1
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
2
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Aureli A, Recupero R, Mariani M, Manco M, Carlomagno F, Bocchini S, Nicodemo M, Marchili MR, Cianfarani S, Cappa M, Fintini D. Low Levels of Serum Total Vitamin B12 Are Associated with Worse Metabolic Phenotype in a Large Population of Children, Adolescents and Young Adults, from Underweight to Severe Obesity. Int J Mol Sci 2023; 24:16588. [PMID: 38068910 PMCID: PMC10706451 DOI: 10.3390/ijms242316588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin B12 (or cobalamin) is an essential vitamin for DNA synthesis, fatty acid and protein metabolism as well as other metabolic pathways fundamental to the integrity of cells and tissues in humans. It is derived from the diet and mostly stored in the liver. Its deficiency has been associated with metabolic derangements, i.e., obesity, glucose intolerance, increased lipogenesis and metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). However, data with regard to body weight across the whole spectrum (from underweight to severe obesity) in children and young individuals are scarce. The present study aims to describe the association between serum total vitamin B12 and body mass index (BMI) ranging from underweight to severe obesity in a large population of children, adolescents and young adults. This study also investigates associations with visceral adiposity, glucose and lipid metabolism and liver dysfunction. A cross-sectional, single-centre study was conducted at the Paediatrics and Endocrinology units of the "Bambino Gesù Children Hospital", a tertiary referral institution for eating disorders. Clinical charts were reviewed and 601 patients aged from 5 to 25 years were enrolled in order to analyse anthropometric, auxological, clinical, biochemical and liver ultrasound data using robust statistical approaches. Analyses were adjusted for potential confounders. A reduction in serum total B12 levels was associated with a linear increase in body weight, as expressed by WHO BMI SDS (r = -0.31, p < 0.001, BCa 95% -0.38, -0.24). Lower B12 levels were associated with higher waist circumference but only in pubertal girls (r = -0.33, p = 0.008, BCa 95% -0.53, -0.11). Hepatic insulin resistance was higher in males with lower B12 levels (B = -0.003 (-0.007, -0.0001), p = 0.039), but not in females, whereas whole-body insulin resistance was unaffected. Serum lipid profiles (total, HDL and LDL cholesterol and triglycerides) were not influenced by serum cobalamin levels. However, lower cobalamin levels were associated with higher grading of ultrasound-scored hepatic steatosis (ptrend = 0.035). Lastly, both AST and ALT showed a significant and direct correlation with total B12 levels in underweight (r = 0.22 and 0.24, p = 0.002 and <0.001, respectively) and severely obese subjects (r = 0.24 and 0.32, p = 0.002 and <0.001). In conclusion lower vitamin B12 levels are associated with higher body weight, adiposity and with worse metabolic health in a large population of children, adolescents and young adults.
Collapse
Affiliation(s)
- Alessia Aureli
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Rosanna Recupero
- Pediatric Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Pediatrics Department, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Michela Mariani
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Melania Manco
- Research Area for Foetal Neonatal and Cardiological Sciences, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Sarah Bocchini
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Mirella Nicodemo
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| | - Maria Rosaria Marchili
- Department of Emergency Admission and General Pediatrics, “Bambino Gesù” Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefano Cianfarani
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Cappa
- Research Area of Innovative Therapies in Endocrinopathies, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, “Bambino Gesù” Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.A.); (M.M.); (S.B.); (M.N.); (S.C.); (D.F.)
| |
Collapse
|
4
|
Yuan S, Zhang HM, Li JX, Li Y, Wang Q, Kong GY, Li AH, Nan JX, Chen YQ, Zhang QG. Gasotransmitters in non-alcoholic fatty liver disease: just the tip of the iceberg. Eur J Pharmacol 2023; 954:175834. [PMID: 37329970 DOI: 10.1016/j.ejphar.2023.175834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by fatty lesions and fat accumulation in hepatic parenchymal cells, which is in the absence of excessive alcohol consumption or definite liver damage factors. The exact pathogenesis of NAFLD is not fully understood, but it is now recognized that oxidative stress, insulin resistance, and inflammation are essential mechanisms involved in the development and treatment of NAFLD. NAFLD therapy aims to stop, delay or reverse disease progressions, as well as improve the quality of life and clinical outcomes of patients with NAFLD. Gasotransmitters are produced by enzymatic reactions, regulated through metabolic pathways in vivo, which can freely penetrate cell membranes with specific physiological functions and targets. Three gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide have been discovered. Gasotransmitters exhibit the effects of anti-inflammatory, anti-oxidant, vasodilatory, and cardioprotective agents. Gasotransmitters and their donors can be used as new gas-derived drugs and provide new approaches to the clinical treatment of NAFLD. Gasotransmitters can modulate inflammation, oxidative stress, and numerous signaling pathways to protect against NAFLD. In this paper, we mainly review the status of gasotransmitters research on NAFLD. It provides clinical applications for the future use of exogenous and endogenous gasotransmitters for the treatment of NAFLD.
Collapse
Affiliation(s)
- Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jia-Xin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Guang-Yao Kong
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ao-Han Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ji-Xing Nan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ying-Qing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| |
Collapse
|
5
|
Fu L, Wang Y, Hu YQ. Association between homocysteine and nonalcoholic fatty liver disease: Mendelian randomisation study. Eur J Clin Invest 2023; 53:e13895. [PMID: 36305497 DOI: 10.1111/eci.13895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Many observational studies explore the relationship between homocysteine (Hcy) and nonalcoholic fatty liver disease (NAFLD), whereas the causality of this association remains uncertain, especially in European populations. We performed a bidirectional Mendelian randomisation study to elucidate the causal association between Hcy and NAFLD. Furthermore, we explored the relationship of Hcy with liver enzymes, including alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). METHODS Two-sample Mendelian randomisation study was conducted. Summary statistics for Hcy were obtained from a genome-wide association studies (GWAS) meta-analysis comprising 44,147 subjects. Summary-level data for NAFLD were acquired from a GWAS meta-analysis of 8434 cases and 770,180 noncases and another GWAS meta-analysis of 1483 cases and 17,781 noncases. Summary-level data for three liver enzymes were available from the UK Biobank. RESULTS Genetic associations of Hcy concentrations with NAFLD and liver enzymes were observed. Genetically predicted higher Hcy concentrations were consistently associated with an increased NAFLD risk in two data sources. The combined odds ratio of NAFLD was 1.25 (95% confidence interval [CI], 1.05-1.45) per SD increase in Hcy concentrations. Genetically predicted higher Hcy concentrations showed significant association with ALP (Beta .69; 95% CI, 0.04-1.34), ALT (Beta 0.56; 95% CI, 0.15-0.97) and AST levels (Beta .57; 95% CI, 0.10-1.04). Genetic liability to NAFLD was not associated with Hcy concentrations. CONCLUSIONS This study has clinical implications as it indicates that increased Hcy concentrations increase the relevant liver enzymes and may play a role in NAFLD risk in European populations.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-communicable Disease Management, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Reply to: "Hyperhomocysteinemia predicts liver-related clinical outcomes in the general population". J Hepatol 2023; 78:e174-e175. [PMID: 36736736 DOI: 10.1016/j.jhep.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
|
7
|
Liu C, Liu K, Zhao X, Zhu J, Liu Y, Hao L, Gao Y, Liu P. The Associations Between Alanine Aminotransferase and Other Biochemical Parameters in Lean PCOS. Reprod Sci 2023; 30:633-641. [PMID: 35864417 PMCID: PMC9988735 DOI: 10.1007/s43032-022-01030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
To explore the associations of alanine aminotransferase in lean women of polycystic ovary syndrome (PCOS) with other biochemical parameters and the potential risk factors. This is a retrospective cohort study with lean PCOS (n = 91) and healthy controls (n = 45); we reviewed the electrical records and databases of the PCOS patients in our infertility clinic between January 2019 and September 2021; independent t-test, linear correlation analysis, and multiple linear regression were used to explore the associations. Higher levels of luteinizing hormone, total testosterone, thyroid stimulating hormone, platelet count, lymphocyte count, homocysteine, alanine aminotransferase (ALT), and uric acid were identified in lean PCOS patients, while follicle-stimulating hormone level was lower in in lean PCOS as expected (P < 0.05). Of note, the linear correlation showed that BMI, total testosterone, white blood cell count, lymphocyte count, aspartate aminotransferase, and uric acid were positively associated with alanine aminotransferase (r = 0.232, 0.318, 0.218, 0.388, 0.602, 0.353 respectively, P < 0.05). After multiple linear regression was performed, total testosterone and aspartate aminotransferase were independently and positively correlated with alanine aminotransferase in lean PCOS (B = 0.251, 0.605 respectively, P < 0.05). Higher level of ALT was identified in the lean PCOS. BMI, white blood cell count, lymphocyte count, aspartate aminotransferase, uric acid, and total testosterone were positively correlated with ALT in lean PCOS. Total testosterone and aspartate aminotransferase were independently and positively associated with ALT in lean PCOS after multiple linear regression. There might exist a potential risk of afflicting liver impairment for the lean PCOS women in the earlier period. Early examination and intervention might be necessary to prevent or delay the progression of the liver disease as soon as the diagnosis of PCOS.
