limited removal in wastewater treatment plants (WWTPs), have led to their ubiquitous occurrence in receiving aquatic environments. This study addresses the occurrence of 68 pharmaceuticals (PhACs) in the Ebro River Delta region (NE Spain), as well as their distribution in different environmental compartments, including surface water, sediments, biota (river biofilm and fish tissues), and field-collected plastic litter. In addition, their concentrations in serving WWTPs, as possible sources of environmental contamination, were also determined. Our study confirmed the widespread occurrence of PhACs in riverine and, to a more limited extent, coastal environments. Most frequently detected PhACs belonged to analgesics/anti-inflammatories (e.g., ibuprofen) and psychiatric drugs (e.g., venlafaxine) therapeutic groups, followed by antihypertensives (e.g., valsartan) and antibiotics (e.g., azithromycin). Seasonal differences in cumulative levels of PhACs were reported for water and sediments (winter>summer). Despite spatial gradients were not clear along the river, a non-negligible contribution of upstream Ebro sites (reference area) was highlighted, which was unexpected based on the low anthropogenic pressure. Sediments represented a minor attenuation pathway for the selected PhACs, whereas they were more heavily accumulated in biota: fish liver (up to 166 ng/g dw), river biofilms (up to 108 ng/g dw), fish plasma (up to 63 ng/mL), and fish muscle (up to 31 ng/g dw). These findings highlight the importance of biomonitoring in the characterization of polluted areas and prioritization of hazardous substances (e.g., psychiatric drugs) in aquatic systems, and a particular interest of fish plasma as non-destructive biomonitoring matrix. PhACs were also detected on plastic litter, demonstrating their role as environmental sinks for certain PhACs (e.g., analgesics/anti-inflammatories, psychiatric drugs). Overall, the widespread detection of PhACs in a variety of biotic and abiotic matrices from the lower Ebro River and Delta warns about their possible environmental implications.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Ospina-Álvarez
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), 9700-702 Angra do Heroísmo, Azores, Portugal
| | | | - M Farré
- IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Varadero 1, San Pedro del Pinatar, 30740 Murcia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
30
|
Hallmann A, Roszkowska A, Smolarz K, Sokołowski A, Świeżak J, Dube N, Caban M. Persistence of norfluoxetine in marine mussels. MARINE POLLUTION BULLETIN 2023; 197:115763. [PMID: 37956494 DOI: 10.1016/j.marpolbul.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The concentration of pharmaceuticals in coastal waters is tending towards increasing due to a shift of the human population into coastal zones. In parallel, the number of prescriptions of antidepressants, mainly selective serotonin reuptake inhibitors (SSRI), is constantly growing. Most of the SSRI is metabolised into active compounds; for instance, norfluoxetine (NFLU) is the main active metabolite of fluoxetine. In this study, we tested the bioaccumulation and depuration of NFLU in Mytilus trossulus at two environmentally relevant concentrations (100 and 500 ng/L, after six days of exposure and five days of depuration at 10 °C). The concentration of NFLU in the mussels' tissue seems not to be directly proportional to the exposure concentration. The levels of NFLU in the mussels' tissues after the depuration period were comparable to the levels detected at the end of exposure. This indicates that NFLU is not efficiently removed by the mussels and points to a potential risk for consumers of such marine organisms.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Katarzyna Smolarz
- Faculty of Oceanography and Geography, University of Gdansk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adam Sokołowski
- Faculty of Oceanography and Geography, University of Gdansk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- Faculty of Oceanography and Geography, University of Gdansk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Neil Dube
- Faculty of Oceanography and Geography, University of Gdansk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
31
|
Ehrhart AL, Granek EF. PPCPs in coastal wastewater treatment plant effluent and uptake by Pacific oysters (Crassostrea gigas): Findings from a laboratory experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165728. [PMID: 37495135 DOI: 10.1016/j.scitotenv.2023.165728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluent is a primary source of pharmaceuticals and personal care products (PPCPs) to the marine environment, as most of these compounds are not fully removed during the treatment process. Continual discharge from WWTPs into coastal areas may act as a stressor by continually exposing organisms to a suite of PPCPs. To quantify organismal exposure to PPCP mixtures, we conducted a 12-week lab experiment that exposed Pacific oysters to effluent from two Oregon coastal WWTPs of different discharge capacities (permitted as <1 million gallons/day and >1 million gallons/day; or < or >3.785 million liters/day) at a dilution of 25 %. Composite samples of weekly collected effluent and a subset of freeze-dried oysters from experiment week 12 were analyzed for PPCPs. Though challenges with food availability inhibited our ability to confidently identify effects of the contaminants on growth and fitness, the experiment allowed us to examine uptake of contaminants from effluent into an estuarine bivalve of commercial importance. We detected 30 PPCPs and three alkylphenols in effluent and 13 PPCPs and four alkylphenols in oyster tissue, indicating high rates of release from secondary treatment and significant potential for marine organism exposure to and uptake of PPCPs in rural coastal areas.
