1
|
Hameed A, Khan MA, Tahir MHN, Lodhi MS, Muzammil S, Shafiq M, Gechev T, Faisal M. In Silico identification and characterization of SOS gene family in soybean: Potential of calcium in salinity stress mitigation. PLoS One 2025; 20:e0317612. [PMID: 39928632 DOI: 10.1371/journal.pone.0317612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/01/2025] [Indexed: 02/12/2025] Open
Abstract
Leguminous crops are usually sensitive to saline stress during germination and plant growth stages. The Salt Overly Sensitive (SOS) pathway is one of the key signaling pathways involved in salt translocation and tolerance in plants however, it is obscure in soybean. The current study describes the potential of calcium application on the mitigation of salinity stress and its impact on seed germination, morphological, physiological and biochemical attributes of soybean. The seeds from previously reported salt-tolerant and salt-susceptible soybean varieties were primed with water, calcium (10 and 20 mM), and stressed under 60, 80 and 100 mM NaCl and evaluated in various combinations. Results show that germination increased by 7% in calcium primed non-stressed seeds under non-stressing, whereas an improvement of 15%-25% was observed in germination under NaCl stress. Likewise, improvement in seedling length (3%-8%), plant height (9%-18%), number of nodes (3%-14%), SOD activity (20%) and Na+/K+ concentration (3%-5% reduction) in calcium primed plants, indicates alleviation of salinity-induced negative effects. In addition, this study also included in silico identification and confirmation of presence of Arabidopsis thaliana SOS genes orthologs in soybean. The research of amino acid sequences of SOS proteins from Arabidopsis thaliana (AtSOSs) within Glycine max genome displayed protein identity (60-80%) thus these identified homologs were called as GmSOS. Further phylogeny and in silico analyses showed that GmSOS orthologs contain similar gene structures, close evolutionary relationship, and same conserved motifs, reinforcing that GmSOSs belong to SOS family and they share many common features with orthologs from other species thus may perform similar functions. This is the first study that reports role of SOSs in salt-stress mitigation in soybean.
Collapse
Affiliation(s)
- Anam Hameed
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - M Asaf Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - M Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, The Punjab University, Lahore, Pakistan
| | - Tsanko Gechev
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department of Molecular Biology, Plovdiv University, Plovdiv, Bulgaria
| | - Muhammad Faisal
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| |
Collapse
|
2
|
Li Y, Hu Y, Liu W, Xia H, Liu Y, Sun Z, Zhou Y. Heterologous expression of Sesuvium portulacastrum SpCIPK2 confers salt tolerance in transgenic Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2024; 176:e14654. [PMID: 39639843 DOI: 10.1111/ppl.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin B-like interacting protein kinases (CIPKs) play critical roles in plant adaptation to salt stress. However, the biological functions of CIPKs in Sesuvium portulacastrum, a halophyte flourishing in coastal mudflats, remain poorly understood. Here, a highly expressed CIPK gene, SpCIPK2, was identified from transcriptomic analyses of S. portulacastrum root systems under salt stress. Subcellular localization assays confirmed the cytoplasmic presence of SpCIPK2. Arabidopsis thaliana plants overexpressing SpCIPK2 exhibited markedly improved salt tolerance, characterized by increased fresh weight under salt stress. Transgenic plants demonstrated significantly lower levels of O2·- and H2O2 compared to wild-type plants. Furthermore, transgenic plants revealed a reduced relative conductivity and enhanced peroxidase (POD) activity in the leaves. Salt treatment accelerated Na+ efflux while slowing K+ efflux in transgenic plants, resulting in diminished Na+ accumulation and an elevated K+/Na+ ratio during salt stress. This evidence suggests that SpCIPK2 enhances salt tolerance by regulating ion homeostasis, activating antioxidant enzymes activity, and scavenging reactive oxygen species (ROS) in salt-stressed plants.
Collapse
Affiliation(s)
- Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Haiyan Xia
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang, Jiangsu, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Yan F, Jiang R, Yang C, Yang Y, Luo Z, Jiang Y. Response Mechanisms of Zelkova schneideriana Leaves to Varying Levels of Calcium Stress. Int J Mol Sci 2024; 25:9293. [PMID: 39273242 PMCID: PMC11394862 DOI: 10.3390/ijms25179293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Calcium stress can negatively impact plant growth, prompting plants to respond by mitigating this effect. However, the specific mechanisms underlying this response remain unclear. In this study, we used non-targeted metabolomics and transcriptomics to investigate the response mechanisms of Zelkova schneideriana leaves under varying degrees of calcium stress. Results revealed that calcium stress led to wilt in young leaves. When calcium stress exceeds the tolerance threshold of the leaf, it results in wilting of mature leaves, rupture of chloroplasts in palisade tissue, and extensive wrinkling and breakage of leaf cells. Transcriptomic analysis indicated that calcium stress inhibited photosynthesis by suppressing the expression of genes related to photosynthetic system II and electron transport. Leaf cells activate phenylpropanoid biosynthesis, flavonoid biosynthesis, and Vitamin B6 metabolism to resist calcium stress. When calcium accumulation gradually surpassed the tolerance threshold of the cells, this results in failure of conventional anti-calcium stress mechanisms, leading to cell death. Furthermore, excessive calcium stress inhibits the expression of CNGC and anti-pathogen genes. The results of the metabolomics study showed that five key metabolites increased in response to calcium stress, which may play an important role in countering calcium stress. This study provides insights into the response of Z. schneideriana leaves to different levels of calcium stress, which could provide a theoretical basis for cultivating Z. schneideriana in karst areas and enhance our understanding of plant responses to calcium stress.
Collapse
Affiliation(s)
- Fengxia Yan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Ronghui Jiang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Chao Yang
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Yanbing Yang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Zaiqi Luo
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Yunli Jiang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China
| |
Collapse
|
5
|
Zsigmond L, Juhász-Erdélyi A, Valkai I, Aleksza D, Rigó G, Kant K, Szepesi Á, Fiorani F, Körber N, Kovács L, Szabados L. Mitochondrial complex I subunit NDUFS8.2 modulates responses to stresses associated with reduced water availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108466. [PMID: 38428158 DOI: 10.1016/j.plaphy.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Mitochondria are important sources of energy in plants and are implicated in coordination of a number of metabolic and physiological processes including stabilization of redox balance, synthesis and turnover of a number of metabolites, and control of programmed cell death. Mitochondrial electron transport chain (mETC) is the backbone of the energy producing process which can influence other processes as well. Accumulating evidence suggests that mETC can affect responses to environmental stimuli and modulate tolerance to extreme conditions such as drought or salinity. Screening for stress responses of 13 Arabidopsis mitochondria-related T-DNA insertion mutants, we identified ndufs8.2-1 which has an increased ability to withstand osmotic and oxidative stresses compared to wild type plants. Insertion in ndufs8.2-1 disrupted the gene that encodes the NADH dehydrogenase [ubiquinone] fragment S subunit 8 (NDUFS8) a component of Complex I of mETC. ndufs8.2-1 tolerated reduced water availability, retained photosynthetic activity and recovered from severe water stress with higher efficiency compared to wild type plants. Several mitochondrial functions were altered in the mutant including oxygen consumption, ROS production, ATP and ADP content as well as activities of genes encoding alternative oxidase 1A (AOX1A) and various alternative NAD(P)H dehydrogenases (ND). Our results suggest that in the absence of NDUFS8.2 stress-induced ROS generation is restrained leading to reduced oxidative damage and improved tolerance to water deficiency. mETC components can be implicated in redox and energy homeostasis and modulate responses to stresses associated with reduced water availability.
