1
|
Mathan J, Maximino-Pinheiro M, He Q, Rezende G, Menu I, Tissier C, Salvia E, Mevel K, Le Stanc L, Vidal J, Moyon M, Delalande L, Orliac F, Poirel N, Oppenheim C, Houdé O, Chaumette B, Borst G, Cachia A. Effects of parental socioeconomic status on offspring's fetal neurodevelopment. Cereb Cortex 2024; 34:bhae443. [PMID: 39526525 DOI: 10.1093/cercor/bhae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the prenatal period's critical role in shaping later cognition and health, influenced by an intricate interplay of parental genetic and environmental factors. Birth weight is commonly used as a retrospective indicator of fetal development, but recent focus has shifted to more specific proxies of neurodevelopment, like cortical sulcal patterns, which are established in utero and remain stable after birth. This study aimed to elucidate the interrelated effects of parental socioeconomic status, brain volume, birth weight, and sulcal patterns in the anterior cingulate cortex. Utilizing structural Magnetic Resonance Imaging (MRI), parental educational attainment, and related polygenic risk scores, the study analyzed 203 healthy right-handed participants aged 9 to 18. Structural equation modeling demonstrated that the anterior cingulate cortex sulcal pattern is influenced by parental socioeconomic status and global brain volume, with socioeconomic status correlating with a polygenic risk score. These findings suggest that prenatal neurodevelopmental processes may mediate the intergenerational transmission of inequalities.
Collapse
Affiliation(s)
- Julia Mathan
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | | | - Qin He
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Gabriela Rezende
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Iris Menu
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Cloelia Tissier
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Emilie Salvia
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Katell Mevel
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Lorna Le Stanc
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Julie Vidal
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Marine Moyon
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Lisa Delalande
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | | | - Nicolas Poirel
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GIP Cyceron, 14000 Caen, France
| | - Catherine Oppenheim
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| | - Olivier Houdé
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Boris Chaumette
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Grégoire Borst
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Cachia
- Université Paris cité, LaPsyDÉ, CNRS, F-75005 Paris, France
- GHU Paris Psychiatry & Neuroscience, Sainte-Anne Hospital, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, F-75014 Paris, France
| |
Collapse
|
2
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
McNeil CJ, Habota T, Sandu AL, Waiter G, Whalley H, Murray AD. The Influence of Birth Weight, Socio-Economic Status, and Adult Health on Brain Volumes during Ageing. Neuroepidemiology 2024:1-9. [PMID: 39401501 DOI: 10.1159/000541918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/24/2024] [Indexed: 11/14/2024] Open
Abstract
INTRODUCTION Greater late-life brain volumes are associated with resilience against dementia. We examined relationships between birth weight, lifelong socio-economic status, and health with late-life brain volumes. We hypothesised that early life factors directly affect late-life brain volumes. METHODS Adults aged 59-67 y underwent MRI and brain volumes were measured. Birth weight and lifelong health, and socio-economic status were quantified and the principal components of each extracted. Relationships were examined using regression and structural equation analysis. RESULTS Birth weight (β = 0.095, p = 0.017) and childhood socio-economic status (β = 0.091, p = 0.033, n = 280) were directly associated with brain volume. Childhood socio-economic status was further associated with grey matter volume (β = 0.04, p = 0.047). Adult health was linked to increased brain volume (β = 0.15, p = 0.003). CONCLUSION Birth weight and childhood socio-economic status are associated with whole and regional brain volume through direct mechanisms. Optimal fetal development, reduced childhood poverty, and good adult health could reduce brain atrophy and delay dementia onset in late-life.
Collapse
Affiliation(s)
| | - Tina Habota
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Gordon Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Heather Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Hu YH, Shaked D, Weiss J, Waldstein SR, Launer LJ, Evans MK, Zonderman AB. Uncovering mediational pathways behind racial and socioeconomic disparities in brain volumes: insights from the UK Biobank study. GeroScience 2024:10.1007/s11357-024-01371-1. [PMID: 39388067 DOI: 10.1007/s11357-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
Mediation pathways explaining racial/ethnic and socioeconomic (SES) disparities in structural MRI markers of brain health remain underexplored. We examined racial/ethnic and SES disparities in sMRI markers and tested total, direct, and indirect effects through lifestyle, health-related, and cognition factors using a structural equations modeling approach among 36,184 UK Biobank participants aged 40-70 years at baseline assessment (47% men). Race (non-White vs. White) and lower SES-predicted poorer brain sMRI volumetric outcomes at follow-up, with racial/ethnic disparities in sMRI outcomes involving multiple pathways and SES playing a central role in those pathways. Mediational patterns differed across outcomes, with the SES-sMRI total effect being partially mediated for all outcomes. Over 20% of the total effect (TE) of race/ethnicity on WMH was explained by the indirect effect (IE), by a combination of different pathways going through SES, lifestyle, health-related, and cognition factors. This is in contrast to < 10% for total brain, gray matter (GM), white matter (WM), and frontal GM left/right. Another significant finding is that around 57% of the total effect for SES and the normalized white matter hyperintensity (WMH) was attributed to an indirect effect. This effect encompasses many pathways that involve lifestyle, health-related, and cognitive aspects. Aside from WMH, the percent of TE of SES mediated through various pathways ranged from ~ 5% for WM to > 15% up to 36% for most of the remaining sMRI outcomes, which are composed mainly of GM phenotypes. Race and SES were important determinants of brain volumetric outcomes, with partial mediation of racial/ethnic disparities through SES, lifestyle, health-related, and cognition factors.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, 22060, USA
| | - Marie T Fanelli-Kuczmarski
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | | | - Jordan Weiss
- Stanford Center On Longevity, Stanford University, Stanford, CA, 94305, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland Baltimore County, Catonsville, MD, 21250, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| |
Collapse
|
5
|
Abo Hamza E, Tindle R, Pawlak S, Bedewy D, Moustafa AA. The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework. Rev Neurosci 2024; 35:597-617. [PMID: 38607658 DOI: 10.1515/revneuro-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In this article, we, for the first time, provide a comprehensive overview and unified framework of the impact of poverty and low socioeconomic status (SES) on the brain and behaviour. While there are many studies on the impact of low SES on the brain (including cortex, hippocampus, amygdala, and even neurotransmitters) and behaviours (including educational attainment, language development, development of psychopathological disorders), prior studies did not integrate behavioural, educational, and neural findings in one framework. Here, we argue that the impact of poverty and low SES on the brain and behaviour are interrelated. Specifically, based on prior studies, due to a lack of resources, poverty and low SES are associated with poor nutrition, high levels of stress in caregivers and their children, and exposure to socio-environmental hazards. These psychological and physical injuries impact the normal development of several brain areas and neurotransmitters. Impaired functioning of the amygdala can lead to the development of psychopathological disorders, while impaired hippocampus and cortex functions are associated with a delay in learning and language development as well as poor academic performance. This in turn perpetuates poverty in children, leading to a vicious cycle of poverty and psychological/physical impairments. In addition to providing economic aid to economically disadvantaged families, interventions should aim to tackle neural abnormalities caused by poverty and low SES in early childhood. Importantly, acknowledging brain abnormalities due to poverty in early childhood can help increase economic equity. In the current study, we provide a comprehensive list of future studies to help understand the impact of poverty on the brain.
Collapse
Affiliation(s)
- Eid Abo Hamza
- College of Education, Humanities & Social Sciences, 289293 Al Ain University , 64141, Al Jimi, UAE
- Faculty of Education, Tanta University, Al-Geish St., 122011, Tanta, Egypt
| | - Richard Tindle
- JMS Allied Services, 1109 Coffs Harbour , NSW, 2452, Australia
| | - Simon Pawlak
- Department of Psychological Sciences, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Dalia Bedewy
- Department of Psychology, College of Humanities and Sciences, 59104 Ajman University , University Street, Al jerf 1, Ajman, UAE
- Department of Psychology, Faculty of Education, Tanta University, Al-Geish St., 122011, Tanta, Egypt
- 59104 Humanities and Social Sciences Research Center (HSSRC), Ajman University , University Street, Al jerf 1, Ajman, UAE
| | - Ahmed A Moustafa
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Cnr Kingsway & University Roads, Auckland Park, Johannesburg, 2092, South Africa
- School of Psychology, Faculty of Society and Design, 448704 Bond University , 14 University Dr, Robina QLD 4226, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
McCall DM, Homayouni R, Yu Q, Raz S, Ofen N. Meta-Analysis of Hippocampal Volume and Episodic Memory in Preterm and Term Born Individuals. Neuropsychol Rev 2024; 34:478-495. [PMID: 37060422 DOI: 10.1007/s11065-023-09583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2022] [Indexed: 04/16/2023]
Abstract
Preterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume. Further, it is not clear if hippocampal volume is associated with episodic memory functioning in preterm-born individuals. Meta-analysis was used to investigate the effects of premature birth on hippocampal volume and episodic memory from early development to young adulthood (birth to 26). PubMed, PsychINFO, and Web of Science were searched for English peer-reviewed articles that included hippocampal volume of preterm and term-born individuals. Thirty articles met the inclusion criteria. Separate meta-analyses were used to evaluate standardized mean differences between preterm and term-born individuals in uncorrected and corrected hippocampal volume, as well as verbal and visual episodic memory. Both uncorrected and corrected hippocampal volume were smaller in preterm-born compared to term-born individuals. Although preterm-born individuals had lower episodic memory performance than term-born individuals, the limited number of studies only permitted a qualitative review of the association between episodic memory performance and hippocampal volume. Tested moderators included mean age, pre/post-surfactant era, birth weight, gestational age, demarcation method, magnet strength, and slice thickness. With this meta-analysis, we provide novel evidence of the effects of premature birth on hippocampal volume.
