1
|
Otani K, Uemura N, Funada H, Kodama T, Okada M, Yamawaki H. Alteration of reactivity in isolated mesenteric artery from Zucker fatty diabetes mellitus rats. J Pharmacol Sci 2024; 156:38-44. [PMID: 39068033 DOI: 10.1016/j.jphs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Obesity and diabetes are major risk factors for cardiovascular diseases. Zucker fatty diabetes mellitus (ZFDM) rats are novel animal model of obesity and type 2 diabetes. We have recently reported that blood pressure in ZFDM-Leprfa/fa (Homo) rats was normal, while blood adrenaline level and heart rate were lower than those in control ZFDM-Leprfa/+ (Hetero) rats. Here, we compared the reactivity in isolated mesenteric artery between Hetero and Homo rats. Contraction induced by phenylephrine was increased, while relaxation induced by isoprenaline was decreased in Homo rats at 21-23 weeks old compared with those in Hetero rats. The mRNA expression for α1A but not β2 adrenoreceptor in Homo rats was increased. Nitric oxide (NO)-mediated relaxation induced by acetylcholine was decreased, while the mRNA expression for endothelial NO synthase (eNOS) was rather increased in mesenteric artery from Homo rats. These findings for the first time revealed that in Homo rats with reduced plasma adrenaline, blood pressure could be maintained by enhancing vascular contractility induced by adrenaline through the increased α1 adrenoceptor expression and the attenuated β2 adrenoceptor signaling. Additionally, NO-mediated endothelium-dependent relaxation is impaired perhaps due to eNOS dysfunction, which might also contribute to maintain the blood pressure in Homo rats.
Collapse
MESH Headings
- Animals
- Rats, Zucker
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Male
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide/metabolism
- Phenylephrine/pharmacology
- Disease Models, Animal
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Isoproterenol/pharmacology
- Epinephrine/blood
- Epinephrine/pharmacology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Vasodilation/drug effects
- Acetylcholine/pharmacology
- Rats
- Obesity/metabolism
- Obesity/physiopathology
- Vasoconstriction/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Blood Pressure/drug effects
- In Vitro Techniques
Collapse
Affiliation(s)
- Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan.
| | - Naofumi Uemura
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Hiroshi Funada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
2
|
Zhang L, Herzog H. Important role of NPY-Y4R signalling in the dual control of feeding and physical activity. Neuropeptides 2024; 105:102425. [PMID: 38554699 DOI: 10.1016/j.npep.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
The control of feeding and physical activity is tightly linked and coordinated. However the underlying mechanisms are unclear. One of the major regulatory systems of feeding behaviour involves neuropeptide Y (NPY) signalling, with the signalling mediated through NPY Y4 receptor also known to influence activity. Here we show that mice globally lacking the Npy4r (Npy4r-/-) in the absence of access to a running wheel behaved WT-like with regards to food intake, energy expenditure, respiratory exchange ratio and locomotion regardless of being fed on a chow or high fat diet. Interestingly however, when given the access to a running wheel, Npy4r-/- mice while having a comparable locomotor activity, showed significantly higher wheel-running activity than WT, again regardless of dietary conditions. This higher wheel-running activity in Npy4r-/-mice arose from an increased dark-phase running time rather than changes in number of running bouts or the running speed. Consistently, energy expenditure was higher in Npy4r-/- than WT mice. Importantly, food intake was reduced in Npy4r-/-mice under wheel access condition which was due to decreased feeding bouts rather than changes in meal size. Together, these findings demonstrate an important role of Npy4r signalling in the dual control of feeding and physical activity, particularly in the form of wheel-running activity.
Collapse
Affiliation(s)
- Lei Zhang
- St Vincent's Centre for Applied Medical Research, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia.
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| |
Collapse
|
3
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
4
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
5
|
Chen WH, Shi YC, Huang QY, Chen JM, Wang ZY, Lin S, Shi QY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: an updated review. Hormones (Athens) 2023; 22:441-451. [PMID: 37452264 PMCID: PMC10449684 DOI: 10.1007/s42000-023-00460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and peripheral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor-related therapies for PCOS.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Qiao-Yi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Zhi-Yi Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Qi-Yang Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
6
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
7
|
Decourt C, Connolly GADP, Ancel C, Inglis MA, Anderson GM. Agouti-related peptide neuronal silencing overcomes delayed puberty in neonatally underfed male mice. J Neuroendocrinol 2022; 34:e13190. [PMID: 36306199 PMCID: PMC9788270 DOI: 10.1111/jne.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Agouti-related peptide (AgRP) neurons are thought to indirectly regulate the activity of hypothalamic gonadotrophin-releasing hormone neurons which control fertility. AgRP neurons also drive caloric intake and are modulated by metabolically-relevant hormones, providing a link to the hypothalamic-pituitary-gonadal axis. In mice expressing Cre-dependant designer receptors (DREADDs) in AgRP neurons, we activated or silenced these neurons in vivo using the synthetic ligand clozapine-N-oxide (CNO) to observe the effect of AgRP neuron activity on timing of puberty. To validate these animals, we chronically treated both stimulatory (hM3Dq) and inhibitory (hM4Di) DREADD × AgRP-Cre mice with CNO, observing a pronounced increase and decrease of food intake, respectively, consistent with the known orexigenic effects of these neurons. RNAscope was performed to visually confirm the activation of AgRP neurons. Puberty onset was assessed in males and females. There was no effect on preputial separation in males or vaginal opening and first oestrus in females after CNO treatment from day 26 to 30 to chronically modulate AgRP neurons. Next, to determine whether the delay in puberty onset occurring in response to neonatal underfeeding could be overcome by inhibiting AgRP neuronal activity, mice were raised in large (neonatally underfed) or normal litter sizes. The delay in puberty from underfeeding was completely reversed in CNO-treated AgRP-hM4Di male mice. These data highlight the inhibitory role of AgRP neurons to delay puberty onset when undernutrition occurs during the neonatal period, at least in male mice. TRAIL REGISTRATION NUMBER: JNE-22-0081-OA.R2.