Collapse
Affiliation(s)
- Laura Zsigmond
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
| | - Annabella Juhász-Erdélyi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kamal Kant
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fabio Fiorani
- Institute of Bio- and Geo-Sciences, IBG2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Niklas Körber
- Nunhems - BASF Vegetable Seeds, Department of Data Science and Technology, Roermond, Netherlands
| | - László Kovács
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
6
|
Steensma P, Eisenhut M, Colinas M, Rosado-Souza L, Fernie AR, Weber APM, Fitzpatrick TB. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions. PLANT PHYSIOLOGY 2023; 193:1433-1455. [PMID: 37453131 PMCID: PMC10517258 DOI: 10.1093/plphys/kiad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.
Collapse
Affiliation(s)
- Priscille Steensma
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Maite Colinas
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | |
Collapse
|
7
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
8
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Gorelova V, Colinas M, Dell’Aglio E, Flis P, Salt DE, Fitzpatrick TB. Phosphorylated B6 vitamer deficiency in SALT OVERLY SENSITIVE 4 mutants compromises shoot and root development. PLANT PHYSIOLOGY 2022; 188:220-240. [PMID: 34730814 PMCID: PMC8774746 DOI: 10.1093/plphys/kiab475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 05/31/2023]
Abstract
Stunted growth in saline conditions is a signature phenotype of the Arabidopsis SALT OVERLY SENSITIVE mutants (sos1-5) affected in pathways regulating the salt stress response. One of the mutants isolated, sos4, encodes a kinase that phosphorylates pyridoxal (PL), a B6 vitamer, forming the important coenzyme pyridoxal 5'-phosphate (PLP). Here, we show that sos4-1 and more recently isolated alleles are deficient in phosphorylated B6 vitamers including PLP. This deficit is concomitant with a lowered PL level. Ionomic profiling of plants under standard laboratory conditions (without salt stress) reveals that sos4 mutants are perturbed in mineral nutrient homeostasis, with a hyperaccumulation of transition metal micronutrients particularly in the root, accounting for stress sensitivity. This is coincident with the accumulation of reactive oxygen species, as well as enhanced lignification and suberization of the endodermis, although the Casparian strip is intact and functional. Further, micrografting shows that SOS4 activity in the shoot is necessary for proper root development. Growth under very low light alleviates the impairments, including salt sensitivity, suggesting that SOS4 is important for developmental processes under moderate light intensities. Our study provides a basis for the integration of SOS4 derived B6 vitamers into plant health and fitness.
Collapse
Affiliation(s)
- Vera Gorelova
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Maite Colinas
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Elisa Dell’Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Paulina Flis
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - David E Salt
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Cao Y, Shan T, Fang H, Sun K, Shi W, Tang B, Wu J, Wang K, Li P, Wang B. Genome-wide analysis reveals the spatiotemporal expression patterns of SOS3 genes in the maize B73 genome in response to salt stress. BMC Genomics 2022; 23:60. [PMID: 35034642 PMCID: PMC8761280 DOI: 10.1186/s12864-021-08287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/29/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Salt damage is an important abiotic stress that affects the growth and yield of maize worldwide. As an important member of the salt overly sensitive (SOS) signal transduction pathway, the SOS3 gene family participates in the transmission of stress signals and plays a vital role in improving the salt tolerance of plants. RESULTS In this study, we identified 59 SOS3 genes in the maize B73 genome using bioinformatics methods and genome-wide analyses. SOS3 proteins were divided into 5 different subfamilies according to the phylogenetic relationships. A close relationship between the phylogenetic classification and intron mode was observed, with most SOS3 genes in the same group sharing common motifs and similar exon-intron structures in the corresponding genes. These genes were unequally distributed on five chromosomes of B73. A total of six SOS3 genes were identified as repeated genes, and 12 pairs of genes were proven to be segmentally duplicated genes, indicating that gene duplication may play an important role in the expansion of the SOS3 gene family. The expression analysis of 10 genes that were randomly selected from different subgroups suggested that all 10 genes were significantly differentially expressed within 48 h after salt treatment, of which eight SOS3 genes showed a significant decline while Zm00001d025938 and Zm00001d049665 did not. By observing the subcellular localization results, we found that most genes were expressed in chloroplasts while some genes were expressed in the cell membrane and nucleus. CONCLUSIONS Our study provides valuable information for elucidating the evolutionary relationship and functional characteristics of the SOS3 gene family and lays the foundation for further study of the SOS3 gene family in the maize B73 genome.
Collapse
Affiliation(s)
- Yunying Cao
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tingyu Shan
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Kangtai Sun
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Wen Shi
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Bei Tang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, 226368, Jiangsu, China
| | - Kai Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
11
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
12
|
He M, Ma J, Chen Q, Zhang Q, Yu P. Engineered production of pyridoxal 5'-phosphate in Escherichia coli BL21. Prep Biochem Biotechnol 2021; 52:498-507. [PMID: 34431758 DOI: 10.1080/10826068.2021.1966801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the coenzyme of more than 140 enzymes and is widely used in various fields. In this study, to enhance the production of PLP in Escherichia coli BL21, the recombinant strain E. coli BL21/pETDuet-1-pdxj-zwf-dxs was constructed. The concentration of PLP in this strain was 82.69 mg/L, which was increased by 1.38-fold as compared to that in E. coli BL21. Glucose, yeast extract, and pH had an obvious impact on the concentration of PLP, and their optimal levels were 34.89 g/L, 31.17 g/L, and 10.07, respectively. The concentration of PLP under the optimal condition reached 2.23 g/L. The time-course analysis showed that the highest concentration of PLP was 2.32 g/L in recombinant strain after the induction for 12 h by 0.1 mM IPTG in a 1 L shake flask, which was increased by 38.76-fold as compared to that in E. coli BL21. This study provides a good basis for the efficient production of PLP in E. coli BL21.