Collapse
Affiliation(s)
- Amy L Ehrhart
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| | - Elise F Granek
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| |
Collapse
|
32
|
Song Y, Li M, Fang Y, Liu X, Yao H, Fan C, Tan Z, Liu Y, Chen J. Effect of cage culture on sedimentary heavy metal and water nutrient pollution: Case study in Sansha Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165635. [PMID: 37474074 DOI: 10.1016/j.scitotenv.2023.165635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The aquaculture area in China's coastal waters has increased rapidly from 6000 km2 in 1990 to 22,000 km2 in 2020. Despite extensive research regarding the effect of coastal aquaculture on water and sediment pollution, evaluating the quantitative relationship between aquaculture and pollutants remains challenging. Sansha Bay, the world's largest cage aquaculture base for Pseudosciaena crocea, is a typical enclosed bay used for investigating aquaculture pollution. A cage culture database is established from 2000 to 2020 in Sansha Bay. Meanwhile, 236 sediment samples from 3 sediment cores and 67 water samples from 4 transects are obtained from the bay for experiments. The main indicators are five nutrients (NO3-, SiO32-, PO43-, NH4+, and NO2-) in the water samples, the grain size, the heavy metal (Zn, Cu, Pb, Cr, Cd, and As) content, and the 210Pb radioactivity in sediment samples. Based on data obtained and a new calculation method, the annual increment in Zn, Cu, As, Cd, Pb, and Cr contents in the cultured zone is shown to increase by 2137 %, 1881 %, 506 %, 300 %, 202 %, and 118 % in 2000-2018, respectively, as compared with the levels in a noncultured zone. The activities of the cage culture increased NO3- by 9 %, PO43- by 30 %, NH4+ by 115 %, and NO2- by 232 %, compared with natural conservative mixing processes, such as the mixing of SiO32-, in 2020. A novel quantitative approach with broad applicability is proposed to evaluate the magnitude of anthropogenically induced environmental contamination. The effectiveness of the proposed technique is demonstrated through a case study conducted in Sansha Bay, China.
Collapse
Affiliation(s)
- Yan Song
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Maotian Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 202162, China.
| | - Yixuan Fang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiaoqiang Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huikun Yao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Chun Fan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zijie Tan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
33
|
Marrack LC, Beavers SC. Anchialine pool shrimp (Halocaridina rubra) as an indicator of sewage in coastal groundwater ecosystems on the island of Hawai'i. PLoS One 2023; 18:e0290658. [PMID: 37651382 PMCID: PMC10470924 DOI: 10.1371/journal.pone.0290658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Groundwater is a primary pathway for wastewater and other pollutants to enter coastal ecosystems worldwide. Sewage associated pathogens, pharmaceuticals, and other emerging contaminants pose potential risks to marine life and human health. Anchialine pool ecosystems and the endemic species they support are at risk and provide an opportunity to sample for presence of contaminants prior to diffusion in the marine environment. In this study, we tested the potential use of nitrogen isotopes in the tissues of a dominant anchialine pool grazing shrimp (Halocaridina rubra), as a bioindicator for sewage in groundwater flowing through their habitats. Water quality parameters and shrimp tissue isotopes (N and C) were collected from pools exposed to a range of sewage contamination along the West Hawai'i coastal corridor from 2015 to 2017. Data were used to test for spatial and temporal variability both within and among pools and to examine the relationship between stable isotopes and water quality parameters. Within 22 pools, mean δ15N from whole tissue samples ranged between 2.74‰ and 22.46‰. Variability of isotope values was low within individual pools and within pool clusters. However, δ15N differed significantly between areas and indicated that sewage is entering groundwater in some of the sampled locations. The significant positive relationship between δ15N and dissolved nitrogen (p<0.001, R2 = 0.84) and δ15N and phosphorus (p<0.001, R2 = 0.9) support this conclusion. In a mesocosm experiment, the nitrogen half-life for H. rubra tissue was estimated to be 20.4 days, demonstrating that the grazer provides a time-integrative sample compared to grab-sample measurements of dissolved nutrients. Ubiquitous grazers such as H. rubra may prove a useful and cost-effective method for δ15N detection of sewage in conjunction with standard monitoring methods, enabling sampling of a large number of pools to establish and refine monitoring programs, especially because anchialine habitats typically support no macroalgae.
