1
|
Kim J, Kadayat TM, Lee JE, Kwon S, Jung K, Hwang JS, Kwon OB, Kim YJ, Choi YK, Park KG, Hwang H, Cho SJ, Lee T, Jeon YH, Chin J. Discovery of the therapeutic potential of PPARδ agonist bearing 1,3,4- thiadiazole in inflammatory disorders. Eur J Med Chem 2024; 279:116856. [PMID: 39270454 DOI: 10.1016/j.ejmech.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders. In this study, a series of 1,3,4-thiadiazole derivatives were designed, synthesized, and evaluated. Compound 11 exhibited potent PPARδ agonistic activity with EC50 values 20 nM and strong selectivity over PPARα and PPARγ. Furthermore, compound 11 demonstrated favorable in vitro and in vivo pharmacokinetic properties. In vivo experiments using labeled macrophages and paw thickness measurements confirmed compound 11's potential to reduce macrophage infiltration and alleviate inflammation. These findings highlight compound 11 as a potent and promising therapeutic candidate for the treatment of acute inflammatory diseases and warrant further investigation to explore various biological roles.
Collapse
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ye Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| |
Collapse
|
2
|
Wang C, Huyan T, Guo W, Shu Q, Li Q, Shi J. NTCdb: Single-cell transcriptome database of human inflammatory-associated diseases. Comput Struct Biotechnol J 2024; 23:1978-1989. [PMID: 38765608 PMCID: PMC11098674 DOI: 10.1016/j.csbj.2024.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
With both the advancement of technology and the decline in costs, single-cell transcriptomics sequencing has become widespread in the biomedical area in recent years. It can facilitate the pathogenic characteristics at the single-cell level, which will assist clinical researchers in exploring the mechanism of diseases. As a result, single-cell transcriptome data based on clinical samples grew exponentially. However, there is still a lack of a comprehensive database about immunocytes in inflammatory-associated diseases. To address this deficiency, we propose a human inflammatory-associated disease-based single-cell transcriptome database, NTCdb (www.ntcdb.org.cn). NTCdb integrates the open-source data of 1,023,166 cells derived from 11 tissues of 17 inflammatory-associated diseases in a uniform pipeline. It provides a set of analyzing results, including cell communication analysis, enrichment analysis, and Pseudo-Time analysis, to obtain various characteristics of immune cells in inflammatory-associated disease. Taking COVID-19 as a case study, NTCdb displays important information including potentially significant functions of certain cells, genes, and signaling pathways, as well as the commonalities of specific immunocytes between different inflammatory-associated disease.
Collapse
Affiliation(s)
| | | | - Wuli Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qi Shu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | | | - Jianyu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
4
|
Zhou Z, Li M, Zhang Z, Song Z, Xu J, Zhang M, Gong M. Overview of Panax ginseng and its active ingredients protective mechanism on cardiovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118506. [PMID: 38964625 DOI: 10.1016/j.jep.2024.118506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.
Collapse
Affiliation(s)
- Ziwei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zekuan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhimin Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China
| | - Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
5
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
6
|
Dubey A, Sivaraman J. Investigating anti-inflammatory actions of marine algal compound against lipoxygenase concentrating on therapeutic applications through computational approach. J Biomol Struct Dyn 2024; 42:9050-9063. [PMID: 37643084 DOI: 10.1080/07391102.2023.2249115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Inflammation is the preliminary response given to any possible harmful stimuli including infections, injury or stress by immune system where neutrophils and macrophages gets activated and produces mediators, such as nitric oxide and cytokines that serves as biomarkers of inflammation. Lipoxygenases are enzymes that peroxidises lipids and are involved in the pathogenesis of several diseases including inflammatory diseases. These are oxidative enzymes comprising a non-heme iron atom in active site and are convoluted in inflammatory reactions. Fucoidan is sulphated polysaccharide that has numerous pharmacological implications. Implications of fucoidan on inflammatory diseases are still an objective of rigorous research. Therefore, this study focusses on investigating lipoxygenase inhibitory activities of fucoidan. The mechanism of lipoxygenase inhibitory activities of fucoidan was studied via molecular docking and molecular dynamics simulations. The docking score produced by the binding of the fucoidan to the lipoxygenase was - 6.69 kcal/mol whereas, the docking score in case of Aspirin and Zileuton were -5.8 kcal/mol and -7.0 kcal/mol and it was found that fucoidan makes hydrogen bonds with lipoxygenase protein through polar amino acid glutamine at GLN 514. The results obtained from molecular dynamics simulations proposed the development of a stable complex between fucoidan and lipoxygenase due to the establishment of favourable interactions with amino acid residues and indicated efficient results when compared with Aspirin and Zileuton. This study suggested that fucoidan had anti-inflammatory potentials and thus can be used as a promising drug candidate against inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Dubey
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jayanthi Sivaraman
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
8
|
Chafaa N, Mosbah C, Khattabi L, Malaoui K, Zahnit W, Smaali MEA, Houri F, Medfouni Y, Al-Anazi KM, Ali A. Algerian Prickly Pear Seed By-Products: Fatty Acids Composition, Antioxidant, Enzyme Inhibitory Activities towards Tyrosinase, Urease, α-Amylase, and Cholinesterase, along with the Ability to Protect from Thermal Protein Denaturation. Pharmaceuticals (Basel) 2024; 17:1145. [PMID: 39338309 PMCID: PMC11434752 DOI: 10.3390/ph17091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Prickly pear seed is a source of the most expensive oil in the world, which is rich in vitamins and polyunsaturated fatty acids. Its extraction generates a large quantity of press cake. These two by-products need to be valued. The current study aimed to assess the fatty acid composition of oil and the phytochemical composition of press cake. In addition, the antioxidant and the inhibition of thermal protein denaturation effects of both Algerian seed by-products were evaluated with their inhibitory action against the activities of urease, tyrosinase, α-amylase, and cholinesterase enzymes. The GC MS analysis result revealed the richness of our oil in linoleic (74%) and palmitic (13%) acids methyl esters, respectively. The chemical composition of press cake was characterized by a high value of dry matter (94.94 ± 0.05%), especially the carbohydrates (85.13 ± 0.94%). The results of antioxidant activity presented by IC50 and A0.5 ranged from 7.51 ± 0.03 to 88.10 ± 0.92 µg/mL. Furthermore, the IC50 values were 40.19 ± 1.21 and 61.18 ± 0.03 µg/mL in thermal protein denaturation assay, and ranging from 22.97 ± 0.72 to 385.99 ± 0.27 µg/mL for the inhibition of enzymatic activities. These results indicate that the studied oil can be one of the strongest oils for its impressive effects and also encourage us to reuse its press cake in feed livestock.
Collapse
Affiliation(s)
- Nassiba Chafaa
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
| | - Camelia Mosbah
- Institute of Applied Science and Technology (ISTA), Ain M’lila, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
| | - Latifa Khattabi
- Biotechnology Research Center (C.R.B.t), Constantine 25016, Algeria
| | - Karima Malaoui
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria
| | | | - Faiza Houri
- Biotechnology Research Center (C.R.B.t), Constantine 25016, Algeria
| | | | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India;
| |
Collapse
|
9
|
Hashim M, Akbar A, Gul Z, Bilal Sadiq M, Khan Achakzai J, Ahmad Khan N. Fermentation impact: A comparative study on the functional and biological properties of Banana peel waste. Heliyon 2024; 10:e36095. [PMID: 39247352 PMCID: PMC11379994 DOI: 10.1016/j.heliyon.2024.e36095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Banana fruit is a highly consumed and widely cultivated world food crop that generates plenty of waste globally. In this work, the phytochemical, nutritional, scavenging and therapeutic potentials of banana peel (BP) extracts were compared before and after fermentation. Halophilic fungi (Alternaria alternata, Pleosporaceae spp., Fusarium culmorum) were used in fermentation media designated as fermented banana peel FBP1, FBP2, and FBP3, respectively. Phytochemical coumarins, terpenoids, tannins, saponins, quinones, flavonoids, alkaloids, carbohydrates, proteins and steroids were found in all extracts while anthraquinone was identified in BP extracts only. Fermented extracts showed less quantity of Carbohydrate, compared to BP (477.1 ± 28.93 mg/g). Fermentation influenced the protein concentration as FBP1 showed a maximum protein of 56.9 ± 8.91 mg/g. Decreased quantities of Total Phenolic Contents (TPC), Total Flavonoid contents (TFC), and Vitamin C were noted in fermented products. The BP contained TPC (18 ± 2.59 mg GAE/g), TFC (20.5 ± 2.11 mg QE/g), carotenoid (1.03 ± 0.19 mg/g) and vitamin C (33.46 ± 2.63 mg/L). For BP, high antioxidant activity was observed, IC50 values of DPPH scavenging and FRAP assay were 2.01 ± 0.06 mg/mL and 12.81 ± 0.03 mg/mL, respectively. All the extracts were potentially active against the Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli BP extract showed high antibacterial activity than the fermented products. Among all the above, S. aureus showed high sensitivity to BP and FBP2 with 26.33 ± 2.49 and 26.33 ± 0.97 mm zone of inhibition and S. typhi was highly inhibited by BP and FBP1 with 26.26 ± 1.77 and 26.66 ± 2.63 mm. BP was highly active against K. pneumoniae and P. aeruginosa with 31.33 ± 1.74 and 32.33 ± 1.59 mm zone of inhibition and E. coli was sensitive to FBP2 with 25.7 ± 2.33 mm zone, respectively. The BP extract possessed potent antifungal activity against Mucor mucedo (84 %), Aspergillus niger (72 %) and Aspergillus flavus (83 %), which was higher than the fermented products. The antileishmanial assay was undertaken for all extracts against promastigotes of Leishmania major, BP showed good activity IC50 = 0.763 ± 0.01 mg/g. In the anti-inflammatory assays the BP showed lowest IC50 values by protein denaturing (0.612 ± 0.01), proteinase inhibitory (0.502 ± 0.01) and blood hemolysis assay (0.515 ± 0.01 mg/g). The minimum concentration indicated that BP was highly potent in response to antileishmanial and inflammation activity.