Collapse
Affiliation(s)
- Min He
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. One Hundred Candidate Genes and Their Roles in Drought and Salt Tolerance in Wheat. Int J Mol Sci 2021; 22:ijms22126378. [PMID: 34203629 PMCID: PMC8232269 DOI: 10.3390/ijms22126378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Drought and salinity are major constraints to agriculture. In this review, we present an overview of the global situation and the consequences of drought and salt stress connected to climatic changes. We provide a list of possible genetic resources as sources of resistance or tolerant traits, together with the previous studies that focused on transferring genes from the germplasm to cultivated varieties. We explained the morphological and physiological aspects connected to hydric stresses, described the mechanisms that induce tolerance, and discussed the results of the main studies. Finally, we described more than 100 genes associated with tolerance to hydric stresses in the Triticeae. These were divided in agreement with their main function into osmotic adjustment and ionic and redox homeostasis. The understanding of a given gene function and expression pattern according to hydric stress is particularly important for the efficient selection of new tolerant genotypes in classical breeding. For this reason, the current review provides a crucial reference for future studies on the mechanism involved in hydric stress tolerance and the use of these genes in mark assistance selection (MAS) to select the wheat germplasm to face the climatic changes.
Collapse
|
14
|
Zhang L, Song H, Li B, Wang M, Di D, Lin X, Kronzucker HJ, Shi W, Li G. Induction of S-nitrosoglutathione reductase protects root growth from ammonium toxicity by regulating potassium homeostasis in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4548-4564. [PMID: 33772588 DOI: 10.1093/jxb/erab140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
Ammonium (NH4+) is toxic to root growth in most plants already at moderate levels of supply, but mechanisms of root growth tolerance to NH4+ remain poorly understood. Here, we report that high levels of NH4+ induce nitric oxide (NO) accumulation, while inhibiting potassium (K+) acquisition via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4), leading to the arrest of primary root growth. High levels of NH4+ also stimulated the accumulation of GSNOR (S-nitrosoglutathione reductase) in roots. GSNOR overexpression improved root tolerance to NH4+. Loss of GSNOR further induced NO accumulation, increased SNO1/SOS4 activity, and reduced K+ levels in root tissue, enhancing root growth sensitivity to NH4+. Moreover, the GSNOR-like gene, OsGSNOR, is also required for NH4+ tolerance in rice. Immunoblotting showed that the NH4+-induced GSNOR protein accumulation was abolished in the VTC1- (vitamin C1) defective mutant vtc1-1, which is hypersensititive to NH4+ toxicity. GSNOR overexpression enhanced vtc1-1 root tolerance to NH4+. Our findings suggest that induction of GSNOR increases NH4+ tolerance in Arabidopsis roots by counteracting NO-mediated suppression of tissue K+, which depends on VTC1 function.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Song
- Academic Affairs Office, Foshan University, Foshan, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, HangzhouChina
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, HangzhouChina
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
15
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
16
|
Raina M, Kumar A, Yadav N, Kumari S, Yusuf MA, Mustafiz A, Kumar D. StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. PLANT MOLECULAR BIOLOGY 2021; 106:85-108. [PMID: 33629224 DOI: 10.1007/s11103-021-01131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Sumita Kumari
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India.
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Wang Y, Fang Z, Yang L, Chan Z. Transcriptional variation analysis of Arabidopsis ecotypes in response to drought and salt stresses dissects commonly regulated networks. PHYSIOLOGIA PLANTARUM 2021; 172:77-90. [PMID: 33280127 DOI: 10.1111/ppl.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Salinity and drought conditions commonly result in osmotic and oxidative stresses, while salinity additionally causes ionic stress. In this study, we identified specific genes regulated by osmotic and ionic stresses in five Arabidopsis ecotypes. Shahdara (SHA) and C24 ecotypes were more tolerant to salt and drought stresses at the seedling growth stage, as evidenced by lower water loss rate, lower electrolyte leakage, and higher survival rate when compared to the other three ecotypes under drought and salinity conditions. Transcriptomic analysis revealed that 3700 and 2242 genes were differentially regulated by salt and osmotic stresses, respectively. Totally 78.1% of upregulated and 62.0% of downregulated genes by osmotic stress were also commonly regulated by salt stress. Gene ontology term enrichment analysis showed that auxin indole-3-acetic acid (IAA), abscisic acid, cytokinin, and gibberellic acid pathways were regulated by the osmotic stress, while IAA, jasmonic acid, and ethylene pathways were changed by the ionic stress. The nutrient and water uptake pathways were regulated by both the osmotic and ionic stresses, whereas ion transportation and kinase pathways were modulated by the ionic stress. Additionally, we characterized bHLH61 as a negative regulator in response to salt and drought stresses. This study provided new clues of plant responses to salt and drought stresses.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhengfu Fang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
19
|
Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 2021; 296:391-408. [DOI: 10.1007/s00438-020-01749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
|
20
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
21
|
Bogoutdinova LR, Lazareva EM, Chaban IA, Kononenko NV, Dilovarova T, Khaliluev MR, Kurenina LV, Gulevich AA, Smirnova EA, Baranova EN. Salt Stress-Induced Structural Changes Are Mitigated in Transgenic Tomato Plants Over-Expressing Superoxide Dismutase. BIOLOGY 2020; 9:E297. [PMID: 32962161 PMCID: PMC7564123 DOI: 10.3390/biology9090297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Various abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and Na2SO4 solutions to tomato plants harboring an introduced superoxide dismutase gene. To study the roots of tomato plants cultivar Belyi Naliv (WT) and FeSOD-transgenic line, we examined the distribution of ROS and enzyme-linked immunosorbent detection of α-tubulin. In addition, longitudinal sections of the root apexes were compared. Transmission electronic microscopy of atypical cytoskeleton structures was also performed. The differences in the microtubules cortical network between WT and transgenic plants without salt stress were detected. The differences were found in the cortical network of microtubules between WT and transgenic plants in the absence of salt stress. While an ordered microtubule network was revealed in the root cells of WT tomato, no such degree of ordering was detected in transgenic line cells. The signs of microtubule disorganization in root cells of WT plants were manifested under the NaCl treatment. On the contrary, the cytoskeleton structural organization in the transgenic line cells was more ordered. Similar changes, including the cortical microtubules disorganization, possibly associated with the formation of atypical tubulin polymers as a response to salt stress caused by Na2SO4 treatment, were also observed. Changes in cell size, due to both vacuolization and impaired cell expansion in columella zone and cap initials, were responsible for the root tip tissue modification.