Collapse
Affiliation(s)
- Dana M McCall
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
- Department of Neuropsychology, Gundersen Health System, La Crosse, WI, USA.
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Donders J, Ramos A. Correlates of performance on the Child and Adolescent Memory Profile (ChAMP) in a mixed pediatric sample. Child Neuropsychol 2024:1-12. [PMID: 38817122 DOI: 10.1080/09297049.2024.2361123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
This study aimed to determine some of the factors that influence performance on a comprehensive test of verbal and visual memory in children, the Child and Adolescent Memory Profile (ChAMP) in a mixed clinical sample (n = 178; 56% male, 67% White, median age 12 years). We used hierarchical linear regression analyses with ChAMP standard scores as the dependent variable, and parental education as well as Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V) factor index scores as the independent variables. WISC-V Processing Speed and (to a lesser extent) Working Memory were statistically significant predictors of most ChAMP Index scores. In addition, WISC-V Verbal Comprehension contributed to the model for ChAMP Verbal Memory, and WISC-V Visual Spatial to the model for ChAMP Visual Memory. In each case better performance on the WISC-V was predictive of higher scores on the ChAMP, with large effect sizes. WISC-V variables also mediated the positive effect of parental education on ChAMP scores. We conclude that clinicians should consider performance on measures of speed of processing, working memory, language and visual-spatial skills as potential influences on ChAMP results that may suggest a specific memory deficit.
Collapse
Affiliation(s)
- Jacobus Donders
- Department of Psychology, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI, USA
| | - Ashlee Ramos
- Department of Psychology, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI, USA
| |
Collapse
|
8
|
Alrosan AZ, Heilat GB, Alrosan K, Aleikish AA, Rabbaa AN, Shakhatreh AM, Alshalout EM, Al Momany EM. Autonomic brain functioning and age-related health concerns. Curr Res Physiol 2024; 7:100123. [PMID: 38510918 PMCID: PMC10950753 DOI: 10.1016/j.crphys.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The autonomic nervous system (ANS) regulates involuntary bodily functions such as blood pressure, heart rate, breathing, and digestion, in addition to controlling motivation and behavior. In older adults, the ANS is dysregulated, which changes the ability of the ANS to respond to physiological signals, regulate cardiovascular autonomic functionality, diminish gastric motility, and exacerbate sleep problems. For example, a decrease in heart rate variability, or the variation in the interval between heartbeats, is one of the most well-known alterations in the ANS associated with health issues, including cardiovascular diseases and cognitive decline. The inability to perform fundamental activities of daily living and compromising the physiological reactivity or motivational responses of older adults to moving toward or away from specific environmental stimuli are significant negative consequences of chronic and geriatric conditions that pose grave threats to autonomy, health, and well-being. The most updated research has investigated the associations between the action responsiveness of older adults and the maintenance of their physiological and physical health or the development of mental and physical health problems. Once autonomic dysfunction may significantly influence the development of different age-related diseases, including ischemic stroke, cardiovascular disease, and autoimmune diseases, this review aimed to assess the relationship between aging and autonomic functions. The review explored how motivational responses, physiological reactivity, cognitive processes, and lifelong developmental changes associated with aging impact the ANS and contribute to the emergence of health problems.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Abrar A. Aleikish
- Master of Pharmacology, Department of Pharmacology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Aya N. Rabbaa
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Aseel M. Shakhatreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ehab M. Alshalout
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Enaam M.A. Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| |
Collapse
|
9
|
Canada KL, Homayouni R, Yu Q, Foster DJ, Ramesh S, Raz S, Daugherty AM, Ofen N. Household socioeconomic status relates to specific hippocampal subfield volumes across development. Hippocampus 2023; 33:1067-1072. [PMID: 37132590 PMCID: PMC10524471 DOI: 10.1002/hipo.23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
The hippocampus is composed of cytoarchitecturally distinct subfields that support specific memory functions. Variations in total hippocampal volume across development have been linked to socioeconomic status (SES), a proxy for access to material resources, medical care, and quality education. High childhood household SES is associated with greater cognitive abilities in adulthood. Currently, it is not known whether household SES differentially impacts specific hippocampal subfield volumes. We assessed susceptibility of subfields to variations in household SES across development in a sample of 167 typically developing 5- to 25-year-old. Bilateral cornu ammonis (CA) 1-2, combined CA3-dentate gyrus (DG), and subiculum (Sub) volumes were measured by highly reliable manual segmentation of high-resolution T2-weighted images and adjusted for intracranial volume. A summary component score of SES measures (paternal education, maternal education, and income-to-needs ratio) was used to examine variability in volumes across ages. We did not identify age-related differences in any of the regional volumes, nor did age modify SES-related effects. Controlling for age, larger volumes of CA3-DG and CA1-2 were associated with lower SES, while Sub volume was not. Overall, these findings support the specific impact of SES on CA3-DG and CA1-2 and highlight the importance of considering environmental influences on hippocampal subfield development.
Collapse
Affiliation(s)
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI
| | - Da’ Jonae Foster
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Sruthi Ramesh
- Current address: NYU Grossman School of Medicine, New York, NY
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI
| |
Collapse
|
10
|
Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Serotonin transporter (5-HTT) gene network moderates the impact of prenatal maternal adversity on orbitofrontal cortical thickness in middle childhood. PLoS One 2023; 18:e0287289. [PMID: 37319261 PMCID: PMC10270637 DOI: 10.1371/journal.pone.0287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
In utero, the developing brain is highly susceptible to the environment. For example, adverse maternal experiences during the prenatal period are associated with outcomes such as altered neurodevelopment and emotion dysregulation. Yet, the underlying biological mechanisms remain unclear. Here, we investigate whether the function of a network of genes co-expressed with the serotonin transporter in the amygdala moderates the impact of prenatal maternal adversity on the structure of the orbitofrontal cortex (OFC) in middle childhood and/or the degree of temperamental inhibition exhibited in toddlerhood. T1-weighted structural MRI scans were acquired from children aged 6-12 years. A cumulative maternal adversity score was used to conceptualize prenatal adversity and a co-expression based polygenic risk score (ePRS) was generated. Behavioural inhibition at 18 months was assessed using the Early Childhood Behaviour Questionnaire (ECBQ). Our results indicate that in the presence of a low functioning serotonin transporter gene network in the amygdala, higher levels of prenatal adversity are associated with greater right OFC thickness at 6-12 years old. The interaction also predicts temperamental inhibition at 18 months. Ultimately, we identified important biological processes and structural modifications that may underlie the link between early adversity and future deviations in cognitive, behavioural, and emotional development.
Collapse
Affiliation(s)
- Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain–Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patricia P. Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Sørensen Ø, Fjell AM, Walhovd KB. Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models. PSYCHOMETRIKA 2023; 88:456-486. [PMID: 36976415 PMCID: PMC10188428 DOI: 10.1007/s11336-023-09910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 05/17/2023]
Abstract
We present generalized additive latent and mixed models (GALAMMs) for analysis of clustered data with responses and latent variables depending smoothly on observed variables. A scalable maximum likelihood estimation algorithm is proposed, utilizing the Laplace approximation, sparse matrix computation, and automatic differentiation. Mixed response types, heteroscedasticity, and crossed random effects are naturally incorporated into the framework. The models developed were motivated by applications in cognitive neuroscience, and two case studies are presented. First, we show how GALAMMs can jointly model the complex lifespan trajectories of episodic memory, working memory, and speed/executive function, measured by the California Verbal Learning Test (CVLT), digit span tests, and Stroop tests, respectively. Next, we study the effect of socioeconomic status on brain structure, using data on education and income together with hippocampal volumes estimated by magnetic resonance imaging. By combining semiparametric estimation with latent variable modeling, GALAMMs allow a more realistic representation of how brain and cognition vary across the lifespan, while simultaneously estimating latent traits from measured items. Simulation experiments suggest that model estimates are accurate even with moderate sample sizes.
Collapse
Affiliation(s)
| | - Anders M Fjell
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B Walhovd
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Hanson JL, Adkins DJ, Nacewicz BM, Barry KR. Impact of Socioeconomic Status on Amygdala and Hippocampus Subdivisions in Children and Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532071. [PMID: 36993362 PMCID: PMC10054998 DOI: 10.1101/2023.03.10.532071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Socioeconomic status (SES) in childhood can impact behavioral and brain development. Past work has consistently focused on the amygdala and hippocampus, two brain areas critical for emotion and behavioral responding. While there are SES differences in amygdala and hippocampal volumes, there are many unanswered questions in this domain connected to neurobiological specificity, and for whom these effects may be more pronounced. We may be able to investigate some anatomical subdivisions of these brain areas, as well as if relations with SES vary by participant age and sex. No work to date has however completed these types of analyses. To overcome these limitations, here, we combined multiple, large neuroimaging datasets of children and adolescents with information about neurobiology and SES (N=2,765). We examined subdivisions of the amygdala and hippocampus and found multiple amygdala subdivisions, as well as the head of the hippocampus, were related to SES. Greater volumes in these areas were seen for higher-SES youth participants. Looking at age- and sex-specific subgroups, we tended to see stronger effects in older participants, for both boys and girls. Paralleling effects for the full sample, we see significant positive associations between SES and volumes for the accessory basal amygdala and head of the hippocampus. We more consistently found associations between SES and volumes of the hippocampus and amygdala in boys (compared to girls). We discuss these results in relation to conceptions of "sex-as-a-biological variable" and broad patterns of neurodevelopment across childhood and adolescence. These results fill in important gaps on the impact of SES on neurobiology critical for emotion, memory, and learning.