Collapse
Affiliation(s)
- Mehnaz Hashim
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, 19120, Khyber Pakhtunkhwa, Pakistan
| | - Zareen Gul
- Department of Botany, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Jahangir Khan Achakzai
- Disipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, 92600, Balochistan, Pakistan
| | - Nazir Ahmad Khan
- Deprtment of Animal Nutrition, The University of Agriculture Peshawar, Pakistan
| |
Collapse
|
10
|
Rahman MS, Alam MB, Naznin M, Madina MH, Rafiquzzaman SM. Glutamic-Alanine Rich Glycoprotein from Undaria pinnatifida: A Promising Natural Anti-Inflammatory Agent. Mar Drugs 2024; 22:383. [PMID: 39330264 PMCID: PMC11433183 DOI: 10.3390/md22090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and in-vivo settings, GP was found to reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) while also inhibiting the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in response to lipopolysaccharide (LPS) stimulation. GP treatment significantly impeded the nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by blocking the phosphorylation of IKKα and IκBα, leading to a reduction in proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Additionally, GP effectively inhibited the activation of mitogen-activated protein kinases (MAPKs), with specific inhibitors of p38 and extra-cellular signal regulated kinase (ERK) enhancing GP's anti-inflammatory efficacy. Notably, GP administration at 10 mg/kg/day (p.o.) markedly reduced carrageenan-induced paw inflammation and xylene-induced ear edema by preventing the infiltration of inflammatory cells into targeted tissues. GP treatment also downregulated key inflammatory markers, including iNOS, COX-2, IκBα, and NF-κB, by suppressing the phosphorylation of p38 and ERK, thereby improving the inflammatory index in both carrageenan- and xylene-induced mouse models. These findings suggest that marine resources, particularly seaweeds like U. pinnatifida, could serve as valuable sources of natural anti-inflammatory proteins for the effective treatment of inflammation and related conditions.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - Md Badrul Alam
- Inner Beauty/Antiaging Center, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Mst Hur Madina
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| |
Collapse
|
11
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
12
|
Xiao XY, Chen YM, Zhu J, Yin MY, Huang CN, Qin HM, Liu SX, Xiao Y, Fang HW, Zhuang T, Chen Y. The synergistic anti-nociceptive effects of nefopam and gabapentinoids in inflammatory, osteoarthritis, and neuropathic pain mouse models. Eur J Pharmacol 2024; 977:176738. [PMID: 38876275 DOI: 10.1016/j.ejphar.2024.176738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.
Collapse
Affiliation(s)
- Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ming-Yue Yin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shu-Xian Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Heng-Wei Fang
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
13
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
14
|
Wang Y, Jiang Y, Chen J, Gong H, Qin Q, Wei S. In vitro antiviral activity of eugenol on Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109748. [PMID: 38964434 DOI: 10.1016/j.fsi.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 μM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
15
|
Meng X, Li C, Gao A, Wang H, Wei L, Sun L. Integrated metabolomics and network pharmacology approach to exploring the anti-inflammatory mechanisms of Chuanwang xiaoyan capsules. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124197. [PMID: 38889492 DOI: 10.1016/j.jchromb.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Chuanwang xiaoyan capsules (CWXYC) have anti-inflammatory and detoxification effect, are used in the treatment of acute and chronic tonsillitis, pharyngitis and other inflammation-related diseases clinically. However, the anti-inflammatory mechanisms have not been elucidated. This study aimed to investigate the anti-inflammatory mechanisms of CWXYC using cell metabolomics and network pharmacology strategy. Specifically, CWXYC could efficiently reduce the content of nitric oxide (NO), the cytokines Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in LPS-induced RAW264.7 cells. Furthermore, metabolomics was performed to achieve 23 differential metabolites and 9 metabolic pathways containing glutamate metabolism, glutathione metabolism, arginine and proline metabolism, urea cycle, malate-aspartate shuttle, phosphatidylcholine biosynthesis, transfer of acetyl groups into mitochondria, cysteine metabolism and ammonia recycling. The results of network pharmacology showed that CWXYC could treat inflammation through 10 active components, 10 key targets and 55 pathways. Then the results of molecular docking also approved that there existed strong binding energy between the active components and the key targets. Finally, metabolomics and network pharmacology were integrated to get core targets AKT1, SRC and EGFR. Western blot experiments verified that CWXYC could exert anti-inflammatory effect by down-regulating the activated Akt1 and Src proteins. This study demonstrated that CWXYC exerted effects against inflammation, and the potential mechanisms were elucidated. These novel findings will provide an important basis for further mechanism investigations.
Collapse
Affiliation(s)
- Xiangping Meng
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Caihong Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Aichun Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Hongjin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Lan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S, Brand M. Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion. Front Cell Dev Biol 2024; 12:1332347. [PMID: 39071801 PMCID: PMC11272569 DOI: 10.3389/fcell.2024.1332347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Inflammation can lead to persistent and irreversible loss of retinal neurons and photoreceptors in mammalian vertebrates. In contrast, in the adult zebrafish brain, acute neural inflammation is both necessary and sufficient to stimulate regeneration of neurons. Here, we report on the critical, positive role of the immune system to support retina regeneration in adult zebrafish. After sterile ablation of photoreceptors by phototoxicity, we find rapid response of immune cells, especially monocytes/microglia and neutrophils, which returns to homeostatic levels within 14 days post lesion. Pharmacological or genetic impairment of the immune system results in a reduced Müller glia stem cell response, seen as decreased reactive proliferation, and a strikingly reduced number of regenerated cells from them, including photoreceptors. Conversely, injection of the immune stimulators flagellin, zymosan, or M-CSF into the vitreous of the eye, leads to a robust proliferation response and the upregulation of regeneration-associated marker genes in Müller glia. Our results suggest that neuroinflammation is a necessary and sufficient driver for retinal regeneration in the adult zebrafish retina.
Collapse
Affiliation(s)
- Oliver Bludau
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Anke Weber
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Viktoria Bosak
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Veronika Kuscha
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Kristin Dietrich
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Stefan Hans
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Michael Brand
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| |
Collapse
|
17
|
Pinnarò V, Kirchberger S, Künig S, Gil Cantero S, Ciardulli MC, Della Porta G, Blüml S, Elbe-Bürger A, Bochkov V, Stöckl J. Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells. Int J Mol Sci 2024; 25:7600. [PMID: 39062855 PMCID: PMC11277520 DOI: 10.3390/ijms25147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.
