1
|
Pendergrast LA, Ashcroft SP, Ehrlich AM, Treebak JT, Krook A, Dollet L, Zierath JR. Metabolic plasticity and obesity-associated changes in diurnal postexercise metabolism in mice. Metabolism 2024; 155:155834. [PMID: 38479569 DOI: 10.1016/j.metabol.2024.155834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Circadian disruption is widespread and increases the risk of obesity. Timing of therapeutic interventions may promote coherent and efficient gating of metabolic processes and restore energy homeostasis. AIM To characterize the diurnal postexercise metabolic state in mice and to identify the influence of diet-induced obesity on identified outcomes. METHODS C57BL6/NTac male mice (6 wks of age) were fed a standard chow or high-fat diet for 5 weeks. At week 5, mice were subjected to a 60-min (16 m/min, 5 % incline) running bout (or sham) during the early rest (day) or early active (night) phase. Tissue and serum samples were collected immediately post-exercise (n = 6/group). In vivo glucose oxidation was measured after oral administration of 13C-glucose via 13CO2 exhalation analysis in metabolic cages. Basal and isoproterenol-stimulated adipose tissue lipolysis was assessed ex vivo for 1 h following exercise. RESULTS Lean mice displayed exercise-timing-specific plasticity in metabolic outcomes, including phase-specificity in systemic glucose metabolism and adipose-tissue-autonomous lipolytic activity depending on time of day. Conversely, obesity impaired temporal postexercise differences in whole-body glucose oxidation, as well as the phase- and exercise-mediated induction of lipolysis in isolated adipose tissue. This obesity-induced alteration in diurnal metabolism, as well as the indistinct response to exercise, was observed concomitant with disruption of core clock gene expression in peripheral tissues. CONCLUSIONS Overall, high-fat fed obese mice exhibit metabolic inflexibility, which is also evident in the diurnal exercise response. Our study provides physiological insight into exercise timing-dependent aspects in the dynamic regulation of metabolism and the influence of obesity on this biology.
Collapse
Affiliation(s)
- Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Baek KW, Kim JH, Yu HS, Kim JS. Adipose Tissue Macrophage Polarization Is Altered during Recovery after Exercise: A Large-Scale Flow Cytometric Study. Curr Issues Mol Biol 2024; 46:1308-1317. [PMID: 38392201 PMCID: PMC10887725 DOI: 10.3390/cimb46020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
We performed a large-scale flow cytometric analysis to determine whether M1 macrophage (M1Ø) and M2 macrophage (M2Ø) polarization in white adipose tissue (WAT) was altered immediately after exercise. Additionally, we comprehensively investigated the effects of obesity, exercise intensity, and recovery time on macrophage polarization in WAT. A single exercise bout of various intensities (ND, non-exercise control; -LIE, low-intensity exercise; -MIE, mid-intensity exercise; -HIE, high-intensity exercise) was performed by normal mice (ND) and obese mice (HFD). To confirm differences in M1Ø/M2Ø polarization in WAT based on the recovery time after a single exercise bout, WAT was acquired at 2 h, 24 h, and 48 h after exercise (total n = 168, 7 mice × 4 groups × 2 diets × 3 recovery time). The harvested WAT was immediately analyzed by flow cytometry, and macrophages were fluorescently labeled using F4/80, as well as M1Ø with CD11c and M2Øs with CD206. After a single bout of exercise, the M2Ø/M1Ø polarization ratio of WAT increases in both normal and obese mice, but differences vary depending on recovery time and intensity. Regardless of obesity, our findings showed that there could be a transient increase in M1Ø in WAT over a short recovery time (24 h) post-exercise (in ND-MIE, ND-HIE, and HFD-HIE). Furthermore, it was observed that the greater the exercise intensity in obese mice, the more effective the induction of M2Ø polarization immediately after exercise, as well as the maintenance of high M2Ø polarization, even after a prolonged recovery time.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Physical Education, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji-Seok Kim
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Physical Education, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Schleh MW, Ahn C, Ryan BJ, Chugh OK, Luker AT, Luker KE, Gillen JB, Ludzki AC, Van Pelt DW, Pitchford LM, Zhang T, Rode T, Howton SM, Burant CF, Horowitz JF. Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. Am J Physiol Endocrinol Metab 2023; 325:E466-E479. [PMID: 37729021 PMCID: PMC10864005 DOI: 10.1152/ajpendo.