Collapse
Affiliation(s)
| | - George A. D. P. Connolly
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Caroline Ancel
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Megan A. Inglis
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Greg M. Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| |
Collapse
|
8
|
Si R, Pan D, Wang Z, Chen Y, Cao J. Regulation of the central melanocortin system on energy balance in mammals and birds. Neuropeptides 2022; 95:102267. [PMID: 35752067 DOI: 10.1016/j.npep.2022.102267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Agouti-related protein/neuropeptide Y (AgRP/NPY) neurons promote feeding, while proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART) neurons and melanocortin receptor neurons inhibit feeding; these three types of neurons play vital roles in regulating feeding. The central melanocortin system composed of these neurons is critical for the regulation of food intake and energy metabolism. It regulates energy intake and consumption by activating or inhibiting the activities of AgRP/NPY neurons and POMC/CART neurons and then affects the feeding behaviour of animals to maintain the energy balance. Meanwhile, organisms can also positively or negatively regulate energy homeostasis through the negative feedback of the neuron system. With further studies, understanding of the process and factors involved in the energy balance regulation of mammals and birds can be improved, which will provide a favourable scientific basis to reduce costs and improve meat production in production and breeding.
Collapse
Affiliation(s)
- Rongrong Si
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Deng Pan
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
9
|
Langley DB, Schofield P, Jackson J, Herzog H, Christ D. Crystal structures of human neuropeptide Y (NPY) and peptide YY (PYY). Neuropeptides 2022; 92:102231. [PMID: 35180645 DOI: 10.1016/j.npep.2022.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) form the evolutionarily conserved pancreatic polypeptide family. While the fold is widely utilized in nature, crystal structures remain elusive, particularly for the human forms, with only the structure of a distant avian form of PP reported. Here we utilize a crystallization chaperone (antibody Fab fragment), specifically recognizing the amidated peptide termini, to solve the structures of human NPY and human PYY. Intriguingly, and despite limited sequence identity (~50%), the structure of human PYY closely resembles that of avian PP, highlighting the broad structural conservation of the fold throughout evolution. Specifically, the PYY structure is characterized by a C-terminal amidated α-helix, preceded by a backfolded poly-proline N-terminus, with the termini in close proximity to each other. In contrast, in the structure of human NPY the N-terminal component is disordered, while the helical component of the peptide is observed in a four-helix bundle type arrangement, consistent with a propensity for multimerization suggested by NMR studies.
Collapse
Affiliation(s)
- David B Langley
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Jenny Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
10
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
11
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 2021; 11:metabo11120840. [PMID: 34940598 PMCID: PMC8706114 DOI: 10.3390/metabo11120840] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023] Open
Abstract
In recent decades, the worldwide prevalence of obesity has risen dramatically and is currently estimated to be around 20%. Obesity is linked to an increased risk of comorbidities and premature mortality. Several studies have shown that obesity negatively impacts male fertility through various mechanisms. This review aims to investigate the molecular mechanisms through which obesity impairs male reproduction, including obesity-associated hypogonadism and its effects on spermatogenesis, chronic inflammation, and oxidative stress. Obesity negatively impacts both conventional and biofunctional sperm parameters, and it also induces epigenetic changes that can be transferred to offspring. Moreover, obesity-related diseases are linked to a dysregulation of adipocyte function and micro-environmental inflammatory processes. The dysregulated adipokines significantly influence insulin signaling, and they may also have a detrimental effect on testicular function. Sirtuins can also play an important role in inflammatory and metabolic responses in obese patients. Understanding the molecular mechanisms that are involved in obesity-induced male infertility could increase our ability to identify novel targets for the prevention and treatment of obesity and its related consequences.
Collapse
|
13
|
Zhang L, Gopalasingam G, Herzog H. Ninjin'yoeito, a herbal medicine, enhances glucose tolerance in mice. Neuropeptides 2021; 88:102150. [PMID: 33895618 DOI: 10.1016/j.npep.2021.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The prevalence of Type 2 diabetes increases under conditions of obesity but also due to aging. While a variety of treatment options are being explored there are still many unanswered questions about the underlying mechanisms for the aetiology and progression of this illness. Here we show that pre-treatment with Ninjin'yoeito (NYT), a herbal medicine composed of 12 different ingrediencies, before a glucose challenge results in significantly improved glucose tolerance. This occurs in the absence of significant alterations in insulin excursion compared to vehicle treatment, indicating NYT improves insulin responsiveness and/or insulin-independent glucose disposal. Furthermore, we identify Ginseng - one of the 12 ingredients of NYT - as one key component contributing to NYT's effect on glucose clearance. Importantly, lack of Y4 receptor signalling abolishes the positive effects of NYT on glucose tolerance suggesting Y4 receptor-controlled pathways are crucial in mediating this action of NYT. Using c-fos as neuronal activation marker, we show NYT activates the area postrema - a circumventricular organ in the brainstem that expresses high level of Y4 receptors, supporting an involvement of brainstem Y4 signalling in NYT-activated central networks. Together, these data suggest that NYT is a positive influencer of glucose metabolism in insulin-sensitive tissues and the mechanistic actions of NYT include brainstem Y4 circuitries.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; School of Medical Sciences, University of NSW, Sydney, NSW, Australia; Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
14
|
Huang Y, Lin X, Lin S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front Cell Dev Biol 2021; 9:695623. [PMID: 34307371 PMCID: PMC8299562 DOI: 10.3389/fcell.2021.695623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Through the past decade of research, the pathogenic mechanisms underlying metabolic syndrome have been suggested to involve not only the peripheral tissues, but also central metabolic regulation imbalances. The hypothalamus, and the arcuate nucleus in particular, is the control center for metabolic homeostasis and energy balance. Neuropeptide Y neurons are particularly abundantly expressed in the arcuate of the hypothalamus, where the blood-brain barrier is weak, such as to critically integrate peripheral metabolic signals with the brain center. Herein, focusing on metabolic syndrome, this manuscript aims to provide an overview of the regulatory effects of Neuropeptide Y on metabolic syndrome and discuss clinical intervention strategy perspectives for neurometabolic disease.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
15
|
Zhang L, Clark T, Gopalasingam G, Neely GG, Herzog H. Ninjin'yoeito modulates feeding and activity under negative energy balance conditions via the NPY system. Neuropeptides 2021; 87:102149. [PMID: 33882337 DOI: 10.1016/j.npep.2021.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| | - Tereli Clark