Collapse
Affiliation(s)
- Lisa C. Marrack
- Department of Tropical Conservation Biology and Environmental Science, University of Hawaii, Hilo, Hawaiʻi, United States of America
| | - Sallie C. Beavers
- Kaloko-Honokōhau National Historical Park, Kailua-Kona, Hawaiʻi, United States of America
| |
Collapse
|
34
|
Matthee C, Brown AR, Lange A, Tyler CR. Factors Determining the Susceptibility of Fish to Effects of Human Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8845-8862. [PMID: 37288931 PMCID: PMC10286317 DOI: 10.1021/acs.est.2c09576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests. This critical review explores these factors, particularly focusing on the distinctive physiological processes in fish that underlie drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Focal points include the impact of fish life stage and species on drug absorption (A) via multiple routes; the potential implications of fish's unique blood pH and plasma composition on the distribution (D) of drug molecules throughout the body; how fish's endothermic nature and the varied expression and activity of drug-metabolizing enzymes in their tissues may affect drug metabolism (M); and how their distinctive physiologies may impact the relative contribution of different excretory organs to the excretion (E) of APIs and metabolites. These discussions give insight into where existing data on drug properties, pharmacokinetics and pharmacodynamics from mammalian and clinical studies may or may not help to inform on environmental risks of APIs in fish.
Collapse
Affiliation(s)
- Chrisna Matthee
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Andrew Ross Brown
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Anke Lange
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R. Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
35
|
Rodrigues JA, Silva M, Araújo R, Madureira L, Soares AMVM, Freitas R, Gil AM. The influence of temperature rise on the metabolic response of Ruditapes philippinarum clams to 17-α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162898. [PMID: 36934939 DOI: 10.1016/j.scitotenv.2023.162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonor Madureira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Rizzi C, Seveso D, De Grandis C, Montalbetti E, Lancini S, Galli P, Villa S. Bioconcentration and cellular effects of emerging contaminants in sponges from Maldivian coral reefs: A managing tool for sustainable tourism. MARINE POLLUTION BULLETIN 2023; 192:115084. [PMID: 37257411 DOI: 10.1016/j.marpolbul.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Tourism is the main income source for the Maldives, but concurrently, it represents a growing threat to its marine ecosystem. Here, we monitored the bioaccumulation of 15 emerging contaminants (ECs) in the Maldivian reef sponges Spheciospongia vagabunda collected in two resort islands (Athuruga and Thudufushi, Ari Atoll) and an inhabited island (Magoodhoo, Faafu Atoll), and we analysed their impact on different sponge cellular stress biomarkers. Caffeine and the insect repellent DEET were detected in sponges of all the islands, whereas the antibiotic erythromycin and the UV filter 4-methylbenzylidene camphor were found in resort islands only. Although concentrations were approximately a few ng/g d.w., we quantified various induced cellular effects, in particular an increase of the levels of the enzyme glutathione S-transferase involved in cell detoxification. Our results highlight the importance to increase awareness on ECs pollution, promoting the use of more environmental friendly products to achieving the sustainable development goals.
Collapse
Affiliation(s)
- Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Chiara De Grandis
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Stefania Lancini
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, PO Box: 14143, Dubai Academic City, United Arab Emirates
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| |
Collapse
|
37
|
Pereira AMPT, Freitas A, Pena A, Silva LJG. Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Antibiotics (Basel) 2023; 12:antibiotics12050913. [PMID: 37237816 DOI: 10.3390/antibiotics12050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of pharmaceuticals in aquatic ecosystems mostly originates from wastewater treatment plants (WWTPs) and such a situation can be responsible for significant negative impacts on natural ecosystems, such as estuarine and coastal areas. Bioaccumulation of pharmaceuticals, namely antibiotics, in exposed organisms is known to have remarkable effects on different trophic levels of non-target organisms such as algae, invertebrates and vertebrates, including the emergence of bacterial resistance. Bivalves are a highly appreciated seafood product, as they are fed by filtering water, and can bioconcentrate chemicals, being ideal for biomonitoring environmental health hazards in coastal and estuarine ecosystems. To use this sentinel species, an analytical strategy was developed to be used in accessing antibiotics, from human and veterinary medicine, and evaluate their occurrence as emerging pollutants in aquatic environments. The optimized analytical method was fully validated according to the European requirements defined by the Commission Implementing Regulation 2021/808. The validation comprised the following parameters: specificity, selectivity, precision, recovery, ruggedness, linearity, and the decision limit CCα, as well as the limit of detection (LoD) and limit of quantification (LoQ). The method was validated for 43 antibiotics to allow their quantification in both contexts, environmental biomonitoring and food safety.