Collapse
Affiliation(s)
- Liliya R. Bogoutdinova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Elena M. Lazareva
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 40, 119991 Moscow, Russia
| | - Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Neonila V. Kononenko
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Tatyana Dilovarova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Marat R. Khaliluev
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
- Agronomy and Biotechnology Faculty, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya 49, 127550 Moscow, Russia
| | - Ludmila V. Kurenina
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
| | - Alexander A. Gulevich
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
| | - Elena A. Smirnova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 40, 119991 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
22
|
An Y, Yang XX, Zhang L, Zhang J, Du B, Yao L, Li XT, Guo C. Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline-alkali stress. PLANT CELL REPORTS 2020; 39:997-1011. [PMID: 32333150 DOI: 10.1007/s00299-020-02543-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/06/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE MsCBL4 expression in tobacco enhanced its salt and saline-alkali stress tolerance by regulating calcium accumulation in roots, indicating the important role of calcium metabolism in plant saline-alkali stress tolerance The calcineurin B-like (CBL) family of proteins play important roles in plant abiotic stress tolerance and signal transduction. CBL4 is known to participate in the Salt Overly Sensitive pathway; however, little is currently known regarding the mechanisms underlying the response of CBL4 to saline-alkali stress. In this study, we cloned and characterized the alfalfa MsCBL4 gene. We found that MsCBL4 showed the highest expression in root tissues and was induced by salt and saline-alkali stress, with the latter causing higher induction. Overexpression of MsCBL4 in tobacco enhanced salt and saline-alkali stress tolerance and reduced the Na+/K+ ratio in roots of transgenic lines. Salt (30 and 300 mM NaCl) and saline-alkali (30 mM NaHCO3) stress assays performed for MsCBL4 transgenic tobacco lines revealed a substantial influx of sodium ions in roots under saline-alkali stress and indicated that the expression of MsCBL4 had little influence on sodium ion content reduction. In contrast, in roots subjected to saline-alkali stress, calcium accumulation occurred and was significantly enhanced by the overexpression of MsCBL4. Physiological and biochemical analyses indicated that MsCBL4 plays an important role in saline-alkali stress tolerance via its influence on the regulation of calcium transport and accumulation. These results provide novel insights into the saline-alkali stress tolerance mechanisms of plants.
Collapse
Affiliation(s)
- Yimin An
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Xiao-Xue Yang
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Lishuang Zhang
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Jun Zhang
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Binghao Du
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Lin Yao
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China
| | - Xiu-Ting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and, Business University (BTBU), Beijing, 100048, China
| | - Changhong Guo
- State Key Laboratory of Molecular Genetics, Harbin Normal University, 1 Shidanan Road, Harbin, 150025, China.
| |
Collapse
|
23
|
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley. Int J Mol Sci 2020; 21:ijms21010359. [PMID: 31935789 PMCID: PMC6981547 DOI: 10.3390/ijms21010359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum) is one of the most important crops in the Qinghai-Tibet Plateau. Soil salinity seriously affects its cultivation. To investigate the mechanism of salt stress response during seed germination, two contrasting hulless barley genotypes were selected to first investigate the molecular mechanism of seed salinity response during the germination stage using RNA-sequencing and isobaric tags for relative and absolute quantitation technologies. Compared to the salt-sensitive landrace lk621, the salt-tolerant one lk573 germinated normally under salt stress. The changes in hormone contents also differed between lk621 and lk573. In lk573, 1597 differentially expressed genes (DEGs) and 171 differentially expressed proteins (DEPs) were specifically detected at 4 h after salt stress, and correspondingly, 2748 and 328 specifically detected at 16 h. Most specific DEGs in lk573 were involved in response to oxidative stress, biosynthetic process, protein localization, and vesicle-mediated transport, and most specific DEPs were assigned to an oxidation-reduction process, carbohydrate metabolic process, and protein phosphorylation. There were 96 genes specifically differentially expressed at both transcriptomic and proteomic levels in lk573. These results revealed the molecular mechanism of salt tolerance and provided candidate genes for further study and salt-tolerant improvement in hulless barley.
Collapse
Affiliation(s)
- Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Jinmin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Panrong Ren
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Erjing Si
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
- Correspondence: (Y.K.); (H.W.)
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.K.); (H.W.)
| |
Collapse
|
24
|
Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu Z. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:172-184. [PMID: 31161713 PMCID: PMC6920159 DOI: 10.1111/pbi.13184] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss-of-function osmdh1 mutant displaying salt stress-tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1-GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress-sensitive phenotype. Liquid chromatography-mass spectrometry (LC-MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress-induced pyridoxine accumulation. Furthermore, genome-wide RNA-sequencing (RNA-seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.
Collapse
Affiliation(s)
- Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yangwen Qian
- Biogle Genome Editing CenterChangzhouJiangsu ProvinceChina
| | - Long Jiang
- School of AgronomyJilin College of Agricultural Science & TechnologyJilinChina
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
25
|
Cheng C, Zhong Y, Wang Q, Cai Z, Wang D, Li C. Genome-wide identification and gene expression analysis of SOS family genes in tuber mustard (Brassica juncea var. tumida). PLoS One 2019; 14:e0224672. [PMID: 31710609 PMCID: PMC6844470 DOI: 10.1371/journal.pone.0224672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/19/2019] [Indexed: 11/26/2022] Open
Abstract
The Salt Overly Sensitive (SOS) pathway in Arabidopsis thaliana plays important roles in maintaining appropriate ion homeostasis in the cytoplasm and regulating plant tolerance to salinity. However, little is known about the details regarding SOS family genes in the tuber mustard crop (Brassica juncea var. tumida). Here, 12 BjSOS family genes were identified in the B. juncea var. tumida genome including two homologous genes of SOS1, one and three homologs of SOS2 and SOS3, two homologs of SOS4, two homologs of SOS5 and two homologs of SOS6, respectively. The results of conserved motif analysis showed that these SOS homologs contained similar protein structures. By analyzing the cis-elements in the promoters of those BjSOS genes, several hormone- and stress-related cis-elements were found. The results of gene expression analysis showed that the homologous genes were induced by abiotic stress and pathogen. These findings indicate that BjSOS genes play crucial roles in the plant response to biotic and abiotic stresses. This study provides valuable information for further investigations of BjSOS genes in tuber mustard.