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - G Gregory Neely
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; School of Medical Sciences, University of NSW, Sydney, NSW, Australia; Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
16
|
Mollah ML, Yang HS, Jeon S, Kim K, Cheon YP. Overaccumulation of Fat Caused Rapid Reproductive Senescence but not Loss of Ovarian Reserve in ob/ob Mice. J Endocr Soc 2020; 5:bvaa168. [PMID: 33324862 PMCID: PMC7722705 DOI: 10.1210/jendso/bvaa168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Ovarian reserve and fertility are reduced by aging and a poor energy balance. To date, the relationships of high energy accumulation and aging with the ovarian reserve have not been elucidated. Here, the effects of obesity on the aging ovarian reserve were evaluated in a leptin-deficient (ob/ob) mouse model. Abnormal estrous cyclicity appeared as early as 6 weeks and worsened with aging. The blood level patterns of 17β-estradiol (E2), testosterone (T), and progesterone (P4) with aging were similar between lean and ob/ob mice. The blood level of E2 but not P4 or T was similar at 24 weeks. Many more atretic follicles but fewer corpora lutea were observed in ob/ob mice than in lean mice within all age groups. Anti-Müllerian hormone (Amh) mRNA levels were similar between genotypes. Dazl, Stra8, and ZP3 mRNAs were highly expressed in ob/ob mice after 12 weeks. Sohlh1 and Ybx2 mRNAs were highly expressed at 24 weeks in ob/ob compared with lean mice. In addition, SOHLH1-positive primordial follicle counts were significantly increased in ob/ob mice at 24 weeks. The proportions of AMH-positive secondary and small antral follicles were similar between genotypes. Together, these results show that the ovarian reserve lasts longer in ob/ob mice than in lean mice, suggesting that the loss of normal physiological or physical status causes decreased fertility at a young age in ob/ob mice and that an increase in adipocytes without leptin, as in ob/ob mice, can improve the ovarian reserve. Such knowledge can be applied to understanding reproductive dysfunction.
Collapse
Affiliation(s)
- Mohammad Lalmoddin Mollah
- Division of Development and Physiology, School of Bioscience and Chemistry, Sungshin Women University, Seoul, South Korea
| | - Hee-Seon Yang
- Division of Development and Physiology, School of Bioscience and Chemistry, Sungshin Women University, Seoul, South Korea
| | - SoRa Jeon
- Division of Development and Physiology, School of Bioscience and Chemistry, Sungshin Women University, Seoul, South Korea
| | - KilSoo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Yong-Pil Cheon
- Division of Development and Physiology, School of Bioscience and Chemistry, Sungshin Women University, Seoul, South Korea
| |
Collapse
|
17
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
18
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
19
|
Kang N, Wang XL, Zhao Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019; 94:2064-2072. [PMID: 31444845 DOI: 10.1111/cbdd.13611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y4 receptor has the most significant effect on body weight and fat mass in its physiological functions, and the activation of Y4 receptor has explicit role on losing weight. The Y4 receptor has been successfully applied in the development of anti-obesity agent, thus representing a potential therapeutic target for obesity treatment. Here, we reported the first discovery of small molecule agonists targeting Y4 receptor: three Y4 receptor models with active and inactive conformations were built, each model was submitted following structure-based virtual screening, and finally six hits were identified as Y4 receptor agonists. These results confirm the reliability of the constructed Y4 receptor models and the proposed computational strategy for investigating novel Y4 receptor agonists. These new small molecule Y4 receptor agonists will contribute to the further development of Y4 agonists as potential therapeutics and functional probes.
Collapse
Affiliation(s)
- Ning Kang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Lei Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
21
|
Østergaard S, Kofoed J, Paulsson JF, Madsen KG, Jorgensen R, Wulff BS. Design of Y 2 Receptor Selective and Proteolytically Stable PYY 3-36 Analogues. J Med Chem 2018; 61:10519-10530. [PMID: 30399314 DOI: 10.1021/acs.jmedchem.8b01046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years peptide YY (PYY) has attracted attention within the area of diabetes and obesity due to its involvement in food intake regulation and glucose homeostasis. It is well-known that PYY1-36 is rapidly cleaved by dipeptidyl peptidase-4 to the more Y2 receptor selective analogue PYY3-36, which is further cleaved to the inactive analogue PYY3-34. In order to improve the selectivity and proteolytic stability of the C-terminus, we synthesized several analogues incorporating N-methyl amino acids or β-homo amino acids and other non-natural amino acids. These were tested against all four NPY receptors, and highly potent and Y2 receptor selective analogues were identified by combining a tryptophan residue in position 30 with either N-methyl or β-homo arginine in position 35. We also identified an analogue with a MeGln34 substitution that surprisingly displayed high affinity toward all four receptors. In addition, these analogues displayed improved stability toward C-terminal proteolysis compared to native PYY3-36.
Collapse
|
22
|
Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48:37-49. [PMID: 28754629 DOI: 10.1016/j.yfrne.2017.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function. We summarize here the major physiological mechanisms whereby nutritional and metabolic cues modulate the maturation and function of the HPG axis. We will focus on recent progress on the major central neuropeptide pathways, including kisspeptins, neurokinin B and the products of POMC and NPY neurons, which convey metabolic information to GnRH neurons, as major hierarchical hub of our reproductive brain.
Collapse
Affiliation(s)
- M Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, INSERM, U1172, Lille, France
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
23
|
Law AMK, Yin JXM, Castillo L, Young AIJ, Piggin C, Rogers S, Caldon CE, Burgess A, Millar EKA, O'Toole SA, Gallego-Ortega D, Ormandy CJ, Oakes SR. Andy's Algorithms: new automated digital image analysis pipelines for FIJI. Sci Rep 2017; 7:15717. [PMID: 29146920 PMCID: PMC5691210 DOI: 10.1038/s41598-017-15885-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/31/2017] [Indexed: 01/26/2023] Open
Abstract
Quantification of cellular antigens and their interactions via antibody-based detection methods are widely used in scientific research. Accurate high-throughput quantitation of these assays using general image analysis software can be time consuming and challenging, particularly when attempted by users with limited image processing and analysis knowledge. To overcome this, we have designed Andy's Algorithms, a series of automated image analysis pipelines for FIJI, that permits rapid, accurate and reproducible batch-processing of 3,3'-diaminobenzidine (DAB) immunohistochemistry, proximity ligation assays (PLAs) and other common assays. Andy's Algorithms incorporates a step-by-step tutorial and optimization pipeline to make batch image analysis simple for the untrained user and adaptable across laboratories. Andy's algorithms provide a simpler, faster, standardized work flow compared to existing programs, while offering equivalent performance and additional features, in a free to use open-source application of FIJI. Andy's Algorithms are available at GitHub, publicly accessed at https://github.com/andlaw1841/Andy-s-Algorithm .