Collapse
Affiliation(s)
- André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, LAQV/REQUIMTE, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
38
|
Qin Y, Ren X, Ju H, Zhang Y, Liu J, Zhang J, Diao X. Occurrence and Distribution of Antibiotics in a Tropical Mariculture Area of Hainan, China: Implications for Risk Assessment and Management. TOXICS 2023; 11:toxics11050421. [PMID: 37235236 DOI: 10.3390/toxics11050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
With the rapid global demand for mariculture products in recent years, the use of antibiotics has increased intensively in the mariculture area. Current research on antibiotic residues in mariculture environments is limited, and less information is available on the presence of antibiotics in tropical waters, limiting a comprehensive understanding of their environmental presence and risk. Therefore, this study investigated the environmental occurrence and distribution of 50 antibiotics in the near-shore aquaculture waters of Fengjia Bay. A total of 21 antibiotics were detected in 12 sampling sites, including 11 quinolones, 5 sulfonamides, 4 tetracyclines, and 1 chloramphenicol; the quinolones pyrimethamine (PIP), delafloxacin (DAN), flurofloxacin (FLE), ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), enrofloxacin (ENO), and minocycline (MNO) of the tetracycline class were detected in all sampling points. The total antibiotic residue concentrations in the study area ranged from 153.6 to 1550.8 ng/L, the tetracycline antibiotics were detected in the range of 10 to 1344.7 ng/L, and the chloramphenicol antibiotics were detected in the range of 0 to 106.9 ng/L. The detected concentrations of quinolones ranged from 81.3 to 136.1 ng/L, and the residual concentrations of sulfonamide antibiotics ranged from 0 to 313.7 ng/L. The correlation analysis with environmental factors revealed that pH, temperature, conductivity, salinity, NH3--N, and total phosphorus had a strong correlation with antibiotics. Based on PCA analysis, the main sources of antibiotic pollution in the area were determined to be the discharge of farming wastewater and domestic sewage. The ecological risk assessment indicated that the residual antibiotics in the water environment of the near-shore waters of Fengjiawan had certain risks to the ecosystem. Among them, CIP, NOR, sulfamethoxazole (TMP), ofloxacin (OFL), enrofloxacin (ENO), sulfamethoxazole (SMX), and FLE showed medium to high risk. Therefore, it is recommended to regulate the use of these antibiotics and the discharge and treatment of culturing wastewater, and measures should be taken to reduce the environmental pollution caused by antibiotics and to monitor the long-term ecological risk of antibiotics in the region. Overall, our results provide an important reference for understanding the distribution and ecological risk of antibiotics in Fengjiawan.
