1
|
Palomo-Piñón S, Aguilar-Alonso JA, Chávez-Iñiguez JS, Hernández-Arellanes FE, Mariano-Murga JA, Flores-Rodríguez JC, Pérez-López MJ, Pazos-Pérez F, Treviño-Becerra A, Guillen-Graf AE, Ramos-Gordillo JM, Trinidad-Ramos P, Antonio-Villa NE. Strategies to address diabetic kidney disease burden in Mexico: a narrative review by the Mexican College of Nephrologists. Front Med (Lausanne) 2024; 11:1376115. [PMID: 38962740 PMCID: PMC11219582 DOI: 10.3389/fmed.2024.1376115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic kidney disease (CKD) is a growing global public health challenge worldwide. In Mexico, CKD prevalence is alarmingly high and remains a leading cause of morbidity and mortality. Diabetic kidney disease (DKD), a severe complication of diabetes, is a leading determinant of CKD. The escalating diabetes prevalence and the complex regional landscape in Mexico underscore the pressing need for tailored strategies to reduce the burden of CKD. This narrative review, endorsed by the Mexican College of Nephrologists, aims to provide a brief overview and specific strategies for healthcare providers regarding preventing, screening, and treating CKD in patients living with diabetes in all care settings. The key topics covered in this review include the main cardiometabolic contributors of DKD (overweight/obesity, hyperglycemia, arterial hypertension, and dyslipidemia), the identification of kidney-related damage markers, and the benefit of novel pharmacological approaches based on Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT2i) and Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA). We also address the potential use of novel therapies based on Mineralocorticoid Receptor Antagonists (MRAs) and their future implications. Emphasizing the importance of multidisciplinary treatment, this narrative review aims to promote strategies that may be useful to alleviate the burden of DKD and its associated complications. It underscores the critical role of healthcare providers and advocates for collaborative efforts to enhance the quality of life for millions of patients affected by DKD.
Collapse
Affiliation(s)
- Silvia Palomo-Piñón
- Vicepresidente del Colegio de Nefrólogos de México AC, Mexico City, Mexico
- Directora General del Registro Nacional de Hipertensión Arterial México (RIHTA) Grupo de Expertos en Hipertensión Arterial México (GREHTA), Mexico City, Mexico
| | | | | | - Felipe Ericel Hernández-Arellanes
- Departamento de Nefrología, Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - María Juana Pérez-López
- Departamento de Nefrología, Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fabiola Pazos-Pérez
- Nefrología, UMAE Hospital de Especialidades Dr. Bernardo Sepúlveda Gutiérrez, Centro Medico Siglo XXI, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
2
|
Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer - birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol 2024; 21:25-34. [PMID: 37723270 DOI: 10.1038/s41575-023-00841-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC. In this Review, we discuss the changes that are becoming evident, including trends in CRC incidence and mortality by age and birth cohort, and consider the contributions of early-life exposures and emerging risk factors to these changes. Importantly, incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world. These so-called birth cohort effects imply the involvement of factors that influence the earliest stages of carcinogenesis and have effects across the life course. Accumulating evidence supports the idea that early-life exposures are important risk factors for CRC, including exposures during fetal development, childhood, adolescence and young adulthood. Environmental chemicals could also have a role because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years. To reverse the expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased by scaling up and implementing evidence-based screening strategies, and emerging risk factors responsible for these increases need to be identified.
Collapse
Affiliation(s)
- Caitlin C Murphy
- Department of Health Promotion & Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX, USA.
| | - Timothy A Zaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Friedman C, Dabelea D, Glueck DH, Allshouse WB, Adgate JL, Keller KP, Martenies SE, Magzamen S, Starling AP. Early-life exposure to residential black carbon and childhood cardiometabolic health. ENVIRONMENTAL RESEARCH 2023; 239:117285. [PMID: 37832765 PMCID: PMC10842121 DOI: 10.1016/j.envres.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early life exposure to air pollution, such as particulate matter ≤2.5 μm (PM2.5), may be associated with obesity and adverse cardiometabolic health outcomes in childhood. However, the toxicity of PM2.5 varies according to its chemical composition. Black carbon (BC) is a constituent of PM2.5, but few studies have examined its impact on childhood cardiometabolic health. Therefore, we examined relationships between prenatal and early childhood exposure to BC and markers of adiposity and cardiometabolic health in early childhood. METHODS This study included 578 mother-child pairs enrolled in the Healthy Start study (2009-2014) living in the Denver-metro area. Using a spatiotemporal prediction model, we assessed average residential black carbon levels during pregnancy and in the year prior to the early childhood follow-up visit at approximately 5 years old. We estimated associations between prenatal and early childhood BC and indicators of adiposity and cardiometabolic biomarkers in early childhood (mean 4.8 years; range, 4.0, 8.3), using linear regression. RESULTS We found higher early childhood BC was associated with higher percent fat mass, fat mass index, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR), and lower leptin and waist circumference at approximately 5 years old, after adjusting for covariates. For example, per interquartile range (IQR) increase in early childhood BC (IQR, 0.49 μg/m3) there was 3.32% higher fat mass (95% CI; 2.05, 4.49). Generally, we did not find consistent evidence of associations between prenatal BC and cardiometabolic health outcomes in early childhood, except for an inverse association between prenatal BC and adiponectin, an adipocyte-secreted hormone typically inversely associated with adiposity. CONCLUSIONS Higher early childhood, but not in utero, ambient concentrations of black carbon, a component of air pollution, were associated with greater adiposity and altered insulin homeostasis at approximately 5 years old. Future studies should examine whether these changes persist later in life.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Ihenacho U, Guillermo C, Wilkens LR, Franke AA, Tseng C, Li Y, Sangaramoorthy M, Derouen MC, Haiman CA, Stram DO, Le Marchand L, Cheng I, Wu AH. Association of Endocrine Disrupting Chemicals With the Metabolic Syndrome Among Women in the Multiethnic Cohort Study. J Endocr Soc 2023; 7:bvad136. [PMID: 38024651 PMCID: PMC10666661 DOI: 10.1210/jendso/bvad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic syndrome (MetS) is associated with a high risk of cardiovascular disease, a leading cause of death among women. MetS is a diagnosis of at least 3 of the following: high blood pressure, high fasting glucose, high triglycerides, high waist circumference, and low high-density lipoprotein cholesterol. Epidemiological studies suggest that endocrine disrupting chemical (EDC) exposure is positively associated with individual components of MetS, but evidence of an association between EDCs and MetS remains inconsistent. In a cross-sectional analysis within the Multiethnic Cohort Study, we evaluated the association between 4 classes of urinary EDCs (bisphenol A [BPA], triclosan, parabens, and phthalates) and MetS among 1728 women. Multivariable logistic regression was used to estimate odds ratios and 95% CI for the association between tertiles of each EDC and MetS adjusting for age, body mass index (BMI), racial and ethnic group, and breast cancer status. Stratified analyses by race and ethnicity and BMI were conducted. MetS was identified in 519 (30.0%) women. We did not detect statistically significant associations of MetS with BPA, triclosan, or phthalate metabolite excretion. MetS was inversely associated with total parabens (Ptrend = .002). Although there were suggestive inverse associations between EDCs and MetS among Latino and African American women, and women with BMI < 30 kg/m2, there was no statistically significant heterogeneity in associations by race and ethnicity or BMI. These findings suggest an inverse association between parabens and MetS in larger multiethnic studies. Prospective analyses to investigate suggested differences in associations by race, ethnicity, and BMI are warranted.
Collapse
Affiliation(s)
- Ugonna Ihenacho
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Cherie Guillermo
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Adrian A Franke
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Meera Sangaramoorthy
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mindy C Derouen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Wang Y, Sun W, Yan S, Meng Z, Jia M, Tian S, Huang S, Sun X, Han S, Pan C, Diao J, Wang Q, Zhu W. A new strategy to alleviate the obesity induced by endocrine disruptors-A unique lysine metabolic pathway of nanoselenium Siraitia grosvenorii to repair gut microbiota and resist obesity. Food Chem Toxicol 2023; 175:113737. [PMID: 36944396 DOI: 10.1016/j.fct.2023.113737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Obesity caused by endocrine disruptors (EDCs) has become a hot topic threatening human health. Recently, Nanoselenium Siraitia grosvenorii (NSG) has been shown to have potential health-modulating uses. Based on the results of 16S rRNA sequencing and metabolomics analysis, NSG has the unique function of improving gut microbiota and inhibiting obesity. Specifically, NSG can enhance gut microbiota diversity and change their composition. A significant positive correlation exists between the liver change in lysine and the high-importance dominant species ([Ruminococcus]_gnavus, Alistipes_finegoldii, etc.). NSG metabolites analysis showed that the lysine level increased by 44.45% and showed a significantly negatively correlated with (TG, TC, Leptin, etc.). Significantly, NSG reduces the degradation of lysine metabolism in the liver and inhibits fatty acid β-oxidation. In addition, NSG decreased Acetyl-CoA levels by 24% and regulated the downregulation of TCA genes (CS, Ogdh, Fh1, and Mdh2) and the upregulation of ketone body production genes (BDH1). NSG may have a positive effect on obesity by reducing the participation of Acetyl-CoA in the TCA cycle pathway and enhancing the ketogenic conversion of Acetyl-CoA. In conclusion, the results of this study may provide a new dietary intervention strategy for preventing endocrine disruptor-induced obesity.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China.