Collapse
Affiliation(s)
- Cai Liu
- Department of Infertility Clinic, Yulin City First Hospital, Yulin, China
| | - Kai Liu
- Department of Gynecology, Northwest Women and Children's Hospital, Xi'an, China
| | - Xiao Zhao
- Department of Intensive Care Unit, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Junhua Zhu
- Department of Infertility Clinic, Yulin City First Hospital, Yulin, China
| | - Yang Liu
- Department of Infertility Clinic, Yulin City First Hospital, Yulin, China
| | - Lina Hao
- Department of Infertility Clinic, Yulin City First Hospital, Yulin, China
| | - Yanyun Gao
- Department of Infertility Clinic, Yulin City First Hospital, Yulin, China
| | - Peng Liu
- Department of Hand and Foot Surgery, Yulin City First Hospital, Yulin, China.
| |
Collapse
|
8
|
Cano A, Vazquez-Chantada M, Conde-Vancells J, Gonzalez-Lahera A, Mosen-Ansorena D, Blanco FJ, Clément K, Aron-Wisnewsky J, Tran A, Gual P, García-Monzón C, Caballería J, Castro A, Martínez-Chantar ML, Mato JM, Zhu H, Finnell RH, Aransay AM. Impaired Function of Solute Carrier Family 19 Leads to Low Folate Levels and Lipid Droplet Accumulation in Hepatocytes. Biomedicines 2023; 11:biomedicines11020337. [PMID: 36830876 PMCID: PMC9953281 DOI: 10.3390/biomedicines11020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Low serum folate levels are inversely related to metabolic associated fatty liver disease (MAFLD). The role of the folate transporter gene (SLC19A1) was assessed to clarify its involvement in lipid accumulation during the onset of MAFLD in humans and in liver cells by genomic, transcriptomic, and metabolomic techniques. Genotypes of 3 SNPs in a case-control cohort were initially correlated to clinical and serum MAFLD markers. Subsequently, the expression of 84 key genes in response to the loss of SLC19A1 was evaluated with the aid of an RT2 profiler-array. After shRNA-silencing of SLC19A1 in THLE2 cells, folate and lipid levels were measured by ELISA and staining techniques, respectively. In addition, up to 482 amino acids and lipid metabolites were semi-quantified in SLC19A1-knockdown (KD) cells through ultra-high-performance liquid chromatography coupled with mass spectrometry. SNPs, rs1051266 and rs3788200, were significantly associated with the development of fatty liver for the single-marker allelic test. The minor alleles of these SNPs were associated with a 0.6/-1.67-fold decreased risk of developing MAFLD. When SLC19A1 was KD in THLE2 cells, intracellular folate content was four times lower than in wild-type cells. The lack of functional SLC19A1 provoked significant changes in the regulation of genes associated with lipid droplet accumulation within the cell and the onset of NAFLD. Metabolomic analyses showed a highly altered profile, where most of the species that accumulated in SLC19A1-KD-cells belong to the chemical groups of triacylglycerols, diacylglycerols, polyunsaturated fatty acids, and long chain, highly unsaturated cholesterol esters. In conclusion, the lack of SLC19A1 gene expression in hepatocytes affects the regulation of key genes for normal liver function, reduces intracellular folate levels, and impairs lipid metabolism, which entails lipid droplet accumulation in hepatocytes.
Collapse
Affiliation(s)
- Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnologico de Bizkaia, Astondo Bidea, Building 609, 48160 Derio, Spain
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
| | - Mercedes Vazquez-Chantada
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Javier Conde-Vancells
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aintzane Gonzalez-Lahera
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | | | - Francisco J. Blanco
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Karine Clément
- Nutriomics Research Group, Nutrition Department, Pitié-Salpétrière Hospital, INSERM, Sorbonne Université, F-75013 Paris, France
- INSERM, UMR_S 1166, NutriOmics Team 6, F-75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition department ICAN and CRNH-Ile de France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Judith Aron-Wisnewsky
- Nutriomics Research Group, Nutrition Department, Pitié-Salpétrière Hospital, INSERM, Sorbonne Université, F-75013 Paris, France
- INSERM, UMR_S 1166, NutriOmics Team 6, F-75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition department ICAN and CRNH-Ile de France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Albert Tran
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol”, INSERM, U1065, Centre Hospitalier Universitaire de Nice, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Philippe Gual
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol”, INSERM, U1065, Centre Hospitalier Universitaire de Nice, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Carmelo García-Monzón
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain
| | - Joan Caballería
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Liver Unit, Hospital Clinic, 08036 Barcelona, Spain
| | - Azucena Castro
- OWL Metabolomics, Parque Tecnologico de Bizkaia, Building 502, 48160 Derio, Spain
| | - María Luz Martínez-Chantar
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | - José M. Mato
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
| | - Huiping Zhu
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Richard H. Finnell
- Department of Nutritional Sciences, Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana M. Aransay
- CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801-A, 48160 Derio, Spain
- CIBERehd, ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-944-061-325 or +34-946-572-524; Fax: +34-946-572-530
| |
Collapse
|
9
|
Fu L, Wang Y, Hu YQ. Bi-directional causal effect between vitamin B12 and non-alcoholic fatty liver disease: Inferring from large population data. Front Nutr 2023; 10:1015046. [PMID: 36950332 PMCID: PMC10025356 DOI: 10.3389/fnut.2023.1015046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Objectives Many observational studies evaluate the association between vitamin B12 and non-alcoholic fatty liver disease (NAFLD). However, the causality of this association remains uncertain, especially in European populations. We conducted a bidirectional Mendelian randomization study to explore the association between vitamin B12 and NAFLD. Methods Two-sample Mendelian randomization study was conducted. Summary statistics for vitamin B12 were acquired from a genome-wide association studies (GWAS) meta-analysis including 45,576 subjects. Summary-level data for NAFLD was obtained from a GWAS meta-analysis of 8,434 cases and 770,180 non-cases and another GWAS meta-analysis of 1,483 cases and 17,781 non-cases. Summary-level data for 4 enzymes including alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyltransferase (GGT), was available from the UK Biobank. Inverse variance weighting (as main analysis), weighted median estimate, robust adjusted profile score, MR-Egger, and MR-PRESSO (sensitivity analyses) were performed to calculate causal estimates. Results Genetically predicted higher vitamin B12 concentrations were consistently associated with an increased NAFLD in two sources. The combined odds ratio (OR) of NAFLD was 1.30 (95% confidence interval (CI), 1.13 to 1.48; p < 0.001) per SD-increase in vitamin B12 concentrations. Genetic liability to NAFLD was also positively associated with vitamin B12 concentrations (Beta 0.08, 95%CI, 0.01 to 0.16; p = 0.034). Sensitivity analyses also revealed consistent results. Genetically predicted vitamin B12 concentrations showed no significant association with liver enzymes. Conclusion The present study indicates that increased serum vitamin B12 concentrations may play a role in NAFLD risk. NAFLD also has a causal impact on elevated vitamin B12 concentrations in the circulation. Notably, vitamin B12 concentrations imply the levels of vitamin B12 in the circulation, and higher intake of vitamin B12 may not directly lead to higher levels of serum vitamin B12, instead the higher levels of vitamin B12 in the circulation may be caused by the dysregulation of the metabolism of this vitamin in this study. There exist bidirectional causal effects between serum vitamin B12 concentrations and risk of NAFLD in European individuals.
Collapse
Affiliation(s)
- Liwan Fu
- 1Center for Non-Communicable Disease Management, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
- *Correspondence: Liwan Fu,
| | - Yuquan Wang
- 2State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- 2State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Institute of Biostatistics, Fudan University, Shanghai, China
- 3Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Yue-Qing Hu,
| |
Collapse
|
10
|
Yuan S, Chen J, Dan L, Xie Y, Sun Y, Li X, Larsson SC. Homocysteine, folate, and nonalcoholic fatty liver disease: a systematic review with meta-analysis and Mendelian randomization investigation. Am J Clin Nutr 2022; 116:1595-1609. [PMID: 36205540 DOI: 10.1093/ajcn/nqac285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Circulating concentrations of homocysteine and folate are inconsistently associated with the risk of nonalcoholic fatty liver disease (NAFLD) in observational studies. OBJECTIVES We conducted a meta-analysis and Mendelian randomization (MR) analyses to examine these associations. METHODS We performed a meta-analysis of observational studies identified from 3 databases to evaluate the associations of serum homocysteine and folate concentrations with NAFLD from inception to 7 April 2022. We conducted MR analyses to strengthen the causal inference in these associations. Independent single-nucleotide polymorphisms without linkage disequilibrium (r2 < 0.01) that were strongly associated (P < 5 × 10-8) with serum homocysteine (n = 13) and folate (n = 2) concentrations were selected as instrumental variables from 2 meta-analyses of genome-wide association studies (GWASs) of 44,147 and 37,645 individuals of European ancestry, respectively. Data on NAFLD were obtained from a GWAS of 8434 NAFLD cases and 770,180 controls of European ancestry. We further included 4 liver enzymes as secondary outcomes from a GWAS of 361,194 individuals with European descent. RESULTS Twenty-two observational studies comprising 30,368 participants were included in the meta-analysis. There was a positive association between serum homocysteine and NAFLD risk (n = 20; OR: 1.96; 95% CI: 1.57, 2.45) and an inverse association between serum folate and NAFLD risk (n = 12; OR: 0.75; 95% CI: 0.58, 0.99). In MR analysis, the ORs of NAFLD were 1.17 (95% CI: 1.01, 1.36) and 0.75 (95% CI: 0.55, 1.02) per 1-SD increment of genetically predicted circulating concentrations of homocysteine and folate, respectively. Each 1-SD increase of genetically predicted circulating homocysteine and folate conferred a change in ALT concentrations of 0.62 U/L (95% CI: 0.20, 1.04) and -0.84 U/L (95% CI: -0.14, -1.54). CONCLUSIONS This study suggests a potential role of circulating homocysteine and possibly folate in NAFLD, which calls for future clinical exploration of the possibility of lowering homocysteine concentrations to prevent NAFLD. This systematic review was registered at PROSPERO as CRD42021296434.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lintao Dan
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xie
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhao Sun
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
12
|
Huang DQ, Downes M, Evans RM, Witztum JL, Glass CK, Loomba R. Shared Mechanisms between Cardiovascular Disease and NAFLD. Semin Liver Dis 2022; 42:455-464. [PMID: 36008083 PMCID: PMC9828940 DOI: 10.1055/a-1930-6658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The burden of nonalcoholic fatty liver disease (NAFLD) is rising globally. Cardiovascular disease is the leading cause of death in patients with NAFLD. Nearly half of individuals with NAFLD have coronary heart disease, and more than a third have carotid artery atherosclerosis. Individuals with NAFLD are at a substantially higher risk of fatal and nonfatal cardiovascular events. NAFLD and cardiovascular disease share multiple common disease mechanisms, such as systemic inflammation, insulin resistance, genetic risk variants, and gut microbial dysbiosis. In this review, we discuss the epidemiology of cardiovascular disease in NAFLD, and highlight common risk factors. In addition, we examine recent advances evaluating the shared disease mechanisms between NAFLD and cardiovascular disease. In conclusion, multidisciplinary collaborations are required to further our understanding of the complex relationship between NAFLD and cardiovascular disease and potentially identify therapeutic targets.