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Feng Z, Hu Y, Yu S, Bai H, Sun Y, Gao W, Li J, Qin X, Zhang X. Exercise in cold: Friend than foe to cardiovascular health. Life Sci 2023; 328:121923. [PMID: 37423378 DOI: 10.1016/j.lfs.2023.121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Exercise has been proven to benefit human health comprehensively regardless of the intensity, time, or environment. Recent studies have found that combined exercise with a cold environment displays a synergistical beneficial effect on cardiovascular system compared to exercise in thermoneutral environment. Cold environment leads to an increase in body heat loss, and has been considered a notorious factor for cardiovascular system. Exercise in cold increases the stress of cardiovascular system and risks of cardiovascular diseases, but increases the body tolerance to detrimental insults and benefits cardiovascular health. The biological effects and its underlying mechanisms of exercise in cold are complex and not well studied. Evidence has shown that exercise in cold exerts more noticeable effects on sympathetic nervous activation, bioenergetics, anti-oxidative capacity, and immune response compared to exercise in thermoneutral environment. It also increases the secretion of a series of exerkines, including irisin and fibroblast growth factor 21, which may contribute to the cardiovascular benefits induced by exercise in cold. Further well-designed studies are needed to advance the biological effects of exercise in cold. Understanding the mechanisms underlying the benefits of exercise in cold will help prescribe cold exercise to those who can benefit from it.
Collapse
Affiliation(s)
- Zihang Feng
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Hu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sen Yu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Haomiao Bai
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yubo Sun
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Weilu Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Calderón-DuPont D, Torre-Villalvazo I, Díaz-Villaseñor A. Is insulin resistance tissue-dependent and substrate-specific? The role of white adipose tissue and skeletal muscle. Biochimie 2023; 204:48-68. [PMID: 36099940 DOI: 10.1016/j.biochi.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Insulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic). Therefore, the aims of the present review are 1) to describe the glucometabolic and lipometabolic activities of insulin in AT and SM in the maintenance of whole-body metabolic homeostasis, 2) to discuss the pathophysiology of substrate-specific IR in AT and SM, and 3) to highlight novel validated tests to assess tissue and substrate-specific IR that are easy to perform in clinical practice. In AT, glucometabolic IR reduces glucose availability for glycerol and fatty acid synthesis, thus decreasing the esterification and synthesis of signaling bioactive lipids. Lipometabolic IR in AT impairs the antilipolytic effect of insulin and lipogenesis, leading to an increase in circulating FFAs and generating lipotoxicity in peripheral tissues. In SM, glucometabolic IR reduces glucose uptake, whereas lipometabolic IR impairs mitochondrial lipid oxidation, increasing oxidative stress and inflammation, all of which lead to metabolic inflexibility. Understanding tissue-dependent and substrate-specific IR is of paramount importance for early detection before clinical manifestations and for the development of more specific treatments or direct interventions to prevent chronic life-threatening diseases.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional en Ciencias Médicas y Nutricíon Salvador Zubirán, Mexico City, 14000, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
6
|
Ruiz de Azua MJ, Cruz-Carrión Á, Muguerza B, Aragonès G, Arola-Arnal A, Romero MP, Bravo FI, Suarez M. In-Season Consumption of Locally Produced Tomatoes Decreases Cardiovascular Risk Indices. Nutrients 2022; 15:43. [PMID: 36615701 PMCID: PMC9823597 DOI: 10.3390/nu15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tomatoes are widely consumed worldwide at any time of the year. However, depending on the variety, they have a characteristic season. We evaluated the consequences metabolic of consumption of Ekstasis tomatoes from different geographical origin and in different seasons in Fischer 344 rats. The hepatic gene expression of key enzymes in lipid metabolism was also evaluated. Animals were classified in three photoperiods (L6, L12, and L18) and in three treatments (vehicle: VH; local tomato: LT; and non-local tomato: nLT). We measured serum metabolic parameters and the gene expression of liver enzymes related to lipid metabolism (Acc1, Cpt1a, Had, Fas1, Srebp-1c, Fatp5, Cd36). LT consumption in season decreased cardiovascular risk 1 and coefficient atherogenic by 1.81 (p = 0.031) and in L6 decreased TAG and glucose (p = 0.046; p = 0.024). The L18-LT animals had decreased total cholesterol (p = 0.029) and gene expression of Srebp1-c (p = 0.022) but increased expression of Acc1 (p = 0.032). The treatments significantly affected the expression of Acc1 and Fas1 in the liver and the levels of serum TAG and glucose. A significant effect of photoperiod on serum concentration of glucose, insulin, HOMA index, and on the hepatic expression of Srep1-c, Fas1, and Acc1 was observed.
