1
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, Guarino MPL, Porro D, Cerasa A, Lo Dico A, Altomare A, Bertoli G. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int J Mol Sci 2025; 26:413. [PMID: 39796266 PMCID: PMC11720538 DOI: 10.3390/ijms26010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Bruno Giovanni Galuzzi
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elena Imperia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Clarissa Gervasoni
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Remedia
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
| | - Laura Restaneo
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Martina Nespoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Laura De Gara
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Flaminia Tani
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Danilo Porro
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Erkkola R, Gonzales‐Inca C, Vahtera J, Bergroth E, Korppi M, Camargo CA, Jartti T. Residential Area Characteristics Are Associated With Asthma Burden in Children. Pediatr Pulmonol 2025; 60:e27436. [PMID: 39636154 PMCID: PMC11748105 DOI: 10.1002/ppul.27436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/03/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Wheezing illnesses, especially those triggered by rhinovirus infection, cause a major disease burden, and they often precede asthma. Environmental exposures are known to affect recurrence of wheezing. We investigated the relations of population density, greenness (forested areas), and socioeconomic factors of the living surroundings to the burden of asthma in children with prior bronchiolitis. METHODS Three hundred and ninety-four children, aged 0-24 months, with doctor-diagnosed bronchiolitis were enrolled in the MARC-30 Finland study. We assessed the children's early-life exposures to greenness and socioeconomic factors using time-series of Corine Land Cover data and Statistics Finland's grid data. We compared the living surroundings data to the prescription drug purchases and special asthma reimbursement benefits until the age 8 years; asthma data were from the Social Insurance Institution of Finland. RESULTS Children living in sparsely populated areas had lighter asthma disease burden than children living in densely populated ones, with burden measured in median bronchodilator (50DDD [defined daily dose] vs. 104DDD, p = 0.02) and inhaled corticosteroid (0DDD vs. 123DDD, p = 0.04) purchases. In the subgroup of children with rhinovirus-induced bronchiolitis, children living in more forested areas developed asthma 10 months later than those with less forested areas (p = 0.04). Neighborhood socioeconomic characteristics were not associated with differences in asthma burden. CONCLUSIONS Sparsely populated areas and forested environments seem to have a beneficial association with children's respiratory health. These findings warrant further studies on the protective health effects of greenness and the type of biodiversity around homes.
Collapse
Affiliation(s)
- Riku Erkkola
- Department of Paediatrics and Adolescent Medicine, Turku University HospitalUniversity of TurkuTurkuFinland
| | | | - Jussi Vahtera
- Department of Public HealthUniversity of TurkuTurkuFinland
| | - Eija Bergroth
- Department of PediatricsHospital Nova of Central Finland, Wellbeing Services County of Central FinlandJyväskyläFinland
| | - Matti Korppi
- Faculty of Medicine and Medical Technology, Centre for Child Health ResearchUniversity of TampereTampereFinland
- Tampere University HospitalTampereFinland
| | - Carlos A. Camargo
- Department of Emergency MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tuomas Jartti
- Department of Paediatrics and Adolescent Medicine, Turku University HospitalUniversity of TurkuTurkuFinland
- Research Center of Clinical MedicineUniversity of OuluOuluFinland
- Department of Pediatrics and Adolescent MedicineOulu University HospitalOuluFinland
- Research Unit of Clinical MedicineUniversity of OuluOuluFinland
| |
Collapse
|
3
|
Seastedt H, Schuetz J, Perkins A, Gamble M, Sinkkonen A. Impact of urban biodiversity and climate change on children's health and well being. Pediatr Res 2024:10.1038/s41390-024-03769-1. [PMID: 39709494 DOI: 10.1038/s41390-024-03769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 12/23/2024]
Abstract
In recent decades, biodiversity loss has greatly impacted planetary and human health. Children are at additional risk of adverse effects due to unique biological, developmental, and behavioral factors, as well as their longer exposure to an altered planet as a function of their young age. These effects are heightened for children living in vulnerable socioeconomic conditions. Here, we review the role of biodiversity loss on accelerating the consequences of climate change from the perspective of pediatric health. With the loss of biodiversity's protective role against the consequences of climate change, the adverse effects of the changing planet are impacting pediatric health. For example, trees provide shelter against heat waves, unsealed soil and wetlands mitigate flooding, and rewilded green space hosts high microbial richness and consequently supports immune and mental health. The effects of the loss of biodiversity may impact the discovery and development of novel pharmaceuticals and thus the future of children's medicine as a whole. We also highlight areas for further study and detail efforts that have been made to restore biodiversity, with the aim to improve the current and future health of local pediatric populations. IMPACT: Loss of biodiversity is occurring at a rapid pace affecting the health of the planet and disproportionately pediatric health. This paper describes the role of biodiversity loss in accelerating the impact of climate change on children's health, and highlights particularly vulnerable populations. This paper details steps that can be taken to maintain and restore biodiversity at the local and global levels to protect these populations and pediatric health in general.
Collapse
Affiliation(s)
- Hana Seastedt
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
- Loyola Stritch School of Medicine, Maywood, IL, USA
| | - Jackson Schuetz
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Alexandra Perkins
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Turku, Finland.
| |
Collapse
|
4
|
Roslund MI, Galitskaya P, Saarenpää M, Sinkkonen A. Cultivar-dependent differences in plant bud microbiome and functional gene pathways in woody plants commonly used in urban green space. Lett Appl Microbiol 2024; 77:ovae110. [PMID: 39544117 DOI: 10.1093/lambio/ovae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Plant richness and microbiota have been associated with plant health; hardly any studies have investigated how plant taxa differs in microbiota in the context of human health. We investigated the microbial differences in buds of 83 woody plant taxa used in urban green spaces in hemiboreal climate, using 16S rRNA and whole metagenome shotgun sequencing. Bud microbial community was the richest in Cotoneaster Nanshan and C. integerrimus, and Malus domestica cultivars "Sandra" and "Lobo" and poorest in Ribes glandulosum. Metagenomic shotgun sequencing of two M. domestica and four Ribes varieties confirmed differences in taxa in bud microbiota and indicated higher siderophore synthesis in Malus. Microbial richness, including bacteria, archaea, and viruses, and functional richness of gene pathways was higher in Malus compared to Ribes. The 10 most abundant amplicon sequence units, often referred as species, belonged to the phylum Proteobacteria. The differences between plant taxa were evident in classes Alpha- and Gammaproteobacteria, known for potential human health benefits. Since environmental microbiota contributes to human microbiota and immunoregulation, horticultural cultivars hosting rich microbiota may have human health benefits. Further studies are needed to confirm the effectiveness of microbially-oriented plant selection in optimizing human microbiota and planetary health.
Collapse
Affiliation(s)
- Marja I Roslund
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Polina Galitskaya
- Research Institute for Environmental Studies, 2775-083 Parede, Portugal
| | - Mika Saarenpää
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
5
|
Aboulaghras S, Bouyahya A, El Kadri K, Khalid A, Abdalla AN, Hassani R, Lee LH, Bakrim S. Protective and stochastic correlation between infectious diseases and autoimmune disorders. Microb Pathog 2024; 196:106919. [PMID: 39245422 DOI: 10.1016/j.micpath.2024.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A priori, early exposure to a wide range of bacteria, viruses, and parasites appears to fortify and regulate the immune system, potentially reducing the risk of autoimmune diseases. However, improving hygiene conditions in numerous societies has led to a reduction in these microbial exposures, which, according to certain theories, could contribute to an increase in autoimmune diseases. Indeed, molecular mimicry is a key factor triggering immune system reactions; while it seeks pathogens, it can bind to self-molecules, leading to autoimmune diseases associated with microbial infections. On the other hand, a hygiene-based approach aimed at reducing the load of infectious agents through better personal hygiene can be beneficial for such pathologies. This review sheds light on how the evolution of the innate immune system, following the evolution of molecular patterns associated with microbes, contributes to our protection but may also trigger autoimmune diseases linked to microbes. Furthermore, it addresses how hygiene conditions shield us against autoimmune diseases related to microbes but may lead to autoimmune pathologies not associated with microbes.
Collapse
Affiliation(s)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Asaad Khalid
- Health Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Biology Department, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia.