Collapse
Affiliation(s)
- Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoyü Ren
- College of Ecology, Environment Hainan University, Haikou 570228, China
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Diao
- College of Ecology, Environment Hainan University, Haikou 570228, China
| |
Collapse
|
39
|
Gutiérrez-Martín D, Gil-Solsona R, Saaltink MW, Rodellas V, López-Serna R, Folch A, Carrera J, Gago-Ferrero P. Chemicals of emerging concern in coastal aquifers: Assessment along the land-ocean interface. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130876. [PMID: 36736215 DOI: 10.1016/j.jhazmat.2023.130876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Submarine Groundwater Discharge (SGD) is recognized as a relevant source of pollutants to the sea, but little is known about its relevance as a source of chemicals of emerging concern (CECs). Here, both the presence and distribution of a wide range of CECs have been evaluated in the most comprehensive manner to date, in a well-characterized Mediterranean coastal aquifer near Barcelona (Spain). Samples from coastal groundwater and seawater allowed for the unique spatial characterization of the pollutants present in the land-ocean interface, an outstanding research gap that required attention. The main goals were (1) to determine CECs in the aquifer, so as to evaluate the SGD as a relevant source of marine pollution, and (2) to identify new tracers to improve our understanding of SGD dynamics. To this end, 92 CECs were located in the aquifer by using wide-scope analytical target methodologies (>2000 chemicals). Among them, the perfluoroalkyl and polyfluoroalkyl substances (PFAS), along with the pharmaceuticals carbamazepine and topiramate, were revealed to be good markers for tracing anthropogenic contamination in ground- and seawater, in concrete situations (e.g., highly contaminated sites). Additionally, non-target analysis expanded the number of potential tracers, making it a promising tool for identifying both the source and the fate of pollutants.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Martín
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Rubén Gil-Solsona
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| | - Maarten W Saaltink
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain Department of Civil and Environment, Spain; Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Albert Folch
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain Department of Civil and Environment, Spain; Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain Department of Civil and Environment, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
40
|
Blonç M, Lima J, Balasch JC, Tort L, Gravato C, Teles M. Elucidating the Effects of the Lipids Regulators Fibrates and Statins on the Health Status of Finfish Species: A Review. Animals (Basel) 2023; 13:ani13050792. [PMID: 36899648 PMCID: PMC10000190 DOI: 10.3390/ani13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most documented fibrates are gemfibrozil, clofibrate and bezafibrate, while for statins, the majority of the published literature focuses on atorvastatin and simvastatin. The present work reviews previously published research concerning the effects of these hypocholesterolaemic pharmaceuticals on fish, with a particular focus on commercially important species, commonly produced by the European aquaculture industry, specifically in recirculated aquaculture systems (RAS). Overall, results suggest that both acute and chronic exposures to lipid-lowering compounds may have adverse effects on fish, disrupting their capacity to excrete exogenous substances, as well as both lipid metabolism and homeostasis, causing severe ontogenetic and endocrinological abnormalities, leading to hampered reproductive success (e.g., gametogenesis, fecundity), and skeletal or muscular malformations, having serious repercussions on fish health and welfare. Nonetheless, the available literature focusing on the effects of statins or fibrates on commonly farmed fish is still limited, and further research is required to understand the implications of this matter on aquaculture production, global food security and, ultimately, human health.
Collapse
Affiliation(s)
- Manuel Blonç
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jennifer Lima
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Physiology, Institute of Bioscience, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Gravato
- Faculty of Sciences of the University of Lisbon—FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
41
|
Mezzelani M, Peruzza L, d'Errico G, Milan M, Gorbi S, Regoli F. Mixtures of environmental pharmaceuticals in marine organisms: Mechanistic evidence of carbamazepine and valsartan effects on Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160465. [PMID: 36427727 DOI: 10.1016/j.scitotenv.2022.160465] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Unravelling the adverse outcomes of pharmaceuticals mixture represents a research priority to characterize the risk for marine ecosystems. The present study investigated, for the first time, the interactions between two of the most largely detected pharmaceuticals in marine species: carbamazepine (CBZ) and valsartan (VAL), elucidating mechanisms that can modulate bioaccumulation, excretion and the onset of toxicity. Mytilus galloprovincialis were exposed to environmental levels of CBZ and VAL dosed alone or in combination: measurement of drug bioaccumulation was integrated with changes in the whole transcriptome and responsiveness of various biochemical and cellular biomarkers. Interactive and competing mechanisms between tested drugs were revealed by the much higher CBZ accumulation in mussels exposed to this compound alone, while an opposite trend was observed for VAL. A complex network of responses was observed as variations of gene expression, functional effects on neurotransmission, cell cycle, immune responses and redox homeostasis. The elaboration of results through a quantitative Weight of Evidence model summarized a greater biological reactivity of CBZ compared to VAL and antagonistic interactions between these compounds, resulting in a reduced effect of the antiepileptic when combined with valsartan. Overall, new perspectives are highlighted for a more comprehensive risk assessment of environmental mixtures of pharmaceuticals.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16 - 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16 - 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
42
|
Abstract
Lipids are structurally diverse biomolecules that serve multiple roles in cells. As such, they are used as biomarkers in the modern ocean and as paleoproxies to explore the geological past. Here, I review lipid geochemistry, biosynthesis, and compartmentalization; the varied uses of lipids as biomarkers; and the evolution of analytical techniques used to measure and characterize lipids. Advancements in high-resolution accurate-mass mass spectrometry have revolutionized the lipidomic and metabolomic fields, both of which are quickly being integrated into marine meta-omic studies. Lipidomics allows us to analyze tens of thousands of features, providing an open analytical window and the ability to quantify unknown compounds that can be structurally elucidated later. However, lipidome annotation is not a trivial matter and represents one of the biggest challenges for oceanographers, owing in part to the lack of marine lipids in current in silico databases and data repositories. A case study reveals the gaps in our knowledge and open opportunities to answer fundamental questions about molecular-level control of chemical reactions and global-scale patterns in the lipidscape.