Collapse
Affiliation(s)
- Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | | | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Sara Gil Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| |
Collapse
|
18
|
Ota N, Endo S, Honma K, Iwayama K, Yamashita H, Tatsunami R, Sato K. Chloroquine regulates the lipopolysaccharide-induced inflammatory response in RAW264.7 cells. Allergol Immunopathol (Madr) 2024; 52:97-103. [PMID: 38970272 DOI: 10.15586/aei.v52i4.1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION AND OBJECTIVES Macrophage-induced inflammation plays a key role in defense against injury and harmful pathogens. Autophagy and the inflammatory response are associated; however, the relationship between the autophagy pathway and lipopolysaccharide (LPS)- induced inflammatory responses remains unknown. We aimed to determine the effect of autophagy on the LPS-induced myeloid differentiation factor 88 (MyD88)/nuclear transcription factor kB (NF-kB) pathway-mediated inflammatory response in RAW264.7 cells. MATERIALS AND METHODS To determine the effect of autophagy on the LPS-induced inflammatory response, using various in vitro assays, we determined the effect of autophagy inhibitors and inducers on the inflammatory response in RAW264.7 cells. RESULTS Chloroquine (CQ), an autophagy inhibitor, suppressed pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNFα) in LPS-stimulated RAW264.7 cells. CQ also affected inflammatory mediators such as myeloid differentiation factor 88 and NF-kB in LPS-stimulated RAW264.7 cells. CONCLUSION This study demonstrated that CQ regulates the LPS-induced inflammatory response in RAW264.7 cells. We propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators using CQ is a promising therapeutic approach for preventing inflammatory injury. CQ serves as a potential therapeutic target for treating various inflammatory diseases.
Collapse
Affiliation(s)
- Natsuki Ota
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Shoya Endo
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kouki Honma
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kuninori Iwayama
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Hiroshi Yamashita
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Ryosuke Tatsunami
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Keisuke Sato
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan;
| |
Collapse
|
19
|
Xu T, Wang Q, Yang Z, Ying J. A BERT-based approach for identifying anti-inflammatory peptides using sequence information. Heliyon 2024; 10:e32951. [PMID: 38988537 PMCID: PMC11234020 DOI: 10.1016/j.heliyon.2024.e32951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
The use of anti-inflammatory peptides (AIPs) as an alternative therapeutic approach for inflammatory diseases holds great research significance. Due to the high cost and difficulty in identifying AIPs with experimental methods, the discovery and design of peptides by computational methods before the experimental stage have become promising technology. In this study, we present BertAIP, a bidirectional encoder representation from transformers (BERT)-based method for predicting AIPs directly from their amino acid sequence without using any other information. BertAIP implements a BERT model to extract features of a protein, and uses a fully connected feed-forward network for AIP classification. It was constructed and evaluated using the AIP datasets that were reconstructed from the latest Immune Epitope Database. The experimental results showed that BertAIP achieved an accuracy of 0.751 and a Matthews correlation coefficient of 0.451, which were higher than other commonly used methods. The results of the independent test suggested that BertAIP outperformed the existing AIP predictors. In addition, to enhance the interpretability of BertAIP, we explored and visualized the amino acids that the model considered important for AIP prediction. We believe that the BertAIP proposed herein will be a useful tool for large-scale screening and identifying novel AIPs for drug development and therapeutic research related to inflammatory diseases.
Collapse
Affiliation(s)
- Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qian Wang
- Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhigang Yang
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Jianchao Ying
- Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Song J, Liu Y, Guo Y, Yuan M, Zhong W, Tang J, Guo Y, Guo L. Therapeutic effects of tetrandrine in inflammatory diseases: a comprehensive review. Inflammopharmacology 2024; 32:1743-1757. [PMID: 38568399 DOI: 10.1007/s10787-024-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024]
Abstract
Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.
Collapse
Affiliation(s)
- Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
21
|
Khalil M, Hamadah O, Saifo M, Khalil H, Adi M, Alabeedi F, Kujan O. Effect of Photobiomodulation on Salivary Cytokines in Head and Neck Cancer Patients with Oral Mucositis: A Systematic Review. J Clin Med 2024; 13:2822. [PMID: 38792366 PMCID: PMC11122140 DOI: 10.3390/jcm13102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Oral mucositis is a common and distressing side effect of head and neck oncology treatment. Photobiomodulation therapy can be utilized to prevent and treat oral mucositis. Its impact on salivary cytokines has yet to be thoroughly investigated. This is the first systematic review aiming to evaluate the effect of photobiomodulation on salivary cytokines in patients undergoing anticancer treatment. Methods: Numerous data resources, from the Web of Science, Embase, ScienceDirect, PubMed, Cochrane Library, and Scopus were sought. Articles published up until February 2024 were included if they met the following inclusion criteria: clinical trials reporting the effect on salivary cytokines in patients undergoing anticancer therapy. The methodological quality was assessed using several appraisal tools. Results: Four studies were deemed eligible for inclusion. All the studies were conducted in Brazil and used an InGaAlP diode laser with a wavelength of 660 nm. The included studies had a relatively low risk of bias. The head and neck cancer patients' salivary cytokines that were assessed by the studies, along with photobiomodulation therapy, included IL-12p70, TNF-α, IL-6, IL-8, IL-10, CXCL8, and IL-1β. The results varied among the studies. Conclusions: Our results show that photobiomodulation demonstrated positive results for reducing the severity of OM in all the included studies. Among the examined salivary cytokines, IL-6 is the most relevant cytokine for oral mucositis development and severity. A variation in the cytokine levels between the studies was noted due to differences in the type of anticancer treatment and saliva sampling.
Collapse
Affiliation(s)
- Marwa Khalil
- Department of Oral Medicine, Faculty of Dental Medicine, Damascus University, Damascus P.O. Box 30621, Syria; (M.K.); (O.H.)
| | - Omar Hamadah
- Department of Oral Medicine, Faculty of Dental Medicine, Damascus University, Damascus P.O. Box 30621, Syria; (M.K.); (O.H.)
- The Higher Institute for Laser Research and Applications, Damascus University, Damascus P.O. Box 30621, Syria
| | - Maher Saifo
- Faculty of Medicine, Medical Oncology, Damascus University, Damascus P.O. Box 30621, Syria;
- Albairouni University Hospital, Damascus University, Damascus P.O. Box 30621, Syria
| | - Hasan Khalil
- Department of Microbiology and Biochemistry, Tishreen University, Lattakia P.O. Box 2230, Syria;
| | - Mowaffak Adi
- Shining Horizons Dental Center, Inaya Medical Colleges, Riyadh 13541, Saudi Arabia;
| | - Faris Alabeedi
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia;
| |
Collapse
|
22
|
Nair SR, Subathra Devi C. Bioprospecting of serratiopeptidase-producing bacteria from different sources. Front Microbiol 2024; 15:1382816. [PMID: 38800751 PMCID: PMC11123226 DOI: 10.3389/fmicb.2024.1382816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Anti-inflammatory enzymes have wide applications in the pharmaceutical industry. The objective of this study was to find new and efficient strains for the commercial production of serratiopeptidase enzyme. Vast number of samples were processed for the isolation of potent strains. The experimental treatment includes processing of twenty soil samples, silkworm gut, and sugarcane stem. The total protein and protease activity was estimated by Lowry's method and casein hydrolysis. The HRBC stabilization assay was performed for finding the anti-inflammatory potential of all strains. The serratiopeptidase production was confirmed by HPLC with the standard. Molecular characterization of selected potent strains was done by 16S rDNA and confirmed the taxonomy. The one step rapid purification of serratiopeptidase was performed by Ultra three phase partitioning method. The clot lysis potential of the Serratia marcescens VS56 was observed by modified Holmstorm method. The results of the study revealed that among the 60 strains, 12 strains were protease-positive on skim milk agar plates and showed significant protease activity. All 12 strains were screened for serratiopeptidase using high-performance liquid chromatography (HPLC) and VS56, VS10, VS12 and VS18 showed a similar retention time (4.66 ± 0.10 min) with standard. The selected potent strain, Serratia marcescens VS56 showed a proteolytic activity of 21.30 units/mL and produced a total protein of 102 mg/mL. The HRBC suspension results also showed a percentage of 94.6 ± 1.00 protection, which was compared to the standard diclofenac. The clot lysis potential of Serratia marcescens VS56 was 53% in 4 h. Furthermore, the molecular weight of the protein was identified to confirm the presence of serratiopeptidase. The study hence contributed successfully to isolating, screening, and identifying a potent producer for serratiopeptidase from an environmental source. This inherent advantage of the strain will undoubtedly contribute much to the coco comm commercial production of serratiopeptidase in the near future.