Collapse
|
13
|
Herzberg MP, Tillman R, Kandala S, Barch DM, Luby J. Preschool Depression and Hippocampal Volume: The Moderating Role of Family Income. J Am Acad Child Adolesc Psychiatry 2022; 61:1362-1371. [PMID: 35523377 PMCID: PMC10845235 DOI: 10.1016/j.jaac.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Depression and low socioeconomic status have both been associated with hippocampal volume alterations. Whether these factors interact to predict neurobehavioral outcomes has not been adequately studied. The authors investigated family income as a moderator of the relationship between depression and hippocampal volume in a longitudinal sample. METHOD Longitudinal behavioral data, beginning at preschool age, and behavioral and neuroimaging data from school age to adolescence were used to assess the impact of preschool only and total preschool to adolescent depression symptoms on hippocampal volumes using family income as a moderator (N = 176). RESULTS Depression severity during the preschool period interacted with family income to predict hippocampal volumes at the intercept (ie, age 13 years; B = -0.078, p = .003). Interaction decomposition revealed that only individuals with relatively high family income exhibited smaller hippocampal volume with increasing depression severity (B = -0.146, p = .005). Family income was associated with hippocampus volumes only in individuals with low to moderate preschool depression severity (B = 0.289, p = .007 and B = 0.169, p = .030, respectively). CONCLUSION Preschool depression severity interacts with family income to predict hippocampal volume across development, such that the effects of early depression are evident only in those with higher income. These findings suggest that hippocampal volume may not be an effective marker of risk for depression at different levels of socioeconomic status, and emphasizes the importance of the environmental context when assessing risk markers for depression. Future research should explore how socioeconomic stress may eclipse the effects of depression on hippocampal development, setting alternative neurodevelopmental risk trajectories.
Collapse
Affiliation(s)
- Max P Herzberg
- Washington University in St. Louis, St. Louis, Missouri.
| | | | | | | | - Joan Luby
- Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
14
|
Botdorf M, Dunstan J, Sorcher L, Dougherty LR, Riggins T. Socioeconomic disadvantage and episodic memory ability in the ABCD sample: Contributions of hippocampal subregion and subfield volumes. Dev Cogn Neurosci 2022; 57:101138. [PMID: 35907312 PMCID: PMC9335384 DOI: 10.1016/j.dcn.2022.101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023] Open
Abstract
Socioeconomic disadvantage is associated with volumetric differences in stress-sensitive neural structures, including the hippocampus, and deficits in episodic memory. Rodent studies provide evidence that memory deficits arise via stress-related structural differences in hippocampal subdivisions; however, human studies have only provided limited evidence to support this notion. We used a sample of 10,695 9-13-year-old participants from two timepoints of the Adolescent Brain and Cognitive Development (ABCD) Study to assess whether socioeconomic disadvantage relates to episodic memory performance through hippocampal volumes. We explored associations among socioeconomic disadvantage, measured via the Area Deprivation Index (ADI), concurrent subregion (anterior, posterior) and subfield volumes (CA1, CA3, CA4/DG, subiculum), and episodic memory, assessed via the NIH Toolbox Picture Sequence Memory Test at baseline and 2-year follow-up (Time 2). Results showed that higher baseline ADI related to smaller concurrent anterior, CA1, CA4/DG, and subiculum volumes and poorer Time 2 memory performance controlling for baseline memory. Moreover, anterior, CA1, and subiculum volumes mediated the longitudinal association between the ADI and memory. Results suggest that greater socioeconomic disadvantage relates to smaller hippocampal subregion and subfield volumes and less age-related improvement in memory. These findings shed light on the neural mechanisms linking socioeconomic disadvantage and cognitive ability in childhood.
Collapse
Affiliation(s)
- Morgan Botdorf
- University of Maryland, College Park, Department of Psychology, United States; University of Pennsylvania, Department of Psychology, United States.
| | - Jade Dunstan
- University of Maryland, College Park, Department of Psychology, United States
| | - Leah Sorcher
- University of Maryland, College Park, Department of Psychology, United States
| | - Lea R Dougherty
- University of Maryland, College Park, Department of Psychology, United States
| | - Tracy Riggins
- University of Maryland, College Park, Department of Psychology, United States
| |
Collapse
|
15
|
Yuan JP, Ho TC, Coury SM, Chahal R, Colich NL, Gotlib IH. Early life stress, systemic inflammation, and neural correlates of implicit emotion regulation in adolescents. Brain Behav Immun 2022; 105:169-179. [PMID: 35842188 DOI: 10.1016/j.bbi.2022.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022] Open
Abstract
Exposure to early life stress (ELS) increases the risk for developing psychopathology; however, the mechanisms underlying this association are not clear. In this study we examined systemic inflammation as a pathway that may link exposure to stress to altered neural correlates of implicit emotion regulation in adolescents with varying levels of exposure to ELS (n = 83; 52 females, 31 males; 15.63 ± 1.10 years). We measured ventrolateral prefrontal cortex (vlPFC) activation and functional connectivity (FC) between the bilateral amygdala and the vlPFC as adolescents completed an affect labeling task in the scanner and assessed concentrations of C-reactive protein (CRP) using a dried blood spot protocol. We found that CRP levels were negatively associated with vlPFC activation during implicit regulation of negatively-valenced stimuli, and that cumulative severity of ELS exposure moderated this neuroimmune association. Severity of ELS also significantly moderated the association between CRP levels and FC between the bilateral amygdala and l-vlPFC during implicit emotion regulation: in adolescents who had been exposed to more severe ELS, higher CRP was associated with more negative frontoamygdala FC during implicit regulation of negatively-valenced stimuli. Thus, ELS may disrupt the normative association between the immune system and the neural processes that underlie socioemotional functioning potentially increasing adolescents' risk for maladaptive outcomes.
Collapse
Affiliation(s)
- Justin P Yuan
- Department of Psychology, Stanford University, United States.
| | - Tiffany C Ho
- Department of Psychology, Stanford University, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Saché M Coury
- Department of Psychology, Stanford University, United States
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, United States
| | - Natalie L Colich
- Department of Psychology, Stanford University, United States; Department of Psychology, Harvard University, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, United States
| |
Collapse
|
16
|
Poudel R, Tobia MJ, Riedel MC, Salo T, Flannery JS, Hill-Bowen LD, Dick AS, Laird AR, Parra CM, Sutherland MT. Risky decision-making strategies mediate the relationship between amygdala activity and real-world financial savings among individuals from lower income households: A pilot study. Behav Brain Res 2022; 428:113867. [PMID: 35385783 PMCID: PMC10739684 DOI: 10.1016/j.bbr.2022.113867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
Lower financial savings among individuals experiencing adverse social determinants of health (SDoH) increases vulnerabilities during times of crisis. SDoH including low socioeconomic status (low-SES) influence cognitive abilities as well as health and life outcomes that may perpetuate poverty and disparities. Despite evidence suggesting a role for financial growth in minimizing SDoH-related disparities and vulnerabilities, neurobiological mechanisms linked with financial behavior remain to be elucidated. As such, we examined the relationships between brain activity during decision-making (DM), laboratory-based task performance, and money savings behavior. Participants (N = 24, 14 females) from low-SES households (income<$20,000/year) underwent fMRI scanning while performing the Balloon Analogue Risk Task (BART), a DM paradigm probing risky- and strategic-DM processes. Participants also completed self-report instruments characterizing relevant personality characteristics and then engaged in a community outreach financial program where amount of money saved was tracked over a 6-month period. Regarding BART-related brain activity, we observed expected activity in regions implicated in reward and emotional processing including the amygdala. Regarding brain-behavior relationships, we found that laboratory-based BART performance mediated the impact of amygdala activity on real-world behavior. That is, elevated amygdala activity was linked with BART strategic-DM which, in turn, was linked with more money saved after 6 months. In exploratory analyses, this mediation was moderated by emotion-related personality characteristics such that, only individuals reporting lower alexithymia demonstrated a relationship between amygdala activity and savings. These outcomes suggest that DM-related amygdala activity and/or emotion-related personality characteristics may provide utility as an endophenotypic marker of individual's financial savings behavior.
Collapse
Affiliation(s)
- Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Michael J Tobia
- Department of Physics, Florida International University, Miami, FL, United States
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, United States
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Jessica S Flannery
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Lauren D Hill-Bowen
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Anthony S Dick
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, United States
| | - Carlos M Parra
- College of Business, Florida International University, Miami, FL, United States
| | - Matthew T Sutherland
- Department of Psychology, Florida International University, Miami, FL, United States.
| |
Collapse
|
17
|
Botdorf M, Canada KL, Riggins T. A meta-analysis of the relation between hippocampal volume and memory ability in typically developing children and adolescents. Hippocampus 2022; 32:386-400. [PMID: 35301771 PMCID: PMC9313816 DOI: 10.1002/hipo.23414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
Memory is supported by a network of brain regions, with the hippocampus serving a critical role in this cognitive process. Previous meta-analyses on the association between hippocampal structure and memory have largely focused on adults. Multiple studies have since suggested that hippocampal volume is related to memory performance in children and adolescents; however, the strength and direction of this relation varies across reports, and thus, remains unclear. To further understand this brain-behavior relation, we conducted a meta-analysis to investigate the association between hippocampal volume (assessed as total volume) and memory during typical development. Across 25 studies and 61 memory outcomes with 1357 participants, results showed a small, but significant, positive association between total hippocampal volume and memory performance. Estimates of the variability across studies in the relation between total volume and memory were not explained by differences in memory task type (delayed vs. immediate; relational vs. nonrelational), participant age range, or the method of normalization of hippocampal volumes. Overall, findings suggest that larger total hippocampal volume relates to better memory performance in children and adolescents and that this relation is similar across the memory types and age ranges assessed. To facilitate enhanced generalization across studies in the future, we discuss considerations for the field moving forward.