Collapse
Affiliation(s)
- Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, California
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Joseph L. Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University California San Diego, San Diego, California
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, California
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, California
| |
Collapse
|
13
|
The effects of vitamin B12 supplementation on metabolic profile of patients with non-alcoholic fatty liver disease: a randomized controlled trial. Sci Rep 2022; 12:14047. [PMID: 35982162 PMCID: PMC9388548 DOI: 10.1038/s41598-022-18195-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
The present study is the first effort to evaluate the effects of vitamin B12 supplementation on the serum level of liver enzymes, homocysteine, grade of hepatic steatosis, and metabolic profiles in patients with non-alcoholic fatty liver disease (NAFLD). Forty patients with NAFLD were enrolled in a double-blind placebo-controlled trial to receive either one oral tablet of vitamin B12 (1000 µg cyanocobalamin) or a placebo per day for 12 weeks. We investigated serum levels of homocysteine, aminotransferases, fasting blood glucose (FBG), lipids, malondialdehyde (MDA), and homeostasis model assessment of insulin resistance (HOMA-IR). The grade of liver steatosis and fibrosis was measured by real-time 2-dimensional shear wave elastography. Vitamin B12 supplementation significantly decreased serum levels of homocysteine compared to placebo (medians: - 2.1 vs. - 0.003 µmol/l; P = 0.038). Although serum alanine transaminase (ALT) in the vitamin B12 group decreased significantly, this change did not reach a significant level compared to the placebo group (medians: - 7.0 vs. 0.0 IU/l; P > 0.05). Despite the significant within-group decrease in FBG, MDA, and liver steatosis in the vitamin B12 group, between-group comparisons did not reveal any significant difference. Vitamin B12 supplementation might decrease serum levels of homocysteine in patients with NAFLD. The fasting blood glucose and serum levels of MDA were significantly improved in the trial group who received vitamin B12. However, these changes did not reach a significant level compared to the placebo group. In this respect, further studies with larger sample sizes, different doses, and types of vitamin B12 will reveal additional evidence.Trial Registration: At http://irct.ir/ as IRCT20120718010333N5 on December 25, 2019.
Collapse
|
14
|
Albores-Mendez EM, Aguilera Hernández AD, Melo-González A, Vargas-Hernández MA, Gutierrez de la Cruz N, Vazquez-Guzman MA, Castro-Marín M, Romero-Morelos P, Winkler R. A diagnostic model for overweight and obesity from untargeted urine metabolomics of soldiers. PeerJ 2022; 10:e13754. [PMID: 35898940 PMCID: PMC9310780 DOI: 10.7717/peerj.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
Soldiers in active military service need optimal physical fitness for successfully carrying out their operations. Therefore, their health status is regularly checked by army doctors. These inspections include physical parameters such as the body-mass index (BMI), functional tests, and biochemical studies. If a medical exam reveals an individual's excess weight, further examinations are made, and corrective actions for weight lowering are initiated. The collection of urine is non-invasive and therefore attractive for frequent metabolic screening. We compared the chemical profiles of urinary samples of 146 normal weight, excess weight, and obese soldiers of the Mexican Army, using untargeted metabolomics with liquid chromatography coupled to high-resolution mass spectrometry (LC-MS). In combination with data mining, statistical and metabolic pathway analyses suggest increased S-adenosyl-L-methionine (SAM) levels and changes of amino acid metabolites as important variables for overfeeding. We will use these potential biomarkers for the ongoing metabolic monitoring of soldiers in active service. In addition, after validation of our results, we will develop biochemical screening tests that are also suitable for civil applications.
Collapse
Affiliation(s)
- Exsal M. Albores-Mendez
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Alexis D. Aguilera Hernández
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Alejandra Melo-González
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Marco A. Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Neptalí Gutierrez de la Cruz
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Miguel A. Vazquez-Guzman
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico,Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anahuac Mexico, Campus Norte, Mexico City, Mexico
| | - Melchor Castro-Marín
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Pablo Romero-Morelos
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico,Universidad Estatal del Valle de Ecatepec, Ecatepec, Mexico
| | - Robert Winkler
- UGA-Langebio, CINVESTAV, Irapuato, Gto., Mexico,Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato, Gto., Mexico
| |
Collapse
|
15
|
Navik U, Sheth VG, Sharma N, Tikoo K. L-Methionine supplementation attenuates high-fat fructose diet-induced non-alcoholic steatohepatitis by modulating lipid metabolism, fibrosis, and inflammation in rats. Food Funct 2022; 13:4941-4953. [PMID: 35437549 DOI: 10.1039/d1fo03403k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, the protective effects of a methionine-rich diet on hepatic oxidative stress and fibrosis have been suggested but not adequately studied. We, therefore, hypothesized that L-methionine supplementation would ameliorate the progression of hepatic injury in a diet-induced non-alcoholic steatohepatitis (NASH) model and aimed to investigate the underlying mechanism. NASH was developed in male Sprague Dawley rats by feeding them with a high-fat-fructose diet (HFFrD) for 10 weeks. The results demonstrated that L-methionine supplementation to NASH rats for 16 weeks improved the glycemic, lipid, and liver function profiles in NASH rats. Histological analysis of liver tissue revealed a remarkable improvement in the three classical lesions of NASH: steatosis, inflammation, and ballooning. Besides, L-methionine supplementation ameliorated the HFFrD-induced enhanced lipogenesis and lipid peroxidation. An anti-inflammatory effect of L-methionine was also observed through the inhibition of the release of proinflammatory cytokines. Furthermore, the hepatic SIRT1/AMPK signaling pathway was associated with the beneficial effects of L-methionine. This study demonstrates that L-methionine supplementation in HFFrD-fed rats improves their liver pathology via regulation of lipogenesis, inflammation, and the SIRT1/AMPK pathway, thus encouraging its clinical evaluation for the treatment of NASH.
Collapse
Affiliation(s)
- Umashanker Navik
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India. .,Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab-151401, India
| | - Vaibhav G Sheth
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
16
|
The Association between Non-Alcoholic Fatty Liver Disease (NAFLD) and Advanced Fibrosis with Serological Vitamin B12 Markers: Results from the NHANES 1999-2004. Nutrients 2022; 14:nu14061224. [PMID: 35334881 PMCID: PMC8948655 DOI: 10.3390/nu14061224] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/31/2023] Open
Abstract
Background: There is evidence that vitamin B12 and associated metabolite levels are changed in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH); however, their association has been in dispute. Methods: We included 8397 individuals without previous liver condition or excess alcohol intake from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. NAFLD was diagnosed with Fatty Liver Index (FLI) ≥ 60 or USFLI ≥ 30, and participants with advanced fibrosis risks were identified with elevated non-alcoholic fatty liver disease fibrosis score (NFS), fibrosis 4 index (FIB-4), or aspartate aminotransferase (AST)/platelet ratio index (APRI). Step-wide logistic regression adjusting for confounders was used to detect the association between NAFLD or advanced fibrosis with serum vitamin B12, folate, red blood cell folate (RBC folate), homocysteine (HCY), and methylmalonic acid (MMA). Results: The weighted prevalence of NAFLD was 44.2%. Compared with non-NAFLD participants, patients with NAFLD showed significantly increased RBC folate level and RBC counts, decreased serum vitamin B12 and folate, and similar HCY and MMA levels. NAFLD with advanced fibrosis risk had higher MMA and HCY, reduced serum vitamin B12, and similar serum folate and RBC folate levels than NAFLD with low fibrosis risk. Only RBC folate was independently associated with an increased risk of NAFLD (OR (95% CI): 2.24 (1.58, 3.18)). In all participants, MMA (OR: 1.41 (1.10, 1.80)) and HCY (OR: 2.76 (1.49, 5.11)) were independently associated with increased risk for advanced fibrosis. In participants with NAFLD, this independent association still existed (OR: 1.39 (1.04, 1.85) for MMA and 1.95 (1.09, 3.46) for HCY). In all participants, the area under the receiver operating characteristic curve (ROC AUC) on fibrosis was 0.6829 (0.6828, 0.6831) for MMA and 0.7319 (0.7318, 0.7320) for HCY; in participants with NAFLD, the corresponding ROC AUC was 0.6819 (0.6817, 0.6821) for MMA and 0.6926 (0.6925, 0.6928) for HCY. Conclusion: Among vitamin B12-associated biomarkers, RBC folate was independently associated with elevated NAFLD risk, whereas MMA and HCY were associated with increased risk for advanced fibrosis in the total population and NAFLD participants. Our study highlighted the clinical diagnostic value of vitamin B12 metabolites and the possibility that vitamin B12 metabolism could be a therapeutic target for NASH. Further studies using recent perspective data with biopsy proven NASH could be conducted to validate our results.