Collapse
Affiliation(s)
| | - C. Subathra Devi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
23
|
Mirsanei Z, Asemani Y, Derakhshanjazari M, Gharibi V, Norouzi P, Mahdavi S, Cousins R. The influence of occupational heat stress on serum inflammatory cytokines among traditional bakery workers in Iran. PLoS One 2024; 19:e0302847. [PMID: 38709796 PMCID: PMC11073666 DOI: 10.1371/journal.pone.0302847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Heat exposure exceeding the ISO7243:1989 standard limit can contribute to health problems among employees in a variety of workplaces. Ignoring heat standard requirements in hot working conditions such as bakeries results in physiologic and health problems, as well as an elevated risk of later illnesses. In this analytical case-control study, the serum levels of four inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor-α, and C-reactive protein) were assessed using an enzyme-linked immunosorbent assay. 105 male artisan bakers (in four job classifications in bakeries and staff) were compared based on demographic characteristics and inflammatory factors. The findings of the study showed correlations between serum interleukin-1β, interleukin-6, and C-reactive protein levels and thermal exposure in the occupational environment and employment type. Moreover, some differences in serum level of interleukin-1β and job type were observed. Heat overexposure affected the increase of interleukin-1β and C-reactive protein secretion. As a result of years of working in high-temperature conditions, inflammation can lead to subsequent diseases in workers. To protect their health from this occupational hazard, additional safeguards are needed. Our recommendations could also be applied to overly hot work environments that may cause heat stress in workers.
Collapse
Affiliation(s)
- Zahra Mirsanei
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Derakhshanjazari
- Department of Occupational Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Vahid Gharibi
- Department of Occupational Health and Safety Engineering, School of Public Health, Arak University of Medical Sciences, Arak, Iran
| | - Pirasteh Norouzi
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepideh Mahdavi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Rosanna Cousins
- Department of Psychology, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
24
|
Ferdous J, Bhuia MS, Chowdhury R, Rakib AI, Aktar MA, Al Hasan MS, Melo Coutinho HD, Islam MT. Pharmacological Activities of Plant-Derived Fraxin with Molecular Mechanisms: A Comprehensive Review. Chem Biodivers 2024; 21:e202301615. [PMID: 38506600 DOI: 10.1002/cbdv.202301615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mst Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
25
|
Liu X, Teng L, Dai J, Shao H, Chen R, Li H, Li J, Zou H. Effect of Intraoperative Opioid Dose on Perioperative Neutrophil-to-Lymphocyte Ratio and Lymphocyte-to-Monocyte Ratio in Glioma. J Inflamm Res 2024; 17:2159-2167. [PMID: 38617385 PMCID: PMC11016269 DOI: 10.2147/jir.s451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Background The neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are inflammatory biomarkers. Until now, it is unknown the impact of opioid dosage on perioperative immunity in glioma patients. The aim of this study was to explore the effect of intraoperative opioid dosage on perioperative immune perturbations using NLR and LMR as inflammatory biomarkers and evaluate the correlation between inflammatory biomarkers and pathological grade of glioma. Methods The study included 208 patients with primary glioma who underwent glioma resection from February 2012 to November 2019 at Harbin Medical University Cancer Hospital. Complete blood count (CBC) was collected at 3 time points: one week before surgery, and 24 hours and one week after surgery. Patients were divided into high-dose and low-dose groups, based on the median value of intraoperative opioid dose. The relationships between perioperative NLR, LMR and intraoperative opioid dosage were analyzed using repeated measurement analysis of variance (ANOVA). Correlations between preoperative various factors and pathological grade were analyzed by Spearman analysis. Receiver operating characteristic (ROC) curves were performed to assess the predictive performance of the NLR and LMR for pathological grade. Results The NLR (P=0.020) and lower LMR (P=0.037) were statistically significant different between high-dose and low-dose groups one week after surgery. The area under the curve (AUC) of the NLR to identify poor diagnosis was 0.685, which was superior to the LMR (AUC: 0.607) and indicated a correlation between the NLR with pathological grade. The preoperative NLR (P=0.000), LMR (P=0.009), age (P=0.000) and tumor size (P=0.001) exhibited a significant correlation with the pathological grade of glioma. Conclusion Intraoperative opioids in the high-dose group were associated with higher NLR and lower LMR in postoperative glioma patients. The preoperative NLR and LMR demonstrated predictive value for distinguishing between high-grade and low-grade gliomas.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Lei Teng
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Junzhu Dai
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Hongxue Shao
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Rui Chen
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Haixiang Li
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Jing Li
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Huichao Zou
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
26
|
Ribeiro MC, Levi Y, Moraschini V, Messora MR, Furlaneto FAC. Effects of Prebiotic Therapy on Gastrointestinal Microbiome of Individuals with Different Inflammatory Conditions: A Systematic Review of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2024; 16:673-695. [PMID: 37093515 DOI: 10.1007/s12602-023-10075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Prebiotics are substrates selectively utilized by host microorganisms conferring a health benefit. The effects of prebiotics on the gut microbiome of individuals with inflammatory processes need further investigations. The purpose of this study was to evaluate the effects of prebiotics on the gastrointestinal microbiome of individuals with some types of inflammatory conditions. Randomized controlled clinical trials (RCTs) evaluating the effects of different prebiotics on the gut microbiome were included. A systematic review of the literature including searches in PubMed/MEDLINE, EMBASE, Cochrane Library, Web of Science, and Scopus databases was performed until 23 March 2023. The risk of bias was assessed using the Cochrane Collaboration's criteria. Qualitative data was tabulated to facilitate comparisons and represented in the form of descriptive statistics and summary tables. Thirty trials, ranging from 12 to 135 patients, were included. The most commonly used prebiotic type was inulin-type fructans, and the treatment duration ranged from 1 to 36 weeks. The majority of the trials investigated the gut microbiome using 16 s rRNA gene sequencing on the Illumina Miseq platform. In general, prebiotic therapy exerted positive effects on inflammatory conditions. An increase in Bifidobacterium genus was the most common shift in bacterial composition observed. Within the limits of this systematic review, it can be suggested that prebiotic therapy presents the potential to favorably modulate the gastrointestinal microbiome of individuals with different types of inflammatory conditions.
Collapse
Affiliation(s)
- M C Ribeiro
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - Ylas Levi
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - V Moraschini
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - M R Messora
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - F A C Furlaneto
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil.