| |
Collapse
|
7
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Standardized pectolinarin rich-Cirsium setidens Nakai extract attenuates bisphenol A-induced the 3T3-L1 adipocytes differentiation and obese C57BL/6J mice via the suppression of adipogenesis-related transcription factors. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Quantitative structure–activity relationship modeling of hydroxylated polychlorinated biphenyls as constitutive androstane receptor agonists. Struct Chem 2022. [DOI: 10.1007/s11224-022-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules 2022; 12:biom12050680. [PMID: 35625608 PMCID: PMC9138445 DOI: 10.3390/biom12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
| | - Ludek Muller
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
11
|
Carli F, Ciociaro D, Gastaldelli A. Assessment of Exposure to Di-(2-ethylhexyl) Phthalate (DEHP) Metabolites and Bisphenol A (BPA) and Its Importance for the Prevention of Cardiometabolic Diseases. Metabolites 2022; 12:167. [PMID: 35208241 PMCID: PMC8878475 DOI: 10.3390/metabo12020167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Exposomics analyses have highlighted the importance of biomonitoring of human exposure to pollutants, even non-persistent, for the prevention of non-communicable diseases such as obesity, diabetes, non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular diseases. Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals (EDCs) widely used in industry and in a large range of daily life products that increase the risk of endocrine and cardiometabolic diseases especially if the exposure starts during childhood. Thus, biomonitoring of exposure to these compounds is important not only in adulthood but also in childhood. This was the goal of the LIFE-PERSUADED project that measured the exposure to phthalates (DEHP metabolites, MEHP, MEHHP, MEOHP) and BPA in Italian mother-children couples of different ages. In this paper we describe the method that was set up for the LIFE PERSUADED project and validated during the proficiency test (ICI/EQUAS) showing that accurate determination of urinary phthalates and BPA can be achieved starting from small sample size (0.5 mL) using two MS techniques applied in cascade on the same deconjugated matrix.
Collapse
Affiliation(s)
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.)
| |
Collapse
|
12
|
Wu Q, Du X, Feng X, Cheng H, Chen Y, Lu C, Wu M, Tong H. Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112739. [PMID: 34481351 DOI: 10.1016/j.ecoenv.2021.112739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The incidence of metabolic diseases is increasing every year, and several studies have highlighted the activity of persistent organic pollutants (POPs) in causing hyperlipidemia and diabetes, and these compounds are considered to be endocrine disrupting chemicals (EDCs). Chlordane is classified as an endocrine disruptor, but the mechanism of how it functions is still unclear. This study investigates the effects of chlordane exposure on Drosophila larvae. Drosophila was cultured in diet containing 0.01 μM, 0.1 μM, 1 μM, 5 μM, and 10 μM chlordane, and the toxicity of chlordane, the growth and development of Drosophila, the homeostasis of glucose and lipid metabolism and insulin signaling pathway, lipid peroxidation-related indicators and Nrf2 signaling pathway were evaluated. We here found that exposure to high concentrations of chlordane decreased the survival rate of Drosophila and that exposure to low concentrations of chlordane caused disruption of glucose and lipid metabolism, increased insulin secretion and impairment of insulin signaling. Notably, it also led to massive ROS production and lipid peroxidation despite of the activation of Nrf2 signaling pathway, an important pathway for maintaining redox homeostasis. Collectively, chlordane causes lipid peroxidation and disrupts redox homeostasis, which may be a potential mechanism leading to impaired insulin signaling and the metabolism of glucose and lipid, ultimately affects Drosophila development.
Collapse
Affiliation(s)
- Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xucong Feng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huimin Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yingjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenying Lu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Choi SI, Kwon HY, Han X, Men X, Choi YE, Jang GW, Park KT, Han J, Lee OH. Environmental obesogens (bisphenols, phthalates and parabens) and their impacts on adipogenic transcription factors in the absence of dexamethasone in 3T3-L1 cells. J Steroid Biochem Mol Biol 2021; 214:105994. [PMID: 34481040 DOI: 10.1016/j.jsbmb.2021.105994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that are capable of blocking or mimicking the action of bioidentical hormones. Obesogenic EDCs, commonly called obesogens, play an important role in adipogenesis. This study was carried out to determine the effects of select obesogens and their alternatives on adipogenesis in 3T3-L1 cells under dexamethasone (DEX)-free conditions. Preadipocytes were treated with a cocktail of 3-isobutyl-1-methylxanthine (IBMX) and insulin to which an obesogen (viz., bisphenol A (BPA) or its analogs BPS and BPF; dioctyl terephthalate; tris (2-ethylhexyl) trimellitate; or various parabens) had been added. A mixture containing IBMX, insulin, and DEX, which constitute the typical hormonal cocktail required for adipocyte differentiation, was used as the control against which the other groups were measured. The obesogens and the PBA analogs all had evident adipogenic effects under DEX-free conditions, as was determined by estimating the lipid accumulation levels in the cells using Oil Red O staining. Furthermore, the expression of adipogenic transcription factors (CCAAT/enhancer-binding protein-alpha, peroxisome proliferator-activated receptor-gamma, and adipocyte protein 2) was induced by 20 μM of BPA, BPS, or BPF at both the mRNA and protein levels, as determined through reverse transcription-polymerase chain reaction and western blot assays. Taken together, the results reveal that adipocyte differentiation can be induced by obesogens and their alternatives in the absence of DEX.
Collapse
Affiliation(s)
- Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hee-Yeon Kwon
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ye-Eun Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gill-Woong Jang
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keun-Tae Park
- MilaeBio Resources Co., Ltd., Seoul, 05836, Republic of Korea
| | - Jongkwon Han
- MilaeBio Resources Co., Ltd., Seoul, 05836, Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Boudalia S, Bousbia A, Boumaaza B, Oudir M, Canivenc Lavier MC. Relationship between endocrine disruptors and obesity with a focus on bisphenol A: a narrative review. BIOIMPACTS 2021; 11:289-300. [PMID: 34631491 PMCID: PMC8494257 DOI: 10.34172/bi.2021.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Scientific data suggest that early exposure to endocrine-disrupting chemicals (EDCs) affect -repro, -neuro, -metabolic systems, to which are added other notions such as mixtures, window and duration of exposure, trans-generational effects, and epigenetic mechanisms. Methods: In the present narrative review, we studied the relationship between exposure to EDCs with the appearance and development of obesity. Results: Exposure to EDCs like Bisphenol A during the early stages of development has been shown to lead to weight gain and obesity. EDCs can interfere with endocrine signaling, affect adipocytes differentiation and endocrine function and disrupt metabolic processes, especially if exposure occurs at very low doses, in the mixture, during early development stages for several generations. Conclusion: Exposure to EDCs is positively associated with obesity development. Moreover, the use of integrative approaches which mimicking environmental conditions are necessary and recommended to evaluate EDCs' effects in future studies.
Collapse
Affiliation(s)
- Sofiane Boudalia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Aissam Bousbia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Boualem Boumaaza
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Département des Sciences Agronomiques, Faculté des Sciences de la Nature et de la Vie, Université Ibn Khaldoun, Tiaret 14000, Algérie
| | - Malha Oudir
- Laboratoire de Génie Chimique, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab, USDB. BP 270, Route de Soumâa, 09000 Blida, Algérie
| | - Marie Chantal Canivenc Lavier
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| |
Collapse
|
15
|
Umbilical cord serum concentrations of perfluorooctane sulfonate, perfluorooctanoic acid, and the body mass index changes from birth to 5 1/2 years of age. Sci Rep 2021; 11:19789. [PMID: 34611219 PMCID: PMC8492859 DOI: 10.1038/s41598-021-99174-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Prenatal exposure to perfluoroalkyl substances (PFAS) has been reported to affect body weight from birth to childhood, but the results remain inconclusive. We investigated whether umbilical cord blood concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are associated with children’s risk trajectory for obesity. 600 children were randomly selected from the Hamamatsu Birth Cohort for Mothers and Children (HBC study) and their umbilical cord serum PFAS concentrations were quantified. Participants underwent BMI measurements at ages 1, 4, 10, 18, 24, 32, 40, 50, and 66 months. Growth curve modeling with random intercept was performed with standardized BMI as outcome variable. PFOS was negatively associated with standardized BMI (β = − 0.34; p = 0.01), with a marginally significant interaction with the child’s age (β = 0.0038; p = 0.08). PFOA was negatively associated with standardized BMI (β = − 0.26, 95% CI − 0.51, 0; p = 0.05), with a significant interaction with the child’s age (β = 0.005; p = 0.01). Stratified analysis by sex revealed that these effects were significant only among girls. Prenatal exposure to PFAS initially was associated with lower standardized BMI during infancy, but this effect dissipated over time and reversed in direction during later childhood. The effects of prenatal PFAS on higher standardized BMI is stronger in girls.