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, 315000, Ningbo, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
6
|
Parajuli A, Mäkelä I, Roslund MI, Ringqvist E, Manninen J, Sun Y, Nurminen N, Oikarinen S, Laitinen OH, Hyöty H, Flodström-Tullberg M, Sinkkonen A. Production, analysis, and safety assessment of a soil and plant-based natural material with microbiome- and immune-modulatory effects. Methods 2024; 231:94-102. [PMID: 39306218 DOI: 10.1016/j.ymeth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Iida Mäkelä
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Marja I Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Juulia Manninen
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Yan Sun
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland.
| |
Collapse
|
7
|
Cruells A, Cabrera-Rubio R, Bustamante M, Pelegrí D, Cirach M, Jimenez-Arenas P, Samarra A, Martínez-Costa C, Collado MC, Gascon M. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. ENVIRONMENTAL RESEARCH 2024; 257:119283. [PMID: 38830395 DOI: 10.1016/j.envres.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Animal and human studies indicate that exposure to air pollution and natural environments might modulate the gut microbiota, but epidemiological evidence is very scarce. OBJECTIVES To assess the potential impact of pre- and postnatal exposure to air pollution and green spaces on infant gut microbiota assembly and trajectories during the first year of life. METHODS MAMI ("MAternal MIcrobes") birth cohort (Valencia, Spain, N = 162) was used to study the impact of environmental exposure (acute and chronic) on infant gut microbiota during the first year of life (amplicon-based 16S rRNA sequencing). At 7 days and at 1, 6 and 12 months, residential pre- and postnatal exposure to air pollutants (NO2, black carbon -BC-, PM2.5 and O3) and green spaces indicators (NDVI and area of green spaces at 300, 500 and 1000 m buffers) were obtained. For the association between exposures and alpha diversity indicators linear regression models (cross-sectional analyses) and mixed models, including individual as a random effect (longitudinal analyses), were applied. For the differential taxon analysis, the ANCOM-BC package with a log count transformation and multiple-testing corrections were used. RESULTS Acute exposure in the first week of life and chronic postnatal exposure to NO2 were associated with a reduction in microbial alpha diversity, while the effects of green space exposure were not evident. Acute and chronic (prenatal or postnatal) exposure to NO2 resulted in increased abundance of Haemophilus, Akkermansia, Alistipes, Eggerthella, and Tyzerella populations, while increasing green space exposure associated with increased Negativicoccus, Senegalimassilia and Anaerococcus and decreased Tyzzerella and Lachnoclostridium populations. DISCUSSION We observed a decrease in the diversity of the gut microbiota and signs of alteration in its composition among infants exposed to higher levels of NO2. Increasing green space exposure was also associated with changes in gut microbial composition. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adrià Cruells
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dolors Pelegrí
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Pol Jimenez-Arenas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
8
|
Chatterjee P, Aziz IA, Singh A, Singh A. Microbiome in Teenagers – Acquisition and Development. LIFESTYLE DISEASES IN ADOLESCENTS: DISEASES, DISORDERS, AND PREVENTIVE MEASURES 2024:1-13. [DOI: 10.2174/9789815274431124010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Adolescence is the stage of life between childhood and adulthood, ranging
from 10 to 19 years. It is a distinct period in human development and crucial for setting
the groundwork for long-term health. Teenagers grow quickly in terms of their
physical, cognitive, and emotional development.In the body of teenagers, major
changes in microorganisms take place. With the development of these changes in the
microbiome of teenagers, diseases are also developed. Teenagers are the future of the
world. Microbiota and diseases have an impact on their emotions, thoughts, decisions,
and interactions with others and their environment. This chapter is written to
acknowledge the readers about the resident microorganisms of the human body during
adolescence and the many kinds of changes that occur in the microbiome due to
lifestyle changes.
Collapse
Affiliation(s)
- Pallabi Chatterjee
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES),
Dehradun, India
| | - Isra Aman Aziz
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, India
| | - Amarjit Singh
- Department of Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak,
Haryana, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, India
| |
Collapse
|
9
|
Chen H, Meng X, Yu Y, Sun J, Niu Z, Wei J, Zhang L, Lu C, Yu W, Wang T, Zheng X, Norbäck D, Svartengren M, Zhang X, Zhao Z. Greenness and its composition and configuration in association with allergic rhinitis in preschool children. ENVIRONMENTAL RESEARCH 2024; 251:118627. [PMID: 38460662 DOI: 10.1016/j.envres.2024.118627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Few studies focus on the associations of green space composition and configuration with children's allergic rhinitis (AR). METHODS A multi-center population-based cross-sectional study was performed in 7 cities in mainland of China between 2019 and 2020, recruiting 36,867 preschool children. Information on the current AR symptoms and demographics were collected by questionnaire. Exposure to residential greenness was estimated by Normalized Difference Vegetation Index (NDVI, 1000 m buffer) around the residences. Greenness composition was estimated in 3 main categories: forest, grassland, shrubland. Configuration of each category and total greenness (a spatial resolution of 10 m × 10 m) was estimated by 6 landscape pattern metrics to quantify their area, shape complexity, aggregation, connectivity, and patch density. Exposure to daily ambient particulate matter (PM1, PM2.5 and PM10, a spatial resolution of 1 km × 1 km) was estimated. Multilevel logistic regression models were applied to analyze the associations of greenness and its composition and configuration with AR, and mediation effects by PMs were examined by mediation analysis models. RESULTS The prevalence of self-reported current AR in preschool children was 33.1%. Two indicators of forest, Aggregation Index of forest patches (AIforest) (odds ratio (OR):0.92, 95% Confidential Interval (CI): 0.88-0.97), and Patch Cohesion of forest (COHESIONforest) (OR: 0.93, 95% CI:0.89-0.98) showed significantly negative associations with AR symptoms. Mediation analyses found the associations were partially mediated by PMs. Age, exclusive breastfeed duration and season were the potential effect modifiers. The associations varied across seven cities. CONCLUSION Our findings suggest the inverse associations of the aggregation and connectivity of forest patches surrounding residence addresses with AR symptoms. Since the cross-sectional study only provides associations rather than causation, further studies are needed to confirm our results as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China
| | - Yongfu Yu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chan Lu
- Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha, 410078, China
| | - Wei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400030, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiaohong Zheng
- School of Energy & Environment, Southeast University, Nanjing, 210096, China
| | - Dan Norbäck
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Magnus Svartengren
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Benton LD, Lopez-Galvez N, Herman C, Caporaso JG, Cope EK, Rosales C, Gameros M, Lothrop N, Martínez FD, Wright AL, Carr TF, Beamer PI. Environmental and structural factors associated with bacterial diversity in household dust across the Arizona-Sonora border. Sci Rep 2024; 14:12803. [PMID: 38834753 PMCID: PMC11150412 DOI: 10.1038/s41598-024-63356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs. 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, housing structure, and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs. 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from Mexican homes was enriched with Alishewanella, Paracoccus, Rheinheimera genera and Intrasporangiaceae family. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
Affiliation(s)
- Lauren D Benton
- Department of Pediatrics, Steele Children's Research Center, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
| | - Nicolas Lopez-Galvez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Mercedes Gameros
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Nathan Lothrop
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Paloma I Beamer
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
11
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
12
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
13
|
Saarenpää M, Roslund MI, Nurminen N, Puhakka R, Kummola L, Laitinen OH, Hyöty H, Sinkkonen A. Urban indoor gardening enhances immune regulation and diversifies skin microbiota - A placebo-controlled double-blinded intervention study. ENVIRONMENT INTERNATIONAL 2024; 187:108705. [PMID: 38688234 DOI: 10.1016/j.envint.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.
Collapse
Affiliation(s)
- Mika Saarenpää
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Marja I Roslund
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland.
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| |
Collapse
|
14
|
Raulo A, Bürkner PC, Finerty GE, Dale J, Hanski E, English HM, Lamberth C, Firth JA, Coulson T, Knowles SCL. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat Ecol Evol 2024; 8:972-985. [PMID: 38689017 PMCID: PMC11090834 DOI: 10.1038/s41559-024-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Computing, University of Turku, Turku, Finland.