Collapse
Affiliation(s)
- Andrew M K Law
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Julia X M Yin
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Lesley Castillo
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Adelaide I J Young
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Catherine Piggin
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Samuel Rogers
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Catherine Elizabeth Caldon
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, Victoria Street, NSW 2052, Australia
| | - Andrew Burgess
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, Victoria Street, NSW 2052, Australia.,ANZAC Research Institute, University of Sydney, 3 Hospital Road, Concord, NSW, 2139, Australia
| | - Ewan K A Millar
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,Department of Anatomical Pathology, South Eastern Area Laboratory Service, St George Hospital, Grey St. Kogarah, Kogarah, 2217, Australia.,School of Medical Sciences, UNSW Sydney, Kensington, NSW 2033, Australia.,School of Medicine and Health Sciences, Sydney Western University, Campbelltown, NSW, 2560, Australia
| | - Sandra A O'Toole
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,Australian Clinical Labs, 112/14 Lexington Drive, Bella Vista, NSW 2153, Australia
| | - David Gallego-Ortega
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, Victoria Street, NSW 2052, Australia
| | - Christopher J Ormandy
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, Victoria Street, NSW 2052, Australia
| | - Samantha R Oakes
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia. .,St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, Victoria Street, NSW 2052, Australia.
| |
Collapse
|
24
|
Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice. J Neurosci 2017; 37:3875-3886. [PMID: 28275162 DOI: 10.1523/jneurosci.3138-16.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022] Open
Abstract
The hormone leptin indirectly communicates metabolic information to brain neurons that control reproduction, using GABAergic circuitry. Agouti-related peptide (AgRP) neurons in the arcuate nucleus are GABAergic, express leptin receptors (LepR), and are known to influence reproduction. This study tested whether leptin actions on AgRP neurons are required and sufficient for puberty onset and subsequent fertility. First, Agrp-Cre and Lepr-flox mice were used to target deletion of LepR to AgRP neurons. AgRP-LepR knock-out female mice exhibited mild obesity and adiposity as described previously, as well as a significant delay in the pubertal onset of estrous cycles compared with control animals. No significant differences in male puberty onset or adult fecundity in either sex were observed. Next, mice with a floxed polyadenylation signal causing premature transcriptional termination of the Lepr gene were crossed with AgRP-Cre mice to generate mice with AgRP neuron-specific rescue of LepR. Lepr-null control males and females were morbidly obese and exhibited delayed puberty onset, no evidence of estrous cycles, and minimal fecundity. Remarkably, AgRP-LepR rescue partially or fully restored all of these reproductive attributes to levels similar to those of LepR-intact controls despite minimal rescue of metabolic function. These results indicate that leptin signaling in AgRP neurons is sufficient for puberty onset and normal adult fecundity in both sexes when leptin signaling is absent in all other cells and that in females, the absence of AgRP neuron leptin signaling delays puberty. These actions appear to be independent of leptin's metabolic effects.SIGNIFICANCE STATEMENT Sexual maturation and fertility are dispensable at the individual level but critical for species survival. Conditions such as nutritional imbalance may therefore suppress puberty onset and fertility in an individual. In societies characterized by widespread obesity, the sensitivity of reproduction to metabolic imbalance has significant public health implications. Deficient leptin signaling attributable to diet-induced leptin resistance is associated with infertility in humans and rodents, and treatments for human infertility show a decreased success rate with increasing body mass index. Here we show that the transmission of metabolic information to the hypothalamo-pituitary-gonadal axis is mediated by leptin receptors on AgRP neurons. These results provide conclusive new insights into the mechanisms that cause infertility attributable to malnourishment.
Collapse
|
25
|
Krisko TI, LeClair KB, Cohen DE. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure. Metabolism 2017; 68:145-149. [PMID: 28183446 PMCID: PMC5308448 DOI: 10.1016/j.metabol.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/24/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. ANIMALS/METHODS Mice lacking both PC-TP and leptin (Pctp-/-;ob/ob) were prepared by crossing Pctp-/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. RESULTS Pctp-/-;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. CONCLUSIONS Improved glucose tolerance in Pctp-/-;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice.
Collapse
Affiliation(s)
- Tibor I Krisko
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Katherine B LeClair
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - David E Cohen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
McGrice M, Porter J. The Effect of Low Carbohydrate Diets on Fertility Hormones and Outcomes in Overweight and Obese Women: A Systematic Review. Nutrients 2017; 9:nu9030204. [PMID: 28264433 PMCID: PMC5372867 DOI: 10.3390/nu9030204] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Medical interventions including assisted reproductive technologies have improved fertility outcomes for many sub-fertile couples. Increasing research interest has investigated the effect of low carbohydrate diets, with or without energy restriction. We aimed to systematically review the published literature to determine the extent to which low carbohydrate diets can affect fertility outcomes; (2) Methods: The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42016042669) and followed Preferred Reporting Items For Systematic Reviews and Meta-Analyses guidelines. Infertile women were the population of interest, the intervention was low carbohydrate diets (less than 45% total energy from carbohydrates), compared to usual diet (with or without co-treatments). Four databases were searched from date of commencement until April 2016; a supplementary Google scholar search was also undertaken. Title and abstract, then full text review, were undertaken independently and in duplicate. Reference lists of included studies and relevant systematic reviews were checked to ensure that all relevant studies were identified for inclusion. Quality assessment was undertaken independently by both authors using the Quality Criteria Checklist for Primary Research. Outcome measures were improved fertility outcomes defined by an improvement in reproductive hormones, ovulation rates and/or pregnancy rates; (3) Results: Seven studies fulfilled the inclusion criteria and were included in the evidence synthesis. Interventions were diverse and included a combination of low carbohydrate diets with energy deficit or other co-treatments. Study quality was rated as positive for six studies, suggesting a low risk of bias, with one study rated as neutral. Of the six studies which reported changes in reproductive hormones, five reported significant improvements post intervention; (4) Conclusion: The findings of these studies suggest that low carbohydrate diets warrant further research to determine their effect. These randomised controlled trials should consider the effect of carbohydrates (with or without energy deficit) on hormonal and fertility outcomes.
