1
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Le R, Nguyen MT, Allahwala MA, Psaltis JP, Marathe CS, Marathe JA, Psaltis PJ. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. J Clin Med 2024; 13:4674. [PMID: 39200816 PMCID: PMC11355214 DOI: 10.3390/jcm13164674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Owing to their potent glucose-lowering efficacy and substantial weight loss effects, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are now considered part of the frontline therapeutic options to treat both type 2 diabetes mellitus and nondiabetic overweight/obesity. Stemming from successful demonstration of their cardiometabolic modulation and reduction of major adverse cardiovascular events in clinical outcome trials, GLP-1 RAs have since been validated as agents with compelling cardiovascular protective properties. Studies spanning from the bench to preclinical and large-scale randomised controlled trials have consistently corroborated the cardiovascular benefits of this pharmacological class. Most notably, there is converging evidence that they exert favourable effects on atherosclerotic ischaemic endpoints, with preclinical data indicating that they may do so by directly modifying the burden and composition of atherosclerotic plaques. This narrative review examines the underlying pharmacology and clinical evidence behind the cardiovascular benefits of GLP-1 RAs, with particular focus on atherosclerotic cardiovascular disease. It also delves into the mechanisms that underpin their putative plaque-modifying actions, addresses existing knowledge gaps and therapeutic challenges and looks to future developments in the field, including the use of combination incretin agents for diabetes and weight loss management.
Collapse
Affiliation(s)
- Richard Le
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia;
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
| | - Mau T. Nguyen
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Momina A. Allahwala
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - James P. Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Chinmay S. Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
- Department of Endocrinology, Central Adelaide Local Health Network, Adelaide 5000, Australia
| | - Jessica A. Marathe
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Peter J. Psaltis
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| |
Collapse
|
3
|
De Fano M, Malara M, Vermigli C, Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci 2024; 25:8650. [PMID: 39201336 PMCID: PMC11354636 DOI: 10.3390/ijms25168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Complex Structure of Endocrinology and Metabolism, Department of Medicine, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, 06081 Perugia, Italy; (M.M.); (C.V.); (G.M.)
| | | | | | | |
Collapse
|
4
|
Zhang J, Yang G, Liu J, Lin Z, Zhang J, Zhao J, Sun G, Lin H. Glucagon-like peptide-1 analog liraglutide reduces fat deposition in chicken adipocytes. Poult Sci 2024; 103:103766. [PMID: 38759567 PMCID: PMC11107459 DOI: 10.1016/j.psj.2024.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024] Open
Abstract
Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.
Collapse
Affiliation(s)
- Jianmei Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guangcheng Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jingbo Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Zhenxian Lin
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jie Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jin Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guozheng Sun
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China.
| |
Collapse
|
5
|
Zhang M, Yue X, Xu S, Piao J, Zhao L, Shu S, Kuzuya M, Li P, Hong L, Kim W, Liu B, Cheng XW. Dipeptidyl peptidase-4 disturbs adipocyte differentiation via the negative regulation of the glucagon-like peptide-1/adiponectin-cathepsin K axis in mice under chronic stress conditions. FASEB J 2024; 38:e23684. [PMID: 38795334 DOI: 10.1096/fj.202400158r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and β-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, P. R. China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Shangzhi Shu
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Masafumi Kuzuya
- Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ping Li
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Weon Kim
- Department of Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, P. R. China
| |
Collapse
|
6
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Spezzini J, Piragine E, Flori L, Calderone V, Martelli A. Natural H 2S-donors: A new pharmacological opportunity for the management of overweight and obesity. Phytother Res 2024; 38:2388-2405. [PMID: 38430052 DOI: 10.1002/ptr.8181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The prevalence of overweight and obesity has progressively increased in the last few years, becoming a real threat to healthcare systems. To date, the clinical management of body weight gain is an unmet medical need, as there are few approved anti-obesity drugs and most require an extensive monitoring and vigilance due to risk of adverse effects and poor patient adherence/persistence. Growing evidence has shown that the gasotransmitter hydrogen sulfide (H2S) and, therefore, H2S-donors could have a central role in the prevention and treatment of overweight/obesity. The main natural sources of H2S-donors are plants from the Alliaceae (garlic and onion), Brassicaceae (e.g., broccoli, cabbage, and wasabi), and Moringaceae botanical families. In particular, polysulfides and isothiocyanates, which slowly release H2S, derive from the hydrolysis of alliin from Alliaceae and glucosinolates from Brassicaceae/Moringaceae, respectively. In this review, we describe the emerging role of endogenous H2S in regulating adipose tissue function and the potential efficacy of natural H2S-donors in animal models of overweight/obesity, with a final focus on the preliminary results from clinical trials. We conclude that organosulfur-containing plants and their extracts could be used before or in combination with conventional anti-obesity agents to improve treatment efficacy and reduce inflammation in obesogenic conditions. However, further high-quality studies are needed to firmly establish their clinical efficacy.
Collapse
Affiliation(s)
| | | | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
9
|
García-Vega D, Sánchez-López D, Rodríguez-Carnero G, Villar-Taibo R, Viñuela JE, Lestegás-Soto A, Seoane-Blanco A, Moure-González M, Bravo SB, Fernández ÁL, González-Juanatey JR, Eiras S. Semaglutide modulates prothrombotic and atherosclerotic mechanisms, associated with epicardial fat, neutrophils and endothelial cells network. Cardiovasc Diabetol 2024; 23:1. [PMID: 38172989 PMCID: PMC10765851 DOI: 10.1186/s12933-023-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Obesity has increased in recent years with consequences on diabetes and other comorbidities. Thus, 1 out of 3 diabetic patients suffers cardiovascular disease (CVD). The network among glucose, immune system, endothelium and epicardial fat has an important role on pro-inflammatory and thrombotic mechanisms of atherogenesis. Since semaglutide, long-acting glucagon like peptide 1- receptor agonist (GLP-1-RA), a glucose-lowering drug, reduces body weight, we aimed to study its effects on human epicardial fat (EAT), aortic endothelial cells and neutrophils as atherogenesis involved-cardiovascular cells. METHODS EAT and subcutaneous fat (SAT) were collected from patients undergoing cardiac surgery. Differential glucose consumption and protein cargo of fat-released exosomes, after semaglutide or/and insulin treatment were analyzed by enzymatic and TripleTOF, respectively. Human neutrophils phenotype and their adhesion to aortic endothelial cells (HAEC) or angiogenesis were analyzed by flow cytometry and functional fluorescence analysis. Immune cells and plasma protein markers were determined by flow cytometry and Luminex-multiplex on patients before and after 6 months treatment with semaglutide. RESULTS GLP-1 receptor was expressed on fat and neutrophils. Differential exosomes-protein cargo was identified on EAT explants after semaglutide treatment. This drug increased secretion of gelsolin, antithrombotic protein, by EAT, modulated CD11b on neutrophils, its migration and endothelial adhesion, induced by adiposity protein, FABP4, or a chemoattractant. Monocytes and neutrophils phenotype and plasma adiposity, stretch, mesothelial, fibrotic, and inflammatory markers on patients underwent semaglutide treatment for 6 months showed a 20% reduction with statistical significance on FABP4 levels and an 80% increase of neutrophils-CD88. CONCLUSION Semaglutide increases endocrine activity of epicardial fat with antithrombotic properties. Moreover, this drug modulates the pro-inflammatory and atherogenic profile induced by the adiposity marker, FABP4, which is also reduced in patients after semaglutide treatment.
Collapse
Affiliation(s)
- David García-Vega
- Cardiology department, Complejo Hospitalario Universitario de Santiago, Travesía de la Choupana SN, 15706, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
- University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - David Sánchez-López
- Translational Cardiology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rocío Villar-Taibo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Neoplasia and Differentiation of Endocrine Cells Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan E Viñuela
- Translational Cardiology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Immunology Laboratory, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Adán Lestegás-Soto
- Translational Cardiology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Seoane-Blanco
- Cardiology department, Complejo Hospitalario Universitario de Santiago, Travesía de la Choupana SN, 15706, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - María Moure-González
- Cardiology department, Complejo Hospitalario Universitario de Santiago, Travesía de la Choupana SN, 15706, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Susana B Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel L Fernández
- Department of Cardiac Surgery, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - José R González-Juanatey
- Cardiology department, Complejo Hospitalario Universitario de Santiago, Travesía de la Choupana SN, 15706, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
- University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sonia Eiras
- Cardiology department, Complejo Hospitalario Universitario de Santiago, Travesía de la Choupana SN, 15706, Santiago de Compostela, Spain.