| | | | - Genevieve E Finerty
- Department of Biology, University of Oxford, Oxford, UK
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Jarrah Dale
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Holly M English
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Curt Lamberth
- Department of Biology, University of Oxford, Oxford, UK
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford, UK
- School of Biology, University of Leeds, Leeds, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Zhang YD, Zhou GL, Wang L, Browning MHEM, Markevych I, Heinrich J, Knibbs LD, Zhao T, Ding Y, Chen S, Liu KK, Dadvand P, Dong GH, Yang BY. Greenspace and human microbiota: A systematic review. ENVIRONMENT INTERNATIONAL 2024; 187:108662. [PMID: 38653130 DOI: 10.1016/j.envint.2024.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Potential effect of greenspace exposure on human microbiota have been explored by a number of observational and interventional studies, but the results remained mixed. We comprehensively synthesized these studies by performing a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS Comprehensive literature searches in three international databases (PubMed, Embase, and Web of Science) and three Chinese databases (China National Knowledge Infrastructure, Wanfang, and China Biology Medicine disc) were conducted from inception to November 1, 2023. Observational and interventional studies that evaluated associations between greenspace exposure and human microbiota at different anatomical sites were included. Studies were assessed using the National Toxicology Program's office of Health Assessment and Translation risk of bias tool and certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Two authors independently performed study selection, data extraction, and risk of bias assessment, and evidence grading. Study results were synthesized descriptively. RESULTS Twenty studies, including 11 observational studies and 9 interventional studies, were finally included into the systematic review. The microbiota of the included studies was from gut (n = 13), skin (n = 10), oral cavity (n = 5), nasal cavity (n = 5) and eyes (n = 1). The majority of studies reported the associations of greenspace exposure with increased diversity (e.g., richness and Shannon index) and/or altered overall composition of human gut (n = 12) and skin microbiota (n = 8), with increases in the relative abundance of probiotics (e.g., Ruminococcaceae) and decreases in the relative abundance of pathogens (e.g., Streptococcus and Escherichia/Shigella). Due to limited number of studies, evidence concerning greenspace and oral, nasal, and ocular microbiota were still inconclusive. CONCLUSION The current evidence suggests that greenspace exposure may diversify gut and skin microbiota and alter their composition to healthier profiles. These findings would be helpful in uncovering the potential mechanisms underlying greenspace and human health and in promoting a healthier profile of human microbiota.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang-Long Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Matthew H E M Browning
- Department of Park, Recreation, and Tourism Management, Clemson University, Clemson, SC 29634, USA
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Munich 80036, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, Camperdown, NSW 2006, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2025, Australia
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research (DZL), Munich 80036, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Yizhen Ding
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Shi Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kang-Kang Liu
- Department of Research Center for Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Payam Dadvand
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Stanescu C, Talarico R, Weichenthal S, Villeneuve PJ, Smargiassi A, Stieb DM, To T, Hebbern C, Crighton E, Lavigne É. Early life exposure to pollens and increased risks of childhood asthma: a prospective cohort study in Ontario children. Eur Respir J 2024; 63:2301568. [PMID: 38636971 PMCID: PMC11025571 DOI: 10.1183/13993003.01568-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/03/2024] [Indexed: 04/20/2024]
Abstract
Asthma is a disease characterised by wheeze, cough and shortness of breath, and constitutes the most prevalent chronic disease among children [1]. Various phenotypes have been specifically identified in the paediatric population, and include early transient wheeze, current wheeze/asthma, and mild or moderate asthma [2]. Lifestyle behaviours, genetics, maternal and paternal factors, and environment exposures have been identified as risk factors in the multifactorial aetiology of childhood asthma [3]. Increased exposure to tree canopy around the place of residence at birth prevented the risk of childhood asthma development, but this protective effect can be reduced when exposure to weed and tree pollen increases https://bit.ly/3Tboabo
Collapse
Affiliation(s)
| | - Robert Talarico
- ICES uOttawa (formerly known as Institute for Clinical Evaluative Sciences), Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | | | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - David M Stieb
- Population Studies Division, Health Canada, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Teresa To
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Eric Crighton
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Éric Lavigne
- Population Studies Division, Health Canada, Ottawa, ON, Canada
- ICES uOttawa (formerly known as Institute for Clinical Evaluative Sciences), Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Abellan A, Warembourg C, Mensink-Bout SM, Ambros A, de Castro M, Fossati S, Guxens M, Jaddoe VW, Nieuwenhuijsen MJ, Vrijheid M, Santos S, Casas M, Duijts L. Urban environment during pregnancy and lung function, wheezing, and asthma in school-age children. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123345. [PMID: 38219897 DOI: 10.1016/j.envpol.2024.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The urban environment during pregnancy may influence child's respiratory health, but scarce evidence exists on systematic evaluation of multiple urban exposures (e.g., air pollution, natural spaces, noise, built environment) on children's lung function, wheezing, and asthma development. We aimed to examine the association of the urban environment during pregnancy with lung function, preschool wheezing, and school-age asthma. We included 5624 mother-child pairs participating in a population-based prospective birth cohort. We estimated 30 urban environmental exposures including air pollution, road traffic noise, traffic, green spaces, blue spaces, and built environment during pregnancy. At 10 years of age, lung function was measured by spirometry. Information on preschool wheezing and physician-diagnosed school-age asthma was obtained from multiple questionnaires. We described single-exposure associations with respiratory outcomes using an exposome-wide association study. We also identified patterns of urban exposures with hierarchical clustering on principal components analysis and examined their associations with respiratory outcomes using multivariate regression models. Single-exposure analyses showed associations of higher particulate matter (PM) with lower mid-expiratory flow (FEF25-75%) (e.g., for PM < 2.5 μm of diameter [PM2.5] z-score = -0.06 [-0.09, -0.03]) and higher forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) (e.g., for PM2.5 FEV1 0.05 [0.02, 0.08]) after correction for multiple-hypothesis testing. Cluster analysis described three patterns of urban exposures during pregnancy and showed that the cluster characterised by higher levels of air pollution, noise, walkability, street connectivity, and lower levels of natural spaces were associated with lower FEF25-75% (-0.08 [-0.17, 0.00]), and higher odds of preschool wheezing (1.21 [1.03, 1.43]). This study shows that the characteristics of the urban environment during pregnancy are of relevance to the offspring's respiratory health during childhood.
Collapse
Affiliation(s)
- Alicia Abellan
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albert Ambros
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Perry TT, Grant TL, Dantzer JA, Udemgba C, Jefferson AA. Impact of socioeconomic factors on allergic diseases. J Allergy Clin Immunol 2024; 153:368-377. [PMID: 37967769 PMCID: PMC10922531 DOI: 10.1016/j.jaci.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Allergic and immunologic conditions, including asthma, food allergy, atopic dermatitis, and allergic rhinitis, are among the most common chronic conditions in children and adolescents that often last into adulthood. Although rare, inborn errors of immunity are life-altering and potentially fatal if unrecognized or untreated. Thus, allergic and immunologic conditions are both medical and public health issues that are profoundly affected by socioeconomic factors. Recently, studies have highlighted societal issues to evaluate factors at multiple levels that contribute to health inequities and the potential steps toward closing those gaps. Socioeconomic disparities can influence all aspects of care, including health care access and quality, diagnosis, management, education, and disease prevalence and outcomes. Ongoing research, engagement, and deliberate investment of resources by relevant stakeholders and advocacy approaches are needed to identify and address the impact of socioeconomics on health care disparities and outcomes among patients with allergic and immunologic diseases.
Collapse
Affiliation(s)
- Tamara T Perry
- University of Arkansas for Medical Sciences, Little Rock, Ark; Arkansas Children's Research Institute, Little Rock, Ark.
| | - Torie L Grant
- Johns Hopkins University School of Medicine, Baltimore, Md
| | | | - Chioma Udemgba
- National Institute of Allergic and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Akilah A Jefferson
- University of Arkansas for Medical Sciences, Little Rock, Ark; Arkansas Children's Research Institute, Little Rock, Ark
| |
Collapse
|
19
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
20
|
Seastedt H, Nadeau K. Factors by which global warming worsens allergic disease. Ann Allergy Asthma Immunol 2023; 131:694-702. [PMID: 37689112 PMCID: PMC10873081 DOI: 10.1016/j.anai.2023.08.610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
Increased use of fossil fuels has led to global warming with concomitant increases in the severity and frequency of extreme weather events such as wildfires and sand and dust storms. These changes have led to increases in air pollutants such as particulate matter and greenhouse gases. Global warming is also associated with increases in pollen season length and pollen concentration. Particulate matter, greenhouse gases, and pollen synergistically increase the incidence and severity of allergic diseases. Other indirect factors such as droughts, flooding, thunderstorms, heat waves, water pollution, human migration, deforestation, loss of green space, and decreasing biodiversity (including microbial diversity) also affect the incidence and severity of allergic disease. Global warming and extreme weather events are expected to increase in the coming decades, and further increases in allergic diseases are expected, exacerbating the already high health care burden associated with these diseases. There is an urgent need to mitigate and adapt to the effects of climate change to improve human health. Human health and planetary health are connected and the concept of One Health, which is an integrated, unifying approach to balance and optimize the health of people, animals, and the environment needs to be emphasized. Clinicians are trusted members of the community, and they need to take a strong leadership role in educating patients on climate change and its adverse effects on human health. They also need to advocate for policy changes that decrease the use of fossil fuels and increase biodiversity and green space to enable a healthier and more sustainable future.