Collapse
Affiliation(s)
- Morgan Botdorf
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey L. Canada
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Tracy Riggins
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
18
|
Scarapicchia V, MacDonald S, Gawryluk JR. The relationship between cardiovascular risk and lifestyle activities on hippocampal volumes in normative aging. AGING BRAIN 2022; 2:100033. [PMID: 36908897 PMCID: PMC9999441 DOI: 10.1016/j.nbas.2022.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
Abstract
Background Despite the life-course perspective of popular aging models, few studies on healthy aging to date have examined both younger and older adulthood. The current study examined how cumulative vascular risk factors and self-reported levels of physical, social, and cognitive activity are associated with differences in hippocampal volumes in healthy younger and older adults. Methods 34 neurologically healthy participants were separated into two age cohorts: a younger adult group (age 25-35, n = 17) and an older adult group (age 65-82, n = 17). Participants underwent a 3 T T1 MRI and completed a series of questionnaires. Voxel-based morphometry examined whole-brain grey matter density differences between groups. Hippocampal volumes were computed. Analyses examined the association between hippocampal volumes, cumulative vascular risk, and self-reported levels of physical, social, and cognitive activity, both within and across groups. Results Between-group comparisons revealed greater cortical atrophy in older relative to young adults in regions including the left and right hippocampus and temporal fusiform cortex. Across-group analyses revealed a significant negative association between cardiovascular risk scores and bilateral hippocampal volumes across age groups. A significant negative association was identified between frequency of social activities and bilateral hippocampal volumes in older adults only. No significant associations were found between left or right hippocampal volumes and total, cognitive, or physical activities in both within- and across-group analyses. Conclusion Greater cumulative vascular risk is associated with smaller hippocampal volumes across age cohorts. Findings suggest that social activities with low cognitive load may not be beneficial to structural brain outcomes in older age.
Collapse
Affiliation(s)
- Vanessa Scarapicchia
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Stuart MacDonald
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
19
|
Rakesh D, Whittle S. Socioeconomic status and the developing brain - A systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev 2021; 130:379-407. [PMID: 34474050 DOI: 10.1016/j.neubiorev.2021.08.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
A growing literature has shown associations between socioeconomic disadvantage and neural properties (such as brain structure and function). In this review, we aimed to synthesize findings on the neural correlates of socioeconomic status (SES) in youth samples across neuroimaging modalities. We also aimed to disentangle the effects of different SES measures (e.g., parent income and education) in our synthesis. We found relatively consistent patterns of positive associations between SES and both volume and cortical surface area of frontal regions, and amygdala, hippocampal, and striatal volume (with most consistent results for composite SES indices). Despite limited longitudinal work, results suggest that SES is associated with developmental trajectories of gray matter structure. Higher SES was also found to be associated with increased fractional anisotropy of some white matter tracts, although there were more null than positive findings. Finally, methodological heterogeneity in brain function and connectivity studies prevented us from making strong inferences. Based on our findings, we make recommendations for future research, discuss the role of mitigating factors, and implications for policy.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
20
|
Society to cell: How child poverty gets “Under the Skin” to influence child development and lifelong health. DEVELOPMENTAL REVIEW 2021. [DOI: 10.1016/j.dr.2021.100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Dufford AJ, Evans GW, Liberzon I, Swain JE, Kim P. Childhood socioeconomic status is prospectively associated with surface morphometry in adulthood. Dev Psychobiol 2021; 63:1589-1596. [PMID: 33432574 DOI: 10.1002/dev.22096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/21/2020] [Accepted: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Childhood socioeconomic status (SES) has been associated with brain cortex surface area in children. However, the extent to which childhood SES is prospectively associated with brain morphometry in adulthood is unclear. We tested whether childhood SES (income-to-needs ratio averaged across ages 9, 13, and 17) is prospectively associated with cortical surface morphometry in adulthood. Average childhood income-to-needs ratio had a positive, prospective association with cortical thickness in adulthood in the precentral gyrus, postcentral gyrus, and caudal middle frontal gyrus (p < .05, FWE corrected). Childhood income-to-needs ratio also had a positive, prospective association with cortical surface area in adulthood in multiple regions, including the rostral and caudal middle frontal gyri and superior frontal gyrus (p < .05, FWE corrected). Concurrent income-to-needs ratio (measured at age 24) was not associated with cortical thickness or surface area in adulthood. The results underscore the importance of addressing poverty in childhood for brain morphological development.
Collapse
Affiliation(s)
| | - Gary W Evans
- Departments of Design and Environmental Analysis and of Human Development, Cornell University, Ithaca, NY, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University Health Science Center, College Station, TX, USA
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Psychology and Obstetrics and Gynecology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, USA
| |
Collapse
|
22
|
Liu J, Chen Y, Stephens R, Cornea E, Goldman B, Gilmore JH, Gao W. Hippocampal functional connectivity development during the first two years indexes 4-year working memory performance. Cortex 2021; 138:165-177. [PMID: 33691225 PMCID: PMC8058274 DOI: 10.1016/j.cortex.2021.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
The hippocampus is a key limbic region involved in higher-order cognitive processes including learning and memory. Although both typical and atypical functional connectivity patterns of the hippocampus have been well-studied in adults, the developmental trajectory of hippocampal connectivity during infancy and how it relates to later working memory performance remains to be elucidated. Here we used resting state fMRI (rsfMRI) during natural sleep to examine the longitudinal development of hippocampal functional connectivity using a large cohort (N = 202) of infants at 3 weeks (neonate), 1 year, and 2 years of age. Next, we used multivariate modeling to investigate the relationship between both cross-sectional and longitudinal growth in hippocampal connectivity and 4-year working memory outcome. Results showed robust local functional connectivity of the hippocampus in neonates with nearby limbic and subcortical regions, with dramatic maturation and increasing connectivity with key default mode network (DMN) regions resulting in adult-like topology of the hippocampal functional connectivity by the end of the first year. This pattern was stabilized and further consolidated by 2 years of age. Importantly, cross-sectional and longitudinal measures of hippocampal connectivity in the first year predicted subsequent behavioral measures of working memory at 4 years of age. Taken together, our findings provide insight into the development of hippocampal functional circuits underlying working memory during this early critical period.
Collapse
Affiliation(s)
- Janelle Liu
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Yuanyuan Chen
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Rebecca Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| | - Barbara Goldman
- FPG Child Development Institute and Department of Psychology & Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Ibáñez-Alfonso JA, Company-Córdoba R, García de la Cadena C, Sianes A, Simpson IC. How Living in Vulnerable Conditions Undermines Cognitive Development: Evidence from the Pediatric Population of Guatemala. CHILDREN-BASEL 2021; 8:children8020090. [PMID: 33572817 PMCID: PMC7912439 DOI: 10.3390/children8020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Low-socioeconomic backgrounds represent a risk factor for children’s cognitive development and well-being. Evidence from many studies highlights that cognitive processes may be adversely affected by vulnerable contexts. The aim of this study was to determine if living in vulnerable conditions affects childhood cognitive development. To achieve this, we assessed the performance of a sample of 347 Guatemalan children and adolescents aged from 6 to 17 years (M = 10.8, SD = 3) in a series of 10 neuropsychological tasks recently standardized for the pediatric population of this country. Two-fifths of the sample (41.5%) could be considered to have vulnerable backgrounds, coming from families with low-socioeconomic status or having had a high exposure to violence. As expected, results showed lower scores in language and attention for the vulnerable group. However, contrary to expectations, consistent systematic differences were not found in the executive function tasks. Vulnerable children obtained lower scores in cognitive flexibility compared to the non-vulnerable group, but higher scores in inhibition and problem-solving tasks. These results suggest the importance of developing pediatric standards of cognitive performance that take environmental vulnerable conditions into consideration. These findings, one of the first obtained in the Guatemalan population, also provide relevant information for specific educational interventions and public health policies which will enhance vulnerable children and adolescent cognitive development.
Collapse
Affiliation(s)
- Joaquín A. Ibáñez-Alfonso
- Department of Psychology, Human Neuroscience Lab, Universidad Loyola Andalucía, 41704 Sevilla, Spain; (J.A.I.-A.); (R.C.-C.); (I.C.S.)
- ETEA Foundation, Development Institute of Universidad Loyola Andalucía, 14004 Córdoba, Spain
| | - Rosalba Company-Córdoba
- Department of Psychology, Human Neuroscience Lab, Universidad Loyola Andalucía, 41704 Sevilla, Spain; (J.A.I.-A.); (R.C.-C.); (I.C.S.)