Collapse
Affiliation(s)
- Bethanie R Edwards
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| |
Collapse
|
43
|
Duarte IA, Reis-Santos P, Fick J, Cabral HN, Duarte B, Fonseca VF. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120531. [PMID: 36397612 DOI: 10.1016/j.envpol.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Contamination of surface waters by pharmaceuticals is an emerging problem globally. This is because the increased access and use of pharmaceuticals by a growing world population lead to environmental contamination, threatening non-target species in their natural environment. Of particular concern are neuroactive pharmaceuticals, which are known to bioaccumulate in fish and impact a variety of individual processes such as fish reproduction or behaviour, which can have ecological impacts and compromise fish populations. In this work, we investigate the occurrence and bioaccumulation of 33 neuroactive pharmaceuticals in brain, muscle and liver tissues of multiple fish species collected in four different estuaries (Douro, Tejo, Sado and Mira). In total, 28 neuroactive pharmaceuticals were detected in water and 13 in fish tissues, with individual pharmaceuticals reaching maximum concentrations of 1590 ng/L and 207 ng/g ww, respectively. The neuroactive pharmaceuticals with the highest levels and highest frequency of detection in the water samples were psychostimulants, antidepressants, opioids and anxiolytics, whereas in fish tissues, antiepileptics, psychostimulants, anxiolytics and antidepressants showed highest concentrations. Bioaccumulation was ubiquitous, occurring in all seven estuarine and marine fish species. Notably, neuroactive compounds were detected in every water and fish brain samples, and in 95% of fish liver and muscle tissues. Despite variations in pharmaceutical occurrence among estuaries, bioaccumulation patterns were consistent among estuarine systems, with generally higher bioaccumulation in fish brain followed by liver and muscle. Moreover, no link between bioaccumulation and compounds' lipophilicity, species habitat use patterns or trophic levels was observed. Overall, this work highlights the occurrence of a highly diverse suite of neuroactive pharmaceuticals and their pervasiveness in waters and fish from estuarine systems with contrasting hydromorphology and urban development and emphasizes the urgent need for toxicity assessment of these compounds in natural ecosystems, linked to internalized body concentration in non-target species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
44
|
Magnuson JT, Longenecker-Wright Z, Havranek I, Monticelli G, Brekken HK, Kallenborn R, Schlenk D, Sydnes MO, Pampanin DM. Bioaccumulation potential of the tricyclic antidepressant amitriptyline in a marine Polychaete, Nereis virens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158193. [PMID: 35995163 DOI: 10.1016/j.scitotenv.2022.158193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of pharmaceuticals from wastewater treatment plants (WWTPs) into the marine environment, even at concentrations as low as ng/L, can exceed levels that induce sublethal effects to aquatic organisms. Amitriptyline, a tricyclic antidepressant, is the most prescribed antidepressant in Norway, though the presence, potential for transport, and uptake by aquatic biota have not been assessed. To better understand the release and bioaccumulative capacity of amitriptyline, laboratory exposure studies were carried out with field-collected sediments. Influent and effluent composite samples from the WWTP of Stavanger (the 4th largest city in Norway) were taken, and sediment samples were collected in three sites in the proximity of this WWTP discharge at sea (WWTP discharge (IVAR), Boknafjord, and Kvitsøy (reference)). Polychaetes (Nereis virens) were exposed to field-collected sediments, as well as to Kvitsøy sediment spiked with 3 and 30 μg/g amitriptyline for 28 days. The WWTP influent and effluent samples had concentrations of amitriptyline of 4.93 ± 1.40 and 6.24 ± 1.39 ng/L, respectively. Sediment samples collected from IVAR, Boknafjord, and Kvitsøy had concentrations of 6.5 ± 3.9, 15.6 ± 12.7, and 12.7 ± 8.0 ng/g, respectively. Concentrations of amitriptyline were below the limit of detection in polychaetes exposed to sediment collected from Kvitsøy and IVAR, and 5.2 ± 2.8 ng/g in those exposed to Boknafjord sediment. Sediment spiked with 3 and 30 μg/g amitriptyline had measured values of 423.83 ± 33.1 and 763.2 ± 180.5 ng/g, respectively. Concentrations in worms exposed to the amended sediments were 9.5 ± 0.2 and 56.6 ± 2.2 ng/g, respectively. This is the first known study to detect measurable concentrations of amitriptyline in WWTP discharge in Norway and accumulation in polychaetes treated with field-collected sediments, suggesting that amitriptyline has the potential for trophic transfer in marine systems.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway.