Collapse
Affiliation(s)
- Chunhong Cheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
| | - Yuanmei Zhong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
| | - Qing Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
| | - Zhaoming Cai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
| | - Diandong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
| | - Changman Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
26
|
Yang LT, Zhou YF, Wang YY, Wu YM, Qian B, Wang H, Chen LS. Phosphorus-mediated alleviation of aluminum toxicity revealed by the iTRAQ technique in Citrus grandis roots. PLoS One 2019; 14:e0223516. [PMID: 31613915 PMCID: PMC6793874 DOI: 10.1371/journal.pone.0223516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
Citrus grandis seedlings were irrigated with nutrient solutions with four Al-P combinations [two Al levels (0 mM and 1.2 mM AlCl3·6H2O) × two P levels (0 μM and 200 μM KH2PO4)] for 18 weeks. Al dramatically inhibited the growth of C. grandis seedlings, as revealed by a decreased dry weight of roots and shoots. Elevating P level could ameliorate the Al-induced growth inhibition and organic acid (malate and citrate) secretion in C. grandis. Using a comparative proteomic approach revealed by the isobaric tags for relative and absolute quantification (iTRAQ) technique, 318 differentially abundant proteins (DAPs) were successfully identified and quantified in this study. The possible mechanisms underlying P-induced alleviation of Al toxicity in C. grandis were proposed. Furthermore, some DAPs, such as GLN phosphoribosyl pyrophosphate amidotransferase 2, ATP-dependent caseinolytic (Clp) protease/crotonase family protein, methionine-S-oxide reductase B2, ABC transporter I family member 17 and pyridoxal phosphate phosphatase, were reported for the first time to respond to Al stress in Citrus plants. Our study provides some proteomic details about the alleviative effects of P on Al toxicity in C. grandis, however, the exact function of the DAPs identified herein in response to Al tolerance in plants must be further investigated.
Collapse
Affiliation(s)
- Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang-Fei Zhou
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Yu Wang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Mei Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bing Qian
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heng Wang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: ;
| |
Collapse
|
27
|
Mangel N, Fudge JB, Li K, Wu T, Tohge T, Fernie AR, Szurek B, Fitzpatrick TB, Gruissem W, Vanderschuren H. Enhancement of vitamin B 6 levels in rice expressing Arabidopsis vitamin B 6 biosynthesis de novo genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1047-1065. [PMID: 31063672 PMCID: PMC6852651 DOI: 10.1111/tpj.14379] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Jared B. Fudge
- Department of Botany and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Kuan‐Te Li
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Ting‐Ying Wu
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Takayuki Tohge
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
- Present address:
Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaNara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
| | - Boris Szurek
- IRDCiradUniversity of MontpellierIPMEMontpellier34394France
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung City40227Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Plant Genetics LabTERRA Research and Teaching CentreGembloux Agro BioTechUniversity of LiègeGembloux5030Belgium
| |
Collapse
|
28
|
Albaqami M, Laluk K, Reddy ASN. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. PLANT MOLECULAR BIOLOGY 2019; 100:379-390. [PMID: 30968308 DOI: 10.1007/s11103-019-00864-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/28/2019] [Indexed: 05/08/2023]
Abstract
Functions of most splice isoforms that are generated by alternative splicing are unknown. We show that two splice variants that encode proteins differing in only eight amino acids have distinct functions in a stress response. Serine/arginine-rich (SR) and SR-like proteins, a conserved family of RNA binding proteins across eukaryotes, play important roles in pre-mRNA splicing and other post-transcriptional processes. Pre-mRNAs of SR and SR-like proteins undergo extensive alternative splicing in response to diverse stresses and produce multiple splice isoforms. However, the functions of most splice isoforms remain elusive. Alternative splicing of pre-mRNA of Arabidopsis SR45, which encodes an SR-like splicing regulator, generates two isoforms (long-SR45.1 and short-SR45.2). The proteins encoded by these two isoforms differ in eight amino acids. Here, we investigated the role of SR45 and its splice variants in salt stress tolerance. The loss of SR45 resulted in enhanced sensitivity to salt stress and changes in expression and splicing of genes involved in regulating salt stress response. Interestingly, only the long isoform (SR45.1) rescued the salt-sensitive phenotype as well as the altered gene expression and splicing patterns in the mutant. These results suggest that SR45 positively regulates salt tolerance. Furthermore, only the long isoform is required for SR45-mediated salt tolerance.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca, 21955, Kingdom of Saudi Arabia
| | - K Laluk
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
29
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
30
|
Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep 2019; 9:1983. [PMID: 30760853 PMCID: PMC6374390 DOI: 10.1038/s41598-018-38093-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
The growing population requires sustainable, environmentally-friendly crops. The plant growth-enhancing properties of algal extracts have suggested their use as biofertilisers. The mechanism(s) by which algal extracts affect plant growth are unknown. We examined the effects of extracts from the common green seaweed Ulva intestinalis on germination and root development in the model land plant Arabidopsis thaliana. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid-insensitive mutant, abi1, showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Elemental analysis showed that Ulva contains high levels of Aluminium ions (Al3+). Ethylene and cytokinin have been suggested to function in Al3+-mediated root growth inhibition: our data suggest that if Ulva Al3+ levels inhibit root growth, this is via a novel mechanism. We suggest algal extracts should be used cautiously as fertilisers, as the inhibitory effects on early development may outweigh any benefits if the concentration of extract is too high.
Collapse
|
31
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Kim G, Jang S, Yoon EK, Lee SA, Dhar S, Kim J, Lee MM, Lim J. Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. Mol Cells 2018; 41:1033-1044. [PMID: 30453730 PMCID: PMC6315319 DOI: 10.14348/molcells.2018.0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5'-phosphate (PNP)/pyridoxamine 5'-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5'-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.
Collapse
Affiliation(s)
- Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore,
Singapore
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju,
Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Jinkwon Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| |
Collapse
|
33
|
Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. THE NEW PHYTOLOGIST 2018; 220:1322-1336. [PMID: 29982997 DOI: 10.1111/nph.15295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal (AM) symbioses can improve plant tolerance to multiple stresses. We compared three AM fungi (AMF) from different genera, one of them isolated from a dry and saline environment, in terms of their ability to increase tomato tolerance to moderate or severe drought or salt stress. Plant physiological parameters and metabolic profiles were compared in order to find the molecular mechanisms underlying plant protection against stress. Mycorrhizal growth response was determined, and ultrahigh-performance LC-MS was used to compare the metabolic profile of plants under the different treatments. All AMF increased plant tolerance to stress, and the positive effects of the symbiosis were correlated with the severity of the stress. The AMF isolated from the stressful environment was the most effective in improving plant tolerance to salt stress. Differentially accumulated compounds were identified and the antistress properties of some of them were confirmed. We demonstrate that AM symbioses increase plant metabolic plasticity to cope with stress. Some responses were common to all AMF tested, while others were specifically related to particular isolates. Important metabolism reprograming was evidenced upon salt stress, and we identified metabolic pathways and compounds differentially accumulated in mycorrhizas that may underlie their enhanced tolerance to stress.