| |
Collapse
|
27
|
Kang JB, Son HK, Shah MA, Koh PO. Retinoic acid attenuates ischemic injury-induced activation of glial cells and inflammatory factors in a rat stroke model. PLoS One 2024; 19:e0300072. [PMID: 38527023 PMCID: PMC10962821 DOI: 10.1371/journal.pone.0300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Stroke is a leading cause of death and long-term disability which can cause oxidative damage and inflammation of the neuronal cells. Retinoic acid is an active metabolite of vitamin A that has various beneficial effects including antioxidant and anti-inflammatory effects. In this study, we investigated whether retinoic acid modulates oxidative stress and inflammatory factors in a stroke animal model. A middle cerebral artery occlusion (MCAO) was performed on adult male rats to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the peritoneal cavity for four days before MCAO surgery. The neurobehavioral tests were carried out 24 h after MCAO and cerebral cortex tissues were collected. The cortical damage was assessed by hematoxylin-eosin staining and reactive oxygen species assay. In addition, Western blot and immunohistochemical staining were performed to investigate the activation of glial cells and inflammatory cytokines in MCAO animals. Ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) were used as markers of microglial and astrocyte activation, respectively. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were used as representative pro-inflammatory cytokines. Results showed that MCAO damage caused neurobehavioral defects and histopathological changes in the ischemic region and increased oxidative stress. Retinoic acid treatment reduced these changes caused by MCAO damage. We detected increases in Iba-1 and GFAP in MCAO animals treated with vehicle. However, retinoic acid alleviated increases in Iba-1 and GFAP caused by MCAO damage. Moreover, MCAO increased levels of nuclear factor-κB and pro-inflammatory cytokines, including TNF-α and IL-1β. Retinoic acid alleviated the expression of these inflammatory proteins. These findings elucidate that retinoic acid regulates microglia and astrocyte activation and modulates pro-inflammatory cytokines. Therefore, this study suggests that retinoic acid exhibits strong antioxidant and anti-inflammatory properties by reducing oxidative stress, inhibiting neuroglia cell activation, and preventing the increase of pro-inflammatory cytokines in a cerebral ischemia.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Hyun-Kyoung Son
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Murad-Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
28
|
Tisato V, Silva JA, Scarpellini F, Capucci R, Marci R, Gallo I, Salvatori F, D'Aversa E, Secchiero P, Serino ML, Zauli G, Singh AV, Gemmati D. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Sci Rep 2024; 14:3275. [PMID: 38332006 PMCID: PMC10853191 DOI: 10.1038/s41598-024-53737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Spontaneous abortion is a pregnancy complication characterized by complex and multifactorial etiology. About 5% of childbearing women are globally affected by early pregnancy loss (EPL) and most of them experience recurrence (RPL). Epigenetic mechanisms and controlled inflammation are crucial for pregnancy maintenance and genetic predispositions may increase the risk affecting the maternal-fetal crosstalk. Combined analyses of global methylation, inflammation and inherited predispositions may contribute to define pregnancy loss etiopathogenesis. LINE-1 epigenetic regulation plays crucial roles during embryo implantation, and its hypomethylation has been associated with senescence and several complex diseases. By analysing a group of 230 women who have gone through pregnancy interruption and comparing those experiencing spontaneous EPL (n = 123; RPL, 54.5%) with a group of normal pregnant who underwent to voluntary interruption (VPI, n = 107), the single statistical analysis revealed significant lower (P < 0.00001) LINE-1 methylation and higher (P < 0.0001) mean cytokine levels (CKs: IL6, IL10, IL17A, IL23) in EPL. Genotyping of the following SNPs accounted for different EPL/RPL risk odds ratio: F13A1 rs5985 (OR = 0.24; 0.06-0.90); F13B rs6003 (OR = 0.23; 0.047-1.1); FGA rs6050 (OR = 0.58; 0.33-1.0); CRP rs2808635/rs876538 (OR = 0.15; 0.014-0.81); ABO rs657152 (OR = 0.48; 0.22-1.08); TP53 rs1042522 (OR = 0.54; 0.32-0.92); MTHFR rs1801133/rs1801131 (OR = 2.03; 1.2-3.47) and FGB rs1800790 (OR = 1.97; 1.01-3.87), although Bonferroni correction did not reach significant outputs. Principal Component Analysis (PCA) and logistic regression disclosed further SNPs positive/negative associations (e.g. APOE rs7412/rs429358; FGB rs1800790; CFH rs1061170) differently arranged and sorted in four significant PCs: PC1 (F13A, methylation, CKs); PC3 (CRP, MTHFR, age, methylation); PC4 (F13B, FGA, FGB, APOE, TP53, age, methylation); PC6 (F13A, CFH, ABO, MTHFR, TP53, age), yielding further statistical power to the association models. In detail, positive EPL risk association was with PC1 (OR = 1.81; 1.33-2.45; P < 0.0001) and negative associations with PC3 (OR = 0.489; 0.37-0.66; P < 0.0001); PC4 (OR = 0.72; 0.55-0.94; P = 0.018) and PC6 (OR = 0.61; 0.46-0.81; P = 0.001). Moreover, significant inverse associations were detected between methylation and CKs levels in the whole group (rIL10 = - 0.22; rIL17A = - 0.25; rIL23 = - 0.19; rIL6 = - 0.22), and methylation with age in the whole group, EPL and RPL subgroups (r2TOT = 0.147; r2EPL = 0.136; r2 RPL = 0.248), while VPI controls lost significance (r2VPI = 0.011). This study provides a valuable multilayer approach for investigating epigenetic abnormalities in pregnancy loss suggesting genetic-driven dysregulations and anomalous epigenetic mechanisms potentially mediated by LINE-1 hypomethylation. Women with unexplained EPL might benefit of such investigations, providing new insights for predicting the pregnancy outcome and for treating at risk women with novel targeted epidrugs.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies On Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy.
| | - Juliana A Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Roberta Capucci
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Roberto Marci
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Maria L Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay V Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies On Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
29
|
Hernandez-Suarez L, Diez-Martin E, Egiguren-Ortiz J, Fernandez R, Etxebarria A, Astigarraga E, Miguelez C, Ramirez-Garcia A, Barreda-Gómez G. Serological Antibodies against Kidney, Liver, and Spleen Membrane Antigens as Potential Biomarkers in Patients with Immune Disorders. Int J Mol Sci 2024; 25:2025. [PMID: 38396703 PMCID: PMC10888476 DOI: 10.3390/ijms25042025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Immune disorders arise from complex genetic and environmental factors, which lead to dysregulation at the cellular and inflammatory levels and cause tissue damage. Recent research highlights the crucial role of reactive antibodies in autoimmune diseases and graft rejection, but their complex determination poses challenges for clinical use. Therefore, our study aimed to ascertain whether the presence of reactive antibodies against membrane antigens in tissues from both animal models and humans could serve as biomarkers in patients with autoimmune disorders. To address this issue, we examined the binding profile of serological antibodies against a diverse panel of cell membranes from the spleen, liver, and kidney tissues of monkeys, rats, and humans. After developing the cell membrane microarrays, human sera were immunologically assayed. The study was first conducted on sera from two groups, healthy subjects and patients with inflammatory and autoimmune disorders, and then optimized for kidney transplant patient sera. A significant increase in antibody reactivity against specific monkey kidney and spleen membranes was observed in the serum of patients with lupus nephritis, while kidney transplant patients showed a significant enhancement against human tissues and human embryonic kidney 293 cells. These results show the potential importance for clinical and basic research purposes of studying the presence of specific IgG against membrane antigens in patients' serum as potential biomarkers of immune disorders. However, it is important to note that these results need to be verified in further studies with a larger sample size to confirm their relevance.
Collapse
Affiliation(s)
- Leidi Hernandez-Suarez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Eguzkiñe Diez-Martin
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - June Egiguren-Ortiz
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Roberto Fernandez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Aitor Etxebarria
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Egoitz Astigarraga
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Neurodegenerative Diseases Group, BioBizkaia Health Research Institute, 48940 Barakaldo, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Gabriel Barreda-Gómez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| |
Collapse
|
30
|
Li Y, Wang Y, Li T, Li Z, Guo T, Xue G, Duan Y, Yao Y. Sesquiterpene from Artemisia argyi seed extracts: A new anti-acute peritonitis agent that suppresses the MAPK pathway and promotes autophagy. Inflammopharmacology 2024; 32:447-460. [PMID: 37578619 DOI: 10.1007/s10787-023-01297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
To find novel anti-inflammatory drugs, we screened anti-inflammatory compounds from 18 different types of Artemisia argyi seed extracts. The in vitro and in vivo anti-inflammatory activities of the screened compounds and their mechanisms were characterized. We first detected the cytotoxic effect of the compounds on RAW264.7 cells and the inhibitory effect on LPS-induced NO release. It was found that sesquiterpenoids CA-2 and CA-4 had low cytotoxic and strong NO inhibitory activity with an IC50 of 4.22 ± 0.61 μM and 2.98 ± 0.23 μM for NO inhibition, respectively. Therefore, compound CA-4 was studied in depth. We found that compound CA-4 inhibited LPS-induced pro-inflammatory factor production and M1 macrophage differentiation in RAW264.7 cells. Additionally, CA-4 inhibited the expression of p-ERK1/2, p-JNK, iNOS, and COX-2 by blocking the MAPK signaling pathway. CA-4 also promoted the expression of autophagy-related proteins such as LC3 II and Beclin-1 by inhibiting activation of the PI3K/AKT/mTOR signaling pathway, and promoted the generation of autophagosomes. Finally, CA-4 significantly inhibited the degree of inflammation in mice with acute peritonitis, showing good anti-inflammatory activity in vivo. Consequently, compound CA-4 may be a promising drug for the treatment of acute inflammatory diseases and provide new ideas for the synthesis of novel anti-inflammatory compounds.