Collapse
Affiliation(s)
- Hana Seastedt
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Kari Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
21
|
Lehtimäki J, Gupta S, Hjelmsø M, Shah S, Thorsen J, Rasmussen MA, Soverini M, Li X, Russel J, Trivedi U, Brix S, Bønnelykke K, Chawes BL, Bisgaard H, Sørensen SJ, Stokholm J. Fungi and bacteria in the beds of rural and urban infants correlate with later risk of atopic diseases. Clin Exp Allergy 2023; 53:1268-1278. [PMID: 37849355 DOI: 10.1111/cea.14414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Rural children have a lower risk of asthma and atopic diseases than urban children. However, whether indoor microbiota in non-farming rural homes provides protection is unclear. METHODS Here, we examine if microbes in the beds of rural and urban infants are associated with later development of atopic diseases. We studied fungi and bacteria in the beds of 6-month-old infants (n = 514) in association with the risk of asthma, allergic rhinitis, eczema and aeroallergen sensitization at 6 years of age in the prospective COPSAC2010 cohort. RESULTS Both fungal and bacterial diversity were lower in the beds of children, who later developed allergic rhinitis (-0.22 [-0.43,-0.01], padj = .04 and -.24 [-0.42,-0.05], padj = .01 respectively) and lower bacterial richness was discovered in beds of children later developing asthma (-41.34 [-76.95,-5.73], padj = .02) or allergic rhinitis (-45.65 [-81.19,-10.10], padj = .01). Interestingly, higher fungal diversity and richness were discovered in the beds of children developing eczema (0.23 [0.02,0.43], padj = .03 and 29.21 [1.59,56.83], padj = .04 respectively). We defined a limited set of fungal and bacterial genera that predicted rural/urban environment. Some rural-associated bacterial genera such as Romboutsia and Bacillus and fungal genera Spegazzinia and Physcia were also associated with reduced risk of diseases, including eczema. These fungal and bacterial fingerprints predicting the living environment were associated with asthma and allergic rhinitis, but not eczema, with rural compositions being protective. The bed dust bacteria mediated 27% of the protective association of a rural living environment for allergic rhinitis (p = .04). CONCLUSIONS Bed dust microbes can be differentially associated with airway- and skin-related diseases. The differing bed dust microbiota between rural and urban infants may influence their later risk of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Jenni Lehtimäki
- Finnish Environment Institute, Helsinki, Finland
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shashank Gupta
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Mathis Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shiraz Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Xuanji Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Pan Z, Dai Y, Akar-Ghibril N, Simpson J, Ren H, Zhang L, Hou Y, Wen X, Chang C, Tang R, Sun JL. Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review. Clin Rev Allergy Immunol 2023; 65:121-135. [PMID: 36853525 DOI: 10.1007/s12016-022-08957-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 03/01/2023]
Abstract
Air pollution is associated with multiple health problems worldwide, contributing to increased morbidity and mortality. Atopic dermatitis (AD) is a common allergic disease, and increasing evidence has revealed a role of air pollution in the development of atopic dermatitis. Air pollutants are derived from several sources, including harmful gases such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO), as well as particulate matter (PM) of various sizes, and bioaerosols. Possible mechanisms linking air pollution to atopic dermatitis include damage to the skin barrier through oxidative stress, increased water loss, physicochemical injury, and an effect on skin microflora. Furthermore, oxidative stress triggers immune dysregulation, leading to enhanced sensitization to allergens. There have been multiple studies focusing on the association between various types of air pollutants and atopic dermatitis. Since there are many confounders in the current research, such as climate, synergistic effects of mixed pollutants, and diversity of study population, it is not surprising that inconsistencies exist between different studies regarding AD and air pollution. Still, it is generally accepted that air pollution is a risk factor for AD. Future studies should focus on how air pollution leads to AD as well as effective intervention measures.
Collapse
Affiliation(s)
- Zhouxian Pan
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yimin Dai
- Eight-Year Clinical Medicine System, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nicole Akar-Ghibril
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Jessica Simpson
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Huali Ren
- Department of Allergy, Beijing Electric Power Hospital of State Grid Company of China, Electric Power Teaching Hospital of Capital Medical University, Beijing, 100073, China
| | - Lishan Zhang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yibo Hou
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueyi Wen
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Christopher Chang
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, 95616, USA.
| | - Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
23
|
Benton L, Lopez-Galvez N, Herman C, Caporaso G, Cope E, Rosales C, Gameros M, Lothrop N, Martínez F, Wright A, Carr T, Beamer P. Environmental and Structural Factors Associated with Bacterial Diversity in Household Dust Across the Arizona-Sonora Border. RESEARCH SQUARE 2023:rs.3.rs-3325336. [PMID: 37841844 PMCID: PMC10571632 DOI: 10.21203/rs.3.rs-3325336/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, and housing structure and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from US homes was enriched with Geodermatophilus, whereas dust from Mexican homes was enriched with Alishewanella and Chryseomicrobium. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
|
24
|
Kummola L, González-Rodríguez MI, Marnila P, Nurminen N, Salomaa T, Hiihtola L, Mäkelä I, Laitinen OH, Hyöty H, Sinkkonen A, Junttila IS. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system : Effect of soil exposure on immune system. BMC Immunol 2023; 24:29. [PMID: 37689649 PMCID: PMC10492337 DOI: 10.1186/s12865-023-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.
Collapse
Affiliation(s)
- Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | | | - Pertti Marnila
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Lotta Hiihtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Iida Mäkelä
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland.
- Northern Finland Laboratory Centre (NordLab), Oulu, 90220, Finland.
- Research Unit of Biomedicine, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
25
|
Zhang YD, Fan SJ, Zhang Z, Li JX, Liu XX, Hu LX, Knibbs LD, Dadvand P, Jalaludin B, Browning MH, Zhao T, Heinrich J, He Z, Chen CZ, Zhou Y, Dong GH, Yang BY. Association between Residential Greenness and Human Microbiota: Evidence from Multiple Countries. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87010. [PMID: 37585351 PMCID: PMC10431502 DOI: 10.1289/ehp12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Greenness, referring to a measurement of the density of vegetated land (e.g., gardens, parks, grasslands), has been linked with many human health outcomes. However, the evidence on greenness exposure and human microbiota remains limited, inconclusive, drawn from specific regions, and based on only modest sample size. OBJECTIVES We aimed to study the association between greenness exposure and human microbial diversity and composition in a large sample across 34 countries and regions. METHODS We explored associations between residential greenness and human microbial alpha-diversity, composition, and genus abundance using data from 34 countries. Greenness exposure was assessed using the normalized difference vegetation index and the enhanced vegetation index mean values in the month before sampling. We used linear regression models to estimate the association between greenness and microbial alpha-diversity and tested the effect modification of age, sex, climate zone, and pet ownership of participants. Differences in microbial composition were tested by permutational multivariate analysis of variance based on Bray-Curtis distance and differential taxa were detected using the DESeq2 R package between two greenness exposure groups split by median values of greenness. RESULTS We found that higher greenness was significantly associated with greater richness levels in the palm and gut microbiota but decreased evenness in the gut microbiota. Pet ownership and climate zone modified some associations between greenness and alpha-diversity. Palm and gut microbial composition at the genus level also varied by greenness. Higher abundances of the genera Lactobacillus and Bifidobacterium, and lower abundances of the genera Anaerotruncus and Streptococcus, were observed in people with higher greenness levels. DISCUSSION These findings suggest that residential greenness was associated with microbial richness and composition in the human skin and gut samples, collected across different geographic contexts. Future studies may validate the observed associations and determine whether they correspond to improvements in human health. https://doi.org/10.1289/EHP12186.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu-Jun Fan
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zheng Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jia-Xin Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Xin Hu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Luke D. Knibbs
- School of Public Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Kensington, New South Wales, Australia
| | - Matthew H.E.M. Browning
- Department of Park, Recreation, and Tourism Management, Clemson University, Clemson, South Carolina, USA
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Comprehensive Pneumology Center Munich, LMU Munich, Munich, Germany
- German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU Munich, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng-Zhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yuanzhong Zhou
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Voor T, Pärtel M, Peet A, Saare L, Hyöty H, Knip M, Davison J, Zobel M, Tillmann V. Atopic sensitization in childhood depends on the type of green area around the home in infancy. Clin Exp Allergy 2023; 53:850-853. [PMID: 37038920 DOI: 10.1111/cea.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Affiliation(s)
- Tiia Voor
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Liisa Saare
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Mikael Knip
- Pediatric Research Centre, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
27
|
Lou H, Liu X, Liu P. Mechanism and implications of pro-nature physical activity in antagonizing psychological stress: the key role of microbial-gut-brain axis. Front Psychol 2023; 14:1143827. [PMID: 37560094 PMCID: PMC10408457 DOI: 10.3389/fpsyg.2023.1143827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Appropriate physical activities and a biodiversity-rich environment are conducive to the relief of psychological stress, and pro-nature physical activities are a combination of the two, which has good application potential in antagonizing psychological stress, but the intervention mechanism is still unclear. The microbiota-gut-brain axis is cyclically associated with psychological stress, and psychological stress can affect the microbiota through the gut-brain pathway, and conversely, the microbiota can also affect the psychological stress-induced symptoms. It is suggested that the microbe-gut-brain axis may provide a new perspective and target for the treatment of psychological stress-related diseases. Pro-nature physical activity can improve the number of Firmicutes, short-chain fatty acids, Akkermansia bacteria, and the gut-brain barrier and further affect the HPA axis, BDNF, and serotonin pathways of gut-brain two-way communication, thereby maintaining the body's homeostasis and reducing antagonistic psychological stress. According to the comprehensive influence of physical activities on the microbiota-gut-brain axis, a "green + exercise prescription hypothesis" in line with the holistic medical concept is revealed, which is expected to be effective in the prevention, alleviation, and treatment of irritable bowel syndrome and neurodegenerative diseases. It provides new means for treating psychological stress-related diseases such as mental disorders and mood disorders. In addition, it enlightens the construction of green infrastructure that is conducive to the diversified contact of microorganisms in outdoor physical activities venues and induces healthy interaction between the human body and the microbial population in the natural ecology. However, the current research is still in its early stages, and the intervention effect and mechanism of pro-nature physical activities need further demonstration in the future.