Collapse
Affiliation(s)
- Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Domingo Álvarez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, CSIC Associated Unit, Plant Physiology Section, Department of Agricultural and Environmental Sciences, Universitat Jaume I (UJI), Campus del Riu Sec, Castellón de la Plana 12071, Spain
| | - Concepción Azcón-Aguilar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
34
|
Karlik E, Gozukirmizi N. Expression analysis of lncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity. Mol Biol Rep 2018; 45:1597-1609. [PMID: 30298351 DOI: 10.1007/s11033-018-4289-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), which are longer than > 200 nt, perform various functions in a variety of important biological processes. The aim of this study is the investigation of relative expression levels of AK372815 putative pyridoxal reductase (PLR) gene and sense lncRNA AK370814 on four barley genotypes (Hasat, Beysehir 99, Konevi 98 and Tarm 92) in response to 150 mM salinity application during 3 days post-germination. Seeds were placed randomly in petri dishes containing (a) only H2O (control), (b) 150 mM NaCl, for 72 h. RNA isolation was carried out using TriPure® reagent from 150 mM salt-treated root and shoot samples. Relative expression levels of AK372815 PLR and sense lncRNA AK370814 were determined by qPCR. Results demonstrated that salinity affected the expression levels of both AK372815 PLR gene and sense lncRNA AK370814 during germination. Although expression levels of AK372815 PLR tended to be down-regulated under salinity, expression levels of sense lncRNA AK370814 were up-regulated. Another goal of this study is improvement of alternative approach to NGS technologies for determination of relative expression levels of sense lncRNAs under particular circumstances. This is the first report that demonstrates a relationship between lncRNA and vitamin B6 salvage pathway.
Collapse
Affiliation(s)
- Elif Karlik
- Department of Biotechnology, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| | - Nermin Gozukirmizi
- Department of Molecular Biology and Genetics, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.,Department of Molecular Biology and Genetics, İstinye University, 34010, Zeytinburnu, İstanbul, Turkey
| |
Collapse
|
35
|
Gong H, Wu CE, Fan GJ, Li TT, Wang JH, Wang T. Determination and Comparison of 4'- O-Methylpyridoxine Analogues in Ginkgo biloba Seeds at Different Growth Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7916-7922. [PMID: 29975518 DOI: 10.1021/acs.jafc.8b02522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The antivitamin B6, 4'- O-methylpyridoxine (MPN); its glucoside, 4'- O-methylpyridoxine-5'-glucoside (MPNG); and vitamin B6 compounds, including pyridoxal (PL), pyridoxamine, pyridoxine, pyridoxal-5'-phosphate (PLP), and pyridoxamine-5'-phosphate, exist in Ginkgo biloba seeds, which are widely used as food and medicine. This work aimed to determine the MPN analogues in G. biloba seeds at different growth stages in terms of cultivars and ages of trees. The highest total MPN contents of 249.30, 295.62, and 267.85 μg/g were obtained in the mature stages of three selected G. biloba samples. The total contents of vitamin B6 compounds decreased significantly in the entire growth period of the three samples. Principal-component analysis revealed that MPN and MPNG were important contributors in the MPN-analogue metabolism of G. biloba seeds. The influence of the cultivar on the content and composition of MPN analogues was greater than that of the age of the G. biloba tree.
Collapse
Affiliation(s)
- Hao Gong
- Co-Innovation Center for Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing 210037 , China
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Cai-E Wu
- Co-Innovation Center for Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing 210037 , China
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Gong-Jian Fan
- Co-Innovation Center for Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing 210037 , China
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Ting-Ting Li
- Co-Innovation Center for Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing 210037 , China
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jia-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing 210037 , China
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Tao Wang
- College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
- Department of Chemistry Engineering , Xuzhou College of Industrial Technology , Xuzhou 221140 , China
| |
Collapse
|
36
|
Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018; 7:cells7070084. [PMID: 30037155 PMCID: PMC6071262 DOI: 10.3390/cells7070084] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 is one of the most central molecules in cells of living organisms. It is a critical co-factor for a diverse range of biochemical reactions that regulate basic cellular metabolism, which impact overall physiology. In the last several years, major progress has been accomplished on various aspects of vitamin B6 biology. Consequently, this review goes beyond the classical role of vitamin B6 as a cofactor to highlight new structural and regulatory information that further defines how the vitamin is synthesized and controlled in the cell. We also discuss broader applications of the vitamin related to human health, pathogen resistance, and abiotic stress tolerance. Overall, the information assembled shall provide helpful insight on top of what is currently known about the vitamin, along with addressing currently open questions in the field to highlight possible approaches vitamin B6 research may take in the future.
Collapse
Affiliation(s)
- Marcelina Parra
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Seth Stahl
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Hanjo Hellmann
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| |
Collapse
|
37
|
Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. THE NEW PHYTOLOGIST 2018; 219:259-274. [PMID: 29658100 DOI: 10.1111/nph.15157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
The root tip zone is regarded as the principal action site for iron (Fe) toxicity and is more sensitive than other root zones, but the mechanism underpinning this remains largely unknown. We explored the mechanism underpinning the higher sensitivity at the Arabidopsis root tip and elucidated the role of nitric oxide (NO) using NO-related mutants and pharmacological methods. Higher Fe sensitivity of the root tip is associated with reduced potassium (K+ ) retention. NO in root tips is increased significantly above levels elsewhere in the root and is involved in the arrest of primary root tip zone growth under excess Fe, at least in part related to NO-induced K+ loss via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4) and reduced root tip zone cell viability. Moreover, ethylene can antagonize excess Fe-inhibited root growth and K+ efflux, in part by the control of root tip NO levels. We conclude that excess Fe attenuates root growth by effecting an increase in root tip zone NO, and that this attenuation is related to NO-mediated alterations in K+ homeostasis, partly via SNO1/SOS4.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
38
|
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A 2018; 115:5810-5815. [PMID: 29760074 DOI: 10.1073/pnas.1719491115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
Collapse
|
39
|
Vitamin B6 biosynthetic genes expression and antioxidant enzyme properties in tomato against, Erwinia carotovora subsp. carotovora. Int J Biol Macromol 2018; 116:31-36. [PMID: 29738862 DOI: 10.1016/j.ijbiomac.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
Vitamin B6 (VitB6) is an essential cofactor for >140 biochemical reactions. Also, VitB6 is a potent antioxidant and helps plants cope with both biotic and abiotic stress conditions. However, the role of VitB6 in plant disease resistance has yet to be confirmed using molecular biology approaches. Here, we analyzed the expression patterns of VitB6 biosynthetic genes, including the de novo (PDX1 [PDX1.2 and 1.3] and PDX2) and the salvage (SOS4) pathways during the response to Erwinia carotovora subsp. carotovora. By quantitative PCR, we found that the most significant upregulation in the transcript profile of PDX2, which showed a 9.2-fold increase in expression at 12 h post inoculation (hpi) compared to 24-48 hpi. We also detected significant upregulation of PDX1.2 and PDX1.3, which were 6.6- and 4.3-fold upregulated at 24 hpi compared to 12 hpi, while SOS4 showed only low-level expression. Also, at 24 hpi, a significant increase in superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities was observed in plants. Our findings confirm that the expression of de novo and salvage pathway genes is induced by E. carotovora and that this plays an important role in the regulation of defense response by modulating cellular antioxidant capacity.