Collapse
Affiliation(s)
- Melanie McGrice
- Dietetics Department, Eastern Health, 5 Arnold Street, Box Hill VIC 3128, Australia.
- Nutrition Plus Enterprises, 1004/1 Queens Road, Melbourne VIC 3004, Australia.
| | - Judi Porter
- Allied Health Research Office, 5 Arnold Street, Box Hill VIC 3128, Australia.
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill VIC 3168, Australia.
| |
Collapse
|
27
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
28
|
Verma D, Hörmer B, Bellmann-Sickert K, Thieme V, Beck-Sickinger AG, Herzog H, Sperk G, Tasan RO. Pancreatic polypeptide and its central Y4 receptors are essential for cued fear extinction and permanent suppression of fear. Br J Pharmacol 2016; 173:1925-38. [PMID: 26844810 PMCID: PMC4882497 DOI: 10.1111/bph.13456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background and purpose Avoiding danger and finding food are closely related behaviours that are essential for surviving in a natural environment. Growing evidence supports an important role of gut‐brain peptides in modulating energy homeostasis and emotional‐affective behaviour. For instance, postprandial release of pancreatic polypeptide (PP) reduced food intake and altered stress‐induced motor activity and anxiety by activating central Y4 receptors. Experimental approach We characterized [K30(PEG2)]hPP2‐36 as long‐acting Y4 receptor agonist and injected it peripherally into wildtype and Y4 receptor knockout (Y4KO) C57Bl/6NCrl mice to investigate the role of Y4 receptors in fear conditioning. Extinction and relapse after extinction was measured by spontaneous recovery and renewal. Key results The Y4KO mice showed impaired cued and context fear extinction without affecting acquisition, consolidation or recall of fear. Correspondingly, peripheral injection of [K30(PEG2)]hPP2‐36 facilitated extinction learning upon fasting, an effect that was long‐lasting and generalized. Furthermore, peripherally applied [K30(PEG2)]hPP2‐36 before extinction inhibited the activation of orexin‐expressing neurons in the lateral hypothalamus in WT, but not in Y4KO mice. Conclusions and implications Our findings suggests suppression of excessive arousal as a possible mechanism for the extinction‐promoting effect of central Y4 receptors and provide strong evidence that fear extinction requires integration of vegetative stimuli with cortical and subcortical information, a process crucially depending on Y4 receptors. Importantly, in the lateral hypothalamus two peptide systems, PP and orexin, interact to generate an emotional response adapted to the current homeostatic state. Detailed investigations of feeding‐relevant genes may thus deliver multiple intervention points for treating anxiety‐related disorders.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - V Thieme
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Saberi A, Jamal A, Beets I, Schoofs L, Newmark PA. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians. PLoS Biol 2016; 14:e1002457. [PMID: 27163480 PMCID: PMC4862687 DOI: 10.1371/journal.pbio.1002457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/21/2022] Open
Abstract
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. Genome-wide analysis of the planarian Schmidtea mediterranea reveals a complement of over 550 G protein-coupled receptors, including two with critical roles in germline development. G protein-coupled receptors (GPCRs) are the largest and most versatile family of cell-surface receptors. They play critical roles in various cellular and physiological systems and have emerged as a leading group of therapeutic targets. Due to their structural and functional conservation across animals, much has been learned about GPCRs from studies in laboratory models. Here, we performed genome-wide receptor mining to identify and categorize the complement of GPCR-encoding genes in the planarian Schmidtea mediterranea, an emerging model organism for regeneration and germ cell biology. We then conducted two studies implicating planarian GPCRs in the regulation of reproductive function. First, we found the receptor component of a central neuropeptide Y signaling pathway and demonstrated its involvement in the systemic control of reproductive development. Next, we showed that a novel chemoreceptor family member is expressed in somatic cells of the planarian gonads and directs germ cell maturation via the niche. We predict that future studies on the hundreds of other planarian GPCRs identified in this work will not only help us understand the conserved role of these receptors in various physiological pathways but also pave the way for identification of novel therapeutic targets in parasitic relatives of the planarian.
Collapse
Affiliation(s)
- Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ayana Jamal
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Isabel Beets
- Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, Leuven, Belgium
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Aerts E, Beckers S, Zegers D, Van Hoorenbeeck K, Massa G, Verrijken A, Verhulst SL, Van Gaal LF, Van Hul W. CNV analysis and mutation screening indicate an important role for the NPY4R gene in human obesity. Obesity (Silver Spring) 2016; 24:970-6. [PMID: 26921218 DOI: 10.1002/oby.21435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Genome-wide copy number variation (CNV) analyses have associated the 10q11.22 CNV with obesity. As the NPY4R gene is the most interesting candidate gene in this region, it was hypothesized that both genetic and structural variation in NPY4R might be implicated in the pathogenesis of obesity. METHODS In the first part of this study, 326 children and adolescents with obesity and 298 healthy lean individuals were screened for CNV in the NPY4R-containing chr.10q11.22 region. In the second part of this study, a mutation screen for variants in the NPY4R coding region was performed in 356 children and adolescents with obesity and 337 healthy lean adults. RESULTS Our CNV analysis demonstrated a significantly higher frequency of NPY4R containing 10q11.22 CNV loss in the patient population (P = 0.0003), while CNV gain in this region was more prevalent in the control population (P = 0.031). Mutation analysis resulted in the identification of 15 rare non-synonymous heterozygous variants. For two variants that could only be identified in the patient population, receptor dysfunction and thus a pathogenic effect were demonstrated. CONCLUSIONS In conclusion, these data support an essential role for genetic and structural variation within the NPY4R gene in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Evi Aerts
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sigri Beckers
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Doreen Zegers
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Guy Massa
- Department of Pediatrics, Jessa Hospital, Hasselt, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Stijn L Verhulst
- Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Hunger Promotes Fear Extinction by Activation of an Amygdala Microcircuit. Neuropsychopharmacology 2016; 41:431-9. [PMID: 26062787 PMCID: PMC4579557 DOI: 10.1038/npp.2015.163] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 01/24/2023]
Abstract
Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance. Although neurobiological substrates of emotionally controlled circuitries are increasingly evident, their mutual influences are not. To investigate interactions between hunger and fear, we performed Pavlovian fear conditioning in fasted wild-type mice and in mice with genetic modification of a feeding-related gene. Furthermore, we analyzed in these mice the electrophysiological microcircuits underlying fear extinction. Short-term fasting before fear acquisition specifically impaired long-term fear memory, whereas fasting before fear extinction facilitated extinction learning. Furthermore, genetic deletion of the Y4 receptor reduced appetite and completely impaired fear extinction, a phenomenon that was rescued by fasting. A marked increase in feed-forward inhibition between the basolateral and central amygdala has been proposed as a synaptic correlate of fear extinction and involves activation of the medial intercalated cells. This form of plasticity was lost in Y4KO mice. Fasting before extinction learning, however, resulted in specific activation of the medial intercalated neurons and re-established the enhancement of feed-forward inhibition in this amygdala microcircuit of Y4KO mice. Hence, consolidation of fear and extinction memories is differentially regulated by hunger, suggesting that fasting and modification of feeding-related genes could augment the effectiveness of exposure therapy and provide novel drug targets for treatment of anxiety disorders.