Collapse
|
17
|
Wang J, You D, Wang H, Yang Y, Zhang D, Lv J, Luo S, Liao R, Ma L. Association between homocysteine and obesity: A meta-analysis. J Evid Based Med 2021; 14:208-217. [PMID: 33145936 DOI: 10.1111/jebm.12412] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 09/27/2020] [Indexed: 01/11/2023]
Abstract
According to previous studies of obesity, we found that the association between homocysteine concentrations and obesity was reported controversially. Thus, we carried out this meta-analysis to investigate this association. We searched PubMed, The Cochrane library, and EMBASE database for studies that evaluate the relationship between homocysteine concentrations and obesity from inception to March, 2019. The quality of all included studies was assessed by the Newcastle Ottawa Scale (NOS) and the Agency for Healthcare Research Quality (AHRQ). The RevMan5.3 software and Stata12.0 software were used for conducting all data analyses. Standardized mean differences (SMD) with the corresponding 95% confidence intervals (95% CIs) were used as a measure of effect size to assess the relationship between homocysteine concentrations and obesity through a meta-analysis. The level of significance was set at P < .05. A total of 14 studies were ultimately included in our meta-analysis. Meta-analysis of the 14 studies found remarkable lower homocysteine concentrations in controls than in obese patients (SMD = 0.76, 95% CI = 0.25-1.27, P < .01; I2 = 94% and P < .01 for heterogeneity), regardless of nutritional status, dietary habit, insulin resistance (IR) status, special disease history, history of medicine taken, genetic background, and so on. Homocysteine concentrations in nonobese patients with polycystic ovarian syndrome (PCOS) were lower than obese patients with PCOS (SMD = 0.48, 95% CI = 0.20-0.77, P < .01; I2 = 39% and P = .18 for heterogeneity). The result of our meta-analysis showed that homocysteine concentrations were significantly elevated among obese patients.
Collapse
Affiliation(s)
- Jinxiang Wang
- Department of Digestive Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Dingyun You
- Department of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Huaping Wang
- University Library, Kunming Medical University, Kunming, Yunnan, China
| | - Yanhong Yang
- Department of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zhang
- Department of Digestive Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Junyan Lv
- Department of Digestive Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Sufeng Luo
- Department of Digestive Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Rui Liao
- University Library, Kunming Medical University, Kunming, Yunnan, China
| | - Lanqing Ma
- Department of Digestive Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Costa DS, Guahnon MP, Seganfredo FB, Pinto LP, Tovo CV, Fernandes SA. VITAMIN B12 AND HOMOCYSTEINE LEVELS IN PATIENTS WITH NAFLD: A SYSTEMATIC REVIEW AND METANALYSIS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:234-239. [PMID: 34287533 DOI: 10.1590/s0004-2803.202100000-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The vitamin B12 absorption can be affected in patients with nonalcoholic fatty liver disease (NAFLD), and low serum vitamin B12 levels has been related to the high homocysteine (HCY) levels and to the degree of NAFLD. OBJECTIVE To carry out a systematic review and metanalysis of serum vitamin B12 and HCY levels in patients with NAFLD. METHODS Original studies including serum vitamin B12 and HCY levels in humans with NAFLD were included. The searches were performed in four databases. RESULTS 159 studies were identified, and after excluding the duplicates and non-eligible titles, eight original articles were included. Six out of eight showed higher B12 levels in NAFLD patients (404.9±136.2 pg/mL in relation to controls 353.91±117.3 pg/mL). Seven of the eight studies also showed higher HCY levels in NAFLD patients (14.2±3.44 umol/L in relation to controls 11.05±3.6 umol/L). The results for serum vitamin B12 and HCY levels were submitted to metanalysis, showing no difference in the vitamin B12 levels between patients with NAFLD and controls. However, the levels of Hcy were higher in NAFLD patients than in controls. CONCLUSION There was no relashionship between the vitamin B12 levels and NAFLD. The levels of HCY were significantly higher in patients with NAFLD, suggesting this could be a potential marker for liver damage.
Collapse
Affiliation(s)
| | | | | | - Letícia P Pinto
- Centro Universitário Metodista IPA, Porto Alegre, RS, Brasil
| | - Cristiane V Tovo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | | |
Collapse
|
19
|
Ramadan MS, Russo V, Nigro G, Durante-Mangoni E, Zampino R. Interplay between Heart Disease and Metabolic Steatosis: A Contemporary Perspective. J Clin Med 2021; 10:jcm10081569. [PMID: 33917867 PMCID: PMC8068259 DOI: 10.3390/jcm10081569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
The liver-heart axis is a growing field of interest owing to rising evidence of complex bidirectional interplay between the two organs. Recent data suggest non-alcoholic fatty liver disease (NAFLD) has a significant, independent association with a wide spectrum of structural and functional cardiac diseases, and seems to worsen cardiovascular disease (CVD) prognosis. Conversely, the effect of cardiac disease on NAFLD is not well studied and data are mostly limited to cardiogenic liver disease. We believe it is important to further investigate the heart-liver relationship because of the tremendous global health and economic burden the two diseases pose, and the impact of such investigations on clinical decision making and management guidelines for both diseases. In this review, we summarize the current knowledge on NAFLD diagnosis, its systemic manifestations, and associations with CVD. More specifically, we review the pathophysiological mechanisms that govern the interplay between NAFLD and CVD and evaluate the relationship between different CVD treatments and NAFLD progression.
Collapse
Affiliation(s)
- Mohammad Said Ramadan
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Vincenzo Russo
- Department of Translational Medical Sciences, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy; (V.R.); (G.N.)
- Cardiology Unit, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Gerardo Nigro
- Department of Translational Medical Sciences, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy; (V.R.); (G.N.)
- Cardiology Unit, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Infectious and Transplant Medicine Unit, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy;
- Correspondence:
| | - Rosa Zampino
- Infectious and Transplant Medicine Unit, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
20
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
21
|
Bagherieh M, Kheirollahi A, Zamani-Garmsiri F, Emamgholipour S, Meshkani R. Folic acid ameliorates palmitate-induced inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells. Arch Physiol Biochem 2021:1-8. [PMID: 33596128 DOI: 10.1080/13813455.2021.1878539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Prevention of inflammation is one of the possible remedy procedure for steatohepatitis during NAFLD. In this study, we researched the folic acid (FA) potency to attenuate the inflammation of palmitate-treated HepG2 cells and the related signalling pathways. METHODS The molecular mechanisms related to FA anti-inflammatory effect in palmitate and Hcy-treated HepG2 cell line were assessed. RESULTS The results indicated that while palmitate enhances the expression and secretion of TNF-α, IL-6, and IL-1β, and also intracellular ROS level, FA at concentrations of 25, 50, and 75 µg/mL significantly reversed these effects in HepG2 cells. In addition, FA could ameliorate inflammation and decrease ROS production induced by Hcy. Furthermore, FA pre-treatment suppress palmitate -induced (NF-κB) p65 level in palmitate or Hcy stimulated cells. CONCLUSIONS Overall, these results suggest that FA reduces inflammation in HepG2 cells through decreasing ROS and Hcy concentration level resulting in inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Molood Bagherieh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kobayashi T, Kessoku T, Ozaki A, Iwaki M, Honda Y, Ogawa Y, Imajo K, Yoneda M, Saito S, Nakajima A. Vitamin B6 efficacy in the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, single-center trial. J Clin Biochem Nutr 2021; 68:181-186. [PMID: 33879971 DOI: 10.3164/jcbn.20-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vitamin B6 is an important cofactor in fat metabolism and its deficiency has been correlated with nonalcoholic fatty liver disease. However, no study has investigated the efficacy of vitamin B6 supplementation in these patients. The aim of this open-label, single-arm, single-center study was to examine the therapeutic effect of vitamin B6 in patients with nonalcoholic fatty liver disease. Twenty-two patients with nonalcoholic fatty liver disease received vitamin B6 (90 mg/day) orally for 12 weeks. Clinical parameters were evaluated, and liver fat and fibrosis were quantified before and after treatment using magnetic resonance imaging-based proton density fat fraction and magnetic resonance elastography. Serum alanine aminotransferase levels, the primary endpoint, did not change significantly after vitamin B6 treatment (93.6 ± 46.9 to 93.9 ± 46.6, p = 0.976). On the other hand, magnetic resonance imaging-based proton density fat fraction, a parameter of hepatic lipid accumulation, was significantly reduced (18.7 ± 6.1 to 16.4 ± 6.4, p<0.001) despite no significant changes in body mass index, even in those not taking vitamin E (n = 17, 18.8 ± 6.9 to 16.7 ± 7.3, p = 0.0012). Vitamin B6 administration significantly ameliorated hepatic fat accumulation. As an inexpensive agent with few side effects, vitamin B6 could be a novel therapeutic agent for the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
23
|
Sun HJ, Wu ZY, Nie XW, Bian JS. The Role of H 2S in the Metabolism of Glucose and Lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:51-66. [PMID: 34302688 DOI: 10.1007/978-981-16-0991-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucose and lipids are essential elements for maintaining the body's homeostasis, and their dysfunction may participate in the pathologies of various diseases, particularly diabetes, obesity, metabolic syndrome, cardiovascular ailments, and cancers. Among numerous endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays a central role in the maintenance of glucose and lipid homeostasis. Current evidence from both pharmacological studies and transgenic animal models suggest a complex relationship between H2S and metabolic dysregulation, especially in diabetes and obesity. This notion is achieved through tissue-specific expressions and actions of H2S on target metabolic and hormone organs including the pancreas, skeletal muscle, livers, and adipose. In this chapter, we will summarize the roles and mechanisms of H2S in several metabolic organs/tissues that are necessary for glucose and lipid metabolic homeostasis. In addition, future research directions and valuable therapeutic avenues around the pharmacological regulation of H2S in glycolipid metabolism disorder will be also discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University of Singapore (Suzhou) Research Institute, Suzhou, China.