| | - Zoe Longenecker-Wright
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Ivo Havranek
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Hans Kristian Brekken
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
45
|
Wang N, Shen W, Zhang S, Cheng J, Qi D, Hua J, Kang G, Qiu H. Occurrence and distribution of antibiotics in coastal water of the Taizhou Bay, China: impacts of industrial activities and marine aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81670-81684. [PMID: 35737266 DOI: 10.1007/s11356-022-21412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, spatial distribution, and source analysis of antibiotics in global coastal waters and estuaries are not well documented or understood. Therefore, the distribution of 14 antibiotics in inflowing river and bay water of Taizhou Bay, East China Sea, was studied. Thirteen antibiotics, excluding roxithromycin (ROM), were all detected in inflowing river and bay water. The total antibiotic concentrations in bay water ranged from 3126.62 to 26,531.48 ng/L, which were significantly higher than those in the inflowing river (17.20-25,090.25 ng/L). Macrolides (MAs) and sulfonamides (SAs) were dominant in inflowing river (accounting for 24.40% and 74.9% of the total antibiotic concentrations, respectively), while SAs in bay water (93.6% of the total concentrations). Among them, clindamycin (CLI) (concentration range: ND-8414 ng/L, mean 1437.59 ng/L) and sulfadimidine (SMX) (ND-25,184.00 ng/L, mean concentrations: 9107.88 ng/L) were the highest in those surface water samples. Source analysis showed that MAs and SAs in the inflowing river mainly came from the wastewater discharge of the surrounding residents and pharmaceutical companies, while SAs in the bay water mainly came from surrounding industrial activities and mariculture. However, the contribution of the inflowing river to the bay water cannot be ignored. The risk assessment showed that SMX and ofloxacin (OFX) have potential ecological risks. These data will support the various sectors of the environment in developing management strategies and to prevent antibiotic pollution.
Collapse
Affiliation(s)
- Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - ShengHu Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Dan Qi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Jing Hua
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
46
|
Henry J, Bai Y, Wlodkowic D. Digital Video Acquisition and Optimization Techniques for Effective Animal Tracking in Behavioral Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2342-2352. [PMID: 35848752 PMCID: PMC9826254 DOI: 10.1002/etc.5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Behavioral phenotypic analysis is an emerging and increasingly important toolbox in aquatic ecotoxicology. In this regard digital video recording has recently become a standard in obtaining behavioral data. Subsequent analysis requires applications of specialized software for detecting and reconstructing animal locomotory trajectories as well as extracting quantitative biometric endpoints associated with specific behavioral traits. Despite some profound advantages for behavioral ecotoxicology, there is a notable lack of standardization of procedures and guidelines that would aid in consistently acquiring high-quality digital videos. The latter are fundamental for using animal tracking software successfully and to avoid issues such as identification switching, incorrect interpolation, and low tracking visibility. Achieving an optimized tracking not only saves user time and effort to analyze the results but also provides high-fidelity data with minimal artifacts. In the present study we, for the first time, provide an easily accessible guide on how to set up and optimize digital video acquisition while minimizing pitfalls in obtaining the highest-quality data for subsequent animal tracking. We also discuss straightforward digital video postprocessing techniques that can be employed to further enhance tracking consistency or improve the videos that were acquired in otherwise suboptimal settings. The present study provides an essential guidebook for any aquatic ecotoxicology studies that utilize digital video acquisition systems for evaluation of behavioral endpoints. Environ Toxicol Chem 2022;41:2342-2352. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Yutao Bai
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
47
|
Kayode-Afolayan SD, Ahuekwe EF, Nwinyi OC. Impacts of pharmaceutical effluents on aquatic ecosystems. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Ribeiro F, Costa-Lotufo L, Loureiro S, Pavlaki MD. Environmental Hazard of Anticancer Drugs: State of the Art and Future Perspective for Marine Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1793-1807. [PMID: 35622001 DOI: 10.1002/etc.5397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds represent a class of emerging contaminants present in the environment. Their intense (and increasing) use in human and veterinary medicine leads to their discharge, mainly via human excretion, into wastewater treatment plants where their removal is inefficient. A specific class of pharmaceuticals used to fight cancer, known as antineoplastic or anticancer drugs, has gained increased attention regarding their possible environmental hazard due to their pharmacological properties, which include the nonselective targeting of DNA replication mechanisms and cell division processes, potentially inducing cell apoptosis. To date, there is limited information concerning the effects of anticancer drugs and/or their metabolites in species inhabiting freshwater environments, let alone marine and estuarine compartments. In the present review, we aimed to assemble information regarding the impact that anticancer drugs have on biological traits of marine species, to identify gaps in the current environmental hazard assessment, and to make recommendations to promote an efficient environmental hazard assessment of anticancer drugs in the marine environment. Environ Toxicol Chem 2022;41:1793-1807. © 2022 SETAC.