Collapse
|
28
|
Styles JN, Egorov AI, Griffin SM, Klein J, Scott JW, Sams EA, Hudgens E, Mugford C, Stewart JR, Lu K, Jaspers I, Keely SP, Brinkman NE, Arnold JW, Wade TJ. Greener residential environment is associated with increased bacterial diversity in outdoor ambient air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163266. [PMID: 37028654 DOI: 10.1016/j.scitotenv.2023.163266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
In urban areas, exposure to greenspace has been found to be beneficial to human health. The biodiversity hypothesis proposed that exposure to diverse ambient microbes in greener areas may be one pathway leading to health benefits such as improved immune system functioning, reduced systemic inflammation, and ultimately reduced morbidity and mortality. Previous studies observed differences in ambient outdoor bacterial diversity between areas of high and low vegetated land cover but didn't focus on residential environments which are important to human health. This research examined the relationship between vegetated land and tree cover near residence and outdoor ambient air bacterial diversity and composition. We used a filter and pump system to collect ambient bacteria samples outside residences in the Raleigh-Durham-Chapel Hill metropolitan area and identified bacteria by 16S rRNA amplicon sequencing. Geospatial quantification of total vegetated land or tree cover was conducted within 500 m of each residence. Shannon's diversity index and weighted UniFrac distances were calculated to measure α (within-sample) and β (between-sample) diversity, respectively. Linear regression for α-diversity and permutational analysis of variance (PERMANOVA) for β-diversity were used to model relationships between vegetated land and tree cover and bacterial diversity. Data analysis included 73 ambient air samples collected near 69 residences. Analysis of β-diversity demonstrated differences in ambient air microbiome composition between areas of high and low vegetated land (p = 0.03) and tree cover (p = 0.07). These relationships remained consistent among quintiles of vegetated land (p = 0.03) and tree cover (p = 0.008) and continuous measures of vegetated land (p = 0.03) and tree cover (p = 0.03). Increased vegetated land and tree cover were also associated with increased ambient microbiome α-diversity (p = 0.06 and p = 0.03, respectively). To our knowledge, this is the first study to demonstrate associations between vegetated land and tree cover and the ambient air microbiome's diversity and composition in the residential ecosystem.
Collapse
Affiliation(s)
- Jennifer N Styles
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, Division of Allergy and Immunology, Chapel Hill, NC, USA.
| | - Andrey I Egorov
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Shannon M Griffin
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Cincinnati, OH, USA
| | - Jo Klein
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA; North Carolina State University Libraries, Raleigh, NC, USA
| | - J W Scott
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Elizabeth A Sams
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Edward Hudgens
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Chris Mugford
- United States Public Health Service Commissioned Corps, Research Triangle Park, NC, USA; The Agency for Toxic Substances and Disease Registry, Boston, MA, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Center for Environmental Measurement and Monitoring, Office of Research and Development, Cincinnati, OH, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Office of Research and Development, Cincinnati, OH, USA
| | - Jason W Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Timothy J Wade
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. The Gut Microbiome and Residential Surrounding Greenness: a Systematic Review of Epidemiological Evidence. Curr Environ Health Rep 2023:10.1007/s40572-023-00398-4. [PMID: 37296363 DOI: 10.1007/s40572-023-00398-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW A healthy indigenous intestinal microbiome is essential for human health. Well-established gut microbiome determinants only explain 16% of the inter-individual variation in gut microbiome composition. Recent studies have focused on green space as a potential determinant of the intestinal microbiome. We systematically summarize all evidence concerning the association between green space and intestinal bacterial diversity, evenness, and richness indices, specific bacterial taxa, and potential underlying mechanisms. RECENT FINDINGS Seven epidemiological studies were included in this review. The majority of the included studies (n = 4) reported a positive association between green space and intestinal bacterial diversity, evenness, and richness, while two reported the opposite. There was little overlap between the publications regarding the association between green space and the relative abundance of specific bacterial taxa. Only a decrease in the relative abundance of Bacteroidetes, Bacteroides, and Anaerostipes and an increase in Lachnospiraceae and Ruminococcaceae were reported in multiple studies, predominantly suggesting that green space is positively associated with the intestinal microbiome composition, and subsequently with human health. Lastly, the only examined mechanism was a reduction in perceived psychosocial stress. Mechanisms indicated in blue and white represent tested or hypothesized mechanisms, respectively. The graphical abstract was created with illustrations from BioRender, Noun Project, and Pngtree.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Department of Public Health and Primary Care, Leuven University, Herestraat 49-Box 706, 3000, Louvain, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
30
|
Laprise C. It's time to take a sustainable approach to health care in the face of the challenges of the 21st century. One Health 2023; 16:100510. [PMID: 36844975 PMCID: PMC9939387 DOI: 10.1016/j.onehlt.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Health challenges in the 21st century have become increasingly complex and global. The recent COVID-19 pandemic has only exacerbated the many problems faced by health care systems around the world and sadly, exposed various flaws. With ageing populations, particularly in Canada, as well as unavoidable factors such as globalization and accelerating climate change, it is becoming imperative to implement a new health care approach based on intersectorality and interdisciplinarity. Furthermore, links must be forged between all the stakeholders, i.e. the researchers, the health system and its specialists, the communities and the individuals themselves. It is in this perspective, where everyone concerned must be equally involved in attaining a better quality of life, that the concepts of One Health and sustainable health must be deployed.
Collapse
Affiliation(s)
- Catherine Laprise
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada,Centre Intégré Universitaire en Santé et Services Sociaux du Saguenay–Lac-Saint-Jean, Saguenay, QC G7H 7K9, Canada,Corresponding author at : Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec G7H 2B1, Canada
| |
Collapse
|
31
|
Lukkarinen M, Kirjavainen PV, Backman K, Gonzales-Inca C, Hickman B, Kallio S, Karlsson H, Karlsson L, Keski-Nisula L, Korhonen LS, Korpela K, Kuitunen M, Kukkonen AK, Käyhkö N, Lagström H, Lukkarinen H, Peltola V, Pentti J, Salonen A, Savilahti E, Tuoresmäki P, Täubel M, Vahtera J, de Vos WM, Pekkanen J, Karvonen AM. Early-life environment and the risk of eczema at 2 years-Meta-analyses of six Finnish birth cohorts. Pediatr Allergy Immunol 2023; 34:e13945. [PMID: 37102387 DOI: 10.1111/pai.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Urban-related nature exposures are suggested to contribute to the rising prevalence of allergic diseases despite little supporting evidence. Our aim was to evaluate the impact of 12 land cover classes and two greenness indices around homes at birth on the development of doctor-diagnosed eczema by the age of 2 years, and the influence of birth season. METHODS Data from 5085 children were obtained from six Finnish birth cohorts. Exposures were provided by the Coordination of Information on the Environment in three predefined grid sizes. Adjusted logistic regression was run in each cohort, and pooled effects across cohorts were estimated using fixed or random effect meta-analyses. RESULTS In meta-analyses, neither greenness indices (NDVI or VCDI, 250 m × 250 m grid size) nor residential or industrial/commercial areas were associated with eczema by age of 2 years. Coniferous forest (adjusted odds ratio 1.19; 95% confidence interval 1.01-1.39 for the middle and 1.16; 0.98-1.28 for the highest vs. lowest tertile) and mixed forest (1.21; 1.02-1.42 middle vs. lowest tertile) were associated with elevated eczema risk. Higher coverage with agricultural areas tended to associate with elevated eczema risk (1.20; 0.98-1.48 vs. none). In contrast, transport infrastructure was inversely associated with eczema (0.77; 0.65-0.91 highest vs. lowest tertile). CONCLUSION Greenness around the home during early childhood does not seem to protect from eczema. In contrast, nearby coniferous and mixed forests may increase eczema risk, as well as being born in spring close to forest or high-green areas.