- CIBERCV, ISCIII, Madrid, Spain.
- Translational Cardiology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Lui A, Patel RS, Krause-Hauch M, Sparks RP, Patel NA. Regulation of Human Sortilin Alternative Splicing by Glucagon-like Peptide-1 (GLP1) in Adipocytes. Int J Mol Sci 2023; 24:14324. [PMID: 37762628 PMCID: PMC10531797 DOI: 10.3390/ijms241814324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.
Collapse
Affiliation(s)
- Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Rekha S. Patel
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| | - Meredith Krause-Hauch
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Robert P. Sparks
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
- Department of Medicine, Division of Gastroenterology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Niketa A. Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| |
Collapse
|
11
|
Mattar P, Jaque C, Teske JA, Morselli E, Kerr B, Cortés V, Baudrand R, Perez-Leighton CE. Impact of short and long exposure to cafeteria diet on food intake and white adipose tissue lipolysis mediated by glucagon-like peptide 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1164047. [PMID: 37293487 PMCID: PMC10244886 DOI: 10.3389/fendo.2023.1164047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction The modern food environment facilitates excessive calorie intake, a major driver of obesity. Glucagon-like peptide 1 (GLP1) is a neuroendocrine peptide that has been the basis for developing new pharmacotherapies against obesity. The GLP1 receptor (GLP1R) is expressed in central and peripheral tissues, and activation of GLP1R reduces food intake, increases the expression of thermogenic proteins in brown adipose tissue (BAT), and enhances lipolysis in white adipose tissue (WAT). Obesity decreases the efficiency of GLP1R agonists in reducing food intake and body weight. Still, whether palatable food intake before or during the early development of obesity reduces the effects of GLP1R agonists on food intake and adipose tissue metabolism remains undetermined. Further, whether GLP1R expressed in WAT contributes to these effects is unclear. Methods Food intake, expression of thermogenic BAT proteins, and WAT lipolysis were measured after central or peripheral administration of Exendin-4 (EX4), a GLP1R agonist, to mice under intermittent-short exposure to CAF diet (3 h/d for 8 days) or a longer-continuous exposure to CAF diet (24 h/d for 15 days). Ex-vivo lipolysis was measured after EX4 exposure to WAT samples from mice fed CAF or control diet for 12 weeks. . Results During intermittent-short exposure to CAF diet (3 h/d for 8 days), third ventricle injection (ICV) and intra-peritoneal administration of EX4 reduced palatable food intake. Yet, during a longer-continuous exposure to CAF diet (24 h/d for 15 days), only ICV EX4 administration reduced food intake and body weight. However, this exposure to CAF diet blocked the increase in uncoupling protein 1 (UCP1) caused by ICV EX4 administration in mice fed control diet. Finally, GLP1R expression in WAT was minimal, and EX4 failed to increase lipolysis ex-vivo in WAT tissue samples from mice fed CAF or control diet for 12 weeks. . Discussion Exposure to a CAF diet during the early stages of obesity reduces the effects of peripheral and central GLP1R agonists, and WAT does not express a functional GLP1 receptor. These data support that exposure to the obesogenic food environment, without the development or manifestation of obesity, can alter the response to GLP1R agonists. .
Collapse
Affiliation(s)
- Pamela Mattar
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Jaque
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jennifer A. Teske
- Department of Physiology, School of Nutritional Sciences and Wellness, Graduate Interdisciplinary Programs in Physiological Sciences and Neuroscience, University of Arizona, Tucson, AZ, United States
- Department of Food Science and Nutrition at the University of Minnesota, Saint Paul, MN, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinologia UC CETREN, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | |
Collapse
|
12
|
Zhu R, Chen S. Proteomic analysis reveals semaglutide impacts lipogenic protein expression in epididymal adipose tissue of obese mice. Front Endocrinol (Lausanne) 2023; 14:1095432. [PMID: 37025414 PMCID: PMC10070826 DOI: 10.3389/fendo.2023.1095432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Obesity is a global health problem with few pharmacologic options. Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue that induces weight loss. Yet, the role of semaglutide in adipose tissue has not yet been examined. The following study investigated the mechanism of semaglutide on lipid metabolism by analyzing proteomics of epididymal white adipose tissue (eWAT) in obese mice. METHODS A total of 36 C57BL/6JC mice were randomly divided into a normal-chow diet group (NCD, n = 12), high-fat diet (HFD, n = 12), and HFD+semaglutide group (Sema, n = 12). Mice in the Sema group were intraperitoneally administered semaglutide, and the HFD group and the NCD group were intraperitoneally administered an equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. The Intraperitoneal glucose tolerance test (IPGTT) was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. Tandem Mass Tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to study the expression of eWAT, while cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. RESULTS Compared with the model group, the semaglutide-treated mice presented 640 differentially expressed proteins (DEPs), including 292 up-regulated and 348 down-regulated proteins. Bioinformatics analysis showed a reduction of CD36, FABP5, ACSL, ACOX3, PLIN2, ANGPTL4, LPL, MGLL, AQP7, and PDK4 involved in the lipid metabolism in the Sema group accompanied by a decrease in visceral fat accumulation, blood lipids, and improvement in glucose intolerance. CONCLUSION Semaglutide can effectively reduce visceral fat and blood lipids and improve glucose metabolism in obese mice. Semaglutide treatment might have beneficial effects on adipose tissues through the regulation of lipid uptake, lipid storage, and lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Ruiyi Zhu
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Shuchun Chen,
| |
Collapse
|
13
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
14
|
Alser M, Elrayess MA. From an Apple to a Pear: Moving Fat around for Reversing Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114251. [PMID: 36361131 PMCID: PMC9659102 DOI: 10.3390/ijerph192114251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/02/2023]
Abstract
Type 2 diabetes (T2D) is a chronic condition where the body is resistant to insulin, leading to an elevated blood glucose state. Obesity is a main factor leading to T2D. Many clinical studies, however, have described a proportion of obese individuals who express a metabolically healthy profile, whereas some lean individuals could develop metabolic disorders. To study obesity as a risk factor, body fat distribution needs to be considered rather than crude body weight. Different individuals' bodies favor storing fat in different depots; some tend to accumulate more fat in the visceral depot, while others tend to store it in the femoral depot. This tendency relies on different factors, including genetic background and lifestyle. Consuming some types of medications can cause a shift in this tendency, leading to fat redistribution. Fat distribution plays an important role in the progression of risk of insulin resistance (IR). Apple-shaped individuals with enhanced abdominal obesity have a higher risk of IR compared to BMI-matched pear-shaped individuals, who store their fat in the gluteal-femoral depots. This is related to the different adipose tissue physiology between these two depots. In this review, we will summarize the recent evidence highlighting the underlying protective mechanisms in gluteal-femoral subcutaneous adipose tissues compared to those associated with abdominal adipose tissue, and we will revise the recent evidence showing antidiabetic drugs that impact fat distribution as they manage the T2D condition.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
15
|
Model JFA, Rocha DS, Fagundes ADC, Vinagre AS. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Vet Anim Sci 2022; 16:100245. [PMID: 35372707 PMCID: PMC8966211 DOI: 10.1016/j.vas.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
GLP-1 improves peripheral glucose uptake in healthy dogs and cats. GLP-1 analogues administration in diabetic cats reduces exogenous insulin requirement. Dogs cardiomyocytes apoptosis is reduced by GLP-1-derived molecules action.
Analogues of glucagon like peptide-1 (GLP-1) and other drugs that increase this peptide half-life are used worldwide in human medicine to treat type 2 diabetes mellitus (DM) and obesity. These molecules can increase insulin release and satiety, interesting effects that could also be useful in the treatment of domestic animals pathologies, however their use in veterinary medicine are still limited. Considering the increasing incidence of DM and obesity in cats and dogs, the aim of this review is to summarize the available information about the physiological and pharmacological actions of GLP-1 in domestic animals and discuss about its potential applications in veterinary medicine. In diabetic dogs, the use of drugs based on GLP-1 actions reduced blood glucose and increased glucose uptake, while in diabetic cats they reduced glycemic variability and exogenous insulin administration. Thus, available evidence indicates that GLP-1 based drugs could become alternatives to DM treatment in domestic animals. Nevertheless, current data do not provide enough elements to recommend these drugs widespread clinical use.