Collapse
Affiliation(s)
- Ma. Josefina Ruiz de Azua
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Álvaro Cruz-Carrión
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - María Paz Romero
- Antioxidants Research Group, Food Technology Department, Agrotecnio AGROTECNIO-CERCA Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Bowman ER, Wilson M, Riedl KM, MaWhinney S, Jankowski CM, Funderburg NT, Erlandson KM. Lipidome Alterations with Exercise Among People With and Without HIV: An Exploratory Study. AIDS Res Hum Retroviruses 2022; 38:544-551. [PMID: 35302400 PMCID: PMC9297322 DOI: 10.1089/aid.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related comorbidities and physical function impairments in aging people with HIV (PWH) can be improved through exercise interventions. The mechanisms underlying these improvements, including lipidomic changes, are unknown. Sedentary adults (50-75 years old) with or without HIV participated in supervised endurance/resistance exercise for 24 weeks. Plasma lipid concentrations (∼1,200 lipid species from 13 lipid classes) at baseline and week 24 were measured by mass spectrometry. Given multiple comparisons, unadjusted and Benjamini-Hochberg corrected p values are reported. Analyses are considered exploratory. Twenty-five PWH and 24 controls had paired samples at baseline and week 24. The change in total triacylglycerol (TAG) concentrations after exercise intervention differed between groups (unadj-p = 0.006, adj-p = 0.078) with concentrations increasing among controls, but not among PWH. Changes in concentrations of TAG species composed of long-chain fatty acids differed between groups (unadj-p < 0.04) with increases among controls, but not among PWH. Changes in total diacylglycerol (DAG) concentration from baseline to week 24 differed between groups (unadj-p = 0.03, adj-p = 0.2) with an increase in PWH and a nonsignificant decrease in controls. Baseline to week 24 changes in DAGs composed of palmitic acid (16:0), palmitoleic acid (16:1), and stearic acid (18:0) differed by serostatus (unadj-p = 0.009-0.03; adj-p 0.10-0.12), with nonsignificant increases and decreases in concentrations in PWH and controls, respectively. Concentrations of individual lysophosphatidylcholine (LPC) and ceramide (CER) species also differed by HIV serostatus (unadj-p < = 0.05). Although exploratory, the effects of exercise on the lipidome may differ among people with and without HIV, potentially due to underlying alterations in lipid processing and fatty acid oxidation in PWH. Clinical Trials NCT02404792.
Collapse
Affiliation(s)
- Emily R. Bowman
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Melissa Wilson
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth M. Riedl
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samantha MaWhinney
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine M. Jankowski
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Kristine M. Erlandson
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Elsayyad LK, Shafie A, Almehmadi M, Gharib AF, El Askary A, Alsayad T, Muhsen A, Allam H. Effect of Exercise-Induced Lipolysis on Serum Vitamin D Level in Obese Children: A Clinical Controlled Trial. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Low Vitamin D levels associated with obesity have reached an epidemic level all over the world. It has been supposed that the low serum level of Vitamin D3 in obese subjects may be due to an increase in the uptake of Vitamin D3 by adipose tissue.
AIM: The current study aimed to investigate the effect of a specially designed exercise program for boosting lipolysis on the Vitamin D level in obese children.
METHODS: Thirty obese male children participated in the study. Their age was ranged from 9 to 11 years. The participants were assigned to two groups, Group I (GI) who received endurance exercise (ENE) only and Group II (GII) who received the specially designed exercise for increasing lipolysis (ENE preceded by resistance exercise). Free fatty acids (FFA), glycerol, and 25(OH)D were assessed before and immediately after exercise.
RESULTS: FFA and glycerol showed a significant increase in both groups following exercise, while 25(OH)D showed a significant increase only in GII. GII showed significantly higher levels of FFA, glycerol, and 25(OH)D following exercise when it was compared to GI.