Collapse
|
32
|
Celik O, Aydin S, Celik N, Yilmaz M. Peptides: Basic determinants of reproductive functions. Peptides 2015; 72:34-43. [PMID: 26074346 DOI: 10.1016/j.peptides.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Mammalian reproduction is a costly process in terms of energy consumption. The critical information regarding metabolic status is signaled to the hypothalamus mainly through peripheral peptides from the adipose tissue and gastrointestinal tract. Changes in energy stores produce fluctuations in leptin, insulin, ghrelin and glucose signals that feedback mainly to the hypothalamus to regulate metabolism and fertility. In near future, possible effects of the nutritional status on GnRH regulation can be evaluated by measuring serum or tissue levels of leptin and ghrelin in patiens suffering from infertility. The fact that leptin and ghrelin are antagonistic in their effects on GnRH neurons, their respective agonistic and antagonistic roles make them ideal candidates to use instead of GnRH agonist and antagonist. Similarly, kisspeptin expressing neurons are likely to mediate the well-established link between energy balance and reproductive functions. Exogenous kisspeptin can be used for physiological ovarian hyperstimulation for in-vitro fertilization. Moreover, kisspeptin antagonist therapy can be used for the treatment of postmenapousal women, precocious puberty, PCOS, endometriosis and uterine fibroids. In this review, we will analyze the central mechanisms involved in the integration of metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of leptin, kisspeptin, ghrelin, NPY, orexin, urocortin, VIP, insulin, galanin, galanin like peptide, oxytocin, agouti gene-related peptide, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Department of Obstetrics and Gynecology, İzmir, Turkey
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey.
| | - Nilufer Celik
- Behcet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey
| |
Collapse
|
33
|
Kawwass JF, Summer R, Kallen CB. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol Hum Reprod 2015; 21:617-632. [PMID: 25964237 PMCID: PMC4518135 DOI: 10.1093/molehr/gav025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 05/05/2015] [Indexed: 08/13/2023] Open
Abstract
Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals.
Collapse
Affiliation(s)
- Jennifer F Kawwass
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 1639 Pierce Drive, WMB 4217, Atlanta, GA 30322, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, 1020 Walnut Street, Philadelphia, PA 19107, USA
| | - Caleb B Kallen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Thomas Jefferson University, 833 Chestnut Street, Suite C-152, Philadelphia, PA 19107, USA
| |
Collapse
|
34
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
35
|
Abstract
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways.
Collapse
Affiliation(s)
- Farid F Chehab
- Department of Laboratory MedicineUniversity of California, San Francisco, San Francisco, California 94132, USA
| |
Collapse
|
36
|
Verschueren S, Janssen P, Van Oudenhove L, Hultin L, Tack J. Effect of pancreatic polypeptide on gastric accommodation and gastric emptying in conscious rats. Am J Physiol Gastrointest Liver Physiol 2014; 307:G122-8. [PMID: 24742985 DOI: 10.1152/ajpgi.00043.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic polypeptide (PP) is an anorexigenic hormone released from pancreatic F cells upon food intake. We aimed to determine the effect of PP on gastric accommodation and gastric emptying in conscious Wistar HAN rats to investigate whether effects on motor function could contribute to its anorexigenic effects. Intragastric pressure (IGP) was measured through a chronically implanted gastric fistula during the infusion of a nutrient meal (Nutridrink; 0.5 ml/min). Rats were treated with PP (0, 33 and 100 pmol·kg(-1)·min(-1)) in combination with N(G)-nitro-L-arginine methyl ester (L-NAME; 180 mg·kg(-1)·h(-1)), atropine (3 mg·kg(-1)·h(-1)), or vehicle. Furthermore, the effect of PP was tested after subdiaphragmal vagotomy of the stomach. Gastric emptying of a noncaloric and a caloric meal after treatment with 100 pmol·kg(-1)·min(-1) PP or vehicle was compared using X-rays. PP significantly increased IGP during nutrient infusion compared with vehicle (P < 0.01). L-NAME and atropine significantly increased IGP during nutrient infusion compared with vehicle treatment (P < 0.005 and 0.01, respectively). The effect of PP on IGP during nutrient infusion was abolished in the presence of L-NAME and in the presence of atropine. In vagotomized rats, PP increased IGP compared with intact controls (P < 0.05). PP significantly delayed gastric emptying of both a noncaloric (P < 0.05) and a caloric (P < 0.005) meal. PP inhibits gastric accommodation and delays gastric emptying, probably through inhibition of nitric oxide release. These results indicate that, besides the well-known centrally mediated effects, PP might decrease food intake through peripheral mechanisms.