Collapse
|
16
|
Oliveira FCB, Bauer EJ, Ribeiro CM, Pereira SA, Beserra BTS, Wajner SM, Maia AL, Neves FAR, Coelho MS, Amato AA. Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue. Front Endocrinol (Lausanne) 2022; 12:803363. [PMID: 35069450 PMCID: PMC8771968 DOI: 10.3389/fendo.2021.803363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Aims Liraglutide is a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist used as an anti-hyperglycemic agent in type 2 diabetes treatment and recently approved for obesity management. Weight loss is attributed to appetite suppression, but therapy may also increase energy expenditure. To further investigate the effect of GLP-1 signaling in thermogenic fat, we assessed adipose tissue oxygen consumption and type 2 deiodinase (D2) activity in mice treated with liraglutide, both basally and after β3-adrenergic treatment. Methods Male C57BL/6J mice were randomly assigned to receive liraglutide (400 μg/kg, n=12) or vehicle (n=12). After 16 days, mice in each group were co-treated with the selective β3-adrenergic agonist CL316,243 (1 mg/kg, n=6) or vehicle (n=6) for 5 days. Adipose tissue depots were assessed for gene and protein expression, oxygen consumption, and D2 activity. Results Liraglutide increased interscapular brown adipose tissue (iBAT) oxygen consumption and enhanced β3-adrenergic-induced oxygen consumption in iBAT and inguinal white adipose tissue (ingWAT). These effects were accompanied by upregulation of UCP-1 protein levels in iBAT and ingWAT. Notably, liraglutide increased D2 activity without significantly upregulating its mRNA levels in iBAT and exhibited additive effects to β3-adrenergic stimulation in inducing D2 activity in ingWAT. Conclusions Liraglutide exhibits additive effects to those of β3-adrenergic stimulation in thermogenic fat and increases D2 activity in BAT, implying that it may activate this adipose tissue depot by increasing intracellular thyroid activation, adding to the currently known mechanisms of GLP-1A-induced weight loss.
Collapse
Affiliation(s)
- Fernanda C. B. Oliveira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Eduarda J. Bauer
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Carolina M. Ribeiro
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Sidney A. Pereira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna T. S. Beserra
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Simone M. Wajner
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana L. Maia
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco A. R. Neves
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Michella S. Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Angelica A. Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
17
|
Bai C, Wang Y, Niu Z, Guan Y, Huang J, Nian X, Zuo F, Zhao J, Kazumi T, Wu B. Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue. Front Endocrinol (Lausanne) 2022; 13:1012904. [PMID: 36246878 PMCID: PMC9558273 DOI: 10.3389/fendo.2022.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is resulted from energy surplus and is characterized by abnormal adipose tissue accumulation and/or distribution. Adipokines secreted by different regional adipose tissue can induce changes in key proteins of the insulin signaling pathway in hepatocytes and result in impaired hepatic glucose metabolism. This study aimed to investigate whether exenatide affects key proteins of IRS2/PI3K/Akt2 signaling pathway in hepatocytes altered by the different regional fat depots. Six non-obese patients without endocrine diseases were selected as the research subjects. Their subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)were co-cultured with HepG2 cells in the transwell chamber. In the presence or absence of exenatide, adipokines content in the supernatant of each experimental group was detected by ELISA. In addition, HepG2 cells in each co-culture group with and without insulin were collected, and the expression of key proteins IRS2, p-IRS2(S731), PI3K-p85, Akt2, and p-Akt2(S473) was detected by western blotting (WB). The results showed that the adipokines IL-8, MCP-1, VEGF, and sTNFR2 in the supernatant of HepG2 cells induced by different regional adipose tissue were significantly higher than those in the HepG2 group, and VAT released more adipokines than SAT. Furthermore, these adipokines were significantly inhibited by exenatide. Importantly, the different regional fat depot affects the IRS2/PI3K/Akt2 insulin signaling pathway of hepatocytes. Exenatide can up-regulate the expression of hepatocyte proteins IRS2, PI3K-p85, p-Akt2(S731) inhibited by adipose tissue, and down-regulate the expression of hepatocyte proteins p-IRS2(S731) promoted by adipose tissue. The effect of VAT on the expression of these key proteins in hepatocytes is more significant than that of SAT. But there was no statistical difference in the expression of Akt2 protein among each experimental group, suggesting that exenatide has no influence on the expression of Akt2 protein in hepatocytes. In conclusion, exenatide may improve hepatic insulin resistance (IR) by inhibiting adipokines and regulating the expression of key proteins in the IRS2/PI3K/Akt2 pathway.
Collapse
Affiliation(s)
- Chuanmin Bai
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yujun Wang
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi Niu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, United States
| | - Xin Nian
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Juan Zhao
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Tsutomu Kazumi
- Open Research Center for Studying of Lifestyle−Related Diseases, Mukogawa Women’s University, Nishinomiya, Japan
- Research Institute for Nutrition Sciences, Mukogawa Women’s University, Nishinomiya, Japan
- Department of Medicine, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Bin Wu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Bin Wu,
| |
Collapse
|
18
|
Li H, Donelan W, Wang F, Zhang P, Yang L, Ding Y, Tang D, Li S. GLP-1 Induces the Expression of FNDC5 Derivatives That Execute Lipolytic Actions. Front Cell Dev Biol 2021; 9:777026. [PMID: 34869379 PMCID: PMC8636013 DOI: 10.3389/fcell.2021.777026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
Multiple GLP-1-derived therapeutics are clinically used to treat type 2 diabetes and obesity. However, the underlying mechanism of how these drugs regulate the body weight of obese patients remains incompletely understood. Here, we report that the lipolysis effects of GLP-1 on β cells can depend on its induced expression of fibronectin type III domain containing 5 (FNDC5). The transmembrane FNDC5 is a precursor of the recently identified hormone irisin that possesses a range of bioactivities, including anti-obesity and anti-diabetes. We revealed that GLP-1 upregulates the expression and secretion of FNDC5 in β cells, while GLP-1 itself fails to activate the lipolysis genes in FNDC5-knockout β cells. In addition, liraglutide, a clinically used GLP-1 receptor agonist, induced the expression of FNDC5 in mouse pancreas and brain tissues and increased the serum level of secreted FNDC5. Furthermore, we observed the expression of the well-known membrane-associated FNDC5 and a novel, secretable FNDC5 (sFNDC5) isoform in β cells and multiple rat tissues. Recombinant sFNDC5 stimulated lipolysis of wild type and FNDC5-knockout β cells. This new isoform further induced lipolysis and browning of adipocytes, and similar to irisin, executed potent anti-obesity activities in an obese mouse model. Overall, our studies provided new mechanistic insights into GLP-1’s anti-obesity actions in which GLP-1 induces the secretion of FNDC5 derivatives from its responsive organs that then mediate its anti-obesity activities.
Collapse
Affiliation(s)
- Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery, and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lijun Yang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery, and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiwu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
20
|
Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, Včev A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab Syndr Obes 2021; 14:67-83. [PMID: 33447066 PMCID: PMC7802907 DOI: 10.2147/dmso.s281186] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is recognized as a severe threat to overall human health and is associated with type 2 diabetes mellitus, dyslipidemia, hypertension, and cardiovascular diseases. Abnormal expansion of white adipose tissue involves increasing the existing adipocytes' cell size or increasing the number through the differentiation of new adipocytes. Adipogenesis is a process of proliferation and differentiation of adipocyte precursor cells in mature adipocytes. As a key process in determining the number of adipocytes, it is a possible therapeutic approach for obesity. Therefore, it is necessary to identify the molecular mechanisms involved in adipogenesis that could serve as suitable therapeutic targets. Reducing bodyweight is regarded as a major health benefit. Limited efficacy and possible side effects and drug interactions of available anti-obesity treatment highlight a constant need for finding novel efficient and safe anti-obesity ingredients. Numerous studies have recently investigated the inhibitory effects of natural products on adipocyte differentiation and lipid accumulation. Possible anti-obesity effects of natural products include the induction of apoptosis, cell-cycle arrest or delayed progression, and interference with transcription factor cascade or intracellular signaling pathways during the early phase of adipogenesis.