CONCLUSION: The application of resistance training before ENE could improve the Vitamin D status through increasing the lipolytic activities more than the application of endurance exercise alone.
Collapse
|
9
|
Ludzki AC, Schleh MW, Krueger EM, Taylor NM, Ryan BJ, Baldwin TC, Gillen JB, Ahn C, Varshney P, Horowitz JF. Inflammation and metabolism gene sets in subcutaneous abdominal adipose tissue are altered 1 hour after exercise in adults with obesity. J Appl Physiol (1985) 2021; 131:1380-1389. [PMID: 34410849 DOI: 10.1152/japplphysiol.00943.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the health benefits of exercise in adults with obesity are well described, the direct effects of exercise on adipose tissue that may lead to improved metabolic health are poorly understood. The primary aims of this study were to perform an unbiased analysis of the subcutaneous abdominal adipose tissue transcriptomic response to acute exercise in adults with obesity, and to compare the effects of moderate-intensity continuous exercise versus high-intensity interval exercise on this response. Twenty-nine adults with obesity performed a session of either high-intensity interval exercise (HI; 10 × 1 min at 90%HRpeak, 1 min recovery between intervals; n = 14) or moderate-intensity continuous exercise (MI; 45 min at 70%HRpeak; n = 15). Groups were well matched for BMI (HI 33 ± 3 vs. MI 33 ± 4 kg/m2), sex (HI: 9 women vs. MI: 10 women), and age (HI: 32 ± 6 vs. MI: 29 ± 5). Subcutaneous adipose tissue was collected before and 1 h after the session of HI or MI, and samples were processed for RNA sequencing. Gene set enrichment analysis revealed 7 of 21 gene sets enriched postexercise overlapped between HI and MI. Interestingly, both HI and MI upregulated gene sets involved in inflammation (IL6-JAK-STAT3 signaling, allograft rejection, TNFα signaling via NFκB, and inflammatory response; FDR q value < 0.25). Exercise also downregulated adipogenic and oxidative metabolism gene sets in both groups. Overall, these data suggest genes involved in subcutaneous adipose tissue metabolism and inflammation may be an important part of the initial response after a session of exercise.NEW & NOTEWORTHY This study compared the effects of a single session of high-intensity interval exercise versus moderate-intensity continuous exercise on transcriptional changes in subcutaneous abdominal adipose tissue collected from adults with obesity. Our novel findings indicate exercise upregulated inflammation-related gene sets, while it downregulated metabolism-related gene sets - after both high-intensity and moderate-intensity exercise. These data suggest exercise can alter the adipose tissue transcriptome 1 h after exercise in ways that may impact inflammation and metabolism.
Collapse
Affiliation(s)
- A C Ludzki
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - M W Schleh
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - E M Krueger
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - N M Taylor
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - B J Ryan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - T C Baldwin
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - J B Gillen
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - C Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - P Varshney
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - J F Horowitz
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Johnson-Bonson DA, Narang BJ, Davies RG, Hengist A, Smith HA, Watkins JD, Taylor H, Walhin JP, Gonzalez JT, Betts JA. Interactive effects of acute exercise and carbohydrate-energy replacement on insulin sensitivity in healthy adults. Appl Physiol Nutr Metab 2021; 46:1207-1215. [PMID: 33831317 DOI: 10.1139/apnm-2020-1043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether carbohydrate-energy replacement immediately after prolonged endurance exercise attenuates insulin sensitivity the following morning, and whether exercise improves insulin sensitivity the following morning independent of an exercise-induced carbohydrate deficit. Oral glucose tolerance and whole-body insulin sensitivity were compared the morning after 3 evening conditions, involving (1) treadmill exercise followed by a carbohydrate replacement drink (200 or 150 g maltodextrin for males and females, respectively; CHO-replace); (2) treadmill exercise followed by a non-caloric, taste-matched placebo (CHO-deficit); or (3) seated rest with no drink provided (Rest). Treadmill exercise involved 90 minutes at ∼80% age-predicted maximum heart rate. Seven males and 2 females (aged 23 ± 1 years; body mass index 24.0 ± 2.7 kg·m-2) completed all conditions in a randomised order. Matsuda index improved by 22% (2.2 [0.3, 4.0] au, p = 0.03) and HOMA2-IR improved by 10% (-0.04 [-0.08, 0.00] au, p = 0.04) in CHO-deficit versus CHO-replace, without corresponding changes in postprandial glycaemia. Outcomes were similar between Rest and other conditions. These data suggest that improvements to insulin sensitivity in healthy populations following acute moderate/vigorous intensity endurance exercise may be dependent on the presence of a carbohydrate-energy deficit. Novelty: Restoration of carbohydrate balance following acute endurance exercise attenuated whole-body insulin sensitivity. Exercise per se failed to enhance whole-body insulin sensitivity. Maximising or prolonging the post-exercise carbohydrate deficit may enhance acute benefits to insulin sensitivity.
