1
|
Xie P, Yang Y, Gong D, Yu L, Wang Y, Li Y, Prusky D, Bi Y. Preharvest spraying of phenylalanine activates the sucrose and respiratory metabolism in muskmelon wounds during healing. Food Chem 2024; 457:140194. [PMID: 38924917 DOI: 10.1016/j.foodchem.2024.140194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Phenylalanine (Phe) accelerates fruit wound healing by activating phenylpropanoid metabolism. However, whether Phe affects sucrose and respiratory metabolism in fruit during wound healing remains unknown. In this research, we found that preharvest Phe spray promoted sucrose degradation and increased glucose and fructose levels by activating acid invertase (AI), neutral invertase (NI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) on harvested muskmelons. The spray also activated hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and glucose-6-phosphate dehydrogenase (G6PDH). In addition, the spray improved energy and reducing power levels in the fruit. Taken together, preharvest Phe spray can provide carbon skeleton, energy and reducing power for wound healing by activating the sucrose metabolism, Embden-Meyerhof-Parnas (EMP) pathway, tricarboxylic acid (TCA) cycle and pentose phosphate (PPP) pathway in muskmelon wounds during healing, which is expected to be developed as a new strategy to accelerate fruit wound healing.
Collapse
Affiliation(s)
- Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
3
|
Lao TD, Nguyen NH, Le TAH, Nguyen PDT. Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L. Mol Biotechnol 2023:10.1007/s12033-023-00987-6. [PMID: 38102344 DOI: 10.1007/s12033-023-00987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023]
Abstract
The melon (Cucumis melo L.), a fruit crop of significant economic importance, is prized for its sweet and succulent fruits. Among variations of soluble sugars, sucrose, a disaccharide composed of glucose and fructose, is a key carbohydrate present in melon fruits. The sucrose content also determines the quality and value of melon fruits. However, the accumulation of sucrose is a complex process involving the coordinated actions of multiple enzymes and pathways. In melon species, there are two types of fruit ripening modes including climacteric and non-climacteric. Due to this biological characteristic, melon is emerging as a good model for studying the ripening process. Ethylene is a well-known phytohormone regulating the ripening of climacteric fruits. Recently, a few studies have elucidated a primary ethylene-dependent signaling pathway of sucrose accumulation in melon fruits. This review aims to provide a careful overview of the sucrose biosynthesis pathways in melon. It is essential to understand the molecular mechanisms of sucrose metabolism as well as its regulation mode. The information will be useful for developing molecular marker-assisted breeding as well as genetic engineering strategies aiming to improve the sucrose content and quality of melon fruits. In addition, even though limited, the impacts of genetic background and environmental factors on sucrose accumulation in melon fruits are also discussed. These are useful for practical applications in melon cultivation and quality management.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
4
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
5
|
Cheng L, Jin J, He X, Luo Z, Wang Z, Yang J, Xu X. Genome-wide identification and analysis of the invertase gene family in tobacco ( Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1164296. [PMID: 37332710 PMCID: PMC10272776 DOI: 10.3389/fpls.2023.1164296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sucrose (Suc) is directly associated with plant growth and development as well as tolerance to various stresses. Invertase (INV) enzymes played important role in sucrose metabolism by irreversibly catalyzing Suc degradation. However, genome-wide identification and function of individual members of the INV gene family in Nicotiana tabacum have not been conducted. In this report, 36 non-redundant NtINV family members were identified in Nicotiana tabacum including 20 alkaline/neutral INV genes (NtNINV1-20), 4 vacuolar INV genes (NtVINV1-4), and 12 cell wall INV isoforms (NtCWINV1-12). A comprehensive analysis based on the biochemical characteristics, the exon-intron structures, the chromosomal location and the evolutionary analysis revealed the conservation and the divergence of NtINVs. For the evolution of the NtINV gene, fragment duplication and purification selection were major factors. Besides, our analysis revealed that NtINV could be regulated by miRNAs and cis-regulatory elements of transcription factors associated with multiple stress responses. In addition, 3D structure analysis has provided evidence for the differentiation between the NINV and VINV. The expression patterns in diverse tissues and under various stresses were investigated, and qRT-PCR experiments were conducted to confirm the expression patterns. Results revealed that changes in NtNINV10 expression level were induced by leaf development, drought and salinity stresses. Further examination revealed that the NtNINV10-GFP fusion protein was located in the cell membrane. Furthermore, inhibition of the expression of NtNINV10 gene decreased the glucose and fructose in tobacco leaves. Overall, we have identified possible NtINV genes functioned in leaf development and tolerance to environmental stresses in tobacco. These findings provide a better understanding of the NtINV gene family and establish the basis for future research.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
6
|
Xu M, Zhang Y, Yang X, Xing J, Qi J, Zhang S, Zhang Y, Ye D, Tang C. Genome-wide analysis of the SWEET genes in Taraxacum kok-saghyz Rodin: An insight into two latex-abundant isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:440-448. [PMID: 36493591 DOI: 10.1016/j.plaphy.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Taraxacum kok-saghyz Rodin (Tk) is a promising alternative rubber-producing grass. However, low biomass and rubber-producing capability limit its commercial application. As a carbon source transporter in plants, sugar will eventually be exported transporters (SWEETs) have been reported to play pivotal roles in diverse physiological events in the context of carbon assimilate transport and utilization. Theoretically, SWEETs would participate in Tk growth, development and response to environmental cues with relation to the accumulation of rubber and biomass, both of which rely on the input of carbon assimilates. Here, we identified 22 TkSWEETs through homology searching of the Tk genomes and bioinformatics analyses. RNA-seq and qRT-PCR analysis revealed these TkSWEETs to have overlapping yet distinct tissue expression patterns. Two TkSWEET isofroms, TkSWEET1 and TkSWEET12 expressed substantially in the latex, the cytoplasm of rubber-producing laticifers as well as the rubber source. As revealed by the transient expression analysis using Tk mesophyll protoplasts, both TkSWEET1 and TkSWEET12 were located in the plasma membrane. Heterologous expressions of the two TkSWEETs in a yeast mutant revealed that only TkSWEET1 exhibited apparent sugar transport activities, with a preference for monosaccharides. Interestingly, TkSWEET12, the latex-predominant TkSWEET isoform, seemed to have evolved from a tandem duplication event that results in a cluster of six TkSWEET genes with the TkSWEET12 therein, suggesting its specialized roles in the laticifers.