Collapse
Affiliation(s)
- Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Katri Backman
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland
| | | | - Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Kallio
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Leea Keski-Nisula
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland
| | - Laura S Korhonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Kuitunen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Kaarina Kukkonen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Heikki Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- Department of Public Health, University of Turku, Turku, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkki Savilahti
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauli Tuoresmäki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku, Turku, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
32
|
Haahtela T, Alenius H, Auvinen P, Fyhrquist N, von Hertzen L, Jousilahti P, Karisola P, Laatikainen T, Lehtimäki J, Paalanen L, Ruokolainen L, Saarinen K, Valovirta E, Vasankari T, Vlasoff T, Erhola M, Bousquet J, Vartiainen E, Mäkelä MJ. A short history from Karelia study to biodiversity and public health interventions. FRONTIERS IN ALLERGY 2023; 4:1152927. [PMID: 36998574 PMCID: PMC10043497 DOI: 10.3389/falgy.2023.1152927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Contact with natural environments enriches the human microbiome, promotes immune balance and protects against allergies and inflammatory disorders. In Finland, the allergy & asthma epidemic became slowly visible in mid 1960s. After the World War II, Karelia was split into Finnish and Soviet Union (now Russia) territories. This led to more marked environmental and lifestyle changes in the Finnish compared with Russian Karelia. The Karelia Allergy Study 2002–2022 showed that allergic conditions were much more common on the Finnish side. The Russians had richer gene-microbe network and interaction than the Finns, which associated with better balanced immune regulatory circuits and lower allergy prevalence. In the Finnish adolescents, a biodiverse natural environment around the homes associated with lower occurrence of allergies. Overall, the plausible explanation of the allergy disparity was the prominent change in environment and lifestyle in the Finnish Karelia from 1940s to 1980s. The nationwide Finnish Allergy Programme 2008–2018 implemented the biodiversity hypothesis into practice by endorsing immune tolerance, nature contacts, and allergy health with favorable results. A regional health and environment programme, Nature Step to Health 2022–2032, has been initiated in the City of Lahti, EU Green Capital 2021. The programme integrates prevention of chronic diseases (asthma, diabetes, obesity, depression), nature loss, and climate crisis in the spirit of Planetary Health. Allergic diseases exemplify inappropriate immunological responses to natural environment. Successful management of the epidemics of allergy and other non-communicable diseases may pave the way to improve human and environmental health.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Correspondence: Tari Haahtela
| | - Harri Alenius
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petri Auvinen
- DNA Sequencing and GenomicsLaboratory, Institute of Biotechnology, Helsinki, Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Piia Karisola
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Erkka Valovirta
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
- Allergy Clinic, Terveystalo, Turku, Finland
| | - Tuula Vasankari
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
- Finnish Lung Health Association (FILHA), Helsinki, Finland
| | - Tiina Vlasoff
- North Karelia Centre for Public Health, Joensuu, Finland
| | - Marina Erhola
- Pirkanmaa Joint Authority for Health Services and Social Welfare, Tampere, Finland
| | - Jean Bousquet
- Institute of Allergology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- University Hospital Montpellier, Montpellier, France
| | - Erkki Vartiainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Mika J. Mäkelä
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Losol P, Sokolowska M, Chang YS. Interactions between microbiome and underlying mechanisms in asthma. Respir Med 2023; 208:107118. [PMID: 36641058 DOI: 10.1016/j.rmed.2023.107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea; Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Herman-Burchard Strasse 9, CH7265, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
34
|
Lahdenperä M, Galante L, Gonzales-Inca C, Vahtera J, Pentti J, Rautava S, Käyhkö N, Yonemitsu C, Gupta J, Bode L, Lagström H. Residential green environments are associated with human milk oligosaccharide diversity and composition. Sci Rep 2023; 13:216. [PMID: 36604578 PMCID: PMC9816313 DOI: 10.1038/s41598-022-27317-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Increased exposure to greener environments has been suggested to lead to health benefits in children, but the associated mechanisms in early life, particularly via biological mediators such as altered maternal milk composition, remain largely unexplored. We investigated the associations between properties of the mother's residential green environment, measured as (1) greenness (Normalized Difference Vegetation index, NDVI), (2) Vegetation Cover Diversity (VCDI) and (3) Naturalness Index (NI), and human milk oligosaccharides (HMOs), known for their immune- and microbiota-related health effects on the infant (N = 795 mothers). We show that HMO diversity increases and concentrations of several individual HMOs and HMO groups change with increased VCDI and NI in residential green environments. This suggests that variation in residential green environments may influence the infant via maternal milk through modified HMO composition. The results emphasize the mediating role of breastfeeding between the residential green environments and health in early life.
Collapse
Affiliation(s)
- Mirkka Lahdenperä
- Department of Biology, University of Turku, Turku, Finland. .,Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland. .,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Laura Galante
- grid.1374.10000 0001 2097 1371Department of Biology, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.4827.90000 0001 0658 8800School of Health and Social Care, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP UK
| | - Carlos Gonzales-Inca
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Jussi Vahtera
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.7737.40000 0004 0410 2071Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuli Rautava
- grid.1374.10000 0001 2097 1371Department of Pediatrics, University of Turku, Turku, Finland ,grid.7737.40000 0004 0410 2071Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Chloe Yonemitsu
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Julia Gupta
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Lars Bode
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Hanna Lagström
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
35
|
Choi NY, Park SA, Lee YR, Lee CH. Psychophysiological Responses of Humans during Seed-Sowing Activity Using Soil Inoculated with Streptomyces rimosus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16275. [PMID: 36498346 PMCID: PMC9738200 DOI: 10.3390/ijerph192316275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Electroencephalogram (EEG) responses and serum metabolite levels were used to investigate the effects of horticultural activities (seed-sowing) on the psychophysiological aspects of adults based on the presence or absence of the soil microorganism Streptomyces rimosus. In this case, 31 adults were subjected to seed-sowing activities using S. rimosus inoculated (experimental group) and medium (control group) soils. EEG was measured to analyze the resulting psychophysiological response, and blood samples (5 mL) were collected. The relative gamma power (RG), relative high beta (RHB), and SEF 50 and SEF 90 were significantly higher in the right than in the left occipital lobe (p < 0.05). In both occipital lobes, ratios of SMR to theta (RST), mid beta to theta (RMT), and SMR-mid beta to theta (RSMT) were high (p < 0.05). GC-TOF-MS-based serum metabolite analysis detected 33 metabolites. Compared to the control group, the experimental group showed a lower content of amino acids (except aspartic acid), lipids, and C6 sugar monomers after the activity (p < 0.05). Aminomalonic acid was decreased, and aspartic acid was increased (p < 0.05). This study confirmed a positive effect on improving the concentration and attention of adults when seed-sowing activity was performed using S. rimosus-inoculated soil.
Collapse
Affiliation(s)
- Na-Yoon Choi
- Department of Bio and Healing Convergence, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Sin-Ae Park
- Department of Bio and Healing Convergence, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye-Rim Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Choong Hwan Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
36
|
Ye T, Yu P, Wen B, Yang Z, Huang W, Guo Y, Abramson MJ, Li S. Greenspace and health outcomes in children and adolescents: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120193. [PMID: 36122655 DOI: 10.1016/j.envpol.2022.120193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
An increasing body of evidence has linked greenspace and various health outcomes in children and adolescents, but the conclusions were inconsistent. For this review, we comprehensively summarized the measurement methods of greenspace, resultant health outcomes, and potential mechanisms from epidemiological studies in children and adolescents (aged ≤19 years). We searched for studies published and indexed in MEDLINE and EMBASE (via Ovid) up to April 11, 2022. There were a total of 9,291 studies identified with 140 articles from 28 countries finally assessed and included in this systematic review. Over 70% of the studies were conducted in highly urbanised countries/regions, but very limited research has been done in low-and middle-income countries and none in Africa. Measures of greenspace varied. Various health outcomes were reported, including protective effects of greenspace exposure on aspects of obesity/overweight, myopia, lung health, circulatory health, cognitive function, and general health in children and adolescents. The associations between greenspace exposure and other health outcomes were inconsistent, especially for respiratory health studies. We pooled odds ratios (OR) using random-effects meta-analysis for health outcomes of asthma (OR = 0.94, 95%CI: 0.84 to 1.06), allergic rhinitis (OR = 0.95; 95% CI: 0.73 to 1.25), and obesity/overweight (OR = 0.91, 95%CI: 0.84 to 0.98) with per 0.1 unit increase in normalized difference in vegetation index (NDVI). These associations have important implications for the assessment and management of urban environment and health in children and adolescents.
Collapse
Affiliation(s)
- Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhengyu Yang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Michael J Abramson
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
37
|
Winnicki MH, Dunn RR, Winther-Jensen M, Jess T, Allin KH, Bruun HH. Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157853. [PMID: 35940273 DOI: 10.1016/j.scitotenv.2022.157853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995-2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.
Collapse
Affiliation(s)
- Martin Holm Winnicki
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Section for Data, Biostatistics and Pharmacoepidemiology, Center for Clinical Research and Prevention, Bispebjerg Frederiksberg Hospital, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Matilde Winther-Jensen
- Section for Data, Biostatistics and Pharmacoepidemiology, Center for Clinical Research and Prevention, Bispebjerg Frederiksberg Hospital, Copenhagen, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15A, 2450 Copenhagen, Denmark; Department of Gastroenterology & Hepatology, Aalborg University Hospital, 9100 Aalborg, Denmark
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15A, 2450 Copenhagen, Denmark; Department of Gastroenterology & Hepatology, Aalborg University Hospital, 9100 Aalborg, Denmark
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Bernard-Verdier M, Seitz B, Buchholz S, Kowarik I, Lasunción Mejía S, Jeschke JM. Grassland allergenicity increases with urbanisation and plant invasions. AMBIO 2022; 51:2261-2277. [PMID: 35594005 PMCID: PMC9481851 DOI: 10.1007/s13280-022-01741-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pollen allergies have been on the rise in cities, where anthropogenic disturbances, warmer climate and introduced species are shaping novel urban ecosystems. Yet, the allergenic potential of these urban ecosystems, in particular spontaneous vegetation outside parks and gardens, remains poorly known. We quantified the allergenic properties of 56 dry grasslands along a double gradient of urbanisation and plant invasion in Berlin (Germany). 30% of grassland species were classified as allergenic, most of them being natives. Urbanisation was associated with an increase in abundance and diversity of pollen allergens, mainly driven by an increase in allergenic non-native plants. While not inherently more allergenic than native plants, the pool of non-natives contributed a larger biochemical diversity of allergens and flowered later than natives, creating a broader potential spectrum of allergy. Managing novel risks to urban public health will involve not only targeted action on allergenic non-natives, but also policies at the habitat scale favouring plant community assembly of a diverse, low-allergenicity vegetation. Similar approaches could be easily replicated in other cities to provide a broad quantification and mapping of urban allergy risks and drivers.