Collapse
Affiliation(s)
- Drusus A Johnson-Bonson
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Benjamin J Narang
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom.,Department of Automation, Biocybernetics, and Robotics, Institut Jožef Stefan, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Russell G Davies
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Aaron Hengist
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Harry A Smith
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Jonathan D Watkins
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Harry Taylor
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, Merseyside, United Kingdom
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - James A Betts
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
11
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
12
|
Martins Conde P, Pfau T, Pires Pacheco M, Sauter T. A dynamic multi-tissue model to study human metabolism. NPJ Syst Biol Appl 2021; 7:5. [PMID: 33483512 PMCID: PMC7822846 DOI: 10.1038/s41540-020-00159-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug targets and biomarkers for metabolic diseases. To accurately describe blood and urine metabolite dynamics, the integration of multiple metabolically active tissues is necessary. We developed a dynamic multi-tissue model, which recapitulates key properties of human metabolism at the molecular and physiological level based on the integration of transcriptomics data. It enables the simulation of the dynamics of intra-cellular and extra-cellular metabolites at the genome scale. The predictive capacity of the model is shown through the accurate simulation of different healthy conditions (i.e., during fasting, while consuming meals or during exercise), and the prediction of biomarkers for a set of Inborn Errors of Metabolism with a precision of 83%. This novel approach is useful to prioritize new biomarkers for many metabolic diseases, as well as for the integration of various types of personal omics data, towards the personalized analysis of blood and urine metabolites.
Collapse
Affiliation(s)
- Patricia Martins Conde
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno S.A., Esch-sur-Alzette, Luxembourg
| | - Thomas Pfau
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
13
|
Hoffmann C, Schneeweiss P, Randrianarisoa E, Schnauder G, Kappler L, Machann J, Schick F, Fritsche A, Heni M, Birkenfeld A, Niess AM, Häring HU, Weigert C, Moller A. Response of Mitochondrial Respiration in Adipose Tissue and Muscle to 8 Weeks of Endurance Exercise in Obese Subjects. J Clin Endocrinol Metab 2020; 105:5895511. [PMID: 32827042 DOI: 10.1210/clinem/dgaa571] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023]
Abstract
CONTEXT Exercise training improves glycemic control and increases mitochondrial content and respiration capacity in skeletal muscle. Rodent studies suggest that training increases mitochondrial respiration in adipose tissue. OBJECTIVE To assess the effects of endurance training on respiratory capacities of human skeletal muscle and abdominal subcutaneous adipose tissue and to study the correlation with improvement in insulin sensitivity. DESIGN Using high-resolution respirometry, we analyzed biopsies from 25 sedentary (VO2 peak 25.1 ± 4.0 VO2 mL/[kg*min]) subjects (16 female, 9 male; 29.8 ± 8.4 years) with obesity (body mass index [BMI] 31.5 ± 4.3 kg/m2), who did not have diabetes. They performed a supervised endurance training over 8 weeks (3 × 1 hour/week at 80% VO2 peak). RESULTS Based on change in insulin sensitivity after intervention (using the Matsuda insulin sensitivity index [ISIMats]), subjects were grouped in subgroups as responders (>15% increase in ISIMats) and low-responders. The response in ISIMats was correlated to a reduction of subcutaneous and visceral adipose tissue volume. Both groups exhibited similar increases in fitness, respiratory capacity, and abundance of mitochondrial enzymes in skeletal muscle fibers. Respiratory capacities in subcutaneous adipose tissue were not altered by the intervention. Compared with muscle fibers, adipose tissue respiration showed a preference for β-oxidation and complex II substrates. Respiratory capacities were higher in adipose tissue from female participants. CONCLUSION Our data show that the improvement of peripheral insulin sensitivity after endurance training is not directly related to an increase in mitochondrial respiratory capacities in skeletal muscle and occurs without an increase in the respiratory capacity of subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Schneeweiss