Collapse
Affiliation(s)
- Jelena Jakab
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Correspondence: Jelena Jakab Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Crkvena 21, Osijek31 000, CroatiaTel +385 91 224 1502 Email
| | - Blaženka Miškić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, General Hospital “Dr. Josip Benčević”, Slavonski Brod, Croatia
| | - Štefica Mikšić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Brankica Juranić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Cardiology, University Hospital Osijek, Osijek, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Special Hospital Radiochirurgia Zagreb, Zagreb, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
21
|
Martin-Nuñez GM, Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front Endocrinol (Lausanne) 2021; 12:639856. [PMID: 34220702 PMCID: PMC8247771 DOI: 10.3389/fendo.2021.639856] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4 billion individuals worldwide. Although the majority of infected individuals remain asymptomatic, this bacterium colonizes the gastric mucosa causing the development of various clinical conditions as peptic ulcers, chronic gastritis and gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphomas, but complications are not limited to gastric ones. Extradigestive pathologies, including metabolic disturbances such as diabetes, obesity and nonalcoholic fatty liver disease, have also been associated with H. pylori infection. However, the underlying mechanisms connecting H. pylori with extragastric metabolic diseases needs to be clarified. Notably, the latest studies on the topic have confirmed that H. pylori infection modulates gut microbiota in humans. Damage in the gut bacterial community (dysbiosis) has been widely related to metabolic dysregulation by affecting adiposity, host energy balance, carbohydrate metabolism, and hormonal modulation, among others. Taking into account that Type 2 diabetic patients are more prone to be H. pylori positive, gut microbiota emerges as putative key factor responsible for this interaction. In this regard, the therapy of choice for H. pylori eradication, based on proton pump inhibitor combined with two or more antibiotics, also alters gut microbiota composition, but consequences on metabolic health of the patients has been scarcely explored. Recent studies from our group showed that, despite decreasing gut bacterial diversity, conventional H. pylori eradication therapy is related to positive changes in glucose and lipid profiles. The mechanistic insights explaining these effects should also be addressed in future research. This review will deal with the role of gut microbiota as the linking factor between H. pylori infection and metabolic diseases, and discussed the impact that gut bacterial modulation by H. pylori eradication treatment can also have in host's metabolism. For this purpose, new evidence from the latest human studies published in more recent years will be analyzed.
Collapse
Affiliation(s)
- Gracia M. Martin-Nuñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Cornejo-Pareja
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Clemente-Postigo
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- *Correspondence: Francisco J. Tinahones, ; Mercedes Clemente-Postigo,
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco J. Tinahones, ; Mercedes Clemente-Postigo,
| |
Collapse
|
22
|
Gao Y, Yuan X, Zhu Z, Wang D, Liu Q, Gu W. Research and prospect of peptides for use in obesity treatment (Review). Exp Ther Med 2020; 20:234. [PMID: 33149788 DOI: 10.3892/etm.2020.9364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes, hypertension and cardiovascular disease, are steadily increasing worldwide. Over the past few decades, numerous studies have focused on the differentiation and function of brown and beige fat, providing evidence for their therapeutic potential in treating obesity. However, no specific novel drug has been developed to treat obesity in this way. Peptides are a class of chemically active substances, which are linked together by amino acids using peptide bonds. They have specific physiological activities, including browning of white fat. As signal molecules regulated by the neuroendocrine system, the role of polypeptides, such as neuropeptide Y, brain-gut peptide and glucagon-like peptide in obesity and its related complications has been revealed. Notably, with the rapid development of peptidomics, peptide drugs have been widely used in the prevention and treatment of metabolic diseases, due to their short half-life, small apparent distribution volume, low toxicity and low side effects. The present review summarizes the progress and the new trend of peptide research, which may provide novel targets for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
Tolerance develops toward GLP-1 receptor agonists' glucose-lowering effect in mice. Eur J Pharmacol 2020; 885:173443. [PMID: 32750365 DOI: 10.1016/j.ejphar.2020.173443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are popular antidiabetic drugs with potent glucose-lowering effects and low risk of hypoglycemia. Animal experiments and human data indicate that tolerance develops toward at least some of their effects, e.g., gastric motility. Whether tolerance develops toward the glucose-lowering effect of GLP-1 receptor agonists in mice has never been formally tested. The hypothesis of tolerance development in mice will be reported in this study. The direct glucose-lowering effect of the GLP-1 receptor agonists was measured in non-fasted mice and with intraperitoneal glucose tolerance test. Exenatide (10 μg/kg) and liraglutide (600 μg/kg) both substantially lost efficacy during the 18-day treatment as compared to the acute effect. We conclude that our results demonstrate development of tolerance toward GLP-1 receptor agonists' glucose-lowering effect in mice.
Collapse
|
24
|
Wongkrasant P, Pongkorpsakol P, Chitwattananont S, Satianrapapong W, Tuangkijkul N, Muanprasat C. Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of iNOS and cleaved caspase-3 expression. J Pharmacol Sci 2020; 143:65-73. [PMID: 32229084 DOI: 10.1016/j.jphs.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) released from enteroendocrine (L) cells regulates insulin secretion. Intestinal inflammation and impaired GLP-1 release have been found in type 2 diabetes mellitus (T2DM) patients. Fructo-oligosaccharides (FOS), a known prebiotic, improve GLP-1 release and glucose homeostasis in T2DM models. This study aimed to investigate the effect of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine associated with intestinal inflammation in T2DM, on L cell apoptosis and the effect of FOS on inflammation-associated impairment of GLP-1 secretion. Herein, using cell death assays, immunofluorescence staining, real time PCR and Western blot analyses, we found that TNF-α induced L cell apoptosis via nuclear factor kappa B (NF-κB)- inducible nitric oxide synthase (iNOS)-cleaved caspase-3-dependent pathways. Interestingly, FOS did not suppress TNF-α-induced NF-κB nuclear translocation, but inhibited expression of iNOS and cleaved caspase-3. In addition, FOS alleviated apoptosis and rescued impaired GLP-1 release in TNF-α-treated L cells. Altogether, our data indicate that TNF-α induces L cell apoptosis via an NF-κB-iNOS-caspase-3-dependent pathway. FOS may be useful in suppressing inflammation-associated L cell apoptosis and maintaining GLP-1 level in T2DM patients.
Collapse
Affiliation(s)
- Preedajit Wongkrasant
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Pawin Pongkorpsakol
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Sasirin Chitwattananont
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Wilasinee Satianrapapong
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Nuttha Tuangkijkul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand; Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Sarafidis P, Ferro CJ, Morales E, Ortiz A, Malyszko J, Hojs R, Khazim K, Ekart R, Valdivielso J, Fouque D, London GM, Massy Z, Ruggenenti P, Porrini E, Wiecek A, Zoccali C, Mallamaci F, Hornum M. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 2020; 34:208-230. [PMID: 30753708 DOI: 10.1093/ndt/gfy407] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) in patients with diabetes mellitus (DM) is a major problem of public health. Currently, many of these patients experience progression of cardiovascular and renal disease, even when receiving optimal treatment. In previous years, several new drug classes for the treatment of type 2 DM have emerged, including inhibitors of renal sodium-glucose co-transporter-2 (SGLT-2) and glucagon-like peptide-1 (GLP-1) receptor agonists. Apart from reducing glycaemia, these classes were reported to have other beneficial effects for the cardiovascular and renal systems, such as weight loss and blood pressure reduction. Most importantly, in contrast to all previous studies with anti-diabetic agents, a series of recent randomized, placebo-controlled outcome trials showed that SGLT-2 inhibitors and GLP-1 receptor agonists are able to reduce cardiovascular events and all-cause mortality, as well as progression of renal disease, in patients with type 2 DM. This document presents in detail the available evidence on the cardioprotective and nephroprotective effects of SGLT-2 inhibitors and GLP-1 analogues, analyses the potential mechanisms involved in these actions and discusses their place in the treatment of patients with CKD and DM.