Collapse
|
16
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. In silico prediction of nuclear receptor binding to polychlorinated dibenzofurans and its implication on endocrine disruption in humans and wildlife. Curr Res Toxicol 2021; 2:357-365. [PMID: 34693345 PMCID: PMC8515090 DOI: 10.1016/j.crtox.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Polychlorinated dibenzofurans (PCDFs) are known to cause endocrine disruption in humans and wildlife but the mechanisms underlying this disruption have not been adequately investigated. In this paper, the susceptibility of the endocrine system to disruption by PCDF congeners via nuclear receptor binding was studied using molecular docking simulation. Findings revealed that some PCDF congeners exhibit high probabilities of binding to androgen receptor in its agonistic and antagonistic conformations. In depth molecular docking analysis of the receptor-ligand complexes formed by PCDFs with androgen receptor in its agonistic and antagonistic conformations showed that, these complexes were stabilized by electrostatic, van der Waals, pi-effect and hydrophobic interactions. It was also observed that PCDF molecules mimic the modes of interaction observed in androgen-testosterone and androgen-bicalutamide complexes, utilizing between 65 and 83% of the amino acid residues used by the co-crystallized ligands for binding. This computational study suggests that some PCDF congeners may act as agonists and antagonists of androgen receptor in humans and wildlife via inapproprate binding to the receptor.
Collapse
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
17
|
Hajizadeh Y, Moradnia M, Kiani Feizabadi G, Rafiei N, Tahmasbizadeh M, Darvishmotevalli M, Fadaei S, Karimi H. The sex-specific association between maternal urinary paraben levels and offspring size at birth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36029-36038. [PMID: 33683593 DOI: 10.1007/s11356-021-13175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Parabens are a group of antimicrobial preservatives applied in an extensive range of products and are suspected to impair fetal growth because of their disrupting effect on the endocrine system. We aimed to examine maternal urinary paraben concentrations and their neonates' outcome indexes. Methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) concentrations were measured in 105 maternal urine samples collected before delivery. Length, weight, and head circumference at birth were extracted from the mothers' delivery files. A multivariable linear regression analysis was performed to evaluate the association between paraben levels and neonatal anthropometric indices. The median levels of urinary parabens, especially BP, were higher than those in other countries. Prenatal urinary concentration of MP and BP showed a significantly positive association with birth weight in all neonates (β = 0.79, 95% CI: 0.16, 1.41, and β = 8.56, 95% CI: 3.95, 13.17, respectively), while these chemicals showed a significant negative association with head circumference (β = - 0.002, 95% CI: - 0.004, - 0.000, and β = - 0.016, 95% CI: - 0.030, - 0.002, respectively). A significant positive association between MP and birth length was also found (β = 0.004, 95% CI: 0.00, 0.00) in all the neonates. In sex-stratified adjusted models, MP and BP were found to be associated, respectively, with higher birth length and weight in male neonates (β = 0.008, 95% CI: - 0.001, 0.017, and β = 7.948, 95% CI: 1.045, 14.851). In girls, maternal urinary MP, PP, and BP were associated with increased birth weight (β = 0.831, 95% CI: 0.043, 1.620; β = 4.178, 95% CI: 0.877, 7.480; and β = 10.821, 95% CI: 3.545, 18.097, respectively), and MP and BP were associated with reduced head circumference at birth (β = - 0.003, 95% CI: - 0.005, - 0.001, and β = - 0.035, 95% CI: - 0.055, - 0.016). These results revealed potential impacts between neonatal growth and maternal exposure to parabens. However, these findings should be interpreted while considering the limitations of the present study.
Collapse
Affiliation(s)
- Yaghoub Hajizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Moradnia
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasem Kiani Feizabadi
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Environmental Health Engineering, School of Health, Semnan University of Medical Sciences, Semnan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Semnan University of Medical Sciences, Semnan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Tahmasbizadeh
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Saeid Fadaei
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Karimi
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Teixeira LCGM, das Chaves JR, Mendonça N, Sanson AL, Alves MCP, Afonso RJCF, Aquino SF. Occurrence and removal of drugs and endocrine disruptors in the Bolonha Water Treatment Plant in Belém/PA (Brazil). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:246. [PMID: 33821337 DOI: 10.1007/s10661-021-09025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the occurrence of drugs and endocrine disrupters in water supplies and in water for human consumption. Twelve sampling campaigns were carried out during the rainy and dry season at four sampling points in the Bolonha Complex, in the city of Belém, northern region of Brazil: Bolonha reservoir (catchment) and Water Treatment Plant (WTP) Bolonha (filtered water chamber, treated water tank, and washing water from the filters). The determination of the compounds was performed by solid phase extraction followed by gas and liquid chromatography coupled to mass spectrometry. The results confirmed the anthropic influence that the reservoir and WTP-Bolonha have been suffering, as consequence of the discharge of domestic sewage in natura. Among 25 microcontaminants analyzed, 12 were quantified in raw water and 10 in treated water. The antiallergic Loratadine (LRT) was the contaminant that occurred most frequently in all sample points, having been poorly removed (median 12%) in the conventional treatment used. Losartana (LST), 4-octylphenol (4-OP), and Bisphenol A (BPA) also occurred very frequently in raw water with concentrations ranging from 3.7 to 194 ng L-1. Although such contaminants occurred in treated water in concentrations varying from 4.0 to 135 ng L-1, the estimated margin of exposure ranged from 55 to 3333 times which indicates low risk of human exposure to such contaminants through ingestion of treated water.
Collapse
Affiliation(s)
- Luiza C G M Teixeira
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Juliane Ribeiro das Chaves
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Neyson Mendonça
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Ananda L Sanson
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Mariana C P Alves
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Robson J C F Afonso
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Sérgio F Aquino
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil.
| |
Collapse
|
19
|
de Lima Junior NC, Camilo JF, do Carmo PR, de Andrade MN, Braz BF, Santelli RE, de Brito Gitirana L, Ferreira ACF, de Carvalho DP, Miranda-Alves L, Dias GRM. Subacute exposure to lead promotes disruption in the thyroid gland function in male and female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115889. [PMID: 33223335 DOI: 10.1016/j.envpol.2020.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Exposure to heavy metals, such as lead, is a global public health problem. Lead has a long historic relation to several adverse health conditions and was recently classified as an endocrine disruptor. The aim of this study was to investigate the effects of subacute exposure to lead on the thyroid gland function. Adult male and female Wistar rats received a lead acetate solution containing 10 or 25 mg/kg, by gavage, three times a week, for 14 days. One week later, behavioral testing showed no alterations in anxiety and motor-exploratory parameters, as evaluated by Open-Field and Plus-Maze Tests, but impairment in learning and memory was found in the male 25 mg/kg lead-treated group and in both female lead-treated groups, as evaluated by the Inhibitory Avoidance Test. After one week, serum levels of tT3 were reduced in the 25 mg/kg female group and in the 10 mg∕ kg male group. However, tT4 levels were increased in the 25 mg/kg male group and in both female treated groups. TSH levels did not change and lead serum levels were undetectable. Morphologic alterations were observed in the thyroid gland, including abnormal thyroid parenchyma follicles of different sizes, epithelial stratification and vacuolization of follicular cells, decrease in colloid eosinophilia and vascular congestion, accompanied by morphometric alterations. An increase in collagen deposition was also observed. No differences were observed in TPO activity or protein expression, H2O2 generation by NADPH oxidases or hepatic D1 mRNA expression. However, thyroid NIS protein expression was considerably decreased in the male and female lead-treated groups, while TSHr expression was decreased in the 25 mg/kg female lead-treated group. These findings demonstrated that subacute exposure to lead acetate disrupts thyroid gland function in both sexes, leading to morphophysiological impairment and to changes in learning and memory abilities.
Collapse
Affiliation(s)
- Niedson Correia de Lima Junior
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Franco Camilo
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pâmella Rodrigues do Carmo
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle Novaes de Andrade
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Pharmacology and Medicinal Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bernardo Ferreira Braz
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Erthal Santelli
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lycia de Brito Gitirana
- Laboratory of Integrative Histology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Pires de Carvalho
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Pharmacology and Medicinal Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Glaecir Roseni Mundstock Dias
- Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Abercrombie SA, de Perre C, Iacchetta M, Flynn RW, Sepúlveda MS, Lee LS, Hoverman JT. Sublethal Effects of Dermal Exposure to Poly- and Perfluoroalkyl Substances on Postmetamorphic Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:717-726. [PMID: 32164037 DOI: 10.1002/etc.4711] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Studies of the toxicity of poly- and perfluoroalkyl substances (PFAS) on amphibians, especially after metamorphosis, are limited. We examined effects of dermal PFAS exposure (30 d) on survival and growth of juvenile American toads (Anaxyrus americanus), eastern tiger salamanders (Ambystoma tigrinum), and northern leopard frogs (Rana pipiens). Chemicals included perfluorooctanoic acid, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) at 0, 80, 800, or 8000 ppb on a moss dry weight basis. Exposure to PFAS influenced final snout-vent length (SVL) and scaled mass index (SMI), a measure of relative body condition. Observed effects depended on species and chemical, but not concentration. Anurans exposed to PFOS, PFHxS (frogs only), and 6:2 FTS demonstrated reduced SVL versus controls, whereas salamanders exposed to 6:2 FTS showed increased SVL. Frogs exposed to PFHxS and 6:2 FTS and toads exposed to PFOS had increased SMI compared to controls; salamanders did not demonstrate effects. Concentrations of 6:2 FTS in substrate decreased substantially by 30 d, likely driven by microbial action. Perfluorooctane sulfonate had notable biota-sediment accumulation factors, but was still <1. Although a no-observable-effect concentration could not generally be determined, the lowest-observable-effect concentration was 50 to 120 ppb. Survival was not affected. The present study demonstrates that PFAS bioaccumulation from dermal exposures and sublethal effects are dependent on species, chemical, and focal trait. Environ Toxicol Chem 2021;40:717-726. © 2020 SETAC.