Collapse
Affiliation(s)
- Menghao Xu
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yi Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xue Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jianfeng Xing
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Shengmin Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yuhao Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - De Ye
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Chaorong Tang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
7
|
Gomez-Vargas AD, Hernández-Martínez KM, López-Rosas ME, Alejo Jacuinde G, Simpson J. Evidence for Light and Tissue Specific Regulation of Genes Involved in Fructan Metabolism in Agave tequilana. PLANTS 2022; 11:plants11162153. [PMID: 36015458 PMCID: PMC9412663 DOI: 10.3390/plants11162153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Plant Glycoside Hydrolase Family 32 (PGHF32) contains the fructosyltransferases and fructan exohydrolase enzymes responsible for fructan metabolism, in addition to closely related vacuolar and cell wall acid invertases. Agave species produce complex and dynamic fructan molecules (agavins) requiring 4 different fructosyltransferase activities (1-SST, 1-FFT, 6G-FFT and 6-SFT) for their synthesis. Combined analysis of RNAseq and genome data for A. tequilana led to the characterization of the genes encoding 3 fructosyltransferases for this species and support the hypothesis that no separate 6-SFT type enzyme exists in A. tequilana, suggesting that at least one of the fructosyltransferases identified may have multiple enzymatic activities. Structures for PGHF32 genes varied for A. tequilana and between other plant species but were conserved for different enzyme types within a species. The observed patterns are consistent with the formation of distinct gene structures by intron loss. Promoter analysis of the PGHF32 genes identified abundant putative regulatory motifs for light regulation and tissue-specific expression, and these regulatory mechanisms were confirmed experimentally for leaf tissue. Motifs for phytohormone response, carbohydrate metabolism and dehydration responses were also uncovered. Based on the regulatory motifs, full-length cDNAs for MYB, GATA, DOF and GBF transcription factors were identified and their phylogenetic distribution determined by comparison with other plant species. In silico expression analysis for the selected transcription factors revealed both tissue-specific and developmental patterns of expression, allowing candidates to be identified for detailed analysis of the regulation of fructan metabolism in A. tequilana at the molecular level.
Collapse
|
8
|
Versluys M, Porras-Domínguez JR, De Coninck T, Van Damme EJM, Van den Ende W. A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1602-1622. [PMID: 34750605 DOI: 10.1093/jxb/erab488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (β-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (β-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | | | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
9
|
Lv J, Chen B, Ma C, Qiao K, Fan S, Ma Q. Identification and characterization of the AINV genes in five Gossypium species with potential functions of GhAINVs under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 173:2091-2102. [PMID: 34537974 DOI: 10.1111/ppl.13559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Acid invertase (AINV) is a kind of sucrose hydrolase with an important role in plants. Currently, the AINV genes have not been systematically studied in cotton. In this study, a total of 92 AINV genes were identified in five cotton species. The phylogenetic analysis revealed that the AINV proteins were divided into two subgroups in cotton: vacuolar invertase (VINV) and cell wall invertase (CWINV). The analysis of gene structures, conserved motifs, and three-dimensional protein structures suggested that GhAINVs were significantly conserved. The synteny analysis showed that whole-genome duplication was the main force promoting the expansion of the AINV gene family. The cis-element, transcriptome, and quantitative real time-polymerase chain reaction (qRT-PCR) showed that some GhAINVs were possibly associated with stress response. GhCWINV4, highly expressed in PEG treatment, was cloned, and subsequent virus-induced gene silencing assay confirmed that this gene was involved in the drought stress response. Overall, this study might be helpful for further analyzing the biological function of AINVs and provide clues for improving the resistance of cotton to stress.
Collapse
Affiliation(s)
- Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| |
Collapse
|
10
|
Wang G, Wu Y, Ma L, Lin Y, Hu Y, Li M, Li W, Ding Y, Chen L. Phloem loading in rice leaves depends strongly on the apoplastic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3723-3738. [PMID: 33624763 DOI: 10.1093/jxb/erab085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Phloem loading is the first step in sucrose transport from source leaves to sink organs. The phloem loading strategy in rice remains unclear. To determine the potential phloem loading mechanism in rice, yeast invertase (INV) was overexpressed by a 35S promoter specifically in the cell wall to block sugar transmembrane loading in rice. The transgenic lines exhibited obvious phloem loading suppression characteristics accompanied by the accumulation of sucrose and starch, restricted vegetative growth and decreased grain yields. The decreased sucrose exudation rate with p-chloromercuribenzenesulfonic acid (PCMBS) treatment also indicated that rice actively transported sucrose into the phloem. OsSUT1 (SUCROSE TRANSPORTER 1) showed the highest mRNA levels of the plasma membrane-localized OsSUTs in source leaves. Cross sections of the OsSUT::GUS transgenic plants showed that the expression of OsSUT1 and OsSUT5 occurred in the phloem companion cells. Rice ossut1 mutants showed reduced growth and grain yield, supporting the hypothesis of OsSUT1 acting in phloem loading. Based on these results, we conclude that apoplastic phloem loading plays a major role in the export of sugar from rice leaves.