Collapse
|
40
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
41
|
Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC. A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84 T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:813. [PMID: 30083171 PMCID: PMC6065202 DOI: 10.3389/fpls.2018.00813] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Panax ginseng (C.A. Mayer) is a well-known medicinal plant used in traditional medicine in Korea that experiences serious salinity stress related to weather changes or incorrect fertilizer application. In ginseng, the use of Paenibacillus yonginensis DCY84T to improve salt stress tolerance has not been thoroughly explored. Therefore, we studied the role of P. yonginensis DCY84T under short-term and long-term salinity stress conditions in a controlled environment. In vitro testing of DCY84T revealed high indole acetic acid (IAA) production, siderophore formation, phosphate solubilization and anti-bacterial activity. We determined that 10-min dip in 1010 CFU/ml DCY84T was sufficient to protect ginseng against short-term salinity stress (osmotic stress) upon exposure to 300 mM NaCl treatment by enhancing nutrient availability, synthesizing hydrolyzing enzymes and inducing osmolyte production. Upon exposure to salinity stress (oxidative and ionic stress), strain DCY84T-primed ginseng seedlings were protected by the induction of defense-related systems such as ion transport, ROS scavenging enzymes, proline content, total sugars, and ABA biosynthetic genes, as well as genes involved in root hair formation. Additionally, ginseng primed with DCY84T and exposed to 300 mM NaCl showed the same metabolite profile as control ginseng plants, suggesting that DCY84T effectively reduced salt stress. These results indicated that DCY84T can be widely used as a microbial inoculant to protect ginseng plants against salinity stress conditions.
Collapse
Affiliation(s)
- Johan Sukweenadhi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Sri R. Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- *Correspondence: Yeon-Ju Kim
| | - Choong H. Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Sung C. Koh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Deok C. Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- Deok C. Yang
| |
Collapse
|
42
|
Nikalje G, Nikam T, Suprasanna P. Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape. Curr Genomics 2017; 18:542-552. [PMID: 29204082 PMCID: PMC5684652 DOI: 10.2174/1389202918666170228143007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Soil salinity is an important stress factor that limits plant growth and productivity. For a given plant species, it is critical to sense and respond to salt stimuli followed by activation of multitude of mechanisms for plants to survive. Halophytes, the wonders of saline soils, have demonstrated ability to withstand and reproduce in at least 200 mM NaCl concentration, which makes them an ideal system to study mechanism of salt adaptation for imparting salt tolerance in glycophytes. Halophytes and salt sensitive glycophytes adapt different defense strategies towards salinity stress. These responses in halophytes are modulated by a well orchestrated network of signaling pathways, including calcium signaling, reactive oxygen species and phytohormones. Moreover, constitutive expression of salt stress response related genes, which is only salt inducible in glycophytes, maintains salt tolerance traits in halophytes. The focus of this review is on the adaptive considerations of halophytes through the genomics approaches from the point of view of sensing and signaling components involved in mediating plant responses to salinity.
Collapse
Affiliation(s)
- G.C. Nikalje
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - T.D. Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India
| | - P. Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
43
|
Yang YZ, Ding S, Wang Y, Li CL, Shen Y, Meeley R, McCarty DR, Tan BC. Small kernel2 Encodes a Glutaminase in Vitamin B 6 Biosynthesis Essential for Maize Seed Development. PLANT PHYSIOLOGY 2017; 174:1127-1138. [PMID: 28408540 PMCID: PMC5462003 DOI: 10.1104/pp.16.01295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
Vitamin B6, an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B6 deficiency causes embryo lethality in Arabidopsis (Arabidopsis thaliana), but the specific role of vitamin B6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 (smk2) mutant in maize, we reveal that vitamin B6 has differential effects on embryogenesis and endosperm development in maize. The B6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B6-deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B6.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Shuo Ding
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Yong Wang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Cui-Ling Li
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Yun Shen
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Robert Meeley
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Donald R McCarty
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Bao-Cai Tan
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.);
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| |
Collapse
|
44
|
Dezfulian MH, Foreman C, Jalili E, Pal M, Dhaliwal RK, Roberto DKA, Imre KM, Kohalmi SE, Crosby WL. Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC PLANT BIOLOGY 2017; 17:71. [PMID: 28388946 PMCID: PMC5384131 DOI: 10.1186/s12870-017-1022-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/30/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) are synthesized by plants, fungi, bacteria, and archaea with plants being the major source of these amino acids in animal diets. Acetolactate synthase (ALS) is the first enzyme in the BCAA synthesis pathway. Although the functional contribution of ALS to BCAA biosynthesis has been extensively characterized, a comprehensive understanding of the regulation of this pathway at the molecular level is still lacking. RESULTS To characterize the regulatory processes governing ALS activity we utilized several complementary approaches. Using the ALS catalytic protein subunit as bait we performed a yeast two-hybrid (Y2H) screen which resulted in the identification of a set of interacting proteins, two of which (denoted as ALS-INTERACTING PROTEIN1 and 3 [AIP1 and AIP3, respectively]) were found to be evolutionarily conserved orthologues of bacterial feedback-regulatory proteins and therefore implicated in the regulation of ALS activity. To investigate the molecular role AIPs might play in BCAA synthesis in Arabidopsis thaliana, we examined the functional contribution of aip1 and aip3 knockout alleles to plant patterning and development and BCAA synthesis under various growth conditions. Loss-of-function genetic backgrounds involving these two genes exhibited differential aberrant growth responses in valine-, isoleucine-, and sodium chloride-supplemented media. While BCAA synthesis is believed to be localized to the chloroplast, both AIP1 and AIP3 were found to localize to the peroxisome in addition to the chloroplast. Analysis of free amino acid pools in the mutant backgrounds revealed that they differ in the absolute amount of individual BCAAs accumulated and exhibit elevated levels of BCAAs in leaf tissues. Despite the phenotypic differences observed in aip1 and aip3 backgrounds, functional redundancy between these loci was suggested by the finding that aip1/aip3 double knockout mutants are severely developmentally compromised. CONCLUSIONS Taken together the data suggests that the two regulatory proteins, in conjunction with ALS, have overlapping but distinct functions in BCAA synthesis, and also play a role in pathways unrelated to BCAA synthesis such as sodium-ion homeostasis, extending to broader aspects of patterning and development.