Collapse
Affiliation(s)
- Sarah A Abercrombie
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Chloé de Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Michael Iacchetta
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - R Wesley Flynn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Ji Y, Yao Y, Duan Y, Zhao H, Hong Y, Cai Z, Sun H. Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143836. [PMID: 33257077 DOI: 10.1016/j.scitotenv.2020.143836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17-779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%-41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters.
Collapse
Affiliation(s)
- Yan Ji
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Yishuang Duan
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Akbar L, Zuk AM, Martin ID, Liberda EN, Tsuji LJS. Potential obesogenic effect of a complex contaminant mixture on Cree First Nations adults of Northern Québec, Canada. ENVIRONMENTAL RESEARCH 2021; 192:110478. [PMID: 33212128 DOI: 10.1016/j.envres.2020.110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Obesity incidence and prevalence is of increasing concern in First Nations communities around Canada. In addition to diet and physical activity, environmental pollutants have been suggested as a potential contributory factor to obesity associated morbidity. Owing to the exposure of Cree First Nations people to various persistent organic pollutants (POPs) and toxic metals, it is important to examine the association between obesity in these communities, and contaminant body burdens. OBJECTIVE To determine whether selected morphometry measures (body mass index [BMI], waist circumference [WC] and body fat percentage) are associated with body burdens of 10 POPs and toxic metals. METHODS Using data from the Nituuchischaayihtitaau Aschii Multi-community Environment-and-Health study in the eastern James Bay (Eeyou Istchee) Cree communities, this cross-sectional study examined morphometric and contaminant measures of 695 eligible participants. Sex stratified principal component analysis was conducted on blood plasma concentrations of 10 POPs and toxic metals. BMI, WC, body fat percent, and resultant contaminant components were used to create generalized linear models, and adjusted for covariates (age, total lipids, smoking, and n-3 fatty acids). RESULTS Two principal components (PCs; PC-1 and PC-2) were extracted for both males and females. For females, PC-1 explained 73.3% and PC-2 explained 10.5%, and for males, PC-1 explained 71.6% and PC-2 explained 11.2% of the variance in contaminant burden. For both sexes, PC-1 loaded highly for polychlorinated biphenyl (PCB) congeners, organochlorine pesticides and, to a lesser extent, mercury and lead. PC-2 loaded highly for cadmium for females, and cadmium and lead for males. After adjusting for covariates, the generalized linear model showed that PC-2 was significantly and negatively associated with BMI, body fat percent, and WC in males and females. CONCLUSIONS Our cross-sectional analysis indicates a negative association between cadmium with various obesity measures in both males and females. Null associations were found between PCBs and organochlorine pesticides and morphometry.
Collapse
Affiliation(s)
- Lamia Akbar
- Department of Physical and Environmental Sciences, University of Toronto, M1C 1A4, Toronto, Ontario, Canada.
| | - Aleksandra M Zuk
- Department of Physical and Environmental Sciences, University of Toronto, M1C 1A4, Toronto, Ontario, Canada; School of Nursing, Faculty of Health Sciences, Queen's University, Kingston, K7L 3N6, Ontario, Canada.
| | - Ian D Martin
- Department of Physical and Environmental Sciences, University of Toronto, M1C 1A4, Toronto, Ontario, Canada.
| | - Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, M5B 2K9, Ontario, Canada.
| | - Leonard J S Tsuji
- Department of Physical and Environmental Sciences, University of Toronto, M1C 1A4, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Vanni R, Bussuan RM, Rombaldi RL, Arbex AK. Endocrine Disruptors and the Induction of Insulin Resistance. Curr Diabetes Rev 2021; 17:e102220187107. [PMID: 33092513 DOI: 10.2174/1573399816666201022121254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The incidence of insulin resistance syndrome and type 2 diabetes mellitus has increased at an alarming rate worldwide and constitutes a serious challenge to public health care in the 21st century. Endocrine disrupting chemicals are defined as "substances or mixtures of substances that alter the endocrine system functions and, hence, adversely affect organisms, their progeny, or sub populations" and may be associated with this increase in prevalence. OBJECTIVE This study aimed to assess the role of endocrine disrupting chemicals in insulin resistance and the importance of approaching the subject during anamnesis. METHODS A full review of the literature regarding insulin resistance, type-2 diabetes and endocrine disruptors were conducted. CONCLUSION Large-scale production and distribution of endocrine disrupting chemicals coincide with the increase in the prevalence of insulin resistance globally. In recent years, studies have shown that endocrine disrupting chemicals are positively associated with insulin resistance syndrome, evidenced by worse prognoses among individuals with higher levels of exposure. Health professionals should recognize the forms of exposure, most susceptible people, and lifestyle habits that can worsen patients' prognoses.
Collapse
Affiliation(s)
- Rafael Vanni
- IPEMED Medical School/ AFYA Educational, Rio de Janeiro, Brazil
| | | | | | - Alberto K Arbex
- Medical Clinic in Schleswig-Flensburg, State of Schleswig-Holstein, Germany
| |
Collapse
|
24
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
25
|
Fadaei S, Pourzamani H, Ebrahimpour K, Feizi A, Daniali SS, Kelishadi R. Association of maternal urinary concentration of parabens and neonatal anthropometric indices. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:617-628. [PMID: 33312588 PMCID: PMC7721758 DOI: 10.1007/s40201-020-00487-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 05/21/2023]
Abstract
PURPOSE Parabens are used as preservatives in a wide range of products. Although parabens are generally known as safe, but recent evidences indicate that these compounds could lead to potential adverse effects on fetal growth. Thus, this study aimed to investigate the association between maternal parabens level in a sample of Iranian pregnant women with neonatal anthropometric measures. METHODS This cross-sectional study was conducted in 2018-2019 in Isfahan city, Iran. Early morning urine samples were collected from 117 pregnant women who were in their first trimester of pregnancy. The urinary concentrations of four parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were measured by gas chromatography-mass spectrometry. To compensate for variation in urine dilution, the paraben concentrations were adjusted by the creatinine levels. Associations between maternal parabens level and neonatal anthropometric indices were evaluated. RESULTS The MeP, EtP, PrP, and BuP were detected in %92, %36, %65, and %89 of the urine samples, respectively. No significant association was observed between maternal parabens level and birth length (p-value>0.05). In adjusted model, the BuP concentration in first trimester urine samples showed significantly negative association with head circumference in female neonates [β = -0.013, 95% CI: -0.024, -0.003], while positive significant association with that index in male neonates [β = 0.019, 95% CI: 0.001, 0.038]. In subgroup analysis by sex, in crude and adjusted analyses BuP was found to be only associated with higher birth weight in female neonates. PrP also showed significant positive association with head circumference and birth weight of male neonates in crude analysis. CONCLUSION Findings of this study on the association of urinary parabens of pregnant mothers with birth weight and head circumference suggest that maternal exposure to parabens might impact the fetal growth, However, these findings are based on cross-sectional data, thus the results should be interpreted with caution. The current findings underscore the necessity of providing more strict regulations in industries for limiting parabens use in their products, and the importance of public education for women of reproductive age for using paraben-free compounds.
Collapse
Affiliation(s)
- Saeid Fadaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyede Shahrbanoo Daniali
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Dupont G, Bordes SJ, Lachkar S, Wahl L, Iwanaga J, Loukas M, Tubbs RS. The effects of obesity on the human body part III: Cardiovascular, digestive, excretory, endocrine, and reproductive. Clin Anat 2020; 34:307-311. [PMID: 33170983 DOI: 10.1002/ca.23700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
This third installment of The Effects of Obesity on the Human Body discusses the endocrine, digestive, reproductive, cardiovascular, and excretory systems. Obesity is known to upset hormonal balance, leading to widespread metabolic disorders involving organs such as the liver and pancreas. Furthermore, the hypersecretion of leptin from adipose tissue triggers various responses from the cardiovascular and gastrointestinal systems, with implications for energy and nutrient balance and uptake.