Collapse
Affiliation(s)
- Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Enrique Morales
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Radovan Hojs
- Department of Nephrology, University Medical Center and Faculty of Medicine, Maribor University, Maribor, Slovenia
| | - Khaled Khazim
- Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Robert Ekart
- Department of Nephrology, University Medical Center and Faculty of Medicine, Maribor University, Maribor, Slovenia
| | - Jose Valdivielso
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, IRBLleida, Lleida and RedInRen, ISCIII, Spain
| | - Denis Fouque
- Department of Nephrology, Centre Hospitalier Lyon Sud, University of Lyon, Lyon, France
| | | | - Ziad Massy
- Hopital Ambroise Paré, Paris Ile de France Ouest (UVSQ) University, Paris, France
| | - Petro Ruggenenti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Nephrology and Dialysis Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Esteban Porrini
- Faculty of Medicine, University of La Laguna, Instituto de Tecnología Biomédicas (ITB) Hospital Universitario de Canarias, Tenerife, Canary Islands, Spain
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Mads Hornum
- Department of Nephrology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Wang X, Zhao X, Gu Y, Zhu X, Yin T, Tang Z, Yuan J, Chen W, OuYang R, Yao L, Zhang R, Yuan J, Zhou R, Sun Y, Cui S. Effects of Exenatide and Humalog Mix25 on Fat Distribution, Insulin Sensitivity, and β-Cell Function in Normal BMI Patients with Type 2 Diabetes and Visceral Adiposity. J Diabetes Res 2020; 2020:9783859. [PMID: 32566685 PMCID: PMC7273456 DOI: 10.1155/2020/9783859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/29/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
In China, most normal BMI (body mass index of ≥18.5 to <25 kg/m2) adults with type 2 diabetes (T2DM) exhibit visceral adiposity. This study compared the effects of exenatide and humalog Mix25 on normal BMI patients with T2DM and visceral adiposity. A total of 95 patients were randomized to receive either exenatide or humalog Mix25 treatment for 24 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were quantified by magnetic resonance imaging (MRI) and liver fat content (LFC) by liver proton magnetic resonance spectroscopy (1H MRS). Each patient's weight, waist circumference, BMI, blood glucose, insulin sensitivity, pancreatic β-cell function, and fibroblast growth factor 21 (FGF-21) levels were measured. Data from 81 patients who completed the study (40 and 41 in the exenatide and humalog Mix25 groups, respectively) were analysed. The change in 2 h plasma blood glucose was greater in the exenatide group (P = 0.039). HOMA-IR and MBCI improved significantly after exenatide therapy (P < 0.01, P = 0.045). VAT and LFC decreased in both groups (P < 0.01 for all) but to a greater extent in the exenatide group, while SAT only decreased with exenatide therapy (P < 0.01). FGF-21 levels declined more in the exenatide group (P < 0.01), but were positively correlated with VAT in the entire cohort before (r = 0.244, P = 0.043) and after (r = 0.290, P = 0.016) the intervention. The effects of exenatide on glycaemic metabolism, insulin resistance, pancreatic β-cell function, and fat deposition support its administration to normal BMI patients with T2DM and visceral adiposity.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqin Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaohui Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Tong Yin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhuqi Tang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jin Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wei Chen
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Rong OuYang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lili Yao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Rongping Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jie Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ranran Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yi Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shiwei Cui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
27
|
Beaudry JL, Drucker DJ. Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology 2020; 161:5648010. [PMID: 31782955 DOI: 10.1210/endocr/bqz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Proglucagon-derived peptides (PGDPs) and related gut hormones exemplified by glucose-dependent insulinotropic polypeptide (GIP) regulate energy disposal and storage through actions on metabolically sensitive organs, including adipose tissue. The actions of glucagon, glucagon-like peptide (GLP)-1, GLP-2, GIP, and their rate-limiting enzyme dipeptidyl peptidase-4, include direct and indirect regulation of islet hormone secretion, food intake, body weight, all contributing to control of white and brown adipose tissue activity. Moreover, agents mimicking actions of these peptides are in use for the therapy of metabolic disorders with disordered energy homeostasis such as diabetes, obesity, and intestinal failure. Here we highlight current concepts and mechanisms for direct and indirect actions of these peptides on adipose tissue depots. The available data highlight the importance of indirect peptide actions for control of adipose tissue biology, consistent with the very low level of endogenous peptide receptor expression within white and brown adipose tissue depots. Finally, we discuss limitations and challenges for the interpretation of available experimental observations, coupled to identification of enduring concepts supported by more robust evidence.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| |
Collapse
|
28
|
van Eyk HJ, Paiman EHM, Bizino MB, de Heer P, Geelhoed-Duijvestijn PH, Kharagjitsingh AV, Smit JWA, Lamb HJ, Rensen PCN, Jazet IM. A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in South Asian type 2 diabetes patients. Cardiovasc Diabetol 2019; 18:87. [PMID: 31288820 PMCID: PMC6615254 DOI: 10.1186/s12933-019-0890-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023] Open
Abstract
Background South Asians have a high risk to develop type 2 diabetes, which may be related to substantial ectopic fat deposition. Since glucagon-like peptide-1 analogues can reduce ectopic fat accumulation, the aim of the present study was to assess the effect of treatment with liraglutide for 26 weeks on ectopic fat deposition and HbA1c in South Asian patients with type 2 diabetes. Methods In a placebo-controlled trial, 47 South Asian patients with type 2 diabetes were randomly assigned to treatment with liraglutide (1.8 mg/day) or placebo added to standard care. At baseline and after 26 weeks of treatment we assessed abdominal subcutaneous, visceral, epicardial and paracardial adipose tissue volume using MRI. Furthermore, myocardial and hepatic triglyceride content were examined with proton magnetic resonance spectroscopy. Results In the intention-to-treat analysis, liraglutide decreased body weight compared to placebo (− 3.9 ± 3.6 kg vs − 0.6 ± 2.2 kg; mean change from baseline (liraglutide vs placebo): − 3.5 kg; 95% CI [− 5.3, − 1.8]) without significant effects on the different adipose tissue compartments. HbA1c was decreased in both groups without between group differences. In the per-protocol analysis, liraglutide did decrease visceral adipose tissue volume compared to placebo (− 23 ± 27 cm2 vs − 2 ± 17 cm2; mean change from baseline (liraglutide vs placebo): − 17 cm2; 95% CI [− 32, − 3]). Furthermore, HbA1c was decreased by liraglutide compared to placebo (− 1.0 ± 0.8% (− 10.5 ± 9.1 mmol/mol)) vs (− 0.6 ± 0.8% (− 6.1 ± 8.8 mmol/mol)), with a between group difference (mean change from baseline (liraglutide vs placebo): − 0.6% (− 6.5 mmol/mol); 95% CI [− 1.1, − 0.1 (− 11.5, − 1.5)]). Interestingly, the decrease of visceral adipose tissue volume was associated with the reduction of HbA1c (β: 0.165 mmol/mol (0.015%) per 1 cm2 decrease of visceral adipose tissue volume; 95% CI [0.062, 0.267 (0.006, 0.024%)]). Conclusions While the intention-to-treat analysis did not show effects of liraglutide on ectopic fat and HbA1c, per-protocol analysis showed that liraglutide decreases visceral adipose tissue volume, which was associated with improved glycaemic control in South Asians. Trial registration NCT02660047 (clinicaltrials.gov). Registered 21 January 2016
Collapse
Affiliation(s)
- Huub J van Eyk
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Post Zone C7Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands.