Collapse
Affiliation(s)
- Gaopeng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yue Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Li Ma
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Mengzhu Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Weiwei Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
11
|
Li J, Foster R, Ma S, Liao SJ, Bliss S, Kartika D, Wang L, Wu L, Eamens AL, Ruan YL. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1058-1074. [PMID: 33650173 DOI: 10.1111/tpj.15218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Cell wall invertase (CWIN) hydrolyses sucrose into glucose and fructose in the extracellular matrix and plays crucial roles in assimilate partitioning and sugar signalling. However, the molecular regulators controlling CWIN gene transcription remain unknown. As the first step to address this issue, we performed bioinformatic and transgenic studies, which identified a cohort of transcription factors (TFs) modulating CWIN gene expression in Arabidopsis thaliana. Comprehensive bioinformatic analyses identified 18 TFs as putative regulators of the expression of AtCWIN2 and AtCWIN4 that are predominantly expressed in Arabidopsis reproductive organs. Among them, MYB21, ARF6, ARF8, AP3 and CRC were subsequently shown to be the most likely regulators of CWIN gene expression based on molecular characterization of the respective mutant of each candidate TF. More specifically, the obtained data indicate that ARF6, ARF8 and MYB21 regulate CWIN2 expression in the anthers and CWIN4 in nectaries, anthers and petals, whereas AP3 and CRC were determined primarily to regulate the transcriptional activity of CWIN4. TF-promoter interaction assays demonstrated that ARF6 and ARF8 directly control CWIN2 and CWIN4 transcription with AP3 activating CWIN4. The involvement of ARF8 in regulating CWIN4 expression was further supported by the finding that enhanced CWIN4 expression partially recovered the short silique phenotype displayed by the arf8-3 mutant. The identification of the five TFs regulating CWIN expression serves as a launching pad for future studies to dissect the upstream molecular network underpinning the transcription of CWINs and provides a new avenue, potentially, to engineer assimilate allocation and reproductive development for improving seed yield.
Collapse
Affiliation(s)
- Jun Li
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ryan Foster
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Si Ma
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Sheng-Jin Liao
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Samuel Bliss
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Dewi Kartika
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lu Wang
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Limin Wu
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Andrew L Eamens
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
12
|
Al-Sheikh Ahmed S, Zhang J, Farhan H, Zhang Y, Yu Z, Islam S, Chen J, Cricelli S, Foreman A, den Ende WV, Ma W, Dell B. Diurnal Changes in Water Soluble Carbohydrate Components in Leaves and Sucrose Associated TaSUT1 Gene Expression during Grain Development in Wheat. Int J Mol Sci 2020; 21:ijms21218276. [PMID: 33167324 PMCID: PMC7663803 DOI: 10.3390/ijms21218276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
In plant tissues, sugar levels are determined by the balance between sugar import, export, and sugar synthesis. So far, water soluble carbohydrate (WSC) dynamics have not been investigated in a diurnal context in wheat stems as compared to the dynamics in flag leaves during the terminal phases of grain filling. Here, we filled this research gap and tested the hypothesis that WSC dynamics interlink with gene expression of TaSUT1. The main stems and flag leaves of two genotypes, Westonia and Kauz, were sampled at four hourly intervals over a 24 h period at six developmental stages from heading to 28 DAA (days after anthesis). The total levels of WSC and WSC components were measured, and TaSUT1 gene expression was quantified at 21 DAA. On average, the total WSC and fructan levels in the stems were double those in the flag leaves. In both cultivars, diurnal patterns in the total WSC and sucrose were detected in leaves across all developmental stages, but not for the fructans 6-kestose and bifurcose. However, in stems, diurnal patterns of the total WSC and fructan were only found at anthesis in Kauz. The different levels of WSC and WSC components between Westonia and Kauz are likely associated with leaf chlorophyll levels and fructan degradation, especially 6-kestose degradation. High correlation between levels of TaSUT1 expression and sucrose in leaves indicated that TaSUT1 expression is likely to be influenced by the level of sucrose in leaves, and the combination of high levels of TaSUT1 expression and sucrose in Kauz may contribute to its high grain yield under well-watered conditions.
Collapse
Affiliation(s)
- Sarah Al-Sheikh Ahmed
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jingjuan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| | - Hussein Farhan
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Yingquan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Zitong Yu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Shahidul Islam
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jiansheng Chen
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Sanda Cricelli
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | - Andrew Foreman
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | | | - Wujun Ma
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Bernard Dell
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| |
Collapse
|
13
|
Ru L, He Y, Zhu Z, Patrick JW, Ruan YL. Integrating Sugar Metabolism With Transport: Elevation of Endogenous Cell Wall Invertase Activity Up-Regulates SlHT2 and SlSWEET12c Expression for Early Fruit Development in Tomato. Front Genet 2020; 11:592596. [PMID: 33193736 PMCID: PMC7604364 DOI: 10.3389/fgene.2020.592596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Early fruit development is critical for determining crop yield. Cell wall invertase (CWIN) and sugar transporters both play important roles in carbon allocation and plant development. However, there is little information about the relationship between CWIN and those functionally related sugar transporters during fruit development. By using transgenic tomato with an elevated CWIN activity, we investigated how an increase in CWIN activity may regulate the expression of sugar transporter genes during fruit development. Our analyses indicate that CWIN activity may be under tight regulation by multiple regulators, including two invertase inhibitors (INVINHs) and one defective CWIN (deCWIN) in tomato ovaries prior to anthesis. Among the sugar transporters, expression of SlSWEET12c for sucrose efflux and SlHT2 for hexose uptake was enhanced by the elevated CWIN activity at 10 and 15 days after anthesis of tomato fruit development, respectively. The findings show that some specific sugars will eventually be exported transporters (SWEETs) and hexose transporters (HTs) respond to elevate CWIN activity probably to promote rapid fruit expansion when sucrose efflux from phloem and hexose uptake by parenchyma cell are in high demand. The analyses provide new leads for improving crop yield by manipulating CWIN-responsive sugar transporters, together with CWIN itself, to enhance fruit development and sugar accumulation.