Collapse
Affiliation(s)
- Graham Dupont
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Stephen J Bordes
- Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, Grenada
| | | | - Lauren Wahl
- Department of Cell and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Joe Iwanaga
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan.,Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, Grenada.,Department of Anatomy, University of Warmia and Mazury, Olsztyn, Poland
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, Grenada.,Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
27
|
Investigating the Role of Childhood Adiposity in the Development of Adult Type 2 Diabetes in a 64-year Follow-up Cohort: An Application of the Parametric G-formula Within an Agent-based Simulation Study. Epidemiology 2020; 30 Suppl 2:S101-S109. [PMID: 31569159 DOI: 10.1097/ede.0000000000001062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The contribution of childhood obesity to adult type 2 diabetes (T2DM), not through adult adiposity, as well as the causal pathways through which childhood obesity increases adult T2DM risk are not well understood. This study investigated the contribution of childhood obesity to incident T2DM including pathways not through adult adiposity, and explored whether race modified this contribution. METHODS We used data from the Virtual Los Angeles Cohort, an agent-based longitudinal birth cohort composed of 98,230 simulated individuals born in 2009 and followed until age 65 years. We applied the parametric mediational g-formula to the causal mediation analysis investigating the impact of childhood obesity on the development of adult T2DM. RESULTS The marginal adjusted odds ratio (aOR) for the total effect of childhood obesity on adult T2DM was 1.37 (95% CI = 1.32, 1.46). Nearly all the effect of childhood obesity on adult T2DM was mostly attributable to pathways other than through adult obesity; the aOR for the pure direct effect was 1.36 (95% CI = 1.31, 1.41). In all racial subpopulations, a similar 3% of the total effect of childhood obesity on adult T2DM was attributable to its effect on adult obesity. CONCLUSIONS Childhood obesity remains a risk factor for adult T2DM separate from its effects on adult obesity. This study emphasizes the potential benefits of early interventions and illustrates that agent-based simulation models could serve as virtual laboratories for exploring mechanisms in obesity research.
Collapse
|
28
|
Schell LM, Gallo MV, Pfeiffer S, Lee F, Garry D, Yucel R. Trends in height, weight, BMI, skinfolds, and measures of overweight and obesity from 1979 through 1999 among American Indian Youth: The Akwesasne Mohawk. Int J Obes (Lond) 2020; 44:656-663. [PMID: 30944421 DOI: 10.1038/s41366-019-0349-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Information on recent changes in overweight, obesity, and adiposity among American Indians is scarce. To assess changes in size and adiposity among American Indian youth, data from two samples of Akwesasne Mohawk youth, were compared. SUBJECTS/METHODS Both project 1, conducted in 1979 (n = 75) and Project 2, conducted between 1996 and 1999 (n = 206), sampled youth 10-14 years of age from the Akwesasne Mohawk Reservation (aka St. Regis) that borders New York state, and Ontario and Quebec provinces. Heights, weights, and skinfold thicknesses were converted to z-scores using CDC reference values. BMI status was calculated in terms of WHO age-specific cutoffs and CDC cutoffs. RESULTS z-Scores for heights differed little between projects. The between-project difference in weight z-score is twice the between-project z-score difference for height. Differences among males are larger and more often significant. Triceps and subscapular skinfold thickness are significantly greater in Project 2. The rate of overweight and obesity combined, increased 3.3-fold. In multiple regression analyses with sex, height, and age in the model, project is a significant predictor of weight and skinfolds. CONCLUSIONS Weight and adiposity have increased substantially from 1979 to 1996-99. Overweight and obesity became significantly more common. Given the increase in adiposity, these youth may be facing significant health risks as adults in terms of cardiovascular disease, cancer, and type II diabetes unless weight and adiposity is reduced.
Collapse
Affiliation(s)
- Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, NY, 12222, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, 12222, USA.
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, 12222, USA.
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, NY, 12222, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, 12222, USA
| | | | - Florence Lee
- Department of Anthropology, University at Albany, Albany, NY, 12222, USA
| | - Danielle Garry
- Department of Anthropology, University at Albany, Albany, NY, 12222, USA
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, 12222, USA
| |
Collapse
|
29
|
González-Casanova JE, Pertuz-Cruz SL, Caicedo-Ortega NH, Rojas-Gomez DM. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7453786. [PMID: 32149131 PMCID: PMC7049431 DOI: 10.1155/2020/7453786] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Endocrine disruptors (EDs) are defined as environmental pollutants capable of interfering with the functioning of the hormonal system. They are environmentally distributed as synthetic fertilizers, electronic waste, and several food additives that are part of the food chain. They can be considered as obesogenic compounds since they have the capacity to influence cellular events related to adipose tissue, altering lipid metabolism and adipogenesis processes. This review will present the latest scientific evidence of different EDs such as persistent organic pollutants (POPs), heavy metals, "nonpersistent" phenolic compounds, triclosan, polybrominated diphenyl ethers (PBDEs), and smoke-derived compounds (benzo -alpha-pyrene) and their influence on the differentiation processes towards adipocytes in both in vitro and in vivo models.
Collapse
Affiliation(s)
| | - Sonia Liliana Pertuz-Cruz
- Programa de Nutrición y Dietética, Departamento de Nutrición Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
30
|
Hall JM, Greco CW. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019; 9:cells9010013. [PMID: 31861598 PMCID: PMC7016921 DOI: 10.3390/cells9010013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Much of the early work on Nuclear Hormone Receptors (NHRs) focused on their essential roles as mediators of sex steroid hormone signaling in reproductive development and function, and thyroid hormone-dependent formation of the central nervous system. However, as NHRs display tissue-specific distributions and activities, it is not surprising that they are involved and vital in numerous aspects of human development and essential for homeostasis of all organ systems. Much attention has recently been focused on the role of NHRs in energy balance, metabolism, and lipid homeostasis. Dysregulation of NHR function has been implicated in numerous pathologies including cancers, metabolic obesity and syndrome, Type II diabetes mellitus, cardiovascular disease, hyperlipidemia, male and female infertility and other reproductive disorders. This review will discuss the dysregulation of NHR function by environmental endocrine disrupting chemicals (EDCs), and the associated pathological consequences of exposure in numerous tissues and organ systems, as revealed by experimental, clinical, and epidemiological studies.
Collapse
|
31
|
Bilal M, Iqbal HMN. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:447-459. [PMID: 31299577 DOI: 10.1016/j.scitotenv.2019.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Steroidal estrogens are widespread water contaminants with potential carcinogenic and endocrine-disrupting activities. The World Health Organization has listed estrogens as group 1 carcinogens. These contaminants are of substantial concern because of potential threats to human health, and aquatic organisms on long-term exposure. A range of methods, including oxidation, adsorption, electrochemical, and irradiation techniques have been employed for their remediation from aqueous systems. However, inadequate removal, toxic sludge generation, high operating costs, and the requisite for skilled operating and maintenance personnel commercially hampered the application of many methods. An interesting alternative treatment approach based on the use of oxidoreductases, particularly laccases, has recently gained amicability for the biotransformation of emerging pollutants. The use of immobilized enzymes is more cost-effective from an industrial perspective due to improved catalytic stability, reusability, reduction of product inhibition, and easier product separation. This review provides comprehensive knowledge on the use of laccases in the biodegradation of steroidal estrogens, including estrone, 17β-estradiol, and 17α-ethinylestradiol with endocrine-disrupting potency from the environment. After an overview of estrogens and catalytic properties of laccase, the use of free, as well as immobilized laccases with a particular emphasis on estrogens removal by laccase-based fed-batch, packed bed bioreactors, and membrane reactors, is discussed. A comparison of existing treatment technologies with enzyme technology for the removal of estrogens from different environmental matrices is made. Lastly, along with concluding remarks, future research direction aimed at bridging knowledge gaps for estrogenic compounds removal are also proposed in this very important research area.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
32
|
Saito H, Hara K, Tominaga T, Nakashima K, Tanemura K. Early‐life exposure to low levels of permethrin exerts impairments in learning and memory with the effects on neuronal and glial population in adult male mice. J Appl Toxicol 2019; 39:1651-1662. [DOI: 10.1002/jat.3882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Hirokatsu Saito
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku University Sendai Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku University Sendai Japan
| | - Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of NeuroscienceTokushima Bunri University Sanuki Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical SciencesKyushu University Fukuoka Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku University Sendai Japan
| |
Collapse
|
33
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Shu L, Meng Q, Diamante G, Tsai B, Chen YW, Mikhail A, Luk H, Ritz B, Allard P, Yang X. Prenatal Bisphenol A Exposure in Mice Induces Multitissue Multiomics Disruptions Linking to Cardiometabolic Disorders. Endocrinology 2019; 160:409-429. [PMID: 30566610 PMCID: PMC6349005 DOI: 10.1210/en.2018-00817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The health impacts of endocrine-disrupting chemicals (EDCs) remain debated, and their tissue and molecular targets are poorly understood. In this study, we leveraged systems biology approaches to assess the target tissues, molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC bisphenol A (BPA). Prenatal BPA exposure at 5 mg/kg/d, a dose below most reported no-observed-adverse-effect levels, led to tens to thousands of transcriptomic and methylomic alterations in the adipose, hypothalamus, and liver tissues in male offspring in mice, with cross-tissue perturbations in lipid metabolism as well as tissue-specific alterations in histone subunits, glucose metabolism, and extracellular matrix. Network modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, Srebf1, and Fasn as well as numerous less studied targets such as Cyp51 and long noncoding RNAs across tissues, Fa2h in hypothalamus, and Nfya in adipose tissue. Lastly, integrative analyses identified the association of BPA molecular signatures with cardiometabolic phenotypes in mouse and human. Our multitissue, multiomics investigation provides strong evidence that BPA perturbs diverse molecular networks in central and peripheral tissues and offers insights into the molecular targets that link BPA to human cardiometabolic disorders.