- ETEA Foundation, Development Institute of Universidad Loyola Andalucía, 14004 Córdoba, Spain
| | | | - Antonio Sianes
- Research Institute on Policies for Social Transformation, Universidad Loyola Andalucía, 14004 Córdoba, Spain
- Correspondence:
| | - Ian Craig Simpson
- Department of Psychology, Human Neuroscience Lab, Universidad Loyola Andalucía, 41704 Sevilla, Spain; (J.A.I.-A.); (R.C.-C.); (I.C.S.)
| |
Collapse
|
24
|
Lynn JD, Anand C, Arshad M, Homayouni R, Rosenberg DR, Ofen N, Raz N, Stanley JA. Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content. Cereb Cortex 2021; 31:1032-1045. [PMID: 32995843 PMCID: PMC7906774 DOI: 10.1093/cercor/bhaa272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers-genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.
Collapse
Affiliation(s)
- Jonathan D Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Lifespan Cognitive Neuroscience, Merrill Palmer Skillman Institute, Wayne State University, Detroit MI 14195, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| |
Collapse
|
25
|
Dufford AJ, Evans GW, Dmitrieva J, Swain JE, Liberzon I, Kim P. Prospective associations, longitudinal patterns of childhood socioeconomic status, and white matter organization in adulthood. Hum Brain Mapp 2020; 41:3580-3593. [PMID: 32529772 PMCID: PMC7416042 DOI: 10.1002/hbm.25031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The association between childhood socioeconomic status (SES) and brain development is an emerging area of research. The primary focus to date has been on SES and variations in gray matter structure with much less known about the relation between childhood SES and white matter structure. Using a longitudinal study of SES, with measures of income-to-needs ratio (INR) at age 9, 13, 17, and 24, we examined the prospective relationship between childhood SES (age 9 INR) and white matter organization in adulthood using diffusion tensor imaging. We also examined how changes in INR from childhood through young adulthood are associated with white matter organization in adult using a latent growth mixture model. Using tract-based spatial statistics (TBSS) we found that there is a significant prospective positive association between childhood INR and white matter organization in the bilateral uncinate fasciculus, bilateral cingulum bundle, bilateral superior longitudinal fasciculus, and corpus callosum (p < .05, FWE corrected). The probability that an individual was in the high-increasing INR profile across development compared with the low-increasing INR profile was positively associated with white matter organization in the bilateral uncinate fasciculus, left cingulum, and bilateral superior longitudinal fasciculus. The results of the current study have potential implications for interventions given that early childhood poverty may have long-lasting associations with white matter structure. Furthermore, trajectories of socioeconomic status during childhood are important-with individuals that belong to the latent profile that had high increases in INR having greater regional white matter organization in adulthood.
Collapse
Affiliation(s)
| | - Gary W. Evans
- Department of Design and Environmental Analysis and Department of Human DevelopmentCornell UniversityIthacaNew YorkUSA
| | - Julia Dmitrieva
- Department of PsychologyUniversity of DenverDenverColoradoUSA
| | - James E. Swain
- Department of Psychiatry and Behavioral Health, Psychology, and Obstetrics, Gynecology, and Reproductive HealthRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Israel Liberzon
- Department of PsychiatryTexas A&M University Health Science CenterCollege StationTexasUSA
| | - Pilyoung Kim
- Department of PsychologyUniversity of DenverDenverColoradoUSA
| |
Collapse
|
26
|
Decker AL, Duncan K, Finn AS, Mabbott DJ. Children's family income is associated with cognitive function and volume of anterior not posterior hippocampus. Nat Commun 2020; 11:4040. [PMID: 32788583 PMCID: PMC7423938 DOI: 10.1038/s41467-020-17854-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Children from lower income backgrounds tend to have poorer memory and language abilities than their wealthier peers. It has been proposed that these cognitive gaps reflect the effects of income-related stress on hippocampal structure, but the empirical evidence for this relationship has not been clear. Here, we examine how family income gaps in cognition relate to the anterior hippocampus, given its high sensitivity to stress, versus the posterior hippocampus. We find that anterior (but not posterior) hippocampal volumes positively correlate with family income up to an annual income of ~$75,000. Income-related differences in the anterior (but not posterior) hippocampus also predicted the strength of the gaps in memory and language. These findings add anatomical specificity to current theories by suggesting a stronger relationship between family income and anterior than posterior hippocampal volumes and offer a potential mechanism through which children from different income homes differ cognitively.
Collapse
Affiliation(s)
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
27
|
Family Income Mediates the Effect of Parental Education on Adolescents' Hippocampus Activation During an N-Back Memory Task. Brain Sci 2020; 10:brainsci10080520. [PMID: 32764344 PMCID: PMC7464386 DOI: 10.3390/brainsci10080520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: Hippocampus, a medial temporal lobe structure, has significant implications in memory formation and learning. Although hippocampus activity is believed to be affected by socioeconomic status (SES), limited knowledge exists on which SES indicators influence hippocampus function. Purpose: This study explored the separate and combined effects of three SES indicators, namely parental education, family income, and neighborhood income, on adolescents’ hippocampus activation during an N-Back memory task. As some of the effects of parental education may be through income, we also tested if the effect of parental education on hippocampus activation during our N-Back memory task is mediated by family or neighborhood income. Methods: The Adolescent Brain Cognitive Development (ABCD) study is a national multi-center investigation of American adolescents’ brain development. Functional magnetic resonance imaging (fMRI) data of a total sample of 3067 9–10-year-old adolescents were used. The primary outcome was left- hippocampus activation during the N-Back memory task (mean beta weight for N-Back run 1 2 back versus 0 back contrast in left hippocampus). The independent variable was parental education. Family income and neighborhood income were two possible mediators. Age, sex, and marital status were the covariates. To test mediation, we used hierarchical linear regression models first without and then with our mediators. Full mediation was defined according to Kenny. The Sobel test was used to confirm statistical mediation. Results: In the absence of family and neighborhood income in the model, higher parental educational attainment was associated with lower level of left hippocampus activation during the N-Back memory task. This effect was significant while age, sex, and marital status were controlled. The association between parental educational attainment and hippocampus activation during the N-Back memory task was no more significant when we controlled for family and neighborhood income. Instead, family income was associated with hippocampus activation during the N-Back memory task. These findings suggested that family income fully mediates the effect of parental educational attainment on left hippocampus activation during the N-Back memory task. Conclusions: The effect of parental educational attainment on adolescents’ hippocampus activation during an N-Back memory task is fully explained by family income. That means low family income is why adolescents with low-educated parents show highlighted hippocampus activation during an N-Back memory task. Given the central role of the hippocampus in learning and memory and as income is a modifiable factor by tax and economic policies, income-redistribution policies, fair taxation, and higher minimum wage may have implications for promotion of adolescent equality and social justice. There is a need to focus on family-level economic needs across all levels of neighborhood income.
Collapse
|
28
|
McLachlan K, Zhou D, Little G, Rasmussen C, Pei J, Andrew G, Reynolds JN, Beaulieu C. Current Socioeconomic Status Correlates With Brain Volumes in Healthy Children and Adolescents but Not in Children With Prenatal Alcohol Exposure. Front Hum Neurosci 2020; 14:223. [PMID: 32714166 PMCID: PMC7344164 DOI: 10.3389/fnhum.2020.00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with prenatal alcohol exposure (PAE) exhibit neurological deficits associated with brain injury including smaller brain volumes. Additional risk factors such as lower socioeconomic status (SES) may also have an impact on brain development for this population. This study examined how brain volumes are related to SES in both neurotypically developing children and adolescents, and those with PAE. 3D T1-weighted MPRAGE images were acquired from 69 participants with PAE (13.0 ± 3.2 years, range 7.1–18.8 years, 49% female) and 70 neurotypical controls (12.4 ± 2.9 years, range 7.0–18.5 years, 60% female) from four scanning sites in Canada. SES scores calculated using Hollingshead’s Four-Factor Index of Social Status from current caregiver placement were not significantly different between groups, though more children with PAE had lower SES scores compared to controls. Psychometric data comprised 14 cognitive measures, including executive functioning, attention and working memory, memory, math/numerical ability, and word reading. All cognitive scores were significantly worse in children with PAE compared to controls, though SES was not correlated with cognitive scores in either group after correction for multiple comparisons. All 13 brain volumes were smaller in children with PAE compared to children in the control group. Higher SES was associated with larger hippocampus and amygdala volumes in controls, but there were no such associations in children with PAE. Direct evaluation of the interaction between SES and diagnostic group did not show a significant differential impact of SES on these structures. These findings support previous links between SES and brain volumes in neurotypically developing children, but the lack of such a relationship with SES in children with PAE may be due to the markedly smaller brain volumes resulting from the initial brain injury and postpartum brain development, regardless of later SES.