Collapse
Affiliation(s)
- Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuanhui Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tianxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhenzhen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tao Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Guimin Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Ali G, Islam NU, Qaim M, Ullah R, Jan MS, Shabbiri K, Shafique M, Ayaz M. 2-Hydroxybenzohydrazide as a novel potential candidate against nociception, inflammation, and pyrexia: in vitro, in vivo, and computational approaches. Inflammopharmacology 2024; 32:643-656. [PMID: 37864684 DOI: 10.1007/s10787-023-01356-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
The current study was designed to evaluate the 2-hydroxybenzohydrazide (HBH) as a drug having efficacy against pyrexia, inflammation, and nociception. Besides, the therapeutic effects of HBH on oxidative stress and C-reactive proteins were also evaluated. The pharmacological studies on HBH (20-60 mg/kg) were conducted using nociception, inflammation, and pyrexia standard models. Naloxone antagonism was performed to assess the possible involvement of opioidergic mechanisms. The antioxidant study was conducted on ABTS and DPPH assays using gallic acid as a standard. Moreover, the binding capability of HBH with enzymes cyclooxygenase-I/II (COX-I/II) was determined using molecular modeling analysis. The findings indicated that the HBH dose-dependently inhibited pain, inflammation, and pyrexia. The HBH has significant anti-nociceptive and anti-inflammatory activities at 60 mg/kg (***p < 0.001), similar to the lower doses of diclofenac sodium (50 mg/kg) and tramadol (30 mg/kg). The HBH at 60 mg/kg reduced pyrexia as paracetamol (150 mg/kg). The HBH at 20-60 mg/kg doses declined the plasma C-reactive protein concentration. The mechanistic studies showed that the anti-nociceptive effect of HBH was antagonized by naloxone, indicating that the opioidergic mechanisms are involved. Furthermore, computational studies showed that the HBH exhibited an affinity for COX-I/II target receptors. The HBH significantly inhibited ABTS and DPPH radicals (IC50 = 33.81 and 26.74 μg/ml). These results proposed that the HBH has significant antipyretic, anti-inflammatory, and anti-nociceptive activities involving opioidergic mechanism.
Collapse
Affiliation(s)
- Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, Pakistan.
- Institute of Chemical Sciences, University of Peshawar, 25120, Peshawar, Pakistan.
| | - Muhammad Qaim
- Department of Pharmacy, Abbottabad University of Science and Information Technology, Havelian, Abbottabad, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University Charsadda, 24420, Charsadda, KP, Pakistan
| | | | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand Khyber Pakhtunkhwa, Dir (L), Chakdara, 18000, KP, Pakistan.
| |
Collapse
|
32
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
33
|
JIN T, ZHOU Q, SHEN J, ZHANG Z, LIAN X. Caffeic acid 3,4-dihydroxyphenethyl ester prevents colorectal cancer through inhibition of multiple cancer-promoting signal pathways in 1,2-Dimethylhydrazine/dextran sodium sulphate mouse model. J TRADIT CHIN MED 2024; 44:70-77. [PMID: 38213241 PMCID: PMC10774738 DOI: 10.19852/j.cnki.jtcm.20231204.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To elucidate the potential feature and mechanism of the caffeic acid 3,4-dihydroxyphenethyl ester (CADPE) molecule, which can prevent colorectal cancer (CRC) in the 1,2-Dimethylhydrazine (DMH)/dextran sodium sulphate (DSS)-induced mouse model. METHODS Institute of cancer research (ICR) male mice were injected with 20 mg/kg DMH for a week. After that, 2% DSS was administered in the drinking water for another 7 d. The CADPE treatment was given to the DMH/DSS induced male mice at three different periods until their sacrifice. Histopathological examination was used for observing the CRC development at colonic mucosa. Immunohistochemistry (IHC), blood cells smearing and crypt damage scoring methods were used for investigating the anti-inflammation feature of CADPE related to CRC. The reversing targets searching method was applied with artificial intelligence (AI), computer-aided drug designing (CADD) and Ingenuity Pathway Analysis (IPA) techniques for predicting the potential targets and mechanism of CADPE highly related to CRC. RESULTS The data indicated that CADPE inhibited CRC tumor development in the colitis-associated DMH/DSS induced mouse model after giving the early treatment. CADPE also impeded the acute inflammation by decreasing the infiltration of neutrophils significantly during the initial stage of CRC development. Finally, our data showed that CADPE prevented CRC by blocking active sites of three pivotal protein targets including epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) in two major cancer development pathways. CONCLUSIONS CADPE effectively prevented CRC at early stage of tumor germination in the DMH/DSS mouse model highly likely due to its anti-acute inflammation characteristic and the ability of blocking EGFR, ERK and mTOR activities in two highly related CRC developing pathways.
Collapse
Affiliation(s)
- Tao JIN
- 1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian ZHOU
- 1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jichen SHEN
- 2 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhizhong ZHANG
- 3 Ocean College, Zhoushan Campus of Zhejiang University, Zhoushan 316021, China
| | - Xiaoyuan LIAN
- 4 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Radi MH, El-Shiekh RA, Hegab AM, Henry SR, Avula B, Katragunta K, Khan IA, El-Halawany AM, Abdel-Sattar E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-κB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024; 32:461-494. [PMID: 37572137 PMCID: PMC10907465 DOI: 10.1007/s10787-023-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 μg/mL and 0.29 ± 0.01 μg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 μg/mL and 0.30 ± 0.01 μg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 μg/mL vs. zileuton with IC50 of 40.0 ± 0.5 μg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-β1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Collapse
Affiliation(s)
- Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | | | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
35
|
Torres-Rêgo M, Nogueira PCDN, Santos SPDD, Daniele-Silva A, Cavalcanti FF, Oliveira CIFBD, Rocha HAO, Fernandes-Pedrosa MDF, Silveira ER, Araújo RM. Isolation of indole alkaloids and a new norneolignan of hydroethanol extract from the stem barks of Aspidosperma nitidum Benth: Preclinical evaluation of safety and anti-inflammatory and healing properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117076. [PMID: 37619858 DOI: 10.1016/j.jep.2023.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aspidosperma nitidum Benth (Apocynaceae) is a tree found in Brazil especially in the Amazonia region, known as "carapanaúba", being used by indigenous and cabloco population in folk medicine in the treatment of malaria, leprosy, rheumatism, cancer, diabetes and inflammatory disorders. However, there are no scientific reports, up to now, to evidence its popular use as anti-inflammatory and healing agent. AIM OF THE STUDY This study aimed to isolate indole alkaloids, as well as investigate the safety, anti-inflammatory and healing properties of hydroethanol extract from the stem barks of Aspidosperma nitidum Benth (An). MATERIAL AND METHODS The compounds were isolated using diverse chromatographic methodologies and the structures were determined by extensive spectroscopic analyses. The safety was evaluated in vitro through 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using murine fibroblast (3T3) and monkey kidney (Vero E6) cell lines and by the hemolytic assay, as well as, in vivo, through acute toxicity model, which the mice received a single dose of 2000 mg/kg of An, by intra-gastric (i.g.) route, and behavioral, hematological and biochemical parameters were evaluated. The anti-edematogenic effect was monitored through carrageenan-induced paw edema model, in which the rodents were treated with 50, 100 and 200 mg/kg of An by i. g., the percentage of edema (0-4 h), myeloperoxidase (MPO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) levels were quantified. The anti-inflammatory activity was demonstrated through the zymosan-air-pouch model, in which the animals were treated with 50, 100 and 200 mg/kg of An by i. g, and the leukocytes number, MPO, total protein and cytokines levels were determined. In addition, the healing potential was evaluated through a skin wound model, in which the mice received 50, 100 and 200 mg/mL of An in wound area, and the wound skins were photographed and the area calculated. RESULTS In total, five compounds were isolated in the An, being a new 8,9-dinorneolignan glucoside and four known indole alkaloids. The MTT and hemolytic assays, in all concentrations of the extract, demonstrated not be cytotoxic. Acute toxicity model also evidenced no sign of toxicity or significant changes on the behavior, biochemical and hematological parameters after use of the extract. In the edematogenic model, the An reduced significantly the percentage of edema, as well as, the MPO and pro-inflammatory cytokines levels. The same form, An revealed to be efficient in decreasing the leukocytes migration (mainly polymorphonuclears), total proteins, MPO and cytokines concentrations in the zymosan-air-pouch assay. Moreover, the An revealed a healing effect, reducing the area of the skin wound. CONCLUSION Ours results evidence in the first time, the anti-inflammatory and healing property of An, justifying its use in traditional medicine. Moreover, include cytotoxicity in vitro and acute toxicity in vivo tests, which indicate the safety of use of the extract.