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Elko Randrianarisoa
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
| | - Günter Schnauder
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas M Niess
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
| | - Anja Moller
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD)
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ, Adkins JN, Amar D, Dasari S, Drugan JK, Evans CR, Fernandez FM, Li Y, Lindholm ME, Nogiec CD, Radom-Aizik S, Sanford JA, Schenk S, Snyder MP, Tomlinson L, Tracy RP, Trappe S, Vanderboom P, Walsh MJ, Lee Alekel D, Bekirov I, Boyce AT, Boyington J, Fleg JL, Joseph LJ, Laughlin MR, Maruvada P, Morris SA, McGowan JA, Nierras C, Pai V, Peterson C, Ramos E, Roary MC, Williams JP, Xia A, Cornell E, Rooney J, Miller ME, Ambrosius WT, Rushing S, Stowe CL, Jack Rejeski W, Nicklas BJ, Pahor M, Lu CJ, Trappe T, Chambers T, Raue U, Lester B, Bergman BC, Bessesen DH, Jankowski CM, Kohrt WM, Melanson EL, Moreau KL, Schauer IE, Schwartz RS, Kraus WE, Slentz CA, Huffman KM, Johnson JL, Willis LH, Kelly L, Houmard JA, Dubis G, Broskey N, Goodpaster BH, Sparks LM, Coen PM, Cooper DM, Haddad F, Rankinen T, Ravussin E, Johannsen N, Harris M, Jakicic JM, Newman AB, Forman DD, Kershaw E, Rogers RJ, Nindl BC, Page LC, Stefanovic-Racic M, Barr SL, Rasmussen BB, Moro T, Paddon-Jones D, Volpi E, Spratt H, Musi N, Espinoza S, Patel D, Serra M, Gelfond J, Burns A, Bamman MM, Buford TW, Cutter GR, Bodine SC, Esser K, Farrar RP, Goodyear LJ, Hirshman MF, Albertson BG, Qian WJ, Piehowski P, Gritsenko MA, Monore ME, Petyuk VA, McDermott JE, Hansen JN, Hutchison C, Moore S, Gaul DA, Clish CB, Avila-Pacheco J, Dennis C, Kellis M, Carr S, Jean-Beltran PM, Keshishian H, Mani D, Clauser K, Krug K, Mundorff C, Pearce C, Ivanova AA, Ortlund EA, Maner-Smith K, Uppal K, Zhang T, Sealfon SC, Zaslavsky E, Nair V, Li S, Jain N, Ge Y, Sun Y, Nudelman G, Ruf-zamojski F, Smith G, Pincas N, Rubenstein A, Anne Amper M, Seenarine N, Lappalainen T, Lanza IR, Sreekumaran Nair K, Klaus K, Montgomery SB, Smith KS, Gay NR, Zhao B, Hung CJ, Zebarjadi N, Balliu B, Fresard L, Burant CF, Li JZ, Kachman M, Soni T, Raskind AB, Gerszten R, Robbins J, Ilkayeva O, Muehlbauer MJ, Newgard CB, Ashley EA, Wheeler MT, Jimenez-Morales D, Raja A, Dalton KP, Zhen J, Suk Kim Y, Christle JW, Marwaha S, Chin ET, Hershman SG, Hastie T, Tibshirani R, Rivas MA. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell 2020; 181:1464-1474. [DOI: 10.1016/j.cell.2020.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
|
15
|
Lundsgaard AM, Fritzen AM, Kiens B. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients 2020; 12:nu12020280. [PMID: 31973165 PMCID: PMC7070550 DOI: 10.3390/nu12020280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
It is well recognized that whole-body fatty acid (FA) oxidation remains increased for several hours following aerobic endurance exercise, even despite carbohydrate intake. However, the mechanisms involved herein have hitherto not been subject to a thorough evaluation. In immediate and early recovery (0–4 h), plasma FA availability is high, which seems mainly to be a result of hormonal factors and increased adipose tissue blood flow. The increased circulating availability of adipose-derived FA, coupled with FA from lipoprotein lipase (LPL)-derived very-low density lipoprotein (VLDL)-triacylglycerol (TG) hydrolysis in skeletal muscle capillaries and hydrolysis of TG within the muscle together act as substrates for the increased mitochondrial FA oxidation post-exercise. Within the skeletal muscle cells, increased reliance on FA oxidation likely results from enhanced FA uptake into the mitochondria through the carnitine palmitoyltransferase (CPT) 1 reaction, and concomitant AMP-activated protein kinase (AMPK)-mediated pyruvate dehydrogenase (PDH) inhibition of glucose oxidation. Together this allows glucose taken up by the skeletal muscles to be directed towards the resynthesis of glycogen. Besides being oxidized, FAs also seem to be crucial signaling molecules for peroxisome proliferator-activated receptor (PPAR) signaling post-exercise, and thus for induction of the exercise-induced FA oxidative gene adaptation program in skeletal muscle following exercise. Collectively, a high FA turnover in recovery seems essential to regain whole-body substrate homeostasis.