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Brandon Tsai
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Andrew Mikhail
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Helen Luk
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
35
|
Heindel JJ. History of the Obesogen Field: Looking Back to Look Forward. Front Endocrinol (Lausanne) 2019; 10:14. [PMID: 30761083 PMCID: PMC6362096 DOI: 10.3389/fendo.2019.00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Obesogen field developed from two separate scientific research areas, endocrine disruptors and the Developmental Origins of Health and Disease (DOHaD). Endocrine Disrupting Chemicals (EDCs) are exogenous chemicals or mixtures of chemicals that interfere with the action of hormones. Exposure to EDCs during early development (DOHaD) has been shown to increase susceptibility to a variety of diseases including infertility, asthma, breast and prostate cancer, early puberty, susceptibility to infections, heart disease, autoimmune disease, and attention deficit hyperactivity disorder/learning disability. The effects of EDCs on obesity and fat cell development first gained attention around the turn of the twenty-first century. In 2002 Dr. Paula Baillie-Hamilton wrote the first review article focusing on environmental chemicals and obesity. She suggested that the obesity epidemic correlated with the increased production of chemicals after World War II. Baillie-Hamilton identified studies showing that exposures to a variety of chemicals led to weight gain. Shortly after that a commentary on an article showing that nonylphenol would increase fat cell differentiation in vitro noted the Baillie-Hamilton article and made the point that perhaps obesity was due in part to exposure to EDCs. In 2006 the field of DOHaD/EDCs and obesity made a giant leap forward when Dr. Bruce Blumberg published a paper showing that tributyltin could lead to weight gain in mice and coined the term obesogen for a chemical that caused weight gain and lead to obesity. In 2011, the NIEHS developed the first funding initiative focused on obesogens. In the following years there have been several workshops focused on obesogens. This paper describes these early days that lead to the obesogen hypotheses and the growth of the field for a decade, leading to its prominence today, and provides some insight into where the field is moving.
Collapse
|
36
|
Taylor JA, Sommerfeld-Sager JM, Meng CX, Nagel SC, Shioda T, vom Saal FS. Reduced body weight at weaning followed by increased post-weaning growth rate interacts with part-per-trillion fetal serum concentrations of bisphenol A (BPA) to impair glucose tolerance in male mice. PLoS One 2018; 13:e0208846. [PMID: 30557361 PMCID: PMC6296512 DOI: 10.1371/journal.pone.0208846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/25/2018] [Indexed: 11/18/2022] Open
Abstract
There is evidence from longitudinal studies that being light at birth and weaning is associated with subsequent rapid weight gain in infants. This is referred to as “centile crossing”, which can lead to increased risk of lifetime obesity, glucose dysregulation and type 2 diabetes. Here, pregnant CD-1 mice were hemi-ovariectomized so that the entire litter was contained in one uterine horn to increase variability in fetal growth rate. Pregnant females were implanted on gestation day (GD) 9 with a Silastic capsule containing 6, 60 or 600 μg bisphenol A (BPA). On GD 18 the mean fetal serum unconjugated BPA concentrations were 17, 177 and 1858 pg/ml, respectively. Capsules were not removed, to avoid maternal stress, and were predicted to release BPA for at least 3 weeks. Body weight at weaning was strongly negatively correlated with post-weaning weight gain in both control and BPA-treated male mice, consistent with human data; female offspring were excluded, avoiding complications associated with postpubertal estrogens. Within each treatment group, male offspring were sorted into tertiles based on relative weight gain during the two weeks after weaning, designated as having Rapid (R), Medium (M) or Slow (S) growth rate. BPA exposure was associated with altered growth rate between weaning and postnatal week 12 (young adulthood), when a low-dose (20 mg/kg, i.p.) glucose tolerance test (GTT) was performed. We found altered glucose regulation in response to all doses of BPA. However, glucose tolerance was only significantly impaired (blood glucose levels were elevated) compared to controls in males in the rapid post-weaning growth group exposed perinatally to BPA. We conclude that male mice that are light at weaning, but then experience rapid catch-up growth immediately after weaning, represent a sensitive sub-population that is vulnerable to the metabolic disrupting effects of very low pg/ml fetal serum concentrations of BPA.
Collapse
Affiliation(s)
- Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- * E-mail:
| | | | - Chun-Xia Meng
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
37
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Skalny AV, Aschner M, Suliburska J, Aaseth J. Organotins in obesity and associated metabolic disturbances. J Inorg Biochem 2018; 191:49-59. [PMID: 30458368 DOI: 10.1016/j.jinorgbio.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
The objective of the present study was to review the mechanisms of organotin-induced adipogenesis, obesity, and associated metabolic disturbances. Peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα) activation is considered as the key mechanism of organotin-induced adipogenesis. Particularly, organotin exposure results in increased adipogenesis both in cell and animal models. Moreover, transgenerational inheritance of organotin-induced obese phenotype was demonstrated in vivo. At the same time, the existing data demonstrate that organotin compounds (OTCs) induces aberrant expression of PPARγ-targeted genes, resulting in altered of adipokine, glucose transporter, proinflammatory cytokines levels, and lipid and carbohydrate metabolism. The latter is generally characterized by hyperglycemia and insulin resistance. Other mechanisms involved in organotin-induced obesity may include estrogen receptor and corticosteroid signaling, altered DNA methylation, and gut dysfunction. In addition to cellular effects, organotin exposure may also affect neural circuits of appetite regulation, being characterized by neuropeptide Y (NPY) up-regulation in parallel with of pro-opiomelanocortin (POMC), Agouti-related protein (AgRP), and cocaine and amphetamine regulated transcript (CART) down-regulation in the arcuate nucleus. These changes result in increased orexigenic and reduced anorexigenic signaling, leading to increased food intake. The existing data demonstrate that organotins are potent adipogenic agents, however, no epidemiologic studies have been performed to reveal the association between organotin exposure and obesity and the existing indirect human data are contradictory.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Olga P Ajsuvakova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Trace Element Institute for UNESCO, Lyon, France
| | | | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
38
|
Skalnaya MG, Skalny AV, Grabeklis AR, Serebryansky EP, Demidov VA, Tinkov AA. Hair Trace Elements in Overweight and Obese Adults in Association with Metabolic Parameters. Biol Trace Elem Res 2018; 186:12-20. [PMID: 29497998 DOI: 10.1007/s12011-018-1282-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to investigate the level of toxic and essential trace elements in hair of adult overweight and obese persons as well as its association with metabolic parameters. Hair trace element levels were assessed using inductively coupled plasma mass-spectrometry in 112 overweight and obese patients and 106 lean controls. Serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glucose, uric acid (UA) levels, and cholinesterase (CE) and gamma-glutamyltransferase (GGT) activity were also assessed. Excessive body weight significantly affected hair trace element levels. In particular, hair Co (33%), Cu (13%), I (30%), Mg (2-fold), Mn (25%), Zn (17%), and Ni (21%) levels were lower, whereas Al (14%) and As levels were higher in comparison to those in the control group. Correlation analysis demonstrated the most significant correlations for hair Mg with body weight, BMI, systolic and diastolic blood pressure, and UA, and for hair Al with body weight, BMI, TC, glucose, TG, CE, GGT, and UA. Multiple regression analysis demonstrated that trace elements were not associated with TC and LDL-C levels neither in crude nor in adjusted models. In turn, crude and adjusted models accounted for 25 and 43% of serum TG variance. The most significant associations were observed for hair Al, Fe, Si, and V in adjusted model. The obtained data demonstrate that obesity-related metabolic disorders may be at least partially mediated by altered trace element and mineral levels.
Collapse
Affiliation(s)
- Margarita G Skalnaya
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- Institute of Bioelementology, Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, Russia
| | - Andrey R Grabeklis
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
| | - Eugeny P Serebryansky
- Russian Society for Trace Elements in Medicine, Zemlyanoi Val, 46, Moscow, 105064, Russia
| | - Vasily A Demidov
- Russian Society for Trace Elements in Medicine, Zemlyanoi Val, 46, Moscow, 105064, Russia
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow, 117198, Russia.
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia.
| |
Collapse
|
39
|
Smith A, Yu X, Yin L. Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:48-58. [PMID: 30195387 PMCID: PMC6697052 DOI: 10.1016/j.pestbp.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 05/16/2023]
Abstract
Environmental chemical exposure could be a contributor to the increasing obesity epidemic. Diazinon, an organophosphate insecticide, has been widely used in the agriculture, and exposure of the general population to diazinon has been reported. Diazinon has been known to induce neurotoxic effects mainly through the inhibition of acetylcholinesterase (AChE). However, its association with dysregulation of adipogenesis has been poorly investigated. The current study aimed to examine the mechanism of diazinon's effect on adipogenesis using the 3T3-L1 preadipocytes combined with a single-cell-based high-content analysis. The results showed that diazinon induced lipid droplet accumulation in a dose-dependent manner. The dynamic changes of adipogenic regulatory proteins and genes were examined at the three stages of adipogenesis (induction, differentiation, and maturation) in 3T3-L1 cells treated with various doses of diazinon (0, 1, 10, 100 μM) using real-time quantitative RT-PCR and Western Blot respectively. Diazinon significantly induced protein expression of transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), their downstream proteins, fatty acid synthase (FASN), acetyl CoA carboxylase (ACC), fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), adiponectin and perilipin in dose and time-dependent manners. Similarly, the adipogenic genes were significantly induced in a dose and time-dependent manner compared to the relative controls. The current study demonstrates that diazinon promotes lipid accumulation and activates the adipogenic signaling pathway in the in vitro model.