Collapse
Affiliation(s)
- Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Patrícia Coelho do Nascimento Nogueira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Humberto Monte Street, S/N, Campus Pici, Pici, Fortaleza, 60021-970, Brazil.
| | - Sarah Pollyana Dias Dos Santos
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | | | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Bioscience Center, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, 59072-970, Natal, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Humberto Monte Street, S/N, Campus Pici, Pici, Fortaleza, 60021-970, Brazil.
| | - Renata Mendonça Araújo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| |
Collapse
|
36
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
37
|
Chanchal S, Sharma S, Mohd S, Sultan A, Mishra A, Ashraf MZ. Unraveling Epigenetic Interplay between Inflammation, Thrombosis, and Immune-Related Disorders through a Network Meta-analysis. TH OPEN 2024; 8:e81-e92. [PMID: 38313596 PMCID: PMC10837039 DOI: 10.1055/a-2222-9126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 02/06/2024] Open
Abstract
Inflammation and thrombosis are two distinct yet interdependent physiological processes. The inflammation results in the activation of the coagulation system that directs the immune system and its activation, resulting in the initiation of the pathophysiology of thrombosis, a process termed immune-thrombosis. Still, the shared underlying molecular mechanism related to the immune system and coagulation has not yet been explored extensively. Inspired to answer this, we carried out a comprehensive gene expression meta-analysis using publicly available datasets of four diseases, including venous thrombosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. A total of 609 differentially expressed genes (DEGs) shared by all four datasets were identified based on the combined effect size approach. The pathway enrichment analysis of the DEGs showed enrichment of various epigenetic pathways such as histone-modifying enzymes, posttranslational protein modification, chromatin organization, chromatin-modifying enzymes, HATs acetylate proteins. Network-based protein-protein interaction analysis showed epigenetic enzyme coding genes dominating among the top hub genes. The miRNA-interacting partner of the top 10 hub genes was determined. The predomination of epitranscriptomics regulation opens a layout for the meta-analysis of miRNA datasets of the same four diseases. We identified 30 DEmiRs shared by these diseases. There were 9 common DEmiRs selected from the list of miRNA-interacting partners of top 10 hub genes and shared significant DEmiRs from microRNAs dataset acquisition. These common DEmiRs were found to regulate genes involved in epigenetic modulation and indicate a promising epigenetic aspect that needs to be explored for future molecular studies in the context of immunothrombosis and inflammatory disease.
Collapse
Affiliation(s)
- Shankar Chanchal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| | - Swati Sharma
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| | - Syed Mohd
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| | - Armiya Sultan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| | - Aastha Mishra
- Cardio Respiratory Disease unit, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Zahid Ashraf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, India
| |
Collapse
|
38
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
39
|
Chaudhary J, Sharma V, Jain A, Sharma D, Chopra B, Dhingra AK. A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review. Med Chem 2024; 20:17-29. [PMID: 37815177 DOI: 10.2174/0115734064244117230923172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Jasmine Chaudhary
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Diksha Sharma
- Research Scholar, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
40
|
Gaffar S, Hassan MT, Tayara H, Chong KT. IF-AIP: A machine learning method for the identification of anti-inflammatory peptides using multi-feature fusion strategy. Comput Biol Med 2024; 168:107724. [PMID: 37989075 DOI: 10.1016/j.compbiomed.2023.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The most commonly used therapy currently for inflammatory and autoimmune diseases is nonspecific anti-inflammatory drugs, which have various hazardous side effects. Recently, some anti-inflammatory peptides (AIPs) have been found to be a substitute therapy for inflammatory diseases like rheumatoid arthritis and Alzheimer's. Therefore, the identification of these AIPs is an emerging topic that is equally important. METHODS In this work, we have proposed an identification model for AIPs using a voting classifier. We used eight different feature descriptors and five conventional machine-learning classifiers. The eight feature encodings were concatenated to get a hybrid feature set. The five baseline models trained on the hybrid feature set were integrated via a voting classifier. Finally, a feature selection algorithm was used to select the optimal feature set for the construction of our final model, named IF-AIP. RESULTS We tested the proposed model on two independent datasets. On independent data 1, the IF-AIP model shows an improvement of 3%-5.6% in terms of accuracies and 6.7%-10.8% in terms of MCC compared to the existing methods. On the independent dataset 2, our model IF-AIP shows an overall improvement of 2.9%-5.7% in terms of accuracy and 8.3%-8.6% in terms of MCC score compared to the existing methods. A comparative performance analysis was conducted between the proposed model and existing methods using a set of 24 novel peptide sequences. Notably, the IF-AIP method exhibited exceptional accuracy, correctly identifying all 24 peptides as AIPs. The source code, pre-trained models, and all datasets are made available at https://github.com/Mir-Saima/IF-AIP.
Collapse
Affiliation(s)
- Saima Gaffar
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Mir Tanveerul Hassan
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
41
|
Jiang Z, Sun S, Liu J, Sun X. Recent Advances of Halloysite Nanotubes in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306169. [PMID: 37670217 DOI: 10.1002/smll.202306169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Halloysite nanotubes (HNTs) have emerged as a highly regarded choice in biomedical research due to their exceptional attributes, including superior loading capacity, customizable surface characteristics, and excellent biocompatibility. HNTs feature tubular structures comprising alumina and silica layers, endowing them with a large surface area and versatile surface chemistries that facilitate selective modifications. Moreover, their substantial pore volume and wide range of pore sizes enable efficient entrapment of diverse functional molecules. This comprehensive review highlights the broad biomedical application spectrum of HNTs, shedding light on their potential as innovative and effective therapeutic agents across various diseases. It emphasizes the necessity of optimizing drug delivery techniques, developing targeted delivery systems, rigorously evaluating biocompatibility and safety through preclinical and clinical investigations, exploring combination therapies, and advancing scientific understanding. With further advancements, HNTs hold the promise to revolutionize the pharmaceutical industry, opening new avenues for the development of transformative treatments.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
42
|
Ganesh R, Yadav S, Hurt RT, Mueller MR, Aakre CA, Gilman EA, Grach SL, Overgaard J, Snyder MR, Collins NM, Croghan IT, Badley AD, Razonable RR, Salonen BR. Pro Inflammatory Cytokines Profiles of Patients With Long COVID Differ Between Variant Epochs. J Prim Care Community Health 2024; 15:21501319241254751. [PMID: 38808863 PMCID: PMC11138192 DOI: 10.1177/21501319241254751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Over 30% of patients with COVID-19 have persistent symptoms that last beyond 30 days and referred to as Long COVID. Long COVID has been associated with a persistent elevation in peripheral cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α. This study reports cytokine profiles of patients in our clinic across SARS-COV-2 variant epochs. METHODS The clinical cytokine panel was analyzed in patients with Long COVID during periods that were stratified according to variant epoch. The 4 variant epochs were defined as: (1) wild-type through alpha, (2) alpha/beta/gamma, (3) delta, and (4) omicron variants. RESULTS A total of 390 patients had the clinical cytokine panel performed; the median age was 48 years (IQR 38-59) and 62% were female. Distribution by variant was wild-type and alpha, 50% (n = 196); alpha/beta/gamma, 7.9% (n = 31); delta, 18% (n = 72); and omicron, 23% (n = 91). Time to cytokine panel testing was significantly longer for the earlier epochs. Tumor necrosis factor-α (P < .001) and interleukin 1β (P < .001) were significantly more elevated in the earlier epochs (median of 558 days in wild-type through Alpha epoch vs 263 days in omicron epoch, P < .001)). Nucleocapsid antibodies were consistently detected across epochs. DISCUSSION When stratified by variant epoch, patients with early epoch Long COVID had persistently elevated peripheral pro-inflammatory cytokine levels when compared to later epoch Long COVID. Patients with Long COVID have similar clusters of symptoms across epochs, suggesting that the underlying pathology is independent of the peripheral cytokine signature.
Collapse
|
43
|
Tchamgoue J, Tchokokam YRW, Ngouonpe AW, Ngandjui YAT, Tiani GLM, Msagati TAM, Ngadjui BT, Green IR, Kouam SF. The genus Canthium: A comprehensive summary on its traditional use, phytochemistry, and pharmacological activities. Fitoterapia 2024; 172:105754. [PMID: 37992781 DOI: 10.1016/j.fitote.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Canthium Lam. is a genus of flowering plants of the Rubiaceae family with about 80-102 species mainly distributed in Asia, tropical and subtropical Africa. The genus is closely related to Keetia E. Phillips and Psydrax Gaertn. and plants of this genus are used in folk medicine for the treatment of diarrhea, worms, leucorrhoea, constipation, snake bites, diabetes, hypertension, venereal diseases, and malaria. The present review covers a period of 52 years of biological and chemical investigations into the genus Canthium and has resulted in the isolation of about 96 secondary metabolites and several reported biological properties. For the Rubiaceae family, iridoids were reported as being the chemotaxonomic markers of this genus (∼25%). Other reported classes of compounds include alkaloids, flavonoids, phenolic compounds, cyanogenic glycosides, coumarins, sugar alcohols, lignans, triterpenoids, and benzoquinones. The main reported pharmacological properties of most species of this genus include antioxidant, antiplasmodial, antipyretic, anti-inflammatory, antidiabetic, neuroprotective and antimicrobial activities with the latter being the most prominent. Considering the diversity of compounds reported from plants of this genus and their wide range of biological activities, it is considered to be worthy to further investigate them for the discovery of potentially new and cost effective drugs.