Collapse
Affiliation(s)
- Sofie Verschueren
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | - Pieter Janssen
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| |
Collapse
|
37
|
Zhang W, Cline MA, Gilbert ER. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr Metab (Lond) 2014; 11:27. [PMID: 24959194 PMCID: PMC4066284 DOI: 10.1186/1743-7075-11-27] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023] Open
Abstract
Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Wei Zhang
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | - Mark A Cline
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | - Elizabeth R Gilbert
- 3200 Litton-Reaves, Animal & Poultry Sciences Department, Virginia Tech, Blacksburg, VA 24061-0306, USA
| |
Collapse
|
38
|
Yulyaningsih E, Loh K, Lin S, Lau J, Zhang L, Shi Y, Berning BA, Enriquez R, Driessler F, Macia L, Khor EC, Qi Y, Baldock P, Sainsbury A, Herzog H. Pancreatic polypeptide controls energy homeostasis via Npy6r signaling in the suprachiasmatic nucleus in mice. Cell Metab 2014; 19:58-72. [PMID: 24411939 DOI: 10.1016/j.cmet.2013.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Kim Loh
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Jackie Lau
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yanchuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Britt A Berning
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ronaldo Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yue Qi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Paul Baldock
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; School of Medical Sciences, Wallace Wurth Building, University of NSW, Botany Street, Sydney 2052, Australia; The Boden Institute of Obesity, Nutrition, Exercise, and Eating Disorders, Sydney Medical School, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; UNSW Medicine, ASGM Building, University of NSW, Botany Street, Sydney 2052, Australia.
| |
Collapse
|
39
|
Sheffer-Babila S, Sun Y, Israel DD, Liu SM, Neal-Perry G, Chua SC. Agouti-related peptide plays a critical role in leptin's effects on female puberty and reproduction. Am J Physiol Endocrinol Metab 2013; 305:E1512-20. [PMID: 24169048 PMCID: PMC3882375 DOI: 10.1152/ajpendo.00241.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deficient leptin signaling causes infertility via reduced activity of GnRH neurons, causing a hypogonadal state in both rodents and humans. Because GnRH neurons do not express leptin receptors, leptin's effect on GnRH neurons must be indirect. Neurons within the hypothalamic arcuate nucleus that coexpress AGRP and NPY are considered to be important intermediate neurons involved in leptin regulation of GnRH neurons. Previously, we reported that the absence of AGRP and haploinsufficiency of MC4R in leptin receptor mutant (Lepr(db/db)) females result in restoration of fertility and lactation despite the persistence of obesity and insulin resistance. The overarching hypothesis in the present study is that the absence or reduction of leptin's inhibition of AGRP/NPY neurons leads to suppression of GnRH release in cases of leptin signaling deficiency. Since TAC2 (NKB)-TAC3R signaling plays a role in puberty maturation and is modulated by metabolic status, the other aim of this study is to test whether TAC2/NKB neurons in ARC regulated by melanocortinergic signals herein affect leptin's action on puberty and reproduction. Our data showed that AGRP deficiency in Lepr(db/db) females restores normal timing of vaginal opening and estrous cycling, although uterine weight gain and mammary gland development are morphologically delayed. Nonetheless, Agrp(-/-) Lepr(db/db) females are fertile and sustain adequate nutrition of pups with lactation to weaning age. AGRP deficiency results in advanced vaginal opening in wild-type female mice. The postpubertal increase in hypothalamic TAC2 mRNA was not observed in Lepr(db/db) females, whereas AGRP deficiency restored it in Lepr(db/db) females. Additionally, MC4R activation with MTII induced FOS expression in TAC2 neurons, supporting the concept of melanocortinergic regulation of TAC2 neurons. These studies suggest that AGRP imposes an inhibitory effect on puberty and that TAC2 neurons may transmit melanocortinergic inhibition of GnRH neurons.
Collapse
Affiliation(s)
- Sharone Sheffer-Babila
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | | |
Collapse
|
40
|
Sohn JW, Elmquist JK, Williams KW. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 2013; 36:504-12. [PMID: 23790727 DOI: 10.1016/j.tins.2013.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022]
Abstract
Neurons within the central nervous system receive humoral and central (neurotransmitter or neuropeptide) signals that ultimately regulate ingestive behavior and metabolism. Recent advances in mouse genetics combined with neuroanatomical and electrophysiological techniques have contributed to a better understanding of these central mechanisms. This review integrates recently defined cellular mechanisms and neural circuits relevant to the regulation of feeding behavior, energy expenditure, and glucose homeostasis by metabolic signals.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | |
Collapse
|
41
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
42
|
Wong IPL, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. Neuropeptide Y is a critical modulator of leptin's regulation of cortical bone. J Bone Miner Res 2013; 28:886-98. [PMID: 23044938 DOI: 10.1002/jbmr.1786] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
Abstract
Leptin signaling is required for normal bone homeostasis; however, loss of leptin results in differing effects on cortical and cancellous bone, as well as altered responses between the axial and appendicular regions. Local β-adrenergic actions are responsible for the greater cancellous bone volume in leptin-deficient (ob/ob) mice; however, the mechanism responsible for the opposing reduction in cortical bone in ob/ob mice is not known. Here we show that blocking the leptin-deficient increase in neuropeptide Y (NPY) expression reverses the cortical bone loss in ob/ob mice. Mice null for both NPY and leptin (NPY(-/-) ob/ob), display greater cortical bone mass in both long-bones and vertebra, with NPY(-/-) ob/ob mice exhibiting thicker and denser cortical bone, associated with greater endocortical and periosteal mineral apposition rate (MAR), compared to ob/ob animals. Importantly, these cortical changes occurred without significant increases in body weight, with NPY(-/-) ob/ob mice showing significantly reduced adiposity compared to ob/ob controls, most likely due to the reduced respiratory exchange ratio seen in these animals. Interestingly, cancellous bone volume was not different between NPY(-/-) ob/ob and ob/ob, suggesting that NPY is not influencing the adrenergic axis. Taken together, this work demonstrates the critical role of NPY signaling in the regulation of bone and energy homeostasis, and more importantly, suggests that reduced leptin levels or leptin resistance, which occurs in obesity, could potentially inhibit cortical bone formation via increased central NPY signaling.