Collapse
Affiliation(s)
- Kaitlyn McLachlan
- Department of Psychology, College of Social & Applied Human Sciences, University of Guelph, Guelph, ON, Canada
| | - Dongming Zhou
- Department of Zoology, Kunming Medical University, Kunming, Yunnan, China.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Graham Little
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carmen Rasmussen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Gail Andrew
- Glenrose Rehabilitation Hospital PAE Clinic, Edmonton, AB, Canada
| | - James N Reynolds
- Department of Biomedical and Molecular Sciences, School of Medicine, Faculty of Health Sciences, Queens University, Kingston, ON, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Portella AK, Papantoni A, Paquet C, Moore S, Rosch KS, Mostofsky S, Lee RS, Smith KR, Levitan R, Silveira PP, Carnell S, Dube L. Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents. PLoS One 2020; 15:e0234601. [PMID: 32589693 PMCID: PMC7319347 DOI: 10.1371/journal.pone.0234601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Body weight is substantially determined by eating behaviors, which are themselves driven by biological factors interacting with the environment. Previous studies in young children suggest that genetic influences on dopamine function may confer differential susceptibility to the environment in such a way that increases behavioral obesity risk in a lower socioeconomic status (SES) environment but decreases it in a higher SES environment. We aimed to test if this pattern of effect could also be observed in adolescence, another critical period for development in brain and behavior, using a novel measure of predicted expression of the dopamine receptor 4 (DRD4) gene in prefrontal cortex. In a sample of 76 adolescents (37 boys and 39 girls from Baltimore, Maryland/US, aged 14-18y), we estimated individual levels of DRD4 gene expression (PredDRD4) in prefrontal cortex from individual genomic data using PrediXcan, and tested interactions with a composite SES score derived from their annual household income, maternal education, food insecurity, perceived resource availability, and receipt of public assistance. Primary outcomes were snack intake during a multi-item ad libitum meal test, and food-related impulsivity assessed using a food-adapted go/no-go task. A linear regression model adjusted for sex, BMI z-score, and genetic ethnicity demonstrated a PredDRD4 by composite SES score interaction for snack intake (p = 0.009), such that adolescents who had lower PredDRD4 levels exhibited greater snack intake in the lower SES group, but lesser snack intake in the higher SES group. Exploratory analysis revealed a similar pattern for scores on the Perceived Stress Scale (p = 0.001) such that the low PredDRD4 group reported higher stress in the lower SES group, but less stress in the higher SES group, suggesting that PredDRD4 may act in part by affecting perceptions of the environment. These results are consistent with a differential susceptibility model in which genes influencing environmental responsiveness interact with environments varying in obesogenicity to confer behavioral obesity risk in a less favorable environment, but behavioral obesity protection in a favorable one.
Collapse
Affiliation(s)
- Andre Krumel Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
- Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brasil
| | - Afroditi Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine Paquet
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Spencer Moore
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Keri Shiels Rosch
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stewart Mostofsky
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Levitan
- Centre for Addition and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Sheehy-Skeffington J. The effects of low socioeconomic status on decision-making processes. Curr Opin Psychol 2020; 33:183-188. [DOI: 10.1016/j.copsyc.2019.07.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 12/21/2022]
|
31
|
King LS, Dennis EL, Humphreys KL, Thompson PM, Gotlib IH. Cross-sectional and longitudinal associations of family income-to-needs ratio with cortical and subcortical brain volume in adolescent boys and girls. Dev Cogn Neurosci 2020; 44:100796. [PMID: 32479375 PMCID: PMC7525143 DOI: 10.1016/j.dcn.2020.100796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sex-specific associations of SES with neurodevelopment may emerge in adolescence. We used a whole-brain approach to examine gray and white matter volume. Sex interacted with SES to explain variation in volume across adolescence. Sex is an important variable to consider in analyses of SES and brain volume.
Deviations in neurodevelopment may underlie the association between lower childhood socioeconomic status and difficulties in cognitive and socioemotional domains. Most previous investigations of the association between childhood socioeconomic status and brain morphology have used cross-sectional designs with samples that span wide age ranges, occluding effects specific to adolescence. Sex differences in the association between socioeconomic status and neurodevelopment may emerge or intensify during adolescence. In a sample representative of the San Francisco Bay Area, we used whole-brain tensor-based morphometry to examine sex differences in the cross-sectional association between variation in family income-to-needs ratio (INR) and cortical and subcortical gray and white matter volume during early adolescence (ages 9–13 years; N = 147), as well as in the longitudinal association between INR and change in volume from early to later adolescence (ages 11–16 years, N = 109). Biological sex interacted with INR to explain variation in volume in several areas cross-sectionally and longitudinally. Effects were primarily in cortical gray matter areas, including regions of the association cortex and sensorimotor processing areas. Effect sizes tended to be larger in boys than in girls. Biological sex may be an important variable to consider in analyses of the effects of family income on structural neurodevelopment during adolescence.
Collapse
Affiliation(s)
- Lucy S King
- Stanford University, Department of Psychology, Stanford, CA 94305, USA.
| | - Emily L Dennis
- University of Southern California, Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - Kathryn L Humphreys
- Vanderbilt University, Department of Psychology and Human Development, Nashville, TN 37235, USA
| | - Paul M Thompson
- University of Southern California, Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Alberton BAV, Nichols TE, Gamba HR, Winkler AM. Multiple testing correction over contrasts for brain imaging. Neuroimage 2020; 216:116760. [PMID: 32201328 PMCID: PMC8191638 DOI: 10.1016/j.neuroimage.2020.116760] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/28/2023] Open
Abstract
The multiple testing problem arises not only when there are many voxels or vertices in an image representation of the brain, but also when multiple contrasts of parameter estimates (that represent hypotheses) are tested in the same general linear model. We argue that a correction for this multiplicity must be performed to avoid excess of false positives. Various methods for correction have been proposed in the literature, but few have been applied to brain imaging. Here we discuss and compare different methods to make such correction in different scenarios, showing that one classical and well known method is invalid, and argue that permutation is the best option to perform such correction due to its exactness and flexibility to handle a variety of common imaging situations.
Collapse
Affiliation(s)
- Bianca A V Alberton
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal Do Paraná, Curitiba, PR, Brazil.
| | | | - Humberto R Gamba
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal Do Paraná, Curitiba, PR, Brazil.
| | - Anderson M Winkler
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal Do Paraná, Curitiba, PR, Brazil; National Institute of Mental Health (nimh), National Institutes of Health (nih), Bethesda, MD, USA.
| |
Collapse
|
33
|
Keresztes A, Raffington L, Bender AR, Bögl K, Heim C, Shing YL. Hair cortisol concentrations are associated with hippocampal subregional volumes in children. Sci Rep 2020; 10:4865. [PMID: 32184428 PMCID: PMC7078215 DOI: 10.1038/s41598-020-61131-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The human hippocampus, a brain structure crucial for memory across the lifespan, is highly sensitive to adverse life events. Stress exposures during childhood have been linked to altered hippocampal structure and memory performance in adulthood. Animal studies suggest that these differences are in part driven by aberrant glucocorticoid secretion during development, with strongest effects on the CA3 region and the dentate gyrus (CA3-DG) of the hippocampus, alongside associated memory impairments. However, only few pediatric studies have examined glucocorticoid associations with hippocampal subfield volumes and their functional relevance. In 84 children (age range: 6-7 years), we assessed whether volumes of hippocampal subregions were related to cumulative glucocorticoid levels (hair cortisol), parenting stress, and performance on memory tasks known to engage the hippocampus. We found that higher hair cortisol levels were specifically related to lower CA3-DG volume. Parenting stress did not significantly correlate with hair cortisol, and there was no evidence to suggest that individual differences in hippocampal subregional volumes manifest in memory performance. Our results suggest that the CA3-DG may be the hippocampal region most closely associated with hair cortisol levels in childhood. Establishing causal pathways underlying this association and its relation to environmental stress and memory development necessitates longitudinal studies.
Collapse
Affiliation(s)
- Attila Keresztes
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary.
| | - Laurel Raffington
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, University of Texas at Austin, Texas, USA
| | - Andrew R Bender
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Departments of Epidemiology and Biostatistics & Neurology and Ophthalmology, Michigan State University, Michigan, USA
| | | | - Christine Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany.
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA.
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Dotson VM, Duarte A. The importance of diversity in cognitive neuroscience. Ann N Y Acad Sci 2020; 1464:181-191. [DOI: 10.1111/nyas.14268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Vonetta M. Dotson
- Department of Psychology and the Gerontology InstituteGeorgia State University Atlanta Georgia
| | - Audrey Duarte
- Department of PsychologyGeorgia Institute of Technology Atlanta Georgia
| |
Collapse
|
35
|
Merz EC, Desai PM, Maskus EA, Melvin SA, Rehman R, Torres SD, Meyer J, He X, Noble KG. Socioeconomic Disparities in Chronic Physiologic Stress Are Associated With Brain Structure in Children. Biol Psychiatry 2019; 86:921-929. [PMID: 31409452 PMCID: PMC6874729 DOI: 10.1016/j.biopsych.2019.05.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Socioeconomic factors have been consistently linked with the structure of children's hippocampus and anterior cingulate cortex (ACC). Chronic stress-as indexed by hair cortisol concentration-may represent an important mechanism underlying these associations. Here, we examined associations between hair cortisol and children's hippocampal and ACC structure, including across hippocampal subfields, and whether hair cortisol mediated associations between socioeconomic background (family income-to-needs ratio, parental education) and the structure of these brain regions. METHODS Participants were 5- to 9-year-old children (N = 94; 61% female) from socioeconomically diverse families. Parents and children provided hair samples that were assayed for cortisol. High-resolution, T1-weighted magnetic resonance imaging scans were acquired, and FreeSurfer 6.0 was used to compute hippocampal volume and rostral and caudal ACC thickness and surface area (n = 37 with both child hair cortisol and magnetic resonance imaging data; n = 41 with both parent hair cortisol and magnetic resonance imaging data). RESULTS Higher hair cortisol concentration was significantly associated with smaller CA3 and dentate gyrus hippocampal subfield volumes but not with CA1 or subiculum volume. Higher hair cortisol was also associated with greater caudal ACC thickness. Hair cortisol significantly mediated associations between parental education level and CA3 and dentate gyrus volumes; lower parental education level was associated with higher hair cortisol, which in turn was associated with smaller volume in these subfields. CONCLUSIONS These findings point to chronic physiologic stress as a potential mechanism through which lower parental education level leads to reduced hippocampal volume. Hair cortisol concentration may be an informative biomarker leading to more effective prevention and intervention strategies aimed at childhood socioeconomic disadvantage.