Collapse
Affiliation(s)
- Lei Ru
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China.,School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| | - Yong He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhujun Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - John W Patrick
- School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
14
|
Huang X, Luo W, Wu S, Long Y, Li R, Zheng F, Greiner S, Rausch T, Zhao H. Apoplastic maize fructan exohydrolase Zm-6-FEH displays substrate specificity for levan and is induced by exposure to levan-producing bacteria. Int J Biol Macromol 2020; 163:630-639. [PMID: 32622772 DOI: 10.1016/j.ijbiomac.2020.06.254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Fructan exohydrolases (FEHs) are structurally related to cell wall invertases. While the latter are ubiquitous in higher plants, the role of FEHs in non-fructan species has remained enigmatic. To explore possible roles of FEHs in maize, a full length putative Zm-6-FEH-encoding cDNA was cloned displaying high sequence similarity with cell wall invertases. For functional characterization, Zm-6-FEH protein was expressed in Picha pastoris and in Nicotiana benthamiana leaves. Enzyme activity of recombinant Zm-6-FEH protein showed a strong preference for levan as substrate. Expression profiling in maize seedlings revealed higher transcript amounts in the more mature leaf parts as compared to the growth zone at the base of the leaf, in good correlation with FEH enzyme activities. Subcellular localization analysis indicated Zm-6-FEH location in the apoplast. Noteworthy, incubation of leaf discs with levan and co-incubation with high levan-producing bacteria selectively up-regulated transcript levels of Zm-6-FEH, accompanied by an increase of 6-FEH enzyme activity. In summary, the results indicate that Zm-6-FEH, a novel fructan exohydrolase of a non-fructan species, may have a role in plant defense against levan-producing bacteria.
Collapse
Affiliation(s)
- Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Silin Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rui Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Fenghua Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Wu T, Liu Z, Yang L, Cheng Y, Tu J, Yang F, Zhu H, Li X, Dai Y, Nie X, Qin Z. The Pyrus bretschneideri invertase gene family: identification, phylogeny and expression patterns. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1745688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Tao Wu
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Zheng Liu
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Li Yang
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Yinsheng Cheng
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Junfan Tu
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Fuchen Yang
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Hongyan Zhu
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Xianming Li
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Yonghong Dai
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Xianshuang Nie
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| | - Zhongqi Qin
- Department of Pear Research, Institute of Fruit & Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, P.R. China
| |
Collapse
|
16
|
Basu PS, Pratap A, Gupta S, Sharma K, Tomar R, Singh NP. Physiological Traits for Shortening Crop Duration and Improving Productivity of Greengram ( Vigna radiata L. Wilczek) Under High Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1508. [PMID: 31867025 PMCID: PMC6904351 DOI: 10.3389/fpls.2019.01508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 10/30/2019] [Indexed: 05/10/2023]
Abstract
Greengram is an important protein-rich food legume crop. During the reproductive stage, high temperatures cause flower drop, induce male sterility, impair anthesis, and shortens the grain-filling period. Initially, 116 genotypes were evaluated for 3 years in two locations, and based on flowering, biomass, and yield attributes, they were grouped into four major clusters. A panel of 17 contrasting genotypes was selected for their heat tolerance in high-temperature greenhouses. The seedlings of the selected genotypes were exposed to heat shock in the range 37°C-52°C and their recovery after heat shock was assessed at 30°C. The seedlings of EC 398889 turned completely green and rejuvenated, while those of LGG 460 failed to recover, therefore, EC 398889 and LGG 460 were identified as heat-tolerant and heat-sensitive genotypes, respectively. Except for EC 398889, the remaining genotypes could not survive after heat shock. Fresh seeds of EC 398889 and LGG 460 were planted in field and pollen fertility and sucrose-synthase (SuSy) activity in grains were assessed at high temperatures. The pollen germination and SuSy activity were normal even at temperatures beyond 40°C in EC 398889 and high SuSy activity enabled faster grain filling than in LGG 460. The precise phenotyping demonstrated significant differences in the light-temperature response of photosynthesis, chlorophyll fluorescence imaging of quantum yield (Fv/Fm), and electron transport rate (ETR) between heat-tolerant (EC 398889) and heat-sensitive (LGG 460) genotypes. Molecular profiling of selected accessions showed polymorphism with 11 SSR markers and the markers CEDG147, CEDG247, and CEDG044 distinguished tolerant and sensitive groups of accessions.
Collapse
Affiliation(s)
- Partha Sarathi Basu
- Division of Basic Science, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Aditya Pratap
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Sanjeev Gupta
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Kusum Sharma
- Division of Basic Science, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Rakhi Tomar
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Narendra Pratap Singh
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
17
|
Ma XL, Milne RI, Zhou HX, Song YQ, Fang JY, Zha HG. Proteomics and post-secretory content adjustment of Nicotiana tabacum nectar. PLANTA 2019; 250:1703-1715. [PMID: 31414205 DOI: 10.1007/s00425-019-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The tobacco nectar proteome mainly consists of pathogenesis-related proteins with two glycoproteins. Expression of nectarins was non-synchronous, and not nectary specific. After secretion, tobacco nectar changed from sucrose rich to hexose rich. Floral nectar proteins (nectarins) play important roles in inhibiting microbial growth in nectar, and probably also tailoring nectar chemistry before or after secretion; however, very few plant species have had their nectar proteomes thoroughly investigated. Nectarins from Nicotiana tabacum (NT) were separated using two-dimensional gel electrophoresis and then analysed using mass spectrometry. Seven nectarins were identified: acidic endochitinase, β-xylosidase, α-galactosidase, α-amylase, G-type lectin S-receptor-like serine/threonine-protein kinase, pathogenesis-related protein 5, and early nodulin-like protein 2. An eighth nectarin, a glycoprotein with unknown function, was identified following isolation from NT nectar using a Qproteome total glycoprotein kit, separation by SDS-PAGE, and identification by mass spectrometry. Expression of all identified nectarins, plus four invertase genes, was analysed by qRT PCR; none of these genes had nectary-specific expression, and none had synchronous expression. The total content of sucrose, hexoses, proteins, phenolics, and hydrogen peroxide were determined at different time intervals in secreted nectar, both within the nectar tube (in vivo) and following extraction from it during incubation at 30 °C for up to 40 h in plastic tubes (in vitro). After secretion, the ratio of hexose to sucrose substantially increased for in vivo nectar, but no sugar composition changes were detected in vitro. This implies that sucrose hydrolysis in vivo might be done by fixed apoplastic invertase. Both protein and hydrogen peroxide levels declined in vitro but not in vivo, implying that some factors other than nectarins act to maintain their levels in the flower, after secretion.