| |
Collapse
|
24
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
25
|
Xiang T, Xiang H, Yan M, Yu S, Horwedel MJ, Li Y, Zeng Q. Systemic risk factors correlated with hyperhomocysteinemia for specific MTHFR C677T genotypes and sex in the Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1455. [PMID: 33313200 PMCID: PMC7723589 DOI: 10.21037/atm-20-6587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Methyltetrahydrofolate reductase (MTHFR) is a main regulatory enzyme in homocysteine (Hcy) metabolism. A common C677T mutation in the MTHFR gene results in decreased enzyme activity, which contributes to hyperhomocysteinemia (HHcy). Previous studies have shown that HHcy was correlated with various systemic diseases, such as cardiovascular disease, stroke, cancer, renal failure and so on. However, we hypothesized that HHcy in different genotype and sex groups may have different risk factors, which would lead to various pathologic states. Therefore, the aim of this study was to explore systemic information that are correlated with HHcy for specific MTHFR C677T genotypes and sex, which might be useful for predicting and preventing systemic diseases. Methods This cross-sectional study was performed through November 2017 to July 2019. A total of 4,534 adults aged 20–75 y were selected for this study. All the participants underwent a physical examination, blood tests and MTHFRC677T genotyping. Multivariable linear regression was performed to explore the risk factors for HHcy for each sex and genotype. Results The average of Hcy level is higher in the TT genotype than CC and CT genotypes (P=0.000). Multiple linear regression analysis identified the common protective factors (folate and Vit B12) and risk factor (Cr) for HHcy. Besides that, each group has its specific risk factors—female-CT (age, SBP, and Hb), female-TT (SBP and AST); male-CC (age, AST and Hb), male-CT (age and AST) and male-TT (SBP, AST, and Hb). Conclusions HHcy was associated with different risk factors for each specific sex and genotype. These risk factors might be useful for predicting and preventing systemic diseases.
Collapse
Affiliation(s)
- Tianyuan Xiang
- China Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
| | - Hang Xiang
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA.,Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric-Oxygen, Chinese PLA General Hospital, Beijing, China
| | - Sheng Yu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Matthew John Horwedel
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Zeng
- China Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Yan Y, Wu X, Wang P, Zhang S, Sun L, Zhao Y, Zeng G, Liu B, Xu G, Liu H, Wang L, Wang X, Jiang C. Homocysteine promotes hepatic steatosis by activating the adipocyte lipolysis in a HIF1α-ERO1α-dependent oxidative stress manner. Redox Biol 2020; 37:101742. [PMID: 33045621 PMCID: PMC7559542 DOI: 10.1016/j.redox.2020.101742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is related to liver diseases, such as nonalcoholic fatty liver (NAFL). Although the precise pathogenesis of NAFL is still largely unknown, the links between organs seem to play a vital role. The current study aimed to explore the role of white adipose tissue in homocysteine (Hcy)-induced NAFL. Blood samples from nonhyperhomocysteinemia or hyperhomocysteinemia individuals were collected to assess correlation between Hcy and triglyceride (TG) or free fatty acids (FFAs) levels. C57BL/6 mice were maintained on a high-methionine diet or administered with Hcy (1.8 g/L) in the drinking water to establish an HHcy mouse model. We demonstrated that Hcy activated adipocyte lipolysis and that this change was accompanied by an increased release of FFAs and glycerol. Excessive FFAs were taken up by hepatocyte, which resulted in lipid accumulation in the liver. Treatment with acipimox (0.08 g kg −1 day −1), a potent chemical inhibitor of lipolysis, markedly decreased Hcy-induced NAFL. Mechanistically, hypoxia-inducible factor 1α (HIF1α)-endoplasmic reticulum oxidoreductin 1α (ERO1α) mediated pathway promoted H2O2 accumulation and induced endoplasmic reticulum (ER) overoxidation, ER stress and more closed ER-lipid droplet interactions, which were responsible for activating the lipolytic response. In conclusion, this study reveals that Hcy activates adipocyte lipolysis and suggests the potential utility of targeted ER redox homeostasis for treating Hcy-induced NAFL. Hcy elevates adipocyte lipolysis process. Inhibition of adipocyte lipolysis via acipimox improves the Hcy-induced nonalcoholic fatty liver. Adipocyte lipolytic response relies on ERO1α-mediated oxidative stress. Activation of adipocyte HIF1α mediates ERO1α upregulation. Deficiency of adipocyte HIF1α alleviates the Hcy-induced lipolytic response and nonalcoholic fatty liver.
Collapse
Affiliation(s)
- Yu Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Songyang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, PR China
| | - GuangYi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, PR China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, 100191, PR China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
27
|
Non-alcoholic fatty liver disease and neurological defects. Ann Hepatol 2020; 18:563-570. [PMID: 31080056 DOI: 10.1016/j.aohep.2019.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) can be considered one of the most common causes of liver disease in our days and is regarded as one of the newest vascular risk factors for cerebrovascular and other neurological diseases. MATERIALS AND METHODS We studied a group of neurological outpatients, divided into two homogenous groups based on the presence or absence of NAFLD. RESULTS AND CONCLUSIONS We testified an independent relationship between NAFLD and common vascular risk factors (age, sex, educational level, BMI, cholesterol and lipid assessment, Hb1ac). At the same time, we ascertained an independent relationship between NAFLD and more recently recognized vascular risk factors, such as lack of folate, vitamin B12 and vitamin D-OH25, and increased levels of homocysteine. Finally, we have documented that NAFLD showed worse executive and frontal functions, and behavioral changes, such as depressive mood and anxiety, and apathy.
Collapse
|
28
|
De Vincentis A, Mancina RM, Pihlajamäki J, Männistö V, Petta S, Dongiovanni P, Fracanzani AL, Valenti L, Tavaglione F, Romeo S, Vespasiani-Gentilucci U. Genetic variants in the MTHFR are not associated with fatty liver disease. Liver Int 2020; 40:1934-1940. [PMID: 32460399 DOI: 10.1111/liv.14543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
The common missense sequence variants of methylenetetrahydrofolate reductase (MTHFR), rs1801131 (c.A1298C) and rs1801133 (c.C677T), favour the development of hyperhomocysteinemia and diminished DNA methylation. Previous studies, carried out in small series and with suboptimal characterization of the hepatic phenotype, tested the association of these genetic variants with fatty liver disease (FLD), with conflicting results. Here, we assessed the association of rs1801131 and rs1801133 with hepatic phenotype in the Liver Biopsy Cross-Sectional Cohort, a large cohort (n=1375 from Italy and 411 from Finland) of European individuals with suspect FLD associated with dysmetabolism. A total of 1786 subjects were analysed by ordinal regression analyses. The rs1801131 and the rs1801133 variants were not associated with steatosis, inflammation, ballooning or fibrosis. The present study suggests that changes in folate and methionine metabolism resulting from these 2 variants are not associated with a clinically significant impact on FLD in Europeans.
Collapse
Affiliation(s)
- Antonio De Vincentis
- Department of Internal Medicine and Geriatrics, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Jussi Pihlajamäki
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland.,Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Salvatore Petta
- Department of Gastroenterology, Università di Palermo, Palermo, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Tavaglione
- Department of Internal Medicine and Geriatrics, University Campus Bio-Medico of Rome, Rome, Italy.,Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
29
|
Review of Serum Biomarkers and Models Derived from Them in HBV-Related Liver Diseases. DISEASE MARKERS 2020; 2020:2471252. [PMID: 32774512 PMCID: PMC7391085 DOI: 10.1155/2020/2471252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
A series of predictive scoring systems is available for stratifying the severity of conditions and assessing the prognosis in patients with HBV-related liver diseases. We show nine of the most popular serum biomarkers and their models (i.e., serum cystatin C, homocysteine, C-reactive protein, C-reactive protein to albumin ratio, aspartate aminotransferase to platelet ratio index, fibrosis index based on four factors, gamma-glutamyl transpeptidase to platelet ratio, albumin-bilirubin score, and gamma-glutamyl transpeptidase to albumin ratio) that have gained great interest from clinicians. Compared with traditional scoring systems, these serum biomarkers and their models are easily acquired, simple, and relatively inexpensive. In the present review, we summarize the latest studies focused on these serum biomarkers and their models as diagnostic and prognostic indexes in HBV-related liver diseases.
Collapse
|
30
|
Bertol FS, Araujo B, Jorge BB, Rinaldi N, De Carli LA, Tovo CV. Role of micronutrients in staging of nonalcoholic fatty liver disease: A retrospective cross-sectional study. World J Gastrointest Surg 2020; 12:269-276. [PMID: 32774765 PMCID: PMC7385512 DOI: 10.4240/wjgs.v12.i6.269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/10/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) presents high incidence throughout the world and has been progressively increasing in prevalence. This disease has a heterogeneous natural history, including simple steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. The factors that determine its evolution to more severe forms of the disease are still poorly understood, and micronutrients with antioxidant potential may be involved in the pathophysiology of the disease.
AIM To evaluate the relationship between serum levels of micronutrients and the severity of NAFLD.