Collapse
Affiliation(s)
- Iris P L Wong
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Coccaro EF, Lee R, Liu T, Mathé AA. Cerebrospinal fluid neuropeptide Y-like immunoreactivity correlates with impulsive aggression in human subjects. Biol Psychiatry 2012; 72:997-1003. [PMID: 22985695 DOI: 10.1016/j.biopsych.2012.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neurochemical studies have pointed to a modulatory role in human aggression for a number of central neurotransmitters; some (e.g., serotonin) appear to play an inhibitory role, while others (e.g., vasopressin) appear to play a facilitator role in the modulation of aggression. While recent animal studies of neuropeptide Y (NPY) have suggested a facilitator role for central NPY in the modulation of aggression, no human studies of central NPY have yet been reported regarding aggression. METHODS Basal lumbar cerebrospinal fluid (CSF) was obtained from 60 physically healthy subjects with personality disorder (PD) (n=40) and from healthy volunteers (n=20). These samples were then assessed for CSF NPY-like immunoreactivity (NPY-LI) and other neurotransmitter-related species in CSF and correlated with measures of aggression and impulsivity. RESULTS Cerebrospinal fluid NPY-LI was higher in PD subjects compared with healthy volunteers and in subjects with intermittent explosive disorder compared with those without intermittent explosive disorder. In PD subjects, CSF NPY-LI was directly correlated with composite measures of aggression and impulsivity and a composite measure of impulsive aggression. Group differences in CSF NPY-LI concentration were accounted for by measures of impulsive aggression. CONCLUSIONS These data suggest a direct relationship between CSF NPY-immunoreactivity concentration and measures of impulsive aggression in human subjects. This adds to the complex picture of the central neuromodulatory role of impulsive aggression in human subjects.
Collapse
Affiliation(s)
- Emil F Coccaro
- Department of Psychiatry and Behavioral Neuroscience, Clinical Neuroscience Research Unit, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
44
|
Rojas JM, Stafford JM, Saadat S, Printz RL, Beck-Sickinger AG, Niswender KD. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats. Am J Physiol Endocrinol Metab 2012; 303:E1479-88. [PMID: 23074243 PMCID: PMC3532466 DOI: 10.1152/ajpendo.00351.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Collapse
|
45
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
46
|
Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153:5587-99. [PMID: 22948210 DOI: 10.1210/en.2012-1470] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons act to sense and coordinate the brain's responses to metabolic cues. One neuronal network that is very sensitive to metabolic status is that controlling fertility. In this study, we investigated the impact of neuropeptides released by NPY and POMC neurons on the cellular excitability of GnRH neurons, the final output cells of the brain controlling fertility. The majority (∼70%) of GnRH neurons were activated by α-melanocyte-stimulating hormone, and this resulted from the direct postsynaptic activation of melanocortin receptor 3 and melanocortin receptor 4. A small population of GnRH neurons (∼15%) was excited by cocaine and amphetamine-regulated transcript or inhibited by β-endorphin. Agouti-related peptide, released by NPY neurons, was found to have variable inhibitory (∼10%) and stimulatory (∼25%) effects upon subpopulations of GnRH neurons. A variety of NPY and pancreatic polypeptide analogs was used to examine potential NPY interactions with GnRH neurons. Although porcine NPY (Y1/Y2/Y5 agonist) directly inhibited the firing of approximately 45% of GnRH neurons, [Leu(31),Pro(34)]-NPY (Y1/Y4/Y5 agonist) could excite (56%) or inhibit (19%). Experiments with further agonists indicated that Y1 receptors were responsible for suppressing GnRH neuron activity, whereas postsynaptic Y4 receptors were stimulatory. These results show that the activity of GnRH neurons is regulated in a complex manner by neuropeptides released by POMC and NPY neurons. This provides a direct route through which different metabolic cues can regulate fertility.
Collapse
Affiliation(s)
- Juan Roa
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | |
Collapse
|
47
|
Verma D, Tasan RO, Herzog H, Sperk G. NPY controls fear conditioning and fear extinction by combined action on Y₁ and Y₂ receptors. Br J Pharmacol 2012; 166:1461-73. [PMID: 22289084 PMCID: PMC3401902 DOI: 10.1111/j.1476-5381.2012.01872.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y₁ and inhibition of Y₂ receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown. EXPERIMENTAL APPROACH Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice. KEY RESULTS NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y₁ receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y₂ receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y₁ and Y₂ receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y₁ and Y₂ receptors. In Y₁ receptor single KO mice, fear extinction was delayed and was unchanged in Y₂ receptor KO mice. Deletion of NPY and particularly Y₂ receptors resulted in a generalization of conditioned fear. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y₁ receptors, the pronounced phenotype of Y₁Y₂ receptor double KO mice suggests a synergistic role of Y₂ receptors in fear acquisition and in fear extinction.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
48
|
Bkaily G, Avedanian L, Al-Khoury J, Ahmarani L, Perreault C, Jacques D. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions. Can J Physiol Pharmacol 2012; 90:953-65. [DOI: 10.1139/y2012-077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation–contraction coupling, excitation–secretion coupling, and excitation – gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Levon Avedanian
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Lena Ahmarani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Claudine Perreault
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
49
|
Israel DD, Sheffer-Babila S, de Luca C, Jo YH, Liu SM, Xia Q, Spergel DJ, Dun SL, Dun NJ, Chua SC. Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction. Endocrinology 2012; 153:2408-19. [PMID: 22408174 PMCID: PMC3381095 DOI: 10.1210/en.2011-1822] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin and melanocortin signaling control ingestive behavior, energy balance, and substrate utilization, but only leptin signaling defects cause hypothalamic hypogonadism and infertility. Although GnRH neurons do not express leptin receptors, leptin influences GnRH neuron activity via regulation of immediate downstream mediators including the neuropeptides neuropeptide Y and the melanocortin agonist and antagonist, α-MSH, agouti-related peptide, respectively. Here we show that modulation of melanocortin signaling in female db/db mice through ablation of agouti-related peptide, or heterozygosity of melanocortin 4 receptor, restores the timing of pubertal onset, fertility, and lactation. Additionally, melanocortin 4 receptor activation increases action potential firing and induces c-Fos expression in GnRH neurons, providing further evidence that melanocortin signaling influences GnRH neuron activity. These studies thus establish melanocortin signaling as an important component in the leptin-mediated regulation of GnRH neuron activity, initiation of puberty and fertility.
Collapse
Affiliation(s)
- Davelene D Israel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|