Collapse
Affiliation(s)
- Xue-Long Ma
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Jiang-Yu Fang
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, China.
| |
Collapse
|
18
|
Zhao H, Greiner S, Scheffzek K, Rausch T, Wang G. A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize ( Zea mays L.). Int J Mol Sci 2019; 20:E3807. [PMID: 31382684 PMCID: PMC6696269 DOI: 10.3390/ijms20153807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/30/2023] Open
Abstract
About 15% of higher plants have acquired the ability to convert sucrose into fructans. Fructan degradation is catalyzed by fructan exohydrolases (FEHs), which are structurally related to cell wall invertases (CWI). However, the biological function(s) of FEH enzymes in non-fructan species have remained largely enigmatic. In the present study, one maize CWI-related enzyme named Zm-6&1-FEH1, displaying FEH activity, was explored with respect to its substrate specificities, its expression during plant development, and its possible interaction with CWI inhibitor protein. Following heterologous expression in Pichia pastoris and in N. benthamiana leaves, recombinant Zm-6&1-FEH1 revealed substrate specificities of levan and inulin, and also displayed partially invertase activity. Expression of Zm-6&1-FEH1 as monitored by qPCR was strongly dependent on plant development and was further modulated by abiotic stress. To explore whether maize FEH can interact with invertase inhibitor protein, Zm-6&1-FEH1 and maize invertase inhibitor Zm-INVINH1 were co-expressed in N. benthamiana leaves. Bimolecular fluorescence complementation (BiFC) analysis and in vitro enzyme inhibition assays indicated productive complex formation. In summary, the results provide support to the hypothesis that in non-fructan species FEH enzymes may modulate the regulation of CWIs.
Collapse
Affiliation(s)
- Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Klaus Scheffzek
- Division Biological Chemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. FRONTIERS IN PLANT SCIENCE 2019; 10:541. [PMID: 31114601 PMCID: PMC6503109 DOI: 10.3389/fpls.2019.00541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/09/2019] [Indexed: 05/28/2023]
Abstract
Storage roots are the main sink for photo-assimilate accumulation and reflect cassava yield and productivity. Regulation of sugar partitioning from leaves to storage roots has not been elucidated. Cell wall invertases are involved in the hydrolysis of sugar during phloem unloading of vascular plants to control plant development and sink strength but have rarely been studied in root crops like cassava. MeCWINV3 encodes a typical cell wall invertase in cassava and is mainly expressed in vascular bundles. The gene is highly expressed in leaves, especially mature leaves, in response to diurnal rhythm. When MeCWINV3 was overexpressed in cassava, sugar export from leaves to storage roots was largely inhibited and sucrose hydrolysis in leaves was accelerated, leading to increased transient starch accumulation by blocking starch degradation and reduced overall plant growth. The progress of leaf senescence was promoted in the MeCWINV3 over-expressed cassava plants with increased expression of senescence-related genes. Storage root development was also delayed because of dramatically reduced sugar allocation from leaves. As a result, the transcriptional expression of starch biosynthetic genes such as small subunit ADP-glucose pyrophosphorylase, granule-bound starch synthase I, and starch branching enzyme I was reduced in accordance with insufficient sugar supply in the storage roots of the transgenic plants. These results show that MeCWINV3 regulates sugar allocation from source to sink and maintains sugar balance in cassava, thus affecting yield of cassava storage roots.
Collapse
Affiliation(s)
- Wei Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Guanghua Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Zhanfei Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tailing Jiang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Nishanth MJ, Sheshadri SA, Rathore SS, Srinidhi S, Simon B. Expression analysis of Cell wall invertase under abiotic stress conditions influencing specialized metabolism in Catharanthus roseus. Sci Rep 2018; 8:15059. [PMID: 30305670 PMCID: PMC6180051 DOI: 10.1038/s41598-018-33415-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Catharanthus roseus is a commercial source for anti-cancer terpenoid indole alkaloids (TIAs: vincristine and vinblastine). Inherent levels of these TIAs are very low, hence research studies need to focus on enhancing their levels in planta. Since primary metabolism provides precursors for specialized-metabolism, elevating the former can achieve higher amounts of the latter. Cell Wall Invertase (CWIN), a key enzyme in sucrose-metabolism catalyses the breakdown of sucrose into glucose and fructose, which serve as carbon-skeleton for specialized-metabolites. Understanding CWIN regulation could unravel metabolic-engineering approaches towards enhancing the levels of TIAs in planta. Our study is the first to characterize CWIN at gene-expression level in the medicinal plant, C. roseus. The CWINs and their inter-relationship with sucrose and TIA metabolism was studied at gene and metabolite levels. It was found that sucrose-supplementation to C. roseus leaves significantly elevated the monomeric TIAs (vindoline, catharanthine) and their corresponding genes. This was further confirmed in cross-species, wherein Nicotiana benthamiana leaves transiently-overexpressing CrCWIN2 showed significant upregulation of specialized-metabolism genes: NbPAL2, Nb4CL, NbCHS, NbF3H, NbANS, NbHCT and NbG10H. The specialized metabolites- cinnamic acid, coumarin, and fisetin were significantly upregulated. Thus, the present study provides a valuable insight into metabolic-engineering approaches towards augmenting the levels of therapeutic TIAs.