Collapse
Affiliation(s)
- Emily C Merz
- Teachers College, Columbia University, New York, New York
| | - Pooja M Desai
- Teachers College, Columbia University, New York, New York
| | | | | | - Rehan Rehman
- Teachers College, Columbia University, New York, New York
| | - Sarah D Torres
- Teachers College, Columbia University, New York, New York
| | | | - Xiaofu He
- Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
36
|
Raffington L, Czamara D, Mohn JJ, Falck J, Schmoll V, Heim C, Binder EB, Shing YL. Stable longitudinal associations of family income with children's hippocampal volume and memory persist after controlling for polygenic scores of educational attainment. Dev Cogn Neurosci 2019; 40:100720. [PMID: 31678692 PMCID: PMC6974918 DOI: 10.1016/j.dcn.2019.100720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/26/2022] Open
Abstract
Despite common notion that the correlation of socioeconomic status with child cognitive performance may be driven by both environmentally- and genetically-mediated transactional pathways, there is a lack of longitudinal and genetically informed research that examines these postulated associations. The present study addresses whether family income predicts associative memory growth and hippocampal development in middle childhood and tests whether these associations persist when controlling for DNA-based polygenic scores of educational attainment. Participants were 142 6-to-7-year-old children, of which 127 returned when they were 8-to-9 years old. Longitudinal analyses indicated that the association of family income with children's memory performance and hippocampal volume remained stable over this age range and did not predict change. On average, children from economically disadvantaged background showed lower memory performance and had a smaller hippocampal volume. There was no evidence to suggest that differences in memory performance were mediated by differences in hippocampal volume. Further exploratory results suggested that the relationship of income with hippocampal volume and memory in middle childhood is not primarily driven by genetic variance captured by polygenic scores of educational attainment, despite the fact that polygenic scores significantly predicted family income.
Collapse
Affiliation(s)
- Laurel Raffington
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology, University of Texas at Austin, TX, USA
| | - Darina Czamara
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Johannes Julius Mohn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Falck
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Vanessa Schmoll
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christine Heim
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany; Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, USA
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany; Dept. of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Institute of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Jenkins LM, Chiang JJ, Vause K, Hoffer L, Alpert K, Parrish TB, Wang L, Miller GE. Subcortical structural variations associated with low socioeconomic status in adolescents. Hum Brain Mapp 2019; 41:162-171. [PMID: 31571360 PMCID: PMC7268024 DOI: 10.1002/hbm.24796] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Low socioeconomic status (SES) is associated with a higher probability of multiple exposures (e.g., neighborhood violence, poor nutrition, housing instability, air pollution, and insensitive caregiving) known to affect structural development of subcortical brain regions that subserve threat and reward processing, however, few studies have examined the relationship between SES and such subcortical structures in adolescents. We examined SES variations in volume and surface morphometry of subcortical regions. The sample comprised 256 youth in eighth grade (mean age = 13.9 years), in whom high dimensional deformation mapping of structural 3T magnetic resonance imaging scans was performed. Vertex‐wise linear regression analyses examined associations between income to poverty ratio and surfaces of the hippocampus, amygdala, thalamus, caudate, putamen, nucleus accumbens and pallidum, with the covariates age, pubertal status, and intracranial volume. Given sex differences in pubertal development and subcortical maturation at this age, the analyses were stratified by sex. Among males, who at this age average an earlier pubertal stage than females, the relationship between SES and local shape variation in subcortical regions was almost entirely positive. For females, the relationship between SES and local shape variation was negative. Racial identity was associated with SES in our sample, however supplementary analyses indicated that most of the associations between SES and subcortical structure were independent of it. Although these cross‐sectional results are not definitive, they are consistent with a scenario where low SES delays structural maturation of subcortical regions involved with threat and reward processing. Future longitudinal studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois
| | - Jessica J Chiang
- Department of, Psychology and Institute for Policy Research, Northwestern University, Chicago, Illinois
| | - Katherine Vause
- Department of, Psychology and Institute for Policy Research, Northwestern University, Chicago, Illinois
| | - Lauren Hoffer
- Department of, Psychology and Institute for Policy Research, Northwestern University, Chicago, Illinois
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois.,Department of Radiology, Northwestern University, Chicago, Illinois
| | - Gregory E Miller
- Department of, Psychology and Institute for Policy Research, Northwestern University, Chicago, Illinois
| |
Collapse
|
38
|
Hedges DW, Erickson LD, Kunzelman J, Brown BL, Gale SD. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology 2019; 74:108-120. [DOI: 10.1016/j.neuro.2019.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022]
|
39
|
Lambert HK, Peverill M, Sambrook KA, Rosen ML, Sheridan MA, McLaughlin KA. Altered development of hippocampus-dependent associative learning following early-life adversity. Dev Cogn Neurosci 2019; 38:100666. [PMID: 31276941 PMCID: PMC6684815 DOI: 10.1016/j.dcn.2019.100666] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/19/2019] [Accepted: 05/23/2019] [Indexed: 11/03/2022] Open
Abstract
Little is known about how childhood adversity influences the development of learning and memory and underlying neural circuits. We examined whether violence exposure in childhood influenced hippocampus-dependent associative learning and whether differences: a) were broad or specific to threat cues, and b) exhibited developmental variation. Children (n = 59; 8-19 years, 24 violence-exposed) completed an associative learning task with angry, happy, and neutral faces paired with objects during fMRI scanning. Outside the scanner, participants completed an associative memory test for face-object pairings. Violence-exposed children exhibited broad associative memory difficulties that became more pronounced with age, along with reduced recruitment of the hippocampus and atypical recruitment of fronto-parietal regions during encoding. Violence-exposed children also showed selective disruption of associative memory for threat cues regardless of age, along with reduced recruitment of the intraparietal sulcus (IPS) during encoding in the presence of threat. Broad associative learning difficulties may be a functional consequence of the toxic effects of early-life stress on hippocampal and fronto-parietal cortical development. Difficulties in the presence of threat cues may result from enhanced threat processing that disrupts encoding and short-term storage of associative information in the IPS. These associative learning difficulties may contribute to poor life outcomes following childhood violence exposure.
Collapse
Affiliation(s)
- Hilary K. Lambert
- Department of Psychology, University of Washington, 119A Guthrie Hall, Box 351525, Seattle, WA, 98195-1525, USA,Corresponding author.
| | - Matthew Peverill
- Department of Psychology, University of Washington, 119A Guthrie Hall, Box 351525, Seattle, WA, 98195-1525, USA.
| | - Kelly A. Sambrook
- Department of Psychology, University of Washington, 119A Guthrie Hall, Box 351525, Seattle, WA, 98195-1525, USA
| | - Maya L. Rosen
- Department of Psychology, University of Washington, 119A Guthrie Hall, Box 351525, Seattle, WA, 98195-1525, USA
| | - Margaret A. Sheridan
- Department of Psychology and Neuroscience, University of North Carolina, 235 E. Cameron Avenue, Chapel Hill, NC, 27599-3270, USA
| | - Katie A. McLaughlin
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA, 02138, USA
| |
Collapse
|
40
|
King LS, Humphreys KL, Camacho MC, Gotlib IH. A person-centered approach to the assessment of early life stress: Associations with the volume of stress-sensitive brain regions in early adolescence. Dev Psychopathol 2019; 31:643-655. [PMID: 29716668 PMCID: PMC6214790 DOI: 10.1017/s0954579418000184] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Researchers are becoming increasingly interested in linking specific forms of early life stress (ELS) to specific neurobiological markers, including alterations in the morphology of stress-sensitive brain regions. We used a person-centered, multi-informant approach to investigate the associations of specific constellations of ELS with hippocampal and amygdala volume in a community sample of 211 9- to 13-year-old early adolescents. Further, we compared this approach to a cumulative risk model of ELS, in which ELS was quantified by the total number of stressors reported. Using latent class analysis, we identified three classes of ELS (labeled typical/low, family instability, and direct victimization) that were distinguished by experiences of family instability and victimization. Adolescents in the direct victimization class had significantly smaller hippocampal volume than did adolescents in the typical/low class; ELS classes were not significantly associated with amygdala volume. The cumulative risk model of ELS had a poorer fit than did the person-centered model; moreover, cumulative ELS was not significantly associated with hippocampal or amygdala volume. Our results underscore the utility of taking a person-centered approach to identify alterations in stress-sensitive brain regions based on constellations of ELS, and suggest victimization is specifically associated with hippocampal hypotrophy observed in early adolescence.