Collapse
|
16
|
Impact of skeletal muscle IL-6 on subcutaneous and visceral adipose tissue metabolism immediately after high- and moderate-intensity exercises. Pflugers Arch 2019; 472:217-233. [PMID: 31781893 DOI: 10.1007/s00424-019-02332-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
White adipose tissue is a major energy reserve for the body and is essential for providing fatty acids for other tissues when needed. Skeletal muscle interleukin-6 (IL-6) has been shown to be secreted from the working muscle and has been suggested to signal to adipose tissue and enhance lipolysis. The aim of the present study was to investigate the role of skeletal muscle IL-6 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) lipolysis and glyceroneogenesis with prolonged moderate-intensity exercise and high-intensity exercise in mice. Female inducible muscle-specific IL-6 knockout (IL-6 iMKO) mice and littermate control (Floxed) mice performed a single exercise bout for either 120 min at 16 m/min and 10° slope (moderate intensity) or 30 min at 20 m/min and 10° slope (high intensity), or they remained rested (rest). Visceral and subcutaneous adipose tissues, quadriceps muscles, and blood were quickly obtained. Plasma IL-6 increased in Floxed mice but not in IL-6 iMKO mice with high-intensity exercise. VAT signal transducer and activator of transcription (STAT)3Tyr705 phosphorylation was lower, and VAT hormone-sensitive lipase (HSL)Ser563 phosphorylation was higher in IL-6 iMKO mice than in Floxed mice at rest. Furthermore, HSLSer563 and HSLSer660 phosphorylation increased in VAT and phosphoenolpyruvate carboxykinase protein decreased in SAT with moderate-intensity exercise in both genotypes. On the other hand, both exercise protocols increased pyruvate dehydrogenaseSer232 phosphorylation in VAT only in IL-6 iMKO mice and decreased tumor necrosis factor-α messenger RNA in SAT and VAT only in Floxed mice. In conclusion, the present findings suggest that skeletal muscle IL-6 regulates markers of lipolysis in VAT in the basal state and pyruvate availability for glyceroneogenesis in VAT with exercise. Moreover, skeletal muscle IL-6 may contribute to exercise-induced anti-inflammatory effects in SAT and VAT.
Collapse
|
17
|
Kerr K, Morse G, Graves D, Zuo F, Lipowicz A, Carpenter DO. A Detoxification Intervention for Gulf War Illness: A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4143. [PMID: 31661809 PMCID: PMC6862571 DOI: 10.3390/ijerph16214143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
Approximately 30% of the 700,000 US veterans of the 1990-1991 Persian Gulf War developed multiple persistent symptoms called Gulf War illness. While the etiology is uncertain, several toxic exposures including pesticides and chemical warfare agents have shown associations. There is no effective medical treatment. An intervention to enhance detoxification developed by Hubbard has improved quality of life and/or reduced body burdens in other cohorts. We evaluated its feasibility and efficacy in ill Gulf War (GW) veterans in a randomized, waitlist-controlled, pilot study at a community-based rehabilitation facility in the United States. Eligible participants (n = 32) were randomly assigned to the intervention (n = 22) or a four-week waitlist control (n = 10). The daily 4-6 week intervention consisted of exercise, sauna-induced sweating, crystalline nicotinic acid and other supplements. Primary outcomes included recruitment, retention and safety; and efficacy was measured via Veteran's Short Form-36 (SF-36) quality of life, McGill pain, multidimensional fatigue inventory questionnaires and neuropsychological batteries. Scoring of outcomes was blinded. All 32 completed the trial and 21 completed 3-month follow-up. Mean SF-36 physical component summary score after the intervention was 6.9 (95% CI; -0.3, 14.2) points higher compared to waitlist control and 11 of 16 quality of life, pain and fatigue measures improved, with no serious adverse events. Most improvements were retained after 3 months. The Hubbard regimen was feasible, safe and might offer relief for symptoms of GW illness.