Collapse
Affiliation(s)
- Maud Bernard-Verdier
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Birgit Seitz
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Ecology, Technische Universität Berlin, Rothenburgstraße 12, 12165 Berlin, Germany
| | - Sascha Buchholz
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Ecology, Technische Universität Berlin, Rothenburgstraße 12, 12165 Berlin, Germany
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Munster, Germany
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Ecology, Technische Universität Berlin, Rothenburgstraße 12, 12165 Berlin, Germany
| | - Sara Lasunción Mejía
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
- Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| |
Collapse
|
39
|
Manus MB. Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. MICROBIAL ECOLOGY 2022; 84:689-702. [PMID: 34636925 DOI: 10.1007/s00248-021-01884-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual's body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
40
|
Mueller W, Milner J, Loh M, Vardoulakis S, Wilkinson P. Exposure to urban greenspace and pathways to respiratory health: An exploratory systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154447. [PMID: 35283125 DOI: 10.1016/j.scitotenv.2022.154447] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/OBJECTIVE Urban greenspace may have a beneficial or adverse effect on respiratory health. Our objective was to perform an exploratory systematic review to synthesise the evidence and identify the potential causal pathways relating urban greenspace and respiratory health. METHODS We followed PRISMA guidelines on systematic reviews and searched five databases for eligible studies during 2000-2021. We incorporated a broad range of urban greenspace and respiratory health search terms, including both observational and experimental studies. Screening, data extraction, and risk of bias, assessed using the Navigation Guide criteria, were performed independently by two authors. We performed a narrative synthesis and discuss suggested pathways to respiratory health. RESULTS We identified 108 eligible papers (n = 104 observational, n = 4 experimental). The most common greenspace indicators were the overall greenery or vegetation (also known as greenness), green land use/land cover of physical area classes (e.g., parks, forests), and tree canopy cover. A wide range of respiratory health indicators were studied, with asthma prevalence being the most common. Two thirds (n = 195) of the associations in these studies were positive (i.e., beneficial) with health, with 31% (n = 91) statistically significant; only 9% (n = 25) of reported associations were negative (i.e., adverse) with health and statistically significant. The most consistent positive evidence was apparent for respiratory mortality. There were n = 35 (32%) 'probably low' and n = 73 (68%) 'probably high' overall ratings of bias. Hypothesised causal pathways for health benefits included lower air pollution, more physically active populations, and exposure to microbial diversity; suggested mechanisms with poorer health included exposure to pollen and other aeroallergens. CONCLUSION Many studies showed positive association between urban greenspace and respiratory health, especially lower respiratory mortality; this is suggestive, but not conclusive, of causal effects. Results underscore the importance of contextual factors, greenspace metric employed, and the potential bias of subtle selection factors, which should be explored further.
Collapse
Affiliation(s)
- William Mueller
- Institute of Occupational Medicine, Edinburgh, UK; London School of Hygiene & Tropical Medicine, UK.
| | - James Milner
- London School of Hygiene & Tropical Medicine, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Australian National University, Australia
| | | |
Collapse
|
41
|
Agrawal M, Allin KH, Petralia F, Colombel JF, Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 2022; 19:399-409. [PMID: 35301463 PMCID: PMC9214275 DOI: 10.1038/s41575-022-00593-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
42
|
Tischer C, Kirjavainen P, Matterne U, Tempes J, Willeke K, Keil T, Apfelbacher C, Täubel M. Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153422. [PMID: 35090907 DOI: 10.1016/j.scitotenv.2022.153422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Urbanization and biodiversity loss are linked to chronic disorders, in particular allergic diseases. The aim of this scoping review was to provide a synopsis of intervention studies specifically examining the influence of exposure to natural environments on human microbiota as well as immunological markers as suggested interlink between natural environment and the development of allergic diseases. METHODS We searched PubMed (MEDLINE®) and all references cited in the included studies following the PRISMA statement guidelines. No restrictions regarding age and sex of study participants, language or publication date were made. The protocol was registered at OSF REGISTRIES (https://osf.io/musgr). RESULTS After screening, eight intervention studies were included. The interventions reported were mainly of pilot character and various, ranging from nature-related educational programs, biodiversity interventions in day-cares to short-term contact with soil- and sand-preparations. Most of the studied interventions appeared to increase human microbiota richness and diversity in specific taxa groups in the short-time. Immunological markers were assessed in only two studies. In these, their associations with human microbiota richness were pre-dominantly reported. CONCLUSION There is some evidence that the so-called biodiversity interventions have the potential to diversify human microbiota, at least over a short period. Adequately powered randomized controlled trials with long term follow-up are required to examine sustainable effects on microbiota and immune system.
Collapse
Affiliation(s)
- Christina Tischer
- Institute of Clinical Epidemiology and Biometry, University of Wuerzburg, Josef-Schneider-Str. 2 / D7, 97080 Wuerzburg, Germany; State Institute of Health, Bavarian Health and Food Safety Authority, Prinzregentenstrasse 6, 97688 Bad Kissingen, Germany; Finish Institute for Health and Welfare, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland.
| | - Pirkka Kirjavainen
- Finish Institute for Health and Welfare, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland.
| | - Uwe Matterne
- Institute of Social Medicine and Health Systems Research, Medical Faculty, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | - Jana Tempes
- University of Education Freiburg, Kunzenweg 21, 79117 Freiburg, i.Br, Germany.
| | - Kristina Willeke
- Institute of Clinical Epidemiology and Biometry, University of Wuerzburg, Josef-Schneider-Str. 2 / D7, 97080 Wuerzburg, Germany; State Institute of Health, Bavarian Health and Food Safety Authority, Prinzregentenstrasse 6, 97688 Bad Kissingen, Germany.
| | - Thomas Keil
- Institute of Clinical Epidemiology and Biometry, University of Wuerzburg, Josef-Schneider-Str. 2 / D7, 97080 Wuerzburg, Germany; State Institute of Health, Bavarian Health and Food Safety Authority, Prinzregentenstrasse 6, 97688 Bad Kissingen, Germany; Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Schumannstraße 20 - 21, 10117 Berlin, Germany.
| | - Christian Apfelbacher
- Institute of Social Medicine and Health Systems Research, Medical Faculty, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | - Martin Täubel
- Finish Institute for Health and Welfare, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland.
| |
Collapse
|
43
|
Haahtela T. Biodiversity for resilience-What is needed for allergic children. Pediatr Allergy Immunol 2022; 33:e13779. [PMID: 35616890 DOI: 10.1111/pai.13779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
What is needed for our children facing unprecedented challenges of modern time? Biodiversity, both for immunological and psychological well-being and resilience. That is also the keyword for the children with allergies and asthma. The cultural evolution with advanced technology and medicine along with major move to urban environment has profoundly changed our lifestyle and surroundings. We are increasingly disconnected from our evolutionary home, soil, natural waters, and air we used to breathe. The ecosystem of human body and mind has been tested, survived, and evolved closely in relation with other ecosystems. For balance and tolerance, immune regulatory circuits need training by microbes, biogenic chemicals, and close relation to natural environment throughout life. This is addressed by the biodiversity hypothesis of tolerance/resilience for health, supported by the pioneering real-world interventions and a few controlled studies. No need to go "back to nature," but we must take natural elements back to our everyday life to breathe, eat, drink, and touch. The change for better is plausible and cost-effective, as shown by the Finnish and other European initiatives, but needs contribution of the whole society.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Marvasi M, Monici M, Pantalone D, Cavalieri D. Exploitation of Skin Microbiota in Wound Healing: Perspectives During Space Missions. Front Bioeng Biotechnol 2022; 10:873384. [PMID: 35573226 PMCID: PMC9098812 DOI: 10.3389/fbioe.2022.873384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Wound healing is slowed in Space. Microgravity and possible physical factors associated with Space affect alterations in fibroblast, matrix formation, dysregulation in apoptosis and inflammation. The microbial populations settled on skin, space modules, in space suits, are also playing a pivotal role, as wound healing is also affected by the microbial community. We propose a perspective that includes four domines for the application of human skin microbiota for wound healing in Space: The natural antimicrobial properties of the skin microbiota, the crosstalk of the skin microbiota with the immune system during wound healing, the contribution of the microbiota in precision medicine, and the role of gut-skin and gut-brain axes. A stronger understanding of the connections and metabolic network among bacteria, fungi, the host’s immune system and the host metabolism will support the basis for a better wound healing in Space.