METHODS A retrospective, observational and cross-sectional study was conducted. This study included all patients undergoing bariatric surgery who experienced liver biopsy during the procedure, and had serum levels of micronutrients (vitamin D, vitamin B12, zinc, iron, and magnesium), which was assessed in a preoperative evaluation conducted at a reference center in southern Brazil.
RESULTS A total of 614 patients were analyzed, of which 93% had steatosis, 70.7% had NASH, and 49.3% had some degree of fibrosis. Serum levels of vitamin D were negatively correlated with the severity of steatosis and NASH, and serum levels of vitamin B12 were positively correlated with the severity of steatosis and fibrosis. The other micronutrients showed no association with NAFLD staging.
CONCLUSION Serum levels of vitamin D are inversely related to the severity of steatosis and NASH, and serum levels of vitamin B12 are higher in more advanced stages of simple steatosis and liver fibrosis. Serum levels of zinc, iron, and magnesium were not associated with NAFLD severity.
Collapse
Affiliation(s)
- Franciele Sabadin Bertol
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| | - Bruna Araujo
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| | - Brunno Brochado Jorge
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| | - Natalino Rinaldi
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| | - Luiz Alberto De Carli
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| | - Cristiane Valle Tovo
- Graduate Program of Medicine, Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90430080, Brazil
| |
Collapse
|
31
|
Bisaccia G, Ricci F, Mantini C, Tana C, Romani GL, Schiavone C, Gallina S. Nonalcoholic fatty liver disease and cardiovascular disease phenotypes. SAGE Open Med 2020; 8:2050312120933804. [PMID: 32612827 PMCID: PMC7307287 DOI: 10.1177/2050312120933804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease is increasingly recognized as a major global health problem. Intertwined with diabetes, metabolic syndrome, and obesity, nonalcoholic fatty liver disease embraces a spectrum of liver conditions spanning from steatosis to inflammation, fibrosis, and liver failure. Compared with the general population, the prevalence of cardiovascular disease is higher among nonalcoholic fatty liver disease patients, in whom comprehensive cardiovascular risk assessment is highly desirable. Preclinical effects of nonalcoholic fatty liver disease on the heart include both metabolic and structural changes eventually preceding overt myocardial dysfunction. Particularly, nonalcoholic fatty liver disease is associated with enhanced atherosclerosis, heart muscle disease, valvular heart disease, and arrhythmias, with endothelial dysfunction, inflammation, metabolic dysregulation, and oxidative stress playing in the background. In this topical review, we aimed to summarize current evidence on the epidemiology of nonalcoholic fatty liver disease, discuss the pathophysiological links between nonalcoholic fatty liver disease and cardiovascular disease, illustrate nonalcoholic fatty liver disease-related cardiovascular phenotypes, and finally provide a glimpse on the relationship between nonalcoholic fatty liver disease and cardiac steatosis, mitochondrial (dys)function, and cardiovascular autonomic dysfunction.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Claudio Tana
- Internal Medicine and Critical Subacute Care Unit, Medicine Geriatric-Rehabilitation Department, and Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Cosima Schiavone
- Department of Internistic Ultrasound, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
32
|
Shabangu CS, Huang JF, Hsiao HH, Yu ML, Chuang WL, Wang SC. Liquid Biopsy for the Diagnosis of Viral Hepatitis, Fatty Liver Steatosis, and Alcoholic Liver Diseases. Int J Mol Sci 2020; 21:3732. [PMID: 32466319 PMCID: PMC7279404 DOI: 10.3390/ijms21103732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
During the progression from hepatitis to fibrosis, cirrhosis, and liver failure, the accumulation of stressed/damaged hepatocyte elements associated with liver inflammation is critical. The causes of hepatocyte injuries include viral hepatitis infections, alcoholic hepatitis, and non-alcoholic fatty liver disease. Hepatocyte-derived extracellular vesicles (Hep-EVs) released from stressed/damaged hepatocytes are partly responsible for liver disease progression and liver damage because they activate non-parenchymal cells and infiltrate inflammatory cells within the liver, which are in turn are an important source of EVs. This cell-to-cell signaling is prevalent during inflammation in many liver diseases. Accordingly, special emphasis should be placed on liquid biopsy methods for the long-term monitoring of chronic liver diseases. In the present review, we have highlighted various aspects of current liquid biopsy research into chronic liver diseases. We have also reviewed recent progress on liquid biopsies that focus on cell-free DNA (cfDNA), long non-coding RNA (lncRNA), and the proteins in EVs as potential diagnostic tools and novel therapeutic targets in patients with viral hepatitis, fatty liver steatosis, and alcoholic liver diseases.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
| | - Jee-Fu Huang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hui-Hua Hsiao
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Lung Yu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| |
Collapse
|
33
|
Lai Z, Chen J, Ding C, Wong K, Chen X, Pu L, Huang Q, Chen X, Cheng Z, Liu Y, Tan X, Zhu H, Wang L. Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity (Silver Spring) 2020; 28:197-205. [PMID: 31785086 DOI: 10.1002/oby.22667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Clinical relevance of global DNA methylation and one-carbon metabolite levels with histological severity remains uncertain in patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to evaluate hepatic global DNA methylation and serum one-carbon metabolite concentrations in patients with NAFLD and the possible associations of these parameters with liver histology. METHODS Liver biopsies from 18 control participants and 47 patients with NAFLD were evaluated. RESULTS The hepatic global DNA methylation level was significantly lower in the NAFLD group than in the control group among participants with overweight. Participants with moderate inflammation and mild fibrosis had significantly lower levels of global DNA methylation than those without these characteristics. Participants with borderline nonalcoholic steatohepatitis had significantly lower global DNA methylation levels than controls. The hepatic global DNA methylation level tended to decrease with the increasing hepatic inflammation grade and disease progression. The NAFLD group had a significantly higher serum homocysteine concentration than the control group among participants with overweight. This level tended to increase with increasing hepatic steatosis grade and disease progression. CONCLUSIONS Patients with NAFLD exhibited lower hepatic levels of global DNA methylation and elevated serum homocysteine concentrations, which are associated with the histological severity of NAFLD.
Collapse
Affiliation(s)
- Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Junliang Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Kwanshu Wong
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xingyi Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Liuzhen Pu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiangwei Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xiaolin Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Zijian Cheng
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yan Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Xuying Tan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Abstract
Aim of the study To evaluate the prevalence and the type of liver pathology in children at the time of diagnosis of celiac disease (CD). Material and methods Data from newly diagnosed children with CD hospitalized in the university hospital were retrospectively reviewed. Liver pathology was defined as elevated alanine transaminase (ALT) and/or gamma-glutamyl transpeptidase (GGT) serum activity and/or pathological changes of the organ in ultrasound. Results Liver pathology was detected in 17 of 149 children (11.4%). Ten patients (6.7%) had an elevated ALT serum activity, whereas no child had an elevated GGT activity. Pathological changes of liver in ultrasound (mainly enlargement or steatosis of the organ) were found in 12 patients (8.1%), of whom 5 children (3.4%) had simultaneously elevated ALT serum activity. Children with liver pathology had lower iron (Fe) (p = 0.02) and folic acid (p = 0.01) concentrations compared to the rest of the patients. There were no statistically significant differences between liver pathology existence and age, sex, serum immunoglobulin A anti-tissue transglutaminase type 2 antibodies (IgA anti-TG2), ferritin, vitamin B12, or vitamin D concentrations. Moreover, a positive correlation between IgA anti-TG2 concentration and ALT serum activity was found (p < 0.01, R = 0.29). Conclusions Liver pathology is present at diagnosis in a significant proportion of children with CD in the form of hypertransaminasemia and pathological changes of the organ in ultrasound. There is a correlation between IgA anti-TG2 concentration and ALT serum activity.
Collapse
|
35
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
36
|
Yao L, Cao B, Cheng Q, Cai W, Ye C, Liang J, Liu W, Tan L, Yan M, Li B, He J, Hwang SH, Zhang X, Wang C, Ai D, Hammock BD, Zhu Y. Inhibition of soluble epoxide hydrolase ameliorates hyperhomocysteinemia-induced hepatic steatosis by enhancing β-oxidation of fatty acid in mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G527-G538. [PMID: 30789748 PMCID: PMC6483021 DOI: 10.1152/ajpgi.00148.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg·kg-1·day-1 for the animal model and 1 μM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-α (PPAR-α), as evidenced by elevated β-oxidation of fatty acids and the expression of PPAR-α target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-α activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-α. Of note, 11,12-EET ligand dependently activated PPAR-α. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-α was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Liu Yao
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Boyang Cao
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qian Cheng
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenbin Cai
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenli Liu
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Lu Tan
- 2Department of Laboratory Animal Science and Technology, Tianjin Medical University, Tianjin, China
| | - Meng Yan
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Bochuan Li
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Sung Hee Hwang
- 3Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center, Davis, California
| | - Xu Zhang
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Bruce D. Hammock
- 3Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center, Davis, California
| | - Yi Zhu
- 1Tianjin Key Laboratory of Metabolic Diseases; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Xia MF, Bian H, Zhu XP, Yan HM, Chang XX, Zhang LS, Lin HD, Hu XQ, Gao X. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin Nutr 2018; 37:1752-1758. [DOI: 10.1016/j.clnu.2017.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
|
38
|
Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLoS One 2018; 13:e0202524. [PMID: 30138348 PMCID: PMC6107166 DOI: 10.1371/journal.pone.0202524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient's samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes' expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements-Env, Nef, and Tat-Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms-directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.