Collapse
Affiliation(s)
- Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Yvan Romuald W Tchokokam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Alain W Ngouonpe
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Yvan Anderson T Ngandjui
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Gesquière Laure M Tiani
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Fundamental Science, University Institute for Wood Technology Mbalmayo, P.O. Box 306, Mbalmayo, Cameroon
| | - Titus A M Msagati
- College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, P/Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
44
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
45
|
Ahmed HS, Mohamed EIA, Amin E, Moawad AS, Sadek Abdel-Bakky M, Almahmoud SA, Afifi N. Phytochemical investigation and anti-inflammatory potential of Atriplex leucoclada Boiss. BMC Complement Med Ther 2023; 23:464. [PMID: 38104070 PMCID: PMC10725009 DOI: 10.1186/s12906-023-04281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The plant kingdom has long been considered a valuable source for therapeutic agents, however, some plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex species have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic content and the anti-inflammatory potential of A. leucoclada. METHODS Powdered aerial parts of the plant were defatted with n-hexane then the defatted powder was extracted with 80% methanol. n-Hexane extract (ATH) was analyzed using GC-MS, while the defatted extract (ATD) was subjected to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds were elucidated using different spectroscopic methods including advanced NMR techniques. Anti-inflammatory activity of both extracts against COX-1 and COX-2 enzymes were examined in vitro. Molecular docking of the identified compounds into the active sites of COX-1 and COX-2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively. RESULTS Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Interestingly, all the compounds, except for 20-hydroxy ecdysone (1), are reported for the first time from A. leucoclada, also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH extracts against COX-1 and COX-2 enzymes revealed concentration dependent activity of both fractions with IC50 41.22, 14.40 μg/ml for ATD and 16.74 and 5.96 μg/ml for ATH against COX-1 and COX-2, respectively. Both extracts displayed selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity towards COX-2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding affinity scores ranged from -9 to -6.4 and -8.5 to -6.6 kcal/mol for COX-1 and 2, respectively, in addition the binding energies of GC-MS detected compounds ranged from -8.9 to -5.5 and -8.3 to -5.1 kcal/mol for COX-1 and 2, respectively as compared to Ibuprofen (-6.9 and -7.5 kcal/mol, respectively), indicating high binding affinities of most of the compounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the compounds. Our study suggested A. leucoclada as a generous source for anti-inflammatory agents.
Collapse
Affiliation(s)
- Hayam S Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Enas I A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abeer S Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
46
|
Kola-Mustapha AT, Ibraheem HF, Taiwo S, Ishola IO, Usman SO, Ghazali YO. Formulation of Entandrophragma utile into an Herbal Emulgel for the Management of Inflammation. Gels 2023; 9:956. [PMID: 38131942 PMCID: PMC10743270 DOI: 10.3390/gels9120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Globally, the incidence of inflammation and inflammatory disorders has continued to rise at an alarming rate. Entandrophragma utile is a species of flowering plant widely distributed in Africa and has been used for the management of sickle cell disease, rheumatism, ocular inflammation, duodenal and stomach ulcers. This research aims to formulate and evaluate an anti-inflammatory herbal emulgel using an extract from Entandrophragma utile stem bark (EUB). Method: Using a carrageenan-induced paw oedema model, the anti-inflammatory efficacy of EUB the extract was assessed. The formulated Entandrophragma utile emulgels (EUE) were characterized, and their anti-inflammatory activity was demonstrated, by utilizing diclofenac emulgel-treated rats with complete Freund's adjuvant (CFA)-induced arthritis model as the positive control group. Results: The emulgels formulated had characterization results within acceptable ranges; pH (4.25-5.80), viscosity (418.9-112.8 mPas), spreadability (25.00-31.82 gcm/s), extrudability (30.86-51.02 g/cm2), and a swelling index of (30-60%). The emulgel produced a concentration-dependent inflammatory inhibition with a peak effect (117.97%) at the end of the 4th week which was comparable to that of commercial diclofenac (127.19%). The phytochemical analysis led to the identification of saponins, flavonoids, phenols, and tannins as active secondary metabolites. Conclusions: The stem bark extract of E. utile possessed noteworthy (p < 0.05) reduction in inflammation in comparison to diclofenac and its emulgel formulation showed enormous potential for treating inflammation and pain.
Collapse
Affiliation(s)
- Adeola Tawakalitu Kola-Mustapha
- College of Pharmacy, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | - Haneefat Folashade Ibraheem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | - Suleiman Taiwo
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | - Ismail O. Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos 100001, Nigeria
| | - Sukurat Olasumbo Usman
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | - Yusuf Oluwagbenga Ghazali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| |
Collapse
|
47
|
Huang X, Liu Z, Quan ZS, Guo HY, Shen QK. Synthesis and structure-activity relationship studies of fusidic acid derivatives as anti-inflammatory agents for acute lung injury. Bioorg Chem 2023; 141:106885. [PMID: 37804700 DOI: 10.1016/j.bioorg.2023.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Acute lung injury (ALI) are severe forms of diffuse lung disease that impose a substantial health burden all over the world. In the United States, approximately 190,000 cases per year of ALI each year, with an associated 74,500 deaths per year. Anti-inflammatory therapy has become a reasonable approach for the treatment of patients with ALI. In this study, fusidic acid derivatives were used to design new anti-inflammatory compounds with high pharmacological activity and low toxicity. A total of 30 new fusidic acid derivatives were discovered, synthesized, and screened for their anti-inflammatory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells. Of them, b2 was found to be the most active, with a higher efficiency compared with fusidic acid and celecoxib in 10 μM. In vitro, we further measured b2 inhibited inflammatory factor NO (IC50 = 5.382 ± 0.655 μM), IL-6 (IC50 = 7.767 ± 0.871 μM), and TNF-α (IC50 = 7.089 ± 0.775 μM) and b2 inhibited inflammatory cytokines COX-2 and iNOS, ROS production, NF-κB/MAPK and Bax/Bcl-2 signaling pathway pathway. In vivo,b2 attenuated ALI pathological changes and inhibited inflammatory cytokines COX-2 and iNOS in lung tissue and NF-κB/MAPK and Bax/Bcl-2 signaling pathway. In conclusion, b2 may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
48
|
Raza A, Uddin J, Almuhaimeed A, Akbar S, Zou Q, Ahmad A. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks. J Chem Inf Model 2023; 63:6537-6554. [PMID: 37905969 DOI: 10.1021/acs.jcim.3c01563] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inflammation is a biologically resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Its purpose is to eradicate pathogenic micro-organisms or irritants and facilitate tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. However, wet-laboratory-based treatments are costly and time-consuming and may have adverse side effects on normal cells. In the past decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction model called AIPs-SnTCN to predict anti-inflammatory peptides accurately. The peptide samples are encoded using word embedding techniques such as skip-gram and attention-based bidirectional encoder representation using a transformer (BERT). The conjoint triad feature (CTF) also collects structure-based cluster profile features. The fused vector of word embedding and sequential features is formed to compensate for the limitations of single encoding methods. Support vector machine-based recursive feature elimination (SVM-RFE) is applied to choose the ranking-based optimal space. The optimized feature space is trained by using an improved self-normalized temporal convolutional network (SnTCN). The AIPs-SnTCN model achieved a predictive accuracy of 95.86% and an AUC of 0.97 by using training samples. In the case of the alternate training data set, our model obtained an accuracy of 92.04% and an AUC of 0.96. The proposed AIPs-SnTCN model outperformed existing models with an ∼19% higher accuracy and an ∼14% higher AUC value. The reliability and efficacy of our AIPs-SnTCN model make it a valuable tool for scientists and may play a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Jamal Uddin
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
| | - Abdullah Almuhaimeed
- Digital Health Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Ashfaq Ahmad
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| |
Collapse
|
49
|
Kweon B, Kim DU, Oh JY, Bae GS, Park SJ. Guggulsterone protects against lipopolysaccharide-induced inflammation and lethal endotoxemia via heme oxygenase-1. Int Immunopharmacol 2023; 124:111073. [PMID: 37844468 DOI: 10.1016/j.intimp.2023.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3β (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1β, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Jin-Young Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| |
Collapse
|
50
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|