Collapse
Affiliation(s)
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Deptartment of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Desirée Pantalone
- Emergency Surgery Unit-Trauma Team, Emergency Department, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Florence, Italy
- *Correspondence: Duccio Cavalieri,
| |
Collapse
|
45
|
Soininen L, Roslund MI, Nurminen N, Puhakka R, Laitinen OH, Hyöty H, Sinkkonen A. Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers. Sci Rep 2022; 12:6518. [PMID: 35444249 PMCID: PMC9021224 DOI: 10.1038/s41598-022-10432-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Urbanization reduces microbiological abundance and diversity, which has been associated with immune mediated diseases. Urban greening may be used as a prophylactic method to restore microbiological diversity in cities and among urbanites. This study evaluated the impact of air-circulating green walls on bacterial abundance and diversity on human skin, and on immune responses determined by blood cytokine measurements. Human subjects working in offices in two Finnish cities (Lahti and Tampere) participated in a two-week intervention, where green walls were installed in the rooms of the experimental group. Control group worked without green walls. Skin and blood samples were collected before (Day0), during (Day14) and two weeks after (Day28) the intervention. The relative abundance of genus Lactobacillus and the Shannon diversity of phylum Proteobacteria and class Gammaproteobacteria increased in the experimental group. Proteobacterial diversity was connected to the lower proinflammatory cytokine IL-17A level among participants in Lahti. In addition, the change in TGF-β1 levels was opposite between the experimental and control group. As skin Lactobacillus and the diversity of Proteobacteria and Gammaproteobacteria are considered advantageous for skin health, air-circulating green walls may induce beneficial changes in a human microbiome. The immunomodulatory potential of air-circulating green walls deserves further research attention.
Collapse
Affiliation(s)
- L Soininen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - M I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.,Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland
| | - N Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - R Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - O H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - H Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - A Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland.
| | | |
Collapse
|
46
|
Maio S, Baldacci S, Tagliaferro S, Angino A, Parmes E, Pärkkä J, Pesce G, Maesano CN, Annesi-Maesano I, Viegi G. Urban grey spaces are associated with increased allergy in the general population. ENVIRONMENTAL RESEARCH 2022; 206:112428. [PMID: 34838570 DOI: 10.1016/j.envres.2021.112428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND the built environment in urban areas may have side effects on children's respiratory health, whilst less is known for adulthood. AIM to assess the association between increasing exposure to grey spaces and allergic status in an adult general population sample. METHODS 2070 subjects (age range 15-84 yrs), living in Pisa/Cascina, Italy, were investigated in 1991-93 through a questionnaire on health status and risk factors, skin prick test (SPT), serum Immunoglobulins E (IgE), and serum antibodies to benzo(a)pyrene diol epoxide (BPDE)-DNA adducts. Land-cover exposure within a 1000 m buffer from each subject's home address was assessed through the CORINE Land Cover program (CLC 1990) within the FP7/HEALS project (2013-2018). Participants' residential addresses were geocoded and the proportion of surrounding grey spaces was calculated. Through logistic regression models, adjusting for potential confounding factors, the effect of a 10% increase in grey spaces exposure on allergic biomarkers/conditions was assessed; the relationship with serum antibodies to BPDE-DNA adducts positivity was also analyzed. RESULTS A 10% increase in grey spaces coverage was associated with a higher probability of having SPT positivity (OR 1.07, 95% CI 1.02-1.13), seasonal SPT positivity (OR 1.12, 1.05-1.19), polysensitization (OR 1.11, 1.04-1.19), allergic rhinitis (OR 1.10, 1.04-1.17), co-presence of SPT positivity and asthma/allergic rhinitis (OR 1.16, 1.08-1.25), asthma/allergic rhinitis (OR 1.06, 1.00-1.12), presence of serum antibodies to BPDE-DNA adducts positivity (OR 1.07, 1.01-1.14). CONCLUSIONS grey spaces have adverse effects on allergic status and are related to a biomarker of polycyclic aromatic hydrocarbons exposure in adulthood. Thus, they may be used as a proxy of urban environmental exposure.
Collapse
Affiliation(s)
- S Maio
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy.
| | - S Baldacci
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - S Tagliaferro
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - A Angino
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - E Parmes
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - J Pärkkä
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - G Pesce
- INSERM, Paris-Saclay University, UVSQ, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - C N Maesano
- INSERM, Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - I Annesi-Maesano
- INSERM, Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - G Viegi
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy; CNR Institute for Research and Biomedical Innovation, Palermo, Italy
| |
Collapse
|
47
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
48
|
Palacios-García I, Mhuireach GA, Grasso-Cladera A, Cryan JF, Parada FJ. The 4E approach to the human microbiome: Nested interactions between the gut-brain/body system within natural and built environments. Bioessays 2022; 44:e2100249. [PMID: 35338496 DOI: 10.1002/bies.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
The complexity of the human mind and its interaction with the environment is one of the main epistemological debates throughout history. Recent ideas, framed as the 4E perspective to cognition, highlight that human experience depends causally on both cerebral and extracranial processes, but also is embedded in a particular sociomaterial context and is a product of historical accumulation of trajectory changes throughout life. Accordingly, the human microbiome is one of the most intriguing actors modulating brain function and physiology. Here, we present the 4E approach to the Human Microbiome for understanding mental processes from a broader perspective, encompassing one's body physiology and environment throughout their lifespan, interconnected by microbiome community structure and dynamics. We review evidence supporting the approach theoretically and motivates the study of the global set of microbial ecosystem networks encountered by a person across their lifetime (from skin to gut to natural and built environments). We furthermore trace future empirical implementation of the approach. We finally discuss novel research opportunities and clinical interventions aimed toward developing low-cost/high-benefit integrative and personalized bio-psycho-socio-environmental treatments for mental health and including the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Ismael Palacios-García
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Laboratorio de Psicofisiología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Oregon, USA
| | - Aitana Grasso-Cladera
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
49
|
Messelodi D, Giuliani C, Cipriani F, Armuzzi S, di Palmo E, Garagnani P, Bertelli L, Astolfi A, Luiselli D, Ricci G, Pession A. C5 and SRGAP3 Polymorphisms Are Linked to Paediatric Allergic Asthma in the Italian Population. Genes (Basel) 2022; 13:214. [PMID: 35205259 PMCID: PMC8871526 DOI: 10.3390/genes13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Asthma is a complex and heterogeneous disease, caused by the interaction between genetic and environmental factors with a predominant allergic background in children. The role of specific genes in asthmatic bronchial reactivity is still not clear, probably because of the many common pathways shared with other allergic disorders. This study is focused on 11 SNPs possibly related to asthma that were previously identified in a GWAS study. The genetic variability of these SNPs has been analysed in a population of 773 Italian healthy controls, and the presence of an association between the polymorphisms and the asthma onset was evaluated performing genotyping analysis on 108 children affected with asthma compared with the controls. Moreover, a pool of 171 patients with only allergic rhinoconjunctivitis has been included in the case-control analysis. The comparison of allele frequencies in asthmatic patients versus healthy controls identified two SNPs-rs1162394 (p = 0.019) and rs25681 (p = 0.044)-associated with the asthmatic condition, which were not differentially distributed in the rhinoconjunctivitis group. The rs25681 SNP, together with three other SNPs, also resulted in not being homogenously distributed in the Italian population. The significantly higher frequency of the rs25681 and rs1162394 SNPs (located, respectively, in the C5 and SRGAP3 genes) in the asthmatic population suggests an involvement of these genes in the asthmatic context, playing a role in increasing the inflammatory condition that may influence asthma onset and clinical course.
Collapse
Affiliation(s)
- Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Francesca Cipriani
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (E.d.P.); (L.B.); (A.P.)
| | - Silvia Armuzzi
- Institute of Hematology “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (P.G.); (A.A.)
| | - Emanuela di Palmo
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (E.d.P.); (L.B.); (A.P.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (P.G.); (A.A.)
| | - Luca Bertelli
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (E.d.P.); (L.B.); (A.P.)
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (P.G.); (A.A.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage (DBC), Ravenna Campus, University of Bologna, 40126 Bologna, Italy;
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (E.d.P.); (L.B.); (A.P.)
| |
Collapse
|
50
|
Paciência I, Cavaleiro Rufo J, Ribeiro AI, Severo M, Moreira A. Childhood asthma and land-use characteristics in school and residential neighborhoods: A decision tree learning approach. Pediatr Allergy Immunol 2022; 33:e13662. [PMID: 34515374 DOI: 10.1111/pai.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Inês Paciência
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,Departamento de Patologia, Serviço de Imunologia Básica e Clínica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Cavaleiro Rufo
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,Departamento de Patologia, Serviço de Imunologia Básica e Clínica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ana Isabel Ribeiro
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Milton Severo
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - André Moreira
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,Departamento de Patologia, Serviço de Imunologia Básica e Clínica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|