Collapse
|
39
|
Cueto R, Zhang L, Shan HM, Huang X, Li X, Li YF, Lopez J, Yang WY, Lavallee M, Yu C, Ji Y, Yang X, Wang H. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - Novel hypothesis establishment. Redox Biol 2018; 17:70-88. [PMID: 29679893 PMCID: PMC6006524 DOI: 10.1016/j.redox.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) which has been implicated in matochondrial (Mt) function impairment. In this study, we characterized Hcy metabolism in mouse tissues by using LC-ESI-MS/MS analysis, established tissue expression profiles for 84 nuclear-encoded Mt electron transport chain complex (nMt-ETC-Com) genes in 20 human and 19 mouse tissues by database mining, and modeled the effect of HHcy on Mt-ETC function. Hcy levels were high in mouse kidney/lung/spleen/liver (24-14 nmol/g tissue) but low in brain/heart (~5 nmol/g). S-adenosylhomocysteine (SAH) levels were high in the liver/kidney (59-33 nmol/g), moderate in lung/heart/brain (7-4 nmol/g) and low in spleen (1 nmol/g). S-adenosylmethionine (SAM) was comparable in all tissues (42-18 nmol/g). SAM/SAH ratio was as high as 25.6 in the spleen but much lower in the heart/lung/brain/kidney/liver (7-0.6). The nMt-ETC-Com genes were highly expressed in muscle/pituitary gland/heart/BM in humans and in lymph node/heart/pancreas/brain in mice. We identified 15 Hcy-suppressive nMt-ETC-Com genes whose mRNA levels were negatively correlated with tissue Hcy levels, including 11 complex-I, one complex-IV and two complex-V genes. Among the 11 Hcy-suppressive complex-I genes, 4 are complex-I core subunits. Based on the pattern of tissue expression of these genes, we classified tissues into three tiers (high/mid/low-Hcy responsive), and defined heart/eye/pancreas/brain/kidney/liver/testis/embryonic tissues as tier 1 (high-Hcy responsive) tissues in both human and mice. Furthermore, through extensive literature mining, we found that most of the Hcy-suppressive nMt-ETC-Com genes were suppressed in HHcy conditions and related with Mt complex assembly/activity impairment in human disease and experimental models. We hypothesize that HHcy inhibits Mt complex I gene expression leading to Mt dysfunction.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Lixiao Zhang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Min Shan
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Huang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xinyuan Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Ya-Feng Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Jahaira Lopez
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Catherine Yu
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; The Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Verhaegh P, Bavalia R, Winkens B, Masclee A, Jonkers D, Koek G. Noninvasive Tests Do Not Accurately Differentiate Nonalcoholic Steatohepatitis From Simple Steatosis: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2018; 16:837-861. [PMID: 28838784 DOI: 10.1016/j.cgh.2017.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is a rapidly increasing health problem. Liver biopsy analysis is the most sensitive test to differentiate between nonalcoholic steatohepatitis (NASH) and simple steatosis (SS), but noninvasive methods are needed. We performed a systematic review and meta-analysis of noninvasive tests for differentiating NASH from SS, focusing on blood markers. METHODS We performed a systematic search of the PubMed, Medline and Embase (1990-2016) databases using defined keywords, limited to full-text papers in English and human adults, and identified 2608 articles. Two independent reviewers screened the articles and identified 122 eligible articles that used liver biopsy as reference standard. If at least 2 studies were available, pooled sensitivity (sensp) and specificity (specp) values were determined using the Meta-Analysis Package for R (metafor). RESULTS In the 122 studies analyzed, 219 different blood markers (107 single markers and 112 scoring systems) were identified to differentiate NASH from simple steatosis, and 22 other diagnostic tests were studied. Markers identified related to several pathophysiological mechanisms. The markers analyzed in the largest proportions of studies were alanine aminotransferase (sensp, 63.5% and specp, 74.4%) within routine biochemical tests, adiponectin (sensp, 72.0% and specp, 75.7%) within inflammatory markers, CK18-M30 (sensp, 68.4% and specp, 74.2%) within markers of cell death or proliferation and homeostatic model assessment of insulin resistance (sensp, 69.0% and specp, 72.7%) within the metabolic markers. Two scoring systems could also be pooled: the NASH test (differentiated NASH from borderline NASH plus simple steatosis with 22.9% sensp and 95.3% specp) and the GlycoNASH test (67.1% sensp and 63.8% specp). CONCLUSION In the meta-analysis, we found no test to differentiate NASH from SS with a high level of pooled sensitivity and specificity (≥80%). However, some blood markers, when included in scoring systems in single studies, identified patients with NASH with ≥80% sensitivity and specificity. Replication studies and more standardized study designs are urgently needed. At present, no marker or scoring system can be recommended for use in clinical practice to differentiate NASH from simple steatosis.
Collapse
Affiliation(s)
- Pauline Verhaegh
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Roisin Bavalia
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistic, School for Public Health and Primary Care (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Ad Masclee
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Daisy Jonkers
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ger Koek
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Folate and B12 Levels Correlate with Histological Severity in NASH Patients. Nutrients 2018; 10:nu10040440. [PMID: 29614799 PMCID: PMC5946225 DOI: 10.3390/nu10040440] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background: The correlation between abnormal vitamin serum levels and chronic liver disease has been previously described in literature. However, the association between the severity of folate serum levels (B9), vitamin B12 and nonalcoholic steatohepatitis (NASH) has not been widely evaluated. Therefore, the aim of this study was to investigate the existence of such a correlation in a cohort of NASH patients. Methods: All patients aged 18 years and older who were diagnosed with biopsy-proven NASH at the EMMS hospital in Nazareth during the years 2015–2017 were enrolled in this study. Data regarding demographic, clinical and laboratory parameters was collected. Patients with other liver diseases were excluded. Results: Eighty-three NASH patients were enrolled during the study period. The mean age was 41 ± 11 years and the majority of patients were male. Mean values of folate and B12 were 9.85 ± 10.90 ng/mL and 387.53 ± 205.50 pg/mL, respectively. Half of the patients were presented with a grade 1 steatosis (43.4%), a grade 2 fibrosis (50.6%) and a grade 3 activity score (55.4%). The fibrosis grade was significantly correlated with low folate levels on multivariate analysis (p-value < 0.01). Similarly, low B12 levels were significantly associated with a higher fibrosis grade and NASH activity (p-value < 0.001 and p-value < 0.05 respectively). Conclusion: Our study demonstrated a statistically significant correlation between low levels of folate and vitamin B12 with the histological severity of NASH. These findings could have diagnostic and therapeutic implications for patient management and follow-up.
Collapse
|
42
|
Severity of nonalcoholic fatty liver disease is associated with subclinical cerebro-cardiovascular atherosclerosis risk in Korean men. PLoS One 2018; 13:e0193191. [PMID: 29565984 PMCID: PMC5863945 DOI: 10.1371/journal.pone.0193191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND No studies have reported the relationship between nonalcoholic fatty liver disease (NAFLD) and concurrent cerebral artery and coronary artery atherosclerosis simultaneously. We aimed at determining whether NAFLD, as assessed by ultrasound, is associated with subclinical cerebro-cardio vascular atherosclerosis (CCVA) by multidetector-row computed tomography (MDCT), and high resolution-magnetic resonance angiography (HR-MRA). This cross-sectional study included men in the general Korean population aged 20-70 years. RESULTS A total of 1,652 men participated in the study (normal, n = 835; mild-to-moderate NAFLD, n = 512; severe NAFLD, n = 305). The risk of subclinical CCVA was positively associated with age (odds ratio [OR] 1.068; 1.054-1.081, p < 0.001), body mass index (OR 1.120; 1.08 0-1.162, p < 0.001), hepatic enzyme levels (OR 1.012; 1.001-1.023, p = 0.027; OR 1.006; 1.001-1.012, p = 0.036), fasting glucose (OR 1.021; 1.015-1.027, p < 0.001), triglycerides (OR 1.002; 1.000-1.003, p = 0.016), hypertension (OR 2.836; 2.268-3.546, p < 0.001), and diabetes (OR 2.911; 2.137-3.964, p < 0.001). Also, high-density lipoprotein cholesterol was inversely associated with subclinical CCVA (OR 0.974; 0.965-0.982, p < 0.001). Compared with normal controls, the OR for subclinical CCVA after full adjustment was 1.46 in the mild-to-moderate NAFLD group (95% confidence interval [CI]: 1.10 to 1.93) and 2.04 in the severe NAFLD group (95% CI: 1.44 to 2.89). CONCLUSIONS Our data show that NAFLD is common among Korean men, and NAFLD severity on ultrasonography is associated with subclinical CCVA, as assessed by MDCT, and HR-MRA.
Collapse
|
43
|
Dong YQ, Zhang XZ, Sun LL, Zhang SY, Liu B, Liu HY, Wang X, Jiang CT. Omega-3 PUFA ameliorates hyperhomocysteinemia-induced hepatic steatosis in mice by inhibiting hepatic ceramide synthesis. Acta Pharmacol Sin 2017; 38:1601-1610. [PMID: 28933423 DOI: 10.1038/aps.2017.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a key risk factor in hepatic steatosis. In this study, we applied a metabolomic approach to investigate the changes in the metabolite profile due to HHcy-induced hepatic steatosis and the effects of omega-3 PUFA (polyunsaturated fatty acid) supplementation in mice. HHcy was induced in mice by giving DL-Hcy (1.8 g/L) in drinking water for 6 weeks, then the mice were sacrificed, and the metabolic profiles of the liver and plasma were analyzed through UPLC-ESI-QTOFMS-based lipidomics. Hepatic triglycerides and cholesterol were further assayed. The expression of ceramide metabolism-related genes was measured by quantitative PCR. Compared with control mice, HHcy mice exhibited hepatic steatosis with a notable increase in ceramide-related metabolites and subsequent upregulation of ceramide synthesis genes such as Sptlc3, Degs2, Cer4 and Smpd4. Omega-3 PUFA was simultaneously administered in HHcy mice through chow diet containing 3.3% omega-3 PUFA supplement for 6 weeks, which significantly ameliorated Hcy-induced hepatic steatosis. The decrease in hepatic lipid accumulation was mainly due to reduced hepatic levels of ceramides, which was partly the result of the lower expression of ceramide synthesis genes, Sptlc3 and Degs2. Similar beneficial effects of DHA were observed in Hcy-stimulated primary hepatocytes in vitro. In summary, Hcy-induced ceramide elevation in hepatocytes might contribute to the development of hepatic steatosis. Furthermore, downregulation of ceramide levels through omega-3 PUFA supplementation ameliorates hepatic lipid accumulation. Thus, ceramide is a potential therapeutic target for the treatment of hepatic steatosis.