Collapse
Affiliation(s)
- M J Nishanth
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - S A Sheshadri
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Sudarshan Singh Rathore
- Actinomycetes Bioprospecting Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - S Srinidhi
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Bindu Simon
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
21
|
Van den Ende W. Novel fructan exohydrolase: unique properties and applications for human health. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4227-4231. [PMID: 30124951 PMCID: PMC6093494 DOI: 10.1093/jxb/ery268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
22
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Wan H, Wu L, Yang Y, Zhou G, Ruan YL. Evolution of Sucrose Metabolism: The Dichotomy of Invertases and Beyond. TRENDS IN PLANT SCIENCE 2018; 23:163-177. [PMID: 29183781 DOI: 10.1016/j.tplants.2017.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 05/07/2023]
Abstract
In higher plants, invertases hydrolyze sucrose (Suc), the major end product of photosynthesis, into glucose (Glc) and fructose (Fru), which are used as nutrients, energy sources, and signaling molecules for plant growth, yield formation, and stress responses. The invertase enzymes, named CWINs, VINs, and CINs, are located in the cell wall, vacuole, and cytosol, respectively. We hypothesize, based on their distinctive subcellular locations and physiological roles, that invertases may have undergone different modes during evolution with important functional implications. Here, we provide phylogenetic and functional genomic evidence that CINs are evolutionarily and functionally more stable compared with CWINs and VINs, possibly reflecting their roles in maintaining cytosolic sugar homeostasis for cellular function, and that CWINs have coevolved with the vasculature, likely as a functional component of phloem unloading.
Collapse
Affiliation(s)
- Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Limin Wu
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yuejian Yang
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
24
|
Xu ZR, Cai SW, Huang WX, Liu RX, Xiong ZT. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:17-25. [PMID: 28822946 DOI: 10.1016/j.ecoenv.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shen-Wen Cai
- College of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, People's Republic of China
| | - Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Rong-Xiang Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Ting Xiong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
25
|
Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. PLANT, CELL & ENVIRONMENT 2018; 41:16-38. [PMID: 28925070 DOI: 10.1111/pce.13070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 05/13/2023]
Abstract
Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Onur Kirtel
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Zhang J, Wu Z, Hu F, Liu L, Huang X, Zhao J, Wang H. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. HORTICULTURE RESEARCH 2018; 5:39. [PMID: 30083354 PMCID: PMC6068106 DOI: 10.1038/s41438-018-0042-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 05/08/2023]
Abstract
Cell wall invertase (CWIN) are known to play important roles in seed development. However, most reports to date have focused on a single gene family member, and have mainly investigated CWIN functions during the filling stage of seed development. In this study, we found significant lower levels of CWIN protein and activity associated with seed abortion in the Litchi chinensis cultivar "Nuomici." We identified five litchi CWIN genes and observed that the expression of LcCWIN5 was limited to the flower tissues and decreased sharply with fruit development. Silencing of LcCWIN5 expression before 28 DAA (cell division stage) resulted in perturbed liquid endosperm development, smaller seeds, and higher seed abortion rate, while silencing after 28 DAA (filling stage) had no effect on seed development. In contrast, LcCWIN2 was mostly expressed in the funicle and seed coat, and increased with fruit development. Decreased LcCWIN2 expression and CWIN activity during early seed filling coincided with smaller seeds in the cultivar "Feizixiao." Silencing of LcCWIN2 caused a reduction in the seed size without inducing seed abortion. We propose that CWIN activity in seed maternal tissues during cell division stage is likely due to LcCWIN5 expression, which regulates early seed development. On the other hand, CWIN activity during the filling stage is due to the expression of LcCWIN2, which may promote carbon import by creating a sucrose gradient. Comparable LcCWIN5 expression, but much lower CWIN activity, detected in the funicle of "Nuomici" is consistent with post-translational regulation.
Collapse
Affiliation(s)
- Jieqiong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Present Address: Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Zichen Wu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Fuchu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key laboratory of tropical fruit tree biology of Hainan Province, Hainan Academy of Agricultural Science, Haikou, 571100 China
| | - Lian Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuming Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huicong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Chongqing, China
| |
Collapse
|
27
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
28
|
Wei H, Zhao H, Su T, Bausewein A, Greiner S, Harms K, Rausch T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4323-4338. [PMID: 28922763 PMCID: PMC5853547 DOI: 10.1093/jxb/erx210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 05/17/2023]
Abstract
In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S, Schneitz K. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 2017; 144:2259-2269. [PMID: 28507000 DOI: 10.1242/dev.152231] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/04/2017] [Indexed: 01/17/2023]
Abstract
Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis.
Collapse
Affiliation(s)
- Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Jennifer Wieland
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Milena Schaeffer
- Lehrstuhl für Phytopathologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Stefanie Ranf
- Lehrstuhl für Phytopathologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
30
|
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:322-335. [PMID: 28304127 DOI: 10.1111/jipb.12539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.
Collapse
Affiliation(s)
- Jun Li
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Limin Wu
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ryan Foster
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| |
Collapse
|
31
|
Goetz M, Guivarćh A, Hirsche J, Bauerfeind MA, González MC, Hyun TK, Eom SH, Chriqui D, Engelke T, Großkinsky DK, Roitsch T. Metabolic Control of Tobacco Pollination by Sugars and Invertases. PLANT PHYSIOLOGY 2017; 173:984-997. [PMID: 27923989 PMCID: PMC5291038 DOI: 10.1104/pp.16.01601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates.