Collapse
Affiliation(s)
- Mohammad H. Dezfulian
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
- Present address: Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Curtis Foreman
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Espanta Jalili
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Mrinal Pal
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Rajdeep K. Dhaliwal
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Don Karl A. Roberto
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Kathleen M. Imre
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI USA
| | | | - William L. Crosby
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| |
Collapse
|
45
|
Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants? PLANT PHYSIOLOGY 2016; 172:2082-2097. [PMID: 27807106 PMCID: PMC5129723 DOI: 10.1104/pp.16.01371] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Guillaume A Beaudoin
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Donald R McCarty
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Jesse F Gregory
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| |
Collapse
|
46
|
Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 2016; 6:34768. [PMID: 27708387 PMCID: PMC5052518 DOI: 10.1038/srep34768] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the involvement of ABA-signalling cascade, as TaABARE and TaOPR1 were upregulated in PGPR inoculated plants leading to induction of TaMYB and TaWRKY expression followed by stimulation of expression of a plethora of stress related genes. Enhanced expression of TaST, a salt stress-induced gene, associated with promoting salinity tolerance was observed in PGPR inoculated plants in comparison to uninoculated control plants. Expression of SOS pathway related genes (SOS1 and SOS4) was modulated in PGPR-applied wheat shoots and root systems. Tissue-specific responses of ion transporters TaNHX1, TaHAK, and TaHKT1, were observed in PGPR-inoculated plants. The enhanced gene expression of various antioxidant enzymes such as APX, MnSOD, CAT, POD, GPX and GR and higher proline content in PGPR-inoculated wheat plants contributed to increased tolerance to salinity stress. Overall, these results indicate that halotolerant PGPR-mediated salinity tolerance is a complex phenomenon that involves modulation of ABA-signalling, SOS pathway, ion transporters and antioxidant machinery.
Collapse
|
47
|
Ma X, Liang W, Gu P, Huang Z. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:129-40. [PMID: 27156137 DOI: 10.1016/j.plaphy.2016.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
The expression profile chip of the wheat salt-tolerant mutant RH8706-49 was investigated under salt stress in our laboratory. Results revealed a novel gene induced by salt stress with unknown functions. The gene was named as TaZNF (Triticum aestivum predicted Dof zinc finger protein) because it contains the zf-Dof superfamily and was deposited in GenBank (accession no. KF307327). Further analysis showed that TaZNF significantly improved the salt-tolerance of transgenic Arabidopsis. Various physiological indices of the transgenic plant were improved compared with those of the control after salt stress. Non-invasive micro-test (NMT) detection showed that the root tip of transgenic Arabidopsis significantly expressed Na(+) excretion. TaZNF is mainly localized in the nucleus and exhibited transcriptional activity. Hence, this protein was considered a transcription factor. The TaZNF upstream promoter was then cloned and was found to contain three salts, one jasmonic acid methyl ester (MeJA), and several ABA-responsive elements. The GUS staining and quantitative results of different tissues in the full-length promoter in the transgenic plants showed that the promoter was not tissue specific. The promoter activity in the root, leaf, and flower was enhanced after induction by salt stress. Moreover, GUS staining and quantitative measurement of GUS activity showed that the promoter sequence contained the positive regulatory element of salt and MeJA after their respective elements were mutated in the full-length promoter. RNA-Seq result showed that 2727 genes were differentially expressed; most of these genes were involved in the metabolic pathway and biosynthesis of secondary metabolite pathway.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Wenji Liang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China; College of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, People's Republic of China.
| | - Peihan Gu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Zhanjing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| |
Collapse
|
48
|
Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4209-20. [PMID: 27217545 PMCID: PMC5301928 DOI: 10.1093/jxb/erw202] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Camilo E Valenzuela
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| | - Orlando Acevedo-Acevedo
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Giovanna S Miranda
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Pablo Vergara-Barros
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Carlos R Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| | - Pablo M Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| |
Collapse
|
49
|
Prunetti L, El Yacoubi B, Schiavon CR, Kirkpatrick E, Huang L, Bailly M, El Badawi-Sidhu M, Harrison K, Gregory JF, Fiehn O, Hanson AD, de Crécy-Lagard V. Evidence that COG0325 proteins are involved in PLP homeostasis. MICROBIOLOGY-SGM 2016; 162:694-706. [PMID: 26872910 DOI: 10.1099/mic.0.000255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
Collapse
Affiliation(s)
- Laurence Prunetti
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Cara R Schiavon
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ericka Kirkpatrick
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lili Huang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Marc Bailly
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Mona El Badawi-Sidhu
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Katherine Harrison
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, Weber APM, Fitzpatrick TB. Balancing of B6 Vitamers Is Essential for Plant Development and Metabolism in Arabidopsis. THE PLANT CELL 2016; 28:439-53. [PMID: 26858304 PMCID: PMC4790880 DOI: 10.1105/tpc.15.01033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 05/06/2023]
Abstract
Vitamin B6 comprises a family of compounds that is essential for all organisms, most notable among which is the cofactor pyridoxal 5'-phosphate (PLP). Other forms of vitamin B6 include pyridoxamine 5'-phosphate (PMP), pyridoxine 5'-phosphate (PNP), and the corresponding nonphosphorylated derivatives. While plants can biosynthesize PLP de novo, they also have salvage pathways that serve to interconvert the different vitamers. The selective contribution of these various pathways to cellular vitamin B6 homeostasis in plants is not fully understood. Although biosynthesis de novo has been extensively characterized, the salvage pathways have received comparatively little attention in plants. Here, we show that the PMP/PNP oxidase PDX3 is essential for balancing B6 vitamer levels in Arabidopsis thaliana. In the absence of PDX3, growth and development are impaired and the metabolite profile is altered. Surprisingly, RNA sequencing reveals strong induction of stress-related genes in pdx3, particularly those associated with biotic stress that coincides with an increase in salicylic acid levels. Intriguingly, exogenous ammonium rescues the growth and developmental phenotype in line with a severe reduction in nitrate reductase activity that may be due to the overaccumulation of PMP in pdx3. Our analyses demonstrate an important link between vitamin B6 homeostasis and nitrogen metabolism.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Takayuki Tohge
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marta Pesquera
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|