Collapse
|
44
|
Medvedev DV, Zvyagina VI, Uryasev OM, Belskikh ES, Bulatetskiy SV, Ryabkov AN. [Metabolic changes in pulmonary mitochondria of rats with experimental hyperhomocysteinemia]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:248-254. [PMID: 28781258 DOI: 10.18097/pbmc20176303248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperhomocysteinemia is a risk factor for many human diseases, including pulmonary pathologies. In this context much interest attracts secondary mitochondrial dysfunction, which is an important link in pathogenesis of diseases associated with hyperhomocysteinemia. The study was conducted using male Wistar rats. It was found that under conditions of severe hyperhomocysteinemia caused by administration of methionine, homocysteine was accumulated in lung mitochondria thus suggesting a direct toxic effect on these organelles. However, we have not observed any significant changes in the activity of mitochondrial enzymes involved in tissue respiration (succinate dehydrogenase) and oxidative phosphorylation (H+-ATPase) and of cytoplasmic lactate dehydrogenase. Also there was no accumulation of lactic acid in the cytoplasm. Animals with severe hyperhomocysteinemia had higher levels of lung mitochondrial protein carbonylation, decreased reserve-adaptive capacity, and increased superoxide dismutase activity. These results indicate that severe hyperhomocysteinemia causes development of oxidative stress in lung mitochondria, which is compensated by activation of antioxidant protection. These changes were accompanied by a decrease in the concentration of mitochondrial nitric oxide metabolites. Introduction to animals a nonselective NO-synthase inhibitor L-NAME caused similar enhancement of mitochondrial protein carbonylation. It demonstrates importance of reducing bioavailability of nitric oxide, which is an antioxidant in physiological concentrations, in the development of oxidative stress in lung mitochondria during hyperhomocysteinemia. Key words: hyperhomocysteinemia, nitric oxide, lung, oxidative stress, mitochondria.
Collapse
|
45
|
Alkole bağlı olmayan karaciğer yağlanmasında transient elastografi (Fibroscan) tekniği ile tespit edilen fibrozis skoru ile serum Vitamin B12 arasındaki ilişkinin araştırılması. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2017. [DOI: 10.21673/anadoluklin.297152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Nielsen J. Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metab 2017; 25:572-579. [PMID: 28273479 DOI: 10.1016/j.cmet.2017.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/21/2023]
Abstract
Systems biology uses mathematical models to analyze large datasets and simulate system behavior. It enables integrative analysis of different types of data and can thereby provide new insight into complex biological systems. Here will be discussed the challenges of using systems medicine for advancing the development of personalized and precision medicine to treat metabolic diseases like insulin resistance, obesity, NAFLD, NASH, and cancer. It will be illustrated how the concept of genome-scale metabolic models can be used for integrative analysis of big data with the objective of identifying novel biomarkers that are foundational for personalized and precision medicine.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark; Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden.
| |
Collapse
|
47
|
Jia Y, Ling M, Zhang L, Jiang S, Sha Y, Zhao R. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7530-7539. [PMID: 27648945 DOI: 10.1021/acs.jafc.6b03615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Mingfa Ling
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Luchu Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Yusheng Sha
- China Feed Industry Association, Ministry of Agriculture , Peking 100125, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
48
|
Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J Hepatol 2016; 65:425-43. [PMID: 27091791 DOI: 10.1016/j.jhep.2016.04.005] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most frequent chronic liver diseases in the Western society and its prevalence is likely to rise even further. An increasing body of evidence shows that NAFLD is not only a potentially progressive liver disease, but also has systemic consequences. More specifically, evidence points out that NAFLD has to be considered as a significant independent risk factor for subclinical and clinical cardiovascular disease (CVD). Long-term follow-up studies demonstrate cardiovascular mortality to be the most important cause of death in NAFLD patients. Moreover, ample evidence associates NAFLD with endothelial dysfunction, increased pulse wave velocity, increased coronary arterial calcifications and increased carotid intima media thickness, all established markers for CVD. Despite of all this evidence, the mechanisms by which NAFLD causally contributes to CVD are not fully elucidated. Furthermore, an extensive overview of all potential pathophysiological mechanisms and the corresponding current data are lacking. In this review we summarise current knowledge, originating from fundamental and clinical research, that mechanistically links NAFLD to CVD. Subsequently, the impact of CVD on current clinical practice and future research in the area of NALFD are discussed.
Collapse
|
49
|
Won BY, Park KC, Lee SH, Yun SH, Kim MJ, Park KS, Kim YS, Haam JH, Kim HY, Kim HJ, Park KH. Sex Difference in the Association between Serum Homocysteine Level and Non-Alcoholic Fatty Liver Disease. Korean J Fam Med 2016; 37:242-7. [PMID: 27468343 PMCID: PMC4961857 DOI: 10.4082/kjfm.2016.37.4.242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Background The relationship between serum homocysteine levels and non-alcoholic fatty liver disease is poorly understood. This study aims to investigate the sex-specific relationship between serum homocysteine level and non-alcoholic fatty liver disease in the Korean population. Methods This cross-sectional study included 150 men and 132 women who participated in medical examination programs in Korea from January 2014 to December 2014. Patients were screened for fatty liver by abdominal ultrasound and patient blood samples were collected to measure homocysteine levels. Patients that consumed more than 20 grams of alcohol per day were excluded from this study. Results The homocysteine level (11.56 vs. 8.05 nmol/L) and the proportion of non-alcoholic fatty liver disease (60.7% vs. 19.7%) were significantly higher in men than in women. In men, elevated serum homocysteine levels were associated with a greater prevalence of non-alcoholic fatty liver disease (quartile 1, 43.6%; quartile 4, 80.6%; P=0.01); however, in females, there was no significant association between serum homocysteine levels and the prevalence of non-alcoholic fatty liver disease. In the logistic regression model adjusted for age and potential confounding parameters, the odds ratio for men was significantly higher in the uppermost quartile (model 3, quartile 4: odds ratio, 6.78; 95% confidential interval, 1.67 to 27.56); however, serum homocysteine levels in women were not associated with non-alcoholic fatty liver disease in the crude model or in models adjusted for confounders. Conclusion Serum homocysteine levels were associated with the prevalence of non-alcoholic fatty liver disease in men.
Collapse
Affiliation(s)
- Bo-Youn Won
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kyung-Chae Park
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Soo-Hyun Lee
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung-Hwan Yun
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Moon-Jong Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kye-Seon Park
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ji-Hee Haam
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyung-Yuk Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hye-Jung Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki-Hyun Park
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
50
|
Yao L, Wang C, Zhang X, Peng L, Liu W, Zhang X, Liu Y, He J, Jiang C, Ai D, Zhu Y. Hyperhomocysteinemia activates the aryl hydrocarbon receptor/CD36 pathway to promote hepatic steatosis in mice. Hepatology 2016; 64:92-105. [PMID: 26928949 DOI: 10.1002/hep.28518] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/20/2016] [Indexed: 01/19/2023]
Abstract
UNLABELLED Hyperhomocysteinemia (HHcy) is associated with liver diseases such as fatty liver and hepatic fibrosis; however, the underlying mechanism is still largely unknown. The current study aimed to explore the signaling pathway involved in HHcy-induced hepatic steatosis (HS). C57BL/6 mice were fed a high-methionine diet (HMD) for 4 and 8 weeks to establish the HHcy mouse model. Compared to a chow diet, the HMD induced hepatic steatosis and elevated hepatic expression of CD36, a fatty acid transport protein. The increased CD36 expression was associated with activation of the aryl hydrocarbon receptor (AHR). In primary cultured hepatocytes, high levels of homocysteine (Hcy) treatment up-regulated CD36 and increased subsequent lipid uptake; both were significantly attenuated by small interfering RNA (siRNA) knockdown of CD36 and AHR. Chromatin immunoprecipitation assay revealed that Hcy promoted binding of AHR to the CD36 promoter, and transient transfection assay demonstrated markedly increased activity of the AHR response element by Hcy, which was ligand dependent. Mass spectrometry revealed significantly increased hepatic content of lipoxin A4 (LXA4 ), a metabolite of arachidonic acid, in HMD-fed mice. Furthermore, overexpression of 15-oxoprostaglandin 13-reductase 1, a LXA4 inactivation enzyme, inhibited Hcy-induced AHR activation, lipid uptake, and lipid accumulation. Moreover, LXA4 -induced up-regulation of CD36 and lipid uptake was inhibited by AHR siRNA in vitro in hepatocytes. Finally, treatment with an AHR antagonist reversed HHcy-induced lipid accumulation by inhibiting the AHR-CD36 pathway in mice. CONCLUSION HHcy activates the AHR-CD36 pathway by increasing hepatic LXA4 content, which results in hepatic steatosis. (Hepatology 2016;64:92-105).
Collapse
Affiliation(s)
- Liu Yao
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liyuan Peng
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenli Liu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Ding Ai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|