Collapse
Affiliation(s)
- Marc Goetz
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Anne Guivarćh
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Jörg Hirsche
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Martin Andreas Bauerfeind
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - María-Cruz González
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Tae Kyung Hyun
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Seung Hee Eom
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Dominique Chriqui
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Thomas Engelke
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Dominik K Großkinsky
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.)
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.)
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.)
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.)
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| | - Thomas Roitsch
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany (M.G., T.R.);
- Laboratoire de Cytologie Expérimentale et Morphogenèse Végétale, Université Pierre et Marie Curie, 75252 Paris cedex 05, France (A.G., D.C.);
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany (J.H., M.A.B., M.-C.G., T.K.H., S.H.E., T.E., T.R.);
- Department of Industrial Plant Science and Technology, College of Agricultural, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea (T.K., S.H.E.);
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 2630 Taastrup, Denmark (D.K.G., T.R.); and
- Global Change Research Centre, Czech Globe AS CR, Cz-664 24 Drásov, Czech Republic (T.R.)
| |
Collapse
|
32
|
Leskow CC, Kamenetzky L, Dominguez PG, Díaz Zirpolo JA, Obata T, Costa H, Martí M, Taboga O, Keurentjes J, Sulpice R, Ishihara H, Stitt M, Fernie AR, Carrari F. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4091-103. [PMID: 27194734 DOI: 10.1093/jxb/erw185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level.
Collapse
Affiliation(s)
- Carla Coluccio Leskow
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Laura Kamenetzky
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - José Antonio Díaz Zirpolo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Toshihiro Obata
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Hernán Costa
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, (6700) Luján, Argentina
| | - Marcelo Martí
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | | | - Ronan Sulpice
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| |
Collapse
|
33
|
ZHANG N, JIANG J, YANG YL, WANG ZH. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. J Zhejiang Univ Sci B 2015; 16:845-56. [PMID: 26465132 PMCID: PMC4609536 DOI: 10.1631/jzus.b1400319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Abstract
In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.
Collapse
Affiliation(s)
- Ning ZHANG
- Key Laboratory of Protected Horticulture, Ministry of Education, College of Horticulture,Shenyang Agricultural University, Shenyang 110866, China
| | | | | | | |
Collapse
|
34
|
Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 2015; 59:109-19. [PMID: 25958775 DOI: 10.1111/jpi.12245] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg university, Heidelberg, Germany
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
35
|
Palmer WM, Ru L, Jin Y, Patrick JW, Ruan YL. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements. MOLECULAR PLANT 2015; 8:315-28. [PMID: 25680776 DOI: 10.1016/j.molp.2014.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 05/08/2023]
Abstract
Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set.
Collapse
Affiliation(s)
- William M Palmer
- School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Callaghan, Australia; Australia-China Research Centre for Crop Improvement, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Lei Ru
- School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Callaghan, Australia; Australia-China Research Centre for Crop Improvement, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Ye Jin
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Callaghan, Australia; Australia-China Research Centre for Crop Improvement, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Callaghan, Australia; Australia-China Research Centre for Crop Improvement, The University of Newcastle, NSW 2308, Callaghan, Australia.
| |
Collapse
|
36
|
Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. THE NEW PHYTOLOGIST 2015; 205:293-305. [PMID: 25250511 DOI: 10.1111/nph.13030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/27/2014] [Indexed: 05/18/2023]
Abstract
In wheat stems, the levels of fructan-dominated water-soluble carbohydrates (WSC) do not always correlate well with grain yield. Field drought experiments were carried out to further explain this lack of correlation. Wheat (Triticum aestivum) varieties, Westonia, Kauz and c. 20 genetically diverse double haploid (DH) lines derived from them were investigated. Substantial genotypic differences in fructan remobilization were found and the 1-FEH w3 gene was shown to be the major contributor in the stem fructan remobilization process based on enzyme activity and gene expression results. A single nucleotide polymorphism (SNP) was detected in an auxin response element in the 1-FEH w3 promoter region, therefore we speculated that the mutated Westonia allele might affect gene expression and enzyme activity levels. A cleaved amplified polymorphic (CAP) marker was generated from the SNP. The harvested results showed that the mutated Westonia 1-FEH w3 allele was associated with a higher thousand grain weight (TGW) under drought conditions in 2011 and 2012. These results indicated that higher gene expression of 1-FEH w3 and 1-FEH w3 mediated enzyme activities that favoured stem WSC remobilization to the grains. The CAP marker residing in the 1-FEH w3 promoter region may facilitate wheat breeding by selecting lines with high stem fructan remobilization capacity under terminal drought.
Collapse
Affiliation(s)
- Jingjuan Zhang
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gao J, van Kleeff PJM, Oecking C, Li KW, Erban A, Kopka J, Hincha DK, de Boer AH. Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:785-96. [PMID: 25256212 DOI: 10.1111/tpj.12677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 05/17/2023]
Abstract
Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N-invertase activity is underscored by the light-induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light-induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca(++) changes that activate calcium-dependent kinases, await further study.
Collapse
Affiliation(s)
- Jing Gao
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Proels RK, Hückelhoven R. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. MOLECULAR PLANT PATHOLOGY 2014; 15:858-64. [PMID: 24646208 PMCID: PMC6638650 DOI: 10.1111/mpp.12139] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant-pathogen interactions do not result in pathogenesis because of pre-formed defensive plant barriers or pathogen-triggered activation of effective plant immune responses. The mounting of defence reactions is accompanied by a profound modulation of plant metabolism. Common metabolic changes are the repression of photosynthesis, the increase in heterotrophic metabolism and the synthesis of secondary metabolites. This enhanced metabolic activity is accompanied by the reduced export of sucrose or enhanced import of hexoses at the site of infection, which is mediated by an induced activity of cell-wall invertase (Cw-Inv). Cw-Inv cleaves sucrose, the major transport sugar in plants, irreversibly yielding glucose and fructose, which can be taken up by plant cells via hexose transporters. These hexose sugars not only function in metabolism, but also act as signalling molecules. The picture of Cw-Inv regulation in plant-pathogen interactions has recently been broadened and is discussed in this review. An interesting emerging feature is the link between Cw-Inv and the circadian clock and new modes of Cw-Inv regulation at the post-translational level.