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Leticia Costa-Lotufo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Susana Loureiro
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria D Pavlaki
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
49
|
Nielsen KM, DeCamp L, Birgisson M, Palace VP, Kidd KA, Parrott JL, McMaster ME, Alaee M, Blandford N, Ussery EJ. Comparative Effects of Embryonic Metformin Exposure on Wild and Laboratory-Spawned Fathead Minnow ( Pimephales promelas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10193-10203. [PMID: 35748754 DOI: 10.1021/acs.est.2c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is routinely detected in aquatic ecosystems because of its widespread use as a treatment for Type 2 diabetes. Laboratory studies have shown that exposure to environmentally relevant concentrations of metformin can alter metabolic pathways and impact the growth of early life stage (ELS) fish; however, it is unknown whether these effects occur in wild populations. Herein, we evaluate whether findings from laboratory studies are representative and describe the relative sensitivities of both populations. Duplicate exposures (0, 5, or 50 μg/L metformin) were conducted using wild- and lab-spawned fathead minnow (Pimephales promelas) embryos. Apart from the water source, exposure conditions remained constant. Wild embryos were exposed to previously dosed lake water to account for changes in bioavailability, while reconstituted freshwater was used for the laboratory study. Developmental metformin exposure differentially impacted the growth and morphology of both cohorts, with energy dyshomeostasis and visual effects indicated. The fitness of wild-spawned larvae was impacted to a greater extent relative to lab-spawned fish. Moreover, baseline data reveal important morphological differences between wild- and lab-spawned ELS fatheads that may diminish representativeness of lab studies. Findings also confirm the bioavailability of metformin in naturally occurring systems and suggest current exposure scenarios may be sufficient to negatively impact developing fish.
Collapse
Affiliation(s)
- Kristin M Nielsen
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Lily DeCamp
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Mona Birgisson
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Vince P Palace
- International Institute for Sustainable Development─Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karen A Kidd
- Department of Biology & School of Earth, Environment & Society, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark E McMaster
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mehran Alaee
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | | | - Erin J Ussery
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
50
|
Guo Y, Guo Z, Zhang L, Yoshimura C, Ye Z, Yu P, Qian Y, Hatano Y, Wang J, Niu J. Photodegradation of propranolol in surface waters: An important role of carbonate radical and enhancing toxicity phenomenon. CHEMOSPHERE 2022; 297:134106. [PMID: 35227754 DOI: 10.1016/j.chemosphere.2022.134106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Antihypertensive propranolol (PRO) is frequently detected in surface waters and has adverse effects on aquatic organisms. In this study, its photochemical fate in surface water with the aspect of kinetics, products and toxicity were investigated employing steady-state photochemistry experiments and ecotoxicity tests. The results showed that photodegradation of PRO was enhanced in river water than that in phosphate buffer where dissolved organic matter (DOM), NO3-, and HCO3- played important roles. DOM accelerated the photodegradation mainly through generation of excited triplet-state DOM while NO3- played dual roles in the photodegradation. The reaction between excited triplet-state PRO and HCO3- can generate carbonate radical (CO3·-) to promote the photodegradation. The second-order reaction rate constant between PRO and CO3·- was determined to be (3.4 ± 0.8) × 108 M-1 s-1. Eight photodegradation products were identified in the studied river water sample. Finally, the toxicity evaluated by Vibrio fischeri increased after photodegradation and three photodegradation products were responsible for the increasing toxicity, which was concluded from the significant correlation between toxicity parameters and quantity of the photodegradation products.
Collapse
Affiliation(s)
- Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yao Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Junfeng Niu
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|