Collapse
Affiliation(s)
- Adrianne Smith
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA 30602, USA..
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA 30602, USA
| | - Lei Yin
- ReproTox Biotech LLC, 111 Riverbend Drive, Athens, GA, USA.
| |
Collapse
|
40
|
Gao F, Li Y, Xiang B. Degradation of bisphenol A through transition metals activating persulfate process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:239-247. [PMID: 29709761 DOI: 10.1016/j.ecoenv.2018.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, the process of transition metals (Fe2+, Fe0, Ni2O3) activating persulfate was attempted to degrade aqueous bisphonel A (BPA). Compared with thermal activation mode, significant degradation can be achieved at normal atmospheric temperature in transition metal activation mode. BPA removal in the transition metal-PS system can be divided into rapid phase (0-5 min) and slow phase (5-60 min). In rapid phase, 87.71% and 90.60% removal efficiencies were obtained in the Fe2+-PS and Ni2O3-PS systems, and the contaminant was almost completely oxidized after 60 min. There are many similarities between the Fe2+-PS and Fe0-PS systems, in particular the optimal removal efficiencies were achieved at n0(Fe2+):n0(PS) = 1:2 and n0(Fe0):n0(PS) = 1:2 rather than with maximum metal dosage. The Ni2O3 dosage had positive correlation with BPA removal rate while the degradation efficiency of the Fe2+-PS system could be promoted by keeping n0(sodium citrate):n0(Fe2+) below 1:1. Intermediate products of the Fe2+-PS system were analyzed by LC-MS and were predominantly phenol, p-hydroxyacetophenone, benzoquinone and propanedioic acid, therefore a possible oxidation degradation pathway was speculated.
Collapse
Affiliation(s)
- Feng Gao
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Yijiu Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China.
| | - Bo Xiang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
41
|
Urinary Bisphenol A Concentration and Gestational Diabetes Mellitus in Chinese Women. Epidemiology 2018; 28 Suppl 1:S41-S47. [PMID: 29028674 DOI: 10.1097/ede.0000000000000730] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bisphenol A (BPA) has been associated with variable metabolic effects in animal models. It is unknown whether BPA exposure affects glucose tolerance in pregnancy. We aimed to investigate whether maternal urinary BPA concentration is associated with gestational diabetes mellitus (GDM). METHODS This study included 620 pregnant women from Shanghai, China 2012-2013. Maternal urinary BPA concentration was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). GDM (n = 79) was diagnosed according to the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Multivariate regressions were used to explore the relationships of urinary BPA with GDM, plasma glucose levels in the 75-g 2-hour oral glucose tolerance test (OGTT), birth weight, and ponder index. RESULTS The geometric mean of BPA was 1.32 μg/L. After adjustment for maternal age, education, husband smoking status, prepregnancy body mass index (BMI), and urinary creatinine concentration, plasma glucose at 2 hours in the 75-g OGTT was 0.36 mmol/L lower (95% confidence index [CI] = -0.73, 0.01) for women with urine BPA in the high versus the low tertile. For each unit increase in natural log-transformed BPA, the odds of GDM was reduced by 27% (odds ratio (OR) = 0.73; 95% CI = 0.56, 0.97), the birth weight decreased by 25.70 g (95% CI = -54.48, 3.07), and ponder index was decreased by 0.02 (100 g/cm) (95% CI = -0.03, 0.00). CONCLUSIONS Higher maternal urinary BPA concentrations were associated with reduced risk of GDM and marginally lower birth weight and ponder index.
Collapse
|
42
|
Becher R, Wellendorf H, Sakhi AK, Samuelsen JT, Thomsen C, Bølling AK, Kopperud HM. Presence and leaching of bisphenol a (BPA) from dental materials. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2018; 4:56-62. [PMID: 29868625 PMCID: PMC5974758 DOI: 10.1080/23337931.2018.1476869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022]
Abstract
BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow® and the fissure sealant DELTON® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure.
Collapse
Affiliation(s)
- Rune Becher
- Nordic Institute of Dental Materials (NIOM), Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
43
|
Chamorro-García R, Shoucri BM, Willner S, Käch H, Janesick A, Blumberg B. Effects of Perinatal Exposure to Dibutyltin Chloride on Fat and Glucose Metabolism in Mice, and Molecular Mechanisms, in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:057006. [PMID: 29787037 PMCID: PMC6072003 DOI: 10.1289/ehp3030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The organotin dibutyltin (DBT) is used in the manufacture of polyvinyl chloride (PVC) plastics, in construction materials, and in medical devices. Previous animal studies showed detrimental effects of DBT during in utero development at relatively high doses, but little was known about the effects of DBT exposure at environmentally relevant doses on endpoints such as obesity and metabolic disease. OBJECTIVES We tested the potential obesogenic effects of DBT using in vitro and in vivo models. METHODS We evaluated the effects of DBT on nuclear receptor activation and adipogenic potential using human and mouse multipotent mesenchymal stromal stem cells (MSCs). We also evaluated the effects of perinatal exposure to environmentally relevant doses of DBT in C57BL/6J mice. RESULTS DBT activated human and mouse PPARγ and RXRα in transient transfection assays, increased expression of adipogenic genes, promoted adipogenic differentiation and increased lipid accumulation in mouse and human MSCs, in vitro. DBT-induced adipogenic differentiation was abolished by the PPARγ antagonist T0070907, indicating that DBT was acting primarily through PPARγ. Perinatal exposure to low doses of DBT led to increased fat storage, decreased glucose tolerance, and increased circulating leptin levels in male, but not female, mice. CONCLUSIONS DBT acted as an obesogen by inducing lipid accumulation in human and mouse MSCs through a PPARγ-dependent pathway. In vivo exposure to biologically relevant doses of DBT during perinatal development led to increased fat storage, elevated leptin levels in plasma, and glucose intolerance in mice. Based on these findings, we posit that monitoring of DBT levels in human samples may aid in understanding and potentially preventing the rising rates of metabolic disorders in human populations. https://doi.org/10.1289/EHP3030.
Collapse
Affiliation(s)
- Raquel Chamorro-García
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bassem M Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Sigal Willner
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Heidi Käch
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Amanda Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
44
|
Engelhardt S, Sadek A, Duirk S. Rejection of trace organic water contaminants by an Aquaporin-based biomimetic hollow fiber membrane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Marushka L, Hu X, Batal M, Sadik T, Schwartz H, Ing A, Fediuk K, Tikhonov C, Chan HM. The Relationship between Persistent Organic Pollutants Exposure and Type 2 Diabetes among First Nations in Ontario and Manitoba, Canada: A Difference in Difference Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E539. [PMID: 29562596 PMCID: PMC5877084 DOI: 10.3390/ijerph15030539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
We previously studied the association between fish consumption and prevalence of type 2 diabetes (T2D) in Manitoba and Ontario First Nations (FNs), Canada and found different results. In this study, we used a difference in difference model to analyze the data. Dietary and health data from the First Nations Food Nutrition and Environment Study, a cross-sectional study of 706 Manitoba and 1429 Ontario FNs were analyzed. The consumption of fish was estimated using a food frequency questionnaire. Fish samples were analyzed for dichloro diphenyldichloro ethylene (DDE) and polychlorinated biphenyls (PCBs) content. Difference in difference model results showed that persistent organic pollutant (POP) exposure was positively associated with T2D in a dose-response manner. Stronger positive associations were found among females (OR = 14.96 (3.72-60.11)) than in males (OR = 2.85 (1.14-8.04)). The breakpoints for DDE and PCB intake were 2.11 ng/kg/day and 1.47 ng/kg/day, respectively. Each further 1 ng/kg/day increase in DDE and PCB intake increased the risk of T2D with ORs 2.29 (1.26-4.17) and 1.44 (1.09-1.89), respectively. Our findings suggest that the balance of risk and benefits associated with fish consumption is highly dependent on the regional POP concentrations in fish.