Collapse
Affiliation(s)
- Reinhard Korbinian Proels
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | | |
Collapse
|
39
|
Paupière MJ, van Heusden AW, Bovy AG. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 2014; 4:889-920. [PMID: 25271355 PMCID: PMC4279151 DOI: 10.3390/metabo4040889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Adriaan W van Heusden
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Arnaud G Bovy
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| |
Collapse
|
40
|
Lothier J, Van Laere A, Prud'homme MP, Van den Ende W, Morvan-Bertrand A. Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne. PLANTA 2014; 240:629-43. [PMID: 25023629 DOI: 10.1007/s00425-014-2110-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/17/2014] [Indexed: 05/22/2023]
Abstract
The first 6-fructan exohydrolase (6-FEH) cDNA from Lolium perenne was cloned and characterized. Following defoliation, Lp6 - FEHa transcript level unexpectedly decreased together with an increase in total FEH activity. Lolium perenne is a major forage grass species that accumulates fructans, mainly composed of β(2,6)-linked fructose units. Fructans are mobilized through strongly increased activities of fructan exohydrolases (FEHs), sustaining regrowth following defoliation. To understand the complex regulation of fructan breakdown in defoliated grassland species, the objective was to clone and characterize new FEH genes in L. perenne. To find FEH genes related to refoliation, a defoliated tiller base cDNA library was screened. Characterization of the recombinant protein was performed in Pichia pastoris. In this report, the cloning and enzymatic characterization of the first 6-FEH from L. perenne is described. Following defoliation, during fructan breakdown, Lp6-FEHa transcript level unexpectedly decreased in elongating leaf bases (ELB) and in mature leaf sheaths (tiller base) in parallel to increased total FEH activities. In comparison, transcript levels of genes coding for fructosyltransferases (FTs) involved in fructan biosynthesis also decreased after defoliation but much faster than FEH transcript levels. Since Lp6-FEHa was strongly inhibited by sucrose, mechanisms modulating FEH activities are discussed. It is proposed that differences in the regulation of FEH activity among forage grasses influence their tolerance to defoliation.
Collapse
Affiliation(s)
- Jérémy Lothier
- Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), Université d'Angers, SFR 149 QUASAV, 49045, Angers, France
| | | | | | | | | |
Collapse
|
41
|
Braun DM, Wang L, Ruan YL. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1713-35. [PMID: 24347463 DOI: 10.1093/jxb/ert416] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
42
|
Sun L, Yang DL, Kong Y, Chen Y, Li XZ, Zeng LJ, Li Q, Wang ET, He ZH. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. MOLECULAR PLANT PATHOLOGY 2014; 15:161-73. [PMID: 24118770 PMCID: PMC6638756 DOI: 10.1111/mpp.12078] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.
Collapse
Affiliation(s)
- Li Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:33-67. [PMID: 24579990 DOI: 10.1146/annurev-arplant-050213-040251] [Citation(s) in RCA: 728] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose metabolism plays pivotal roles in development, stress response, and yield formation, mainly by generating a range of sugars as metabolites to fuel growth and synthesize essential compounds (including protein, cellulose, and starch) and as signals to regulate expression of microRNAs, transcription factors, and other genes and for crosstalk with hormonal, oxidative, and defense signaling. This review aims to capture the most exciting developments in this area by evaluating (a) the roles of key sucrose metabolic enzymes in development, abiotic stress responses, and plant-microbe interactions; (b) the coupling between sucrose metabolism and sugar signaling from extra- to intracellular spaces; (c) the different mechanisms by which sucrose metabolic enzymes could perform their signaling roles; and (d) progress on engineering sugar metabolism and transport for high yield and disease resistance. Finally, the review outlines future directions for research on sugar metabolism and signaling to better understand and improve plant performance.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environment and Life Sciences and Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan 2308, Australia;
| |
Collapse
|
44
|
Cabello S, Lorenz C, Crespo S, Cabrera J, Ludwig R, Escobar C, Hofmann J. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:201-12. [PMID: 24187419 PMCID: PMC3883288 DOI: 10.1093/jxb/ert359] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.
Collapse
Affiliation(s)
- Susana Cabello
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Cindy Lorenz
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Sara Crespo
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Roland Ludwig
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Julia Hofmann
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| |
Collapse
|
45
|
Verspreet J, Cimini S, Vergauwen R, Dornez E, Locato V, Le Roy K, De Gara L, Van den Ende W, Delcour JA, Courtin CM. Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. ACTA ACUST UNITED AC 2013; 54:2047-57. [DOI: 10.1093/pcp/pct144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
den Ende WV. Multifunctional fructans and raffinose family oligosaccharides. FRONTIERS IN PLANT SCIENCE 2013; 4:247. [PMID: 23882273 PMCID: PMC3713406 DOI: 10.3389/fpls.2013.00247] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/19/2013] [Indexed: 05/17/2023]
Abstract
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure-function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called "defective invertases." Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source-sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
Collapse
|
47
|
Van den Ende W. Multifunctional fructans and raffinose family oligosaccharides. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23882273 DOI: 10.3389/fpls.201300247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure-function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called "defective invertases." Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source-sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
Collapse
Affiliation(s)
- Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven Leuven, Belgium
| |
Collapse
|