| | | | - Maurice B Bizino
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Post Zone C7Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Dept. Radiology, LUMC, Leiden, The Netherlands
| | - Paul de Heer
- Dept. Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Aan V Kharagjitsingh
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Post Zone C7Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Dept. Diabetology and Endocrinology, University Hospital Brussels, Brussels, Belgium
| | - Johannes W A Smit
- Dept. Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Patrick C N Rensen
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Post Zone C7Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Ingrid M Jazet
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Post Zone C7Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| |
Collapse
|
29
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
30
|
Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes. Sci Rep 2019; 9:6274. [PMID: 31000783 PMCID: PMC6472499 DOI: 10.1038/s41598-019-42770-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
We aimed to explore the relationship between GLP-1 receptor (GLP-1R) expression in adipose tissue (AT) and incretin secretion, glucose homeostasis and weight loss, in patients with morbid obesity and type 2 diabetes undergoing bariatric surgery. RNA was extracted from subcutaneous (SAT) and visceral (VAT) AT biopsies from 40 patients randomized to metabolic gastric bypass, sleeve gastrectomy or greater curvature plication. Biochemical parameters, fasting plasma insulin, glucagon and area under the curve (AUC) of GLP-1 following a standard meal test were determined before and 1 year after bariatric surgery. GLP-1R expression was higher in VAT than in SAT. GLP-1R expression in VAT correlated with weight (r = −0.453, p = 0.008), waist circumference (r = −0.494, p = 0.004), plasma insulin (r = −0.466, p = 0.007), and systolic blood pressure (BP) (r = −0.410, p = 0.018). At 1 year, GLP-1R expression in VAT was negatively associated with diastolic BP (r = −0.361, p = 0.039) and, following metabolic gastric bypass, with the increase of GLP-1 AUC, (R2 = 0.46, p = 0.038). Finally, GLP-1R in AT was similar independently of diabetes outcomes and was not associated with weight loss after surgery. Thus, GLP-1R expression in AT is of limited value to predict incretin response and does not play a role in metabolic outcomes after bariatric surgery.
Collapse
|
31
|
Clemente-Postigo M, Oliva-Olivera W, Coin-Aragüez L, Ramos-Molina B, Giraldez-Perez RM, Lhamyani S, Alcaide-Torres J, Perez-Martinez P, El Bekay R, Cardona F, Tinahones FJ. Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol Endocrinol Metab 2019; 316:E319-E332. [PMID: 30422702 DOI: 10.1152/ajpendo.00277.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Impaired adipose tissue (AT) lipid handling and inflammation is associated with obesity-related metabolic diseases. Circulating lipopolysaccharides (LPSs) from gut microbiota (metabolic endotoxemia), proposed as a triggering factor for the low-grade inflammation in obesity, might also be responsible for AT dysfunction. Nevertheless, this hypothesis has not been explored in human obesity. To analyze the relationship between metabolic endotoxemia and AT markers for lipogenesis, lipid handling, and inflammation in human obesity, 33 patients with obesity scheduled for surgery were recruited and classified according to their LPS levels. Visceral and subcutaneous AT gene and protein expression were analyzed and adipocyte and AT in vitro assays performed. Subjects with obesity with a high degree of metabolic endotoxemia had lower expression of key genes for AT function and lipogenesis ( SREBP1, FABP4, FASN, and LEP) but higher expression of inflammatory genes in visceral and subcutaneous AT than subjects with low LPS levels. In vitro experiments corroborated that LPS are responsible for adipocyte and AT inflammation and downregulation of PPARG, SCD, FABP4, and LEP expression and LEP secretion. Thus, metabolic endotoxemia influences AT physiology in human obesity by decreasing the expression of factors involved in AT lipid handling and function as well as by increasing inflammation.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Wilfredo Oliva-Olivera
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Leticia Coin-Aragüez
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Rosa María Giraldez-Perez
- Departamento Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga , Spain
| | - Said Lhamyani
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario/Universidad de Málaga , Málaga , Spain
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Pablo Perez-Martinez
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
- Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Rajaa El Bekay
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario/Universidad de Málaga , Málaga , Spain
| | - Fernando Cardona
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| |
Collapse
|
32
|
Guarnotta V, Pizzolanti G, Ciresi A, Giordano C. Insulin sensitivity and secretion and adipokine profile in patients with Cushing's disease treated with pasireotide. J Endocrinol Invest 2018; 41:1137-1147. [PMID: 29396758 DOI: 10.1007/s40618-018-0839-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the effect of pasireotide on β-cell and adipose function in patients with Cushing's disease (CD). METHODS Clinical and hormonal parameters, insulin secretion evaluated by HOMA-β and by the area under the curve (AUC2h) of C-peptide during a mixed meal tolerance test and insulin sensitivity, evaluated by the euglycaemic hyperinsulinaemic clamp, were evaluated in 12 patients with active CD, before and after 6 and 12 months of pasireotide. In addition, a panel of adipokines including leptin (Ob), leptin/leptin receptor ratio (Ob/Ob-R ratio), adiponectin, resistin, visfatin, adipocyte fatty acid binding protein (AFABP) and non-esterified fatty acids (NEFAs) was evaluated at baseline and after 12 months of pasireotide. RESULTS During 12 months of pasireotide treatment, a significant decrease in weight (p = 0.004), BMI (p = 0.008), waist circumference (p = 0.009), urinary free cortisol (p = 0.007), fasting insulinaemia (p = 0.007), HOMA-β (p = 0.015) and AUC2h c-peptide (p = 0.017), concomitance with an increase in fasting glycaemia (p = 0.015) and HbA1c (p = 0.030), was found. With regard to adipokines, a significant decrease in Ob (p = 0.039), Ob/Ob-R ratio (p = 0.017) and AFABP (p = 0.036) was observed concomitant with a significant increase in Ob-R (p = 0.028) after 12 months of pasireotide. CONCLUSIONS 12 months of treatment with pasireotide in CD is associated with an impairment of insulin secretion and an improvement of adipose function without any interference in insulin sensitivity.
Collapse
Affiliation(s)
- V Guarnotta
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Diabetes, Endocrinology and Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - G Pizzolanti
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Diabetes, Endocrinology and Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - A Ciresi
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Diabetes, Endocrinology and Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - C Giordano
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Diabetes, Endocrinology and Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.
| |
Collapse
|
33
|
Babic I, Gorak A, Engel M, Sellers D, Else P, Osborne AL, Pai N, Huang XF, Nealon J, Weston-Green K. Liraglutide prevents metabolic side-effects and improves recognition and working memory during antipsychotic treatment in rats. J Psychopharmacol 2018; 32:578-590. [PMID: 29493378 DOI: 10.1177/0269881118756061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antipsychotic drugs (APDs), olanzapine and clozapine, do not effectively address the cognitive symptoms of schizophrenia and can cause serious metabolic side-effects. Liraglutide is a synthetic glucagon-like peptide-1 (GLP-1) receptor agonist with anti-obesity and neuroprotective properties. The aim of this study was to examine whether liraglutide prevents weight gain/hyperglycaemia side-effects and cognitive deficits when co-administered from the commencement of olanzapine and clozapine treatment. METHODS Rats were administered olanzapine (2 mg/kg, three times daily (t.i.d.)), clozapine (12 mg/kg, t.i.d.), liraglutide (0.2 mg/kg, twice daily (b.i.d.)), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle (Control) ( n = 12/group, 6 weeks). Recognition and working memory were examined using Novel Object Recognition (NOR) and T-Maze tests. Body weight, food intake, adiposity, locomotor activity and glucose tolerance were examined. RESULTS Liraglutide co-treatment prevented olanzapine- and clozapine-induced reductions in the NOR test discrimination ratio ( p < 0.001). Olanzapine, but not clozapine, reduced correct entries in the T-Maze test ( p < 0.05 versus Control) while liraglutide prevented this deficit. Liraglutide reduced olanzapine-induced weight gain and adiposity. Olanzapine significantly decreased voluntary locomotor activity and liraglutide co-treatment partially reversed this effect. Liraglutide improved clozapine-induced glucose intolerance. CONCLUSION Liraglutide co-treatment improved aspects of cognition, prevented obesity side-effects of olanzapine, and the hyperglycaemia caused by clozapine, when administered from the start of APD treatment. The results demonstrate a potential treatment for individuals at a high risk of experiencing adverse effects of APDs.