Collapse
Affiliation(s)
- Lesya Marushka
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Xuefeng Hu
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Malek Batal
- Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, 2405 Côte-Sainte-Catherine Street, Montreal, QC H3T 1A8, Canada.
| | - Tonio Sadik
- Assembly of First Nations, 55 Metcalfe St #1600, Ottawa, ON K1P 6L5, Canada.
| | - Harold Schwartz
- Health Canada, Environmental Public Health Division, First Nations and Inuit Health Branch (FNIHB), Room 2000A Jeanne Mance Bldg. AL 1920A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Amy Ing
- Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, 2405 Côte-Sainte-Catherine Street, Montreal, QC H3T 1A8, Canada.
| | - Karen Fediuk
- Dietitian and Nutrition Researcher, Victoria, BC V8Y2V8, Canada.
| | - Constantine Tikhonov
- Health Canada, Environmental Public Health Division, First Nations and Inuit Health Branch (FNIHB), Room 2000A Jeanne Mance Bldg. AL 1920A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Hing Man Chan
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
46
|
Bansal A, Henao-Mejia J, Simmons RA. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health. Endocrinology 2018; 159:32-45. [PMID: 29145569 PMCID: PMC5761609 DOI: 10.1210/en.2017-00882] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022]
Abstract
The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women’s
Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania 19104
- Center of Excellence in Environmental Toxicology,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
19104
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Jorge Henao-Mejia
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- The Institute for Immunology, Department of Pathology and
Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
| | - Rebecca A. Simmons
- Center for Research on Reproduction and Women’s
Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania 19104
- Center of Excellence in Environmental Toxicology,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
19104
- Division of Neonatology, Department of Pediatrics, The
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
47
|
Menale C, Grandone A, Nicolucci C, Cirillo G, Crispi S, Di Sessa A, Marzuillo P, Rossi S, Mita DG, Perrone L, Diano N, Miraglia Del Giudice E. Bisphenol A is associated with insulin resistance and modulates adiponectin and resistin gene expression in obese children. Pediatr Obes 2017; 12:380-387. [PMID: 27187765 DOI: 10.1111/ijpo.12154] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been associated with increased incidence of diabetes and obesity in adults. OBJECTIVES To evaluate whether an association between BPA urinary levels and insulin resistance as well as adiponectin and resistin production and serum concentrations may occur in obese children. METHODS Clinical and biochemical features of 141 obese children were collected. Serum resistin and adiponectin were evaluated. Insulin resistance and urinary BPA levels were assessed. Moreover, the effect of BPA on adiponectin and resistin gene expression in adipocytes from eight normal weight prepubertal children was investigated by quantitative real-time RT-PCR (qPCR). RESULTS Direct association between BPA and homeostasis model assessment (r = 0.23; p: 0.0069) and a strong inverse association between BPA and adiponectin have been found (r = -0.48; p < 0.0001). In adipocytes, resistin expression was detected only after BPA treatment, while adiponectin expression resulted down-regulated after BPA exposure (p < 0.05 at both 10 and 100 nM BPA concentrations). CONCLUSIONS We suggest the involvement of BPA in the development of insulin resistance in childhood obesity highlighting that urinary BPA levels are directly associated with insulin resistance regardless of BMI. This association may be explained, at least partly, by the findings that BPA affects resistin and adiponectin production in adipose tissue cultures.
Collapse
Affiliation(s)
- Ciro Menale
- Department of Experimental Medicine, Second University of Naples, Naples, Italy.,National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Biophysics Laboratory, Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Anna Grandone
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Carla Nicolucci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy.,National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Grazia Cirillo
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Stefania Crispi
- Gene Expression and Molecular Genetics Laboratory, Institute of Biosciences and Bioresources - CNR Naples, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Sergio Rossi
- Biophysics Laboratory, Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Biophysics Laboratory, Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Laura Perrone
- National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, Second University of Naples, Naples, Italy.,National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Biophysics Laboratory, Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- National Laboratory on Endocrine Disruptors of the National Institute of Biostructures and Biosystems, c/o Institute of Genetics and Biophysics - CNR, Naples, Italy.,Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|
48
|
Bansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, van der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA. Sex- and Dose-Specific Effects of Maternal Bisphenol A Exposure on Pancreatic Islets of First- and Second-Generation Adult Mice Offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097022. [PMID: 29161229 PMCID: PMC5915189 DOI: 10.1289/ehp1674] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to the environmental endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with the increased risk of diabetes and obesity. However, the underlying mechanisms remain unknown. We recently demonstrated that perinatal BPA exposure is associated with higher body fat, impaired glucose tolerance, and reduced insulin secretion in first- (F1) and second-generation (F2) C57BL/6J male mice offspring. OBJECTIVE We sought to determine the multigenerational effects of maternal bisphenol A exposure on mouse pancreatic islets. METHODS Cellular and molecular mechanisms underlying these persistent changes were determined in F1 and F2 adult offspring of F0 mothers exposed to two relevant human exposure levels of BPA (10μg/kg/d-LowerB and 10mg/kg/d-UpperB). RESULTS Both doses of BPA significantly impaired insulin secretion in male but not female F1 and F2 offspring. Surprisingly, LowerB and UpperB induced islet inflammation in male F1 offspring that persisted into the next generation. We also observed dose-specific effects of BPA on islets in males. UpperB exposure impaired mitochondrial function, whereas LowerB exposure significantly reduced β-cell mass and increased β-cell death that persisted in the F2 generation. Transcriptome analyses supported these physiologic findings and there were significant dose-specific changes in the expression of genes regulating inflammation and mitochondrial function. Previously we observed increased expression of the critically important β-cell gene, Igf2 in whole F1 embryos. Surprisingly, increased Igf2 expression persisted in the islets of male F1 and F2 offspring and was associated with altered DNA methylation. CONCLUSION These findings demonstrate that maternal BPA exposure has dose- and sex-specific effects on pancreatic islets of adult F1 and F2 mice offspring. The transmission of these changes across multiple generations may involve either mitochondrial dysfunction and/or epigenetic modifications. https://doi.org/10.1289/EHP1674.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cetewayo Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frances Xin
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anna Duemler
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tom van der Meer
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Martha Stefaniak
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sana Wajid
- Exposure Biology Informatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol 2017; 7:1085-1135. [PMID: 28915320 DOI: 10.1002/cphy.c160038] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We examine the role of adipose tissue, typically considered an energy storage site, as a potential site of toxicant accumulation. Although the production of most persistent organic pollutants (POPs) was banned years ago, these toxicants persist in the environment due to their resistance to biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, and water). As a result, human exposure to these toxicants is inevitable. Largely due to their lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we (i) highlight the physical characteristics of toxicants that enable them to partition into and remain stored in adipose tissue, (ii) discuss the specific mechanisms of action by which these toxicants act to influence adipocyte function, and (iii) review associations between POP exposures and the development of obesity and diabetes. An area of controversy relates to the relative potential beneficial versus hazardous health effects of toxicant sequestration in adipose tissue. © 2017 American Physiological Society. Compr Physiol 7:1085-1135, 2017.
Collapse
Affiliation(s)
- Erin Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Robin Shoemaker
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
50
|
Rouillon S, Deshayes-Morgand C, Enjalbert L, Rabouan S, Hardouin JB, DisProSE G, Migeot V, Albouy-Llaty M. Endocrine Disruptors and Pregnancy: Knowledge, Attitudes and Prevention Behaviors of French Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091021. [PMID: 28878198 PMCID: PMC5615558 DOI: 10.3390/ijerph14091021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Endocrine disrupting chemicals (EDC) are environmental exposure factors that are rarely reported in clinical practice, particularly during pregnancy. This study aimed to describe women's knowledge, attitudes and behaviors towards EDC exposure. A study was conducted in the French Department of Vienne between 2014 and 2016 and comprised semi-structured interviews with pregnant women, a focus group of professionals in perinatology and environmental health, and the administration of a psychosocial questionnaire comprising scores in 300 pregnant or in postpartum period women. The mean score of knowledge was 42.9 ± 9.8 out of 100 (from 13.5 to 75.7). Exposure attitude was determined by risk perception. Mean level of cues to action to reduce their EDC exposure was estimated at 56.9 ± 22.5 out of 100 (from 0 to 100). Anxiety was significantly increased after the questionnaire. Anxiety about EDC was associated with a high score of knowledge (OR = 2.30, 95% CI (1.12-4.71)) and with no pregnancy anxiety (OR = 0.57, 95% CI (0.34-0.95)). Our findings suggest that healthcare providers should consider pregnant women's knowledge and perceptions, possibilities of action, and be careful not to increase their anxiety when advising them about EDC and environmental exposure.
Collapse
Affiliation(s)
- Steeve Rouillon
- INSERM, University Hospital of Poitiers, University of Poitiers, Clinical Investigation Center 1402, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France; (S.R.); (C.D.-M.); (S.Ra.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France;
- UMR CNRS 7285, IC2MP, 86073 Poitiers CEDEX 9, France
| | - Chloé Deshayes-Morgand
- INSERM, University Hospital of Poitiers, University of Poitiers, Clinical Investigation Center 1402, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France; (S.R.); (C.D.-M.); (S.Ra.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France;
| | - Line Enjalbert
- INSERM U1246, University of Nantes, 44035 Nantes, France; (L.E.); (J.-B.H.)
| | - Sylvie Rabouan
- INSERM, University Hospital of Poitiers, University of Poitiers, Clinical Investigation Center 1402, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France; (S.R.); (C.D.-M.); (S.Ra.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
| | | | - Group DisProSE
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France;
| | - Virginie Migeot
- INSERM, University Hospital of Poitiers, University of Poitiers, Clinical Investigation Center 1402, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France; (S.R.); (C.D.-M.); (S.Ra.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France;
| | - Marion Albouy-Llaty
- INSERM, University Hospital of Poitiers, University of Poitiers, Clinical Investigation Center 1402, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France; (S.R.); (C.D.-M.); (S.Ra.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France;
- Correspondence: ; Tel.: +33-549-443-323
| |
Collapse
|