Collapse
|
41
|
Ofen N, Tang L, Yu Q, Johnson EL. Memory and the developing brain: From description to explanation with innovation in methods. Dev Cogn Neurosci 2019; 36:100613. [PMID: 30630777 PMCID: PMC6529263 DOI: 10.1016/j.dcn.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022] Open
Abstract
Recent advances in human cognitive neuroscience show great promise in extending our understanding of the neural basis of memory development. We briefly review the current state of knowledge, highlighting that most work has focused on describing the neural correlates of memory in cross-sectional studies. We then delineate three examples of the application of innovative methods in addressing questions that go beyond description, towards a mechanistic understanding of memory development. First, structural brain imaging and the harmonization of measurements across laboratories may uncover ways in which the maturation of the brain constrains the development of specific aspects of memory. Second, longitudinal designs and sophisticated modeling of the data may identify age-driven changes and the factors that determine individual developmental trajectories. Third, recording memory-related activity directly from the developing brain presents an unprecedented opportunity to examine how distinct brain structures support memory in real time. Finally, the growing prevalence of data sharing offers additional means to tackle questions that demand large-scale datasets, ambitious designs, and access to rare samples. We propose that the use of such innovative methods will move our understanding of memory development from a focus on describing trends to explaining the causal factors that shape behavior.
Collapse
Affiliation(s)
- Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, Michigan, United States; Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Qijing Yu
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| |
Collapse
|
42
|
Killion BE, Weyandt LL. Brain structure in childhood maltreatment-related PTSD across the lifespan: A systematic review. APPLIED NEUROPSYCHOLOGY-CHILD 2018; 9:68-82. [DOI: 10.1080/21622965.2018.1515076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bryana E. Killion
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lisa L. Weyandt
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
43
|
Crossley NA, Alliende LM, Ossandon T, Castañeda CP, González-Valderrama A, Undurraga J, Castro M, Guinjoan S, Díaz-Zuluaga AM, Pineda-Zapata JA, López-Jaramillo C, Reyes-Madrigal F, León-Ortíz P, de la Fuente-Sandoval C, Czepielewski LS, Gama CS, Zugman A, Gadelha A, Jackowski A, Bressan R. Imaging Social and Environmental Factors as Modulators of Brain Dysfunction: Time to Focus on Developing Non-Western Societies. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:8-15. [PMID: 30396768 DOI: 10.1016/j.bpsc.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Social and environmental factors are known risk factors and modulators of mental health disorders. We here conducted a nonsystematic review of the neuroimaging literature studying the effects of poverty, urbanicity, and community violence, highlighting the opportunities of studying non-Western developing societies such as those in Latin America. Social and environmental factors in these communities are widespread and have a large magnitude, as well as an unequal distribution, providing a good opportunity for their characterization. Studying the effect of poverty in these settings could help to explore the brain effect of economic improvements, disentangle the effect of absolute and relative poverty, and characterize the modulating impact of poverty on the underlying biology of mental health disorders. Exploring urbanicity effects in highly unequal cities could help identify the specific factors that modulate this effect as well as examine a possible dose-response effect by studying megacities. Studying brain changes in those living among violence, which is particularly high in places such as Latin America, could help to characterize the interplay between brain predisposition and exposure to violence. Furthermore, exploring the brain in an adverse environment should shed light on the mechanisms underlying resilience. We finally provide examples of two methodological approaches that could contribute to this field, namely a big cohort study in the developing world and a consortium-based meta-analytic approach, and argue about the potential translational value of this research on the development of effective social policies and successful personalized medicine in disadvantaged societies.
Collapse
Affiliation(s)
- Nicolas A Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Biomedical Imaging Center and Center for Integrative Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, United Kingdom.
| | - Luz Maria Alliende
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomas Ossandon
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Alfonso González-Valderrama
- Early Intervention Program, José Horwitz Psychiatric Institute, Santiago, Chile; School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Juan Undurraga
- Early Intervention Program, José Horwitz Psychiatric Institute, Santiago, Chile; Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mariana Castro
- FLENI Foundation, Buenos Aires, Argentina; Department of Psychiatry and Mental Health, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Salvador Guinjoan
- FLENI Foundation, Buenos Aires, Argentina; Department of Psychiatry and Mental Health, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ana M Díaz-Zuluaga
- Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Carlos López-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia; Mood Disorders Program, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Pablo León-Ortíz
- Laboratory of Experimental Psychiatry, Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Leticia Sanguinetti Czepielewski
- Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa S Gama
- Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andre Zugman
- Laboratory of Interdisciplinary Clinical Neuroscience, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Ary Gadelha
- Laboratory of Interdisciplinary Clinical Neuroscience, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Jackowski
- Laboratory of Interdisciplinary Clinical Neuroscience, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Bressan
- Laboratory of Interdisciplinary Clinical Neuroscience, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Socioeconomic status moderates age-related differences in the brain's functional network organization and anatomy across the adult lifespan. Proc Natl Acad Sci U S A 2018; 115:E5144-E5153. [PMID: 29760066 PMCID: PMC5984486 DOI: 10.1073/pnas.1714021115] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An individual’s socioeconomic status (SES) is a central feature of their environmental surroundings and has been shown to relate to the development and maturation of their brain in childhood. Here, we demonstrate that an individual’s present (adult) SES relates to their brain function and anatomy across a broad range of middle-age adulthood. In middle-aged adults (35–64 years), lower SES individuals exhibit less organized functional brain networks and reduced cortical thickness compared with higher SES individuals. These relationships cannot be fully explained by differences in health, demographics, or cognition. Additionally, childhood SES does not explain the relation between SES and brain network organization. These observations provide support for a powerful relationship between the environment and the brain that is evident in adult middle age. An individual’s environmental surroundings interact with the development and maturation of their brain. An important aspect of an individual’s environment is his or her socioeconomic status (SES), which estimates access to material resources and social prestige. Previous characterizations of the relation between SES and the brain have primarily focused on earlier or later epochs of the lifespan (i.e., childhood, older age). We broaden this work to examine the relationship between SES and the brain across a wide range of human adulthood (20–89 years), including individuals from the less studied middle-age range. SES, defined by education attainment and occupational socioeconomic characteristics, moderates previously reported age-related differences in the brain’s functional network organization and whole-brain cortical structure. Across middle age (35–64 years), lower SES is associated with reduced resting-state system segregation (a measure of effective functional network organization). A similar but less robust relationship exists between SES and age with respect to brain anatomy: Lower SES is associated with reduced cortical gray matter thickness in middle age. Conversely, younger and older adulthood do not exhibit consistent SES-related difference in the brain measures. The SES–brain relationships persist after controlling for measures of physical and mental health, cognitive ability, and participant demographics. Critically, an individual’s childhood SES cannot account for the relationship between their current SES and functional network organization. These findings provide evidence that SES relates to the brain’s functional network organization and anatomy across adult middle age, and that higher SES may be a protective factor against age-related brain decline.
Collapse
|
45
|
Cumulative prenatal exposure to adversity reveals associations with a broad range of neurodevelopmental outcomes that are moderated by a novel, biologically informed polygenetic score based on the serotonin transporter solute carrier family C6, member 4 (SLC6A4) gene expression. Dev Psychopathol 2017; 29:1601-1617. [DOI: 10.1017/s0954579417001262] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractWhile many studies focus on the association between early life adversity and the later risk for psychopathology, few simultaneously explore diverse forms of environmental adversity. Moreover, those studies that examined the cumulative impact of early life adversity focus uniquely on postnatal influences. The objective of this study was to focus on the fetal period of development to construct and validate a cumulative prenatal adversity score in relation to a wide range of neurodevelopmental outcomes. We also examined the interaction of this adversity score with a biologically informed genetic score based on the serotonin transporter gene. Prenatal adversities were computed in two community birth cohorts using information on health during pregnancy, birth weight, gestational age, income, domestic violence/sexual abuse, marital strain, as well as maternal smoking, anxiety, and depression. A genetic score based on genes coexpressed with the serotonin transporter in the amygdala, hippocampus, and prefrontal cortex during prenatal life was constructed with an emphasis on functionally relevant single nucleotide polymorphisms, that is, expression quantitative trait loci. Prenatal adversities predicted a wide range of developmental and behavioral alterations in children as young as 2 years of age in both cohorts. There were interactions between the genetic score and adversities for several domains of the Child Behavior Checklist (CBCL), with pervasive developmental problems remaining significant adjustment for multiple comparisons. Scores combining different prenatal adverse exposures predict childhood behavior and interact with the genetic background to influence the risk for psychopathology.
Collapse
|
46
|
Piccolo LR, Noble KG. Perceived stress is associated with smaller hippocampal volume in adolescence. Psychophysiology 2017; 55:e13025. [PMID: 29053191 DOI: 10.1111/psyp.13025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Perceived stress has been associated with decreased hippocampal, amygdala, and prefrontal cortex volume, as well as decreased memory and executive functioning performance in adulthood. Parents' perceived stress has been linked to decreased hippocampal volume in young children. However, no studies have investigated the links between self-perceived stress and brain structure or function in adolescents. Additionally, findings from previous research with younger or older samples are inconsistent, likely in part due to inconsistencies in participants' age range. In this study, we investigated the associations among self-perceived stress, family socioeconomic factors (family income, parental education), subcortical (hippocampus, amygdala) volumes, prefrontal cortical thickness and surface area, and memory and executive functioning performance in adolescents. One hundred and forty-three participants (12-20 years old) were administered a cognitive battery, a questionnaire to assess perceived stress, and a structural MRI scan. Higher levels of perceived stress were associated with decreased adolescent hippocampal volume. This study provides empirical evidence of how experience may shape brain development in adolescence-a period of plasticity during which it may be possible to intervene and prevent negative developmental outcomes.
Collapse
|
47
|
Daugherty AM, Flinn R, Ofen N. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood. Neuroimage 2017; 153:75-85. [PMID: 28342999 PMCID: PMC5477670 DOI: 10.1016/j.neuroimage.2017.03.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus.
Collapse
Affiliation(s)
- Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert Flinn
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|