Collapse
Affiliation(s)
- Ilijana Babic
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Ashleigh Gorak
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Martin Engel
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Dominic Sellers
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Paul Else
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Ashleigh L Osborne
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nagesh Pai
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Xu-Feng Huang
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Jessica Nealon
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Katrina Weston-Green
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|
34
|
Mabilleau G, Pereira M, Chenu C. Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists. J Endocrinol 2018; 236:R29-R42. [PMID: 28855317 DOI: 10.1530/joe-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) leads to bone fragility and predisposes to increased risk of fracture, poor bone healing and other skeletal complications. In addition, some anti-diabetic therapies for T2DM can have notable detrimental skeletal effects. Thus, an appropriate therapeutic strategy for T2DM should not only be effective in re-establishing good glycaemic control but also in minimising skeletal complications. There is increasing evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs), now greatly prescribed for the treatment of T2DM, have beneficial skeletal effects although the underlying mechanisms are not completely understood. This review provides an overview of the direct and indirect effects of GLP-1RAs on bone physiology, focusing on bone quality and novel mechanisms of action on the vasculature and hormonal regulation. The overall experimental studies indicate significant positive skeletal effects of GLP-1RAs on bone quality and strength although their mechanisms of actions may differ according to various GLP-1RAs and clinical studies supporting their bone protective effects are still lacking. The possibility that GLP-1RAs could improve blood supply to bone, which is essential for skeletal health, is of major interest and suggests that GLP-1 anti-diabetic therapy could benefit the rising number of elderly T2DM patients with osteoporosis and high fracture risk.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et biomatériauxIRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, Angers, France
| | - Marie Pereira
- Centre for Complement and Inflammation Research (CCIR)Department of Medicine, Imperial College London, London, UK
| | - Chantal Chenu
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| |
Collapse
|
35
|
Dias S, Paredes S, Ribeiro L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int J Endocrinol 2018; 2018:2637418. [PMID: 29593789 PMCID: PMC5822899 DOI: 10.1155/2018/2637418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide) on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Dias
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sílvia Paredes
- Department of Endocrinology, Hospital de Braga, 4710-243 Braga, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
36
|
Santilli F, Simeone PG, Guagnano MT, Leo M, Maccarone MT, Di Castelnuovo A, Sborgia C, Bonadonna RC, Angelucci E, Federico V, Cianfarani S, Manzoli L, Davì G, Tartaro A, Consoli A. Effects of Liraglutide on Weight Loss, Fat Distribution, and β-Cell Function in Obese Subjects With Prediabetes or Early Type 2 Diabetes. Diabetes Care 2017; 40:1556-1564. [PMID: 28912305 DOI: 10.2337/dc17-0589] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/21/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Obesity is associated with an increased risk of type 2 diabetes and cardiovascular complications. The risk depends significantly on adipose tissue distribution. Liraglutide, a glucagon-like peptide 1 analog, is associated with weight loss, improved glycemic control, and reduced cardiovascular risk. We determined whether an equal degree of weight loss by liraglutide or lifestyle changes has a different impact on subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in obese subjects with prediabetes or early type 2 diabetes. RESEARCH DESIGN AND METHODS Sixty-two metformin-treated obese subjects with prediabetes or newly diagnosed type 2 diabetes, were randomized to liraglutide (1.8 mg/day) or lifestyle counseling. Changes in SAT and VAT levels (determined by abdominal MRI), insulin sensitivity (according to the Matsuda index), and β-cell function (β-index) were assessed during a multiple-sampling oral glucose tolerance test; and circulating levels of IGF-I and IGF-II were assessed before and after a comparable weight loss (7% of initial body weight). RESULTS After comparable weight loss, achieved by 20 patients per arm, and superimposable glycemic control, as reflected by HbA1c level (P = 0.60), reduction in VAT was significantly higher in the liraglutide arm than in the lifestyle arm (P = 0.028), in parallel with a greater improvement in β-index (P = 0.021). No differences were observed in SAT reduction (P = 0.64). IGF-II serum levels were significantly increased (P = 0.024) only with liraglutide administration, and the increase in IGF-II levels correlated with both a decrease in VAT (ρ = -0.435, P = 0.056) and an increase in the β-index (ρ = 0.55, P = 0.012). CONCLUSIONS Liraglutide effects on visceral obesity and β-cell function might provide a rationale for using this molecule in obese subjects in an early phase of glucose metabolism dysregulation natural history.
Collapse
Affiliation(s)
- Francesca Santilli
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola G Simeone
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria T Guagnano
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marika Leo
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marica T Maccarone
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Augusto Di Castelnuovo
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Cristina Sborgia
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Riccardo C Bonadonna
- Department of Clinical and Experimental Medicine, University of Parma, and Division of Endocrinology, Azienda Ospedaliera-Universitaria di Parma, Parma, Italy
| | - Ermanno Angelucci
- Department of Clinica Medica, "SS. Annunziata" Chieti Hospital, Chieti, Italy
| | - Virginia Federico
- Department of Clinical Pathology, "SS. Annunziata" Chieti Hospital, Chieti, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, "Bambino Gesù" Children's Hospital-Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lamberto Manzoli
- Department of Medicine Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Davì
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Agostino Consoli
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
37
|
Alves PL, Abdalla FMF, Alponti RF, Silveira PF. Anti-obesogenic and hypolipidemic effects of a glucagon-like peptide-1 receptor agonist derived from the saliva of the Gila monster. Toxicon 2017; 135:1-11. [PMID: 28579479 DOI: 10.1016/j.toxicon.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Glucagon-like peptide-1 (GLP-1) receptor (R) agonists are a class of incretin mimetic drugs that have been used for the treatment of type 2 diabetes mellitus and also considered strong candidates for the treatment of obesity. The original prototypical drug in this class is the exenatide, a synthetic peptide with the same structure as the native molecule, exendin-4, found in the saliva of the Gila monster (Heloderma suspectum suspectum lizard). OBJECTIVES To identify and compare the anti-obesogenic, antidyslipidemic and antidiabetogenic effects of agonism in GLP-1R by exenatide on two distinct models of obesity: induced by hypothalamic injury (MSG) or high-calorie diet (DIO). METHODS To obtain MSG, neonatal rats were daily subcutaneously injected with 4 g monosodium glutamate/kg, for 10 consecutive days. To obtain DIO, 72-75 days old rats received hyperlipid food and 30% sucrose for drinking up to 142-145 days old. Untreated healthy rats with the same age were used as control. General biometric and metabolic parameters were measured. RESULTS MSG was characterized by decreased naso-anal length, food and fluid intake, plasma protein and glucose decay rate per minute after insulin administration (KITT), as well as increased Lee index (body mass0.33/naso-anal length), mass of retroperitoneal and periepididymal fat pads, glycemia, triglycerides (TG), LDL and VLDL. Exenatide ameliorated KITT and food and fluid intake, and it also restored glycemia in MSG. DIO was characterized by glucose intolerance, increased body mass, Lee index, fluid intake, mass of retroperitoneal and periepididymal fat pads, glycemia, glycated hemoglobin (HbA1c), TG, VLDL and total cholesterol, as well as decreased food intake and KITT. Exenatide restored glycemia, HbA1c, TG, VLDL, total cholesterol and body mass, and it also ameliorated food and fluid intake, KITT and mass of retroperitoneal fat pad in DIO. CONCLUSIONS The hypothalamic injury and the high-calorie diet induce dyslipidemia and glycemic dysregulation in addition to obesity in rats. The usual therapeutic dose of exenatide in humans is antidiabetogenic in both these obesity models, but is anti-obesogenic and hypolipidemic only in diet-induced obesity. Agonists of GLP-1R are promising anti-obesogenic and antidyslipidemic drugs in the early stages of the obesity, in which the integrity of the nervous system was unaffected.
Collapse
Affiliation(s)
- Patricia Lucio Alves
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology, Instituto Butantan, Sao Paulo, Brazil
| | | | - Rafaela Fadoni Alponti
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology, Instituto Butantan, Sao Paulo, Brazil
| | - Paulo Flavio Silveira
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
38
|
Horska K, Ruda-Kucerova J, Karpisek M, Suchy P, Opatrilova R, Kotolova H. Depot risperidone-induced adverse metabolic alterations in female rats. J Psychopharmacol 2017; 31:487-499. [PMID: 28347258 DOI: 10.1177/0269881117691466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atypical antipsychotics are associated with adverse metabolic effects including weight gain, increased adiposity, dyslipidaemia, alterations in glucose metabolism and insulin resistance. Increasing evidence suggests that metabolic dysregulation precedes weight gain development. The aim of this study was to evaluate alterations in adipokines, hormones and basic serum biochemical parameters induced by chronic treatment with depot risperidone at two doses (20 and 40 mg/kg) in female Sprague-Dawley rats. Dose-dependent metabolic alterations induced by risperidone after 6 weeks of treatment were revealed. Concomitant to weight gain and increased liver weight, an adverse lipid profile with an elevated triglyceride level was observed in the high exposure group, administered a 40 mg/kg dose repeatedly, while the low dose exposure group, administered a 20 mg/kg dose, developed weight gain without alterations in the lipid profile and adipokine levels. An initial peak in leptin serum level after the higher dose was observed in the absence of weight gain. This finding may indicate that the metabolic alterations observed in this study are not consequent to body weight gain. Taken together, these data may support the primary effects of atypical antipsychotics on peripheral tissues.
Collapse
Affiliation(s)
- Katerina Horska
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- 2 Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Karpisek
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,3 R&D Department, Biovendor - Laboratorni Medicina, Brno, Czech Republic
| | - Pavel Suchy
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Radka Opatrilova
- 4 Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Hana Kotolova
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
39
|
GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond) 2017; 131:343-353. [DOI: 10.1042/cs20160803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Liraglutide shows limited impact on adipose tissue (AT) independent of the associated weight loss. However, despite weight loss and better glycaemic control than with diet alone, Liraglutide increases inflammation and creates a pro-fibrotic environment in subcutaneous AT (SCAT).
Collapse
|
40
|
Cantini G, Di Franco A, Mannucci E, Luconi M. Is cleaved glucagon-like peptide 1 really inactive? Effects of GLP-1(9-36) on human adipose stem cells. Mol Cell Endocrinol 2017; 439:10-15. [PMID: 27746194 DOI: 10.1016/j.mce.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023]
Abstract
Glucagon-like peptide 1(9-36) [GLP-1(9-36)] is generated by dipeptidyl peptidase-4 (DPP4) cleavage of the gut incretin hormone, GLP-1(7-36). Since GLP-1(9-36) has a very low affinity for the GLP-1 receptor (GLP-1R), it has so far been considered an inactive form of GLP-1. Here we show GLP-1(9-36) activity in human adipose stem cells (ASC) in vitro. GLP-1(9-36) inhibits human ASC proliferation, glucose uptake and adipogenesis, as well as induces cell apoptosis, to a similar extent as GLP-1(7-36) and liraglutide. Since GLP-1(9-36) effects are not reverted by the receptor antagonist exendin(9-39), which conversely reverts the effects of GLP-1(7-36), we hypothesized that the former may be mediated by a GLP-1 receptor different from the classical pancreatic one. This is the first report of GLP-1(9-36) activity in human adipose cells. Nevertheless, these findings deserve further preclinical studies to better elucidate novel and unforeseen GLP-1(9-36) activities, which could allow a better understanding of the clinical profile of DPP4 inhibitors and GLP-1R agonists.
Collapse
Affiliation(s)
- Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Unit, University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Unit, University of Florence, Florence, Italy
| | - Edoardo Mannucci
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Unit, University of Florence, Florence, Italy; Diabetes Agency, Careggi Hospital, Florence, Italy.
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Unit, University of Florence, Florence, Italy.
| |
Collapse
|
41
|
Pastel E, Joshi S, Knight B, Liversedge N, Ward R, Kos K. Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling. Nutr Diabetes 2016; 6:e235. [PMID: 27941938 PMCID: PMC5223133 DOI: 10.1038/nutd.2016.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES: Subjects with type-2 diabetes are typically obese with dysfunctional adipose tissue (AT). Glucagon-like peptide-1 (GLP-1) analogues are routinely used to improve glycaemia. Although, they also aid weight loss that improves AT function, their direct effect on AT function is unclear. To explore GLP-1 analogues' influence on human AT's cytokine and extracellular matrix (ECM) regulation, we therefore obtained and treated omental (OMAT) and subcutaneous (SCAT) AT samples with Exendin-4, an agonist of the GLP-1 receptor (GLP-1R). SUBJECTS/METHODS: OMAT and abdominal SCAT samples obtained from women during elective surgery at the Royal Devon & Exeter Hospital (UK) were treated with increasing doses of Exendin-4. Changes in RNA expression of adipokines, inflammatory cytokines, ECM components and their regulators were assessed and protein secretion analysed by ELISA. GLP-1R protein accumulation was compared in paired AT depot samples. RESULTS: Exendin-4 induced an increase in OMAT adiponectin (P=0.02) and decrease in elastin expression (P=0.03) in parallel with reduced elastin secretion (P=0.04). In contrast to OMAT, we did not observe an effect on SCAT. There was no change in the expression of inflammatory markers (CD14, TNFA, MCP-1), collagens, TGFB1 or CTGF. GLP-1R accumulation was higher in SCAT. CONCLUSIONS: Independently of weight loss, which may bias findings of in vivo studies, GLP-1 analogues modify human OMAT physiology favourably by increasing the insulin-sensitising cytokine adiponectin. However, the reduction of elastin and no apparent effect on AT's inflammatory cytokines suggest that GLP-1 analogues may be less beneficial to AT function, especially if there is no associated weight loss.
Collapse
Affiliation(s)
- E Pastel
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - S Joshi
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - B Knight
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK.,RD&E NHS Foundation trust, Exeter, UK
| | | | - R Ward
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - K Kos
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
42
|
El Bekay R, Coín-Aragüez L, Fernández-García D, Oliva-Olivera W, Bernal-López R, Clemente-Postigo M, Delgado-Lista J, Diaz-Ruiz A, Guzman-Ruiz R, Vázquez-Martínez R, Lhamyani S, Roca-Rodríguez MM, Veledo SF, Vendrell J, Malagón MM, Tinahones FJ. Effects of glucagon-like peptide-1 on the differentiation and metabolism of human adipocytes. Br J Pharmacol 2016; 173:1820-34. [PMID: 26993859 PMCID: PMC4867741 DOI: 10.1111/bph.13481] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) analogues improve glycaemic control in type 2 diabetic (T2D) patients and cause weight loss in obese subjects by as yet unknown mechanisms. We recently demonstrated that the GLP-1 receptor, which is present in adipocytes and the stromal vascular fraction of human adipose tissue (AT), is up-regulated in AT of insulin-resistant morbidly obese subjects compared with healthy lean subjects. The aim of this study was to explore the effects of in vitro and in vivo administration of GLP-1 and its analogues on AT and adipocyte functions from T2D morbidly obese subjects. EXPERIMENTAL APPROACH We analysed the effects of GLP-1 on human AT and isolated adipocytes in vitro and the effects of GLP-1 mimetics on AT of morbidly obese T2D subjects in vivo. KEY RESULTS GLP-1 down-regulated the expression of lipogenic genes when administered during in vitro differentiation of human adipocytes from morbidly obese patients. GLP-1 also decreased the expression of adipogenic/lipogenic genes in AT explants and mature adipocytes, while increasing that of lipolytic markers and adiponectin. In 3T3-L1 adipocytes, GLP-1 decreased free cytosolic Ca2+ concentration ([Ca2+]i). GLP-1-induced responses were only partially blocked by GLP-1 receptor antagonist exendin (9–39). Moreover, administration of exenatide or liraglutide reduced adipogenic and inflammatory marker mRNA in AT of T2D obese subjects. CONCLUSIONS AND IMPLICATIONS Our data suggest that the beneficial effects of GLP-1 are associated with changes in the adipogenic potential and ability of AT to expand, via activation of the canonical GLP-1 receptor and an additional, as yet unknown, receptor.
Collapse
Affiliation(s)
- Rajaa El Bekay
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Leticia Coín-Aragüez
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Diego Fernández-García
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Endocrinology Service, Virgen de la Victoria Clinical University Hospital, Malaga, Spain
| | - Wilfredo Oliva-Olivera
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Rosa Bernal-López
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Mercedes Clemente-Postigo
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain
| | - Alberto Diaz-Ruiz
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Rocío Guzman-Ruiz
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Said Lhamyani
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - María Mar Roca-Rodríguez
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | | | - Joan Vendrell
- CIBERDEM, Joan XXIII University Hospital, Pere Virgili Institute, Tarragona, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Francisco José Tinahones
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Endocrinology Service, Virgen de la Victoria Clinical University Hospital, Malaga, Spain
| |
Collapse
|