Collapse
Affiliation(s)
- Kathleen Kerr
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
| | - Gayle Morse
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| | - Donald Graves
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
| | - Fei Zuo
- Applied Health Research Centre, St. Michael's Hospital, Toronto, ON M5G 1B1, Canada.
| | - Alain Lipowicz
- Trillium Gift of Life Network, Ministry of Health and Long-Term Care, Toronto, ON M5G 2C9, Canada.
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| |
Collapse
|
18
|
Soria M, Ansón M, Lou-Bonafonte JM, Andrés-Otero MJ, Puente JJ, Escanero J. Fat Oxidation Rate as a Function of Plasma Lipid and Hormone Response in Endurance Athletes. J Strength Cond Res 2019; 34:104-113. [PMID: 30707143 DOI: 10.1519/jsc.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Soria, M, Ansón, M, Lou-Bonafonte, JM, Andrés-Otero, MJ, Puente, JJ, and Escanero, J. Fat oxidation rate as a function of plasma lipid and hormone response in endurance athletes. J Strength Cond Res 34(1): 104-113, 2020-Plasma lipid changes during incremental exercise are not well known. The aim of this study was to investigate the relationship among fat oxidation rate, plasma lipids, and hormone concentrations in well-trained athletes. Twenty-six trained triathletes completed a graded cycle ergometer test to exhaustion increasing by 0.5 W·kg every 10 minutes. Fat oxidation rates were determined using indirect calorimetry. For each individual, maximal fat oxidation (MFO), the intensity at which MFO occurred (Fatmax), and the intensity at which fat oxidation became negligible (Fatmin) were determined. Blood samples for lipids and hormones analysis were collected at the end of each stage of the graded exercise test. All variables studied except insulin showed an increase at the end of incremental protocol with respect to basal levels. Free fatty acid reached significant increase at 60%VO2max and maximal levels at 70%VO2max. Low-density lipoprotein (LDL) and triglycerides (TG) decreased and showed lowest levels at 60%VO2max and reaching significant increases after 80%VO2max. High-density lipoprotein reached significant increase at 60%VO2max. Adrenaline and noradrenaline increased until the end of the incremental exercise, and significant differences were from 50%VO2max. These results suggest that exercise intensities are related to plasma lipids levels. In the zone when lipids oxidation is maximal, plasma LDL and TG variation differs from other lipids. These results may have application for the more adequate exercise intensity prescription to maximize the beneficial effects of exercise.
Collapse
Affiliation(s)
- Marisol Soria
- Pharmacology and Physiology Department School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Miguel Ansón
- Clinical Biochemistry Service, Hospital Lozano Blesa, Zaragoza, Spain
| | - José Manuel Lou-Bonafonte
- Pharmacology and Physiology Department School of Medicine, University of Zaragoza, Zaragoza, Spain.,Institute of Health Research of Aragón-University of Zaragoza, Spain; and.,CIBER of Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | | | - Juan José Puente
- Clinical Biochemistry Service, Hospital Lozano Blesa, Zaragoza, Spain
| | - Jesús Escanero
- Pharmacology and Physiology Department School of Medicine, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Deemer SE, Castleberry TJ, Irvine C, Newmire DE, Oldham M, King GA, Ben-Ezra V, Irving BA, Biggerstaff KD. Pilot study: an acute bout of high intensity interval exercise increases 12.5 h GH secretion. Physiol Rep 2019; 6. [PMID: 29380957 PMCID: PMC5789720 DOI: 10.14814/phy2.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to test the hypothesis that high‐intensity interval exercise (HIE) significantly increases growth hormone (GH) secretion to a greater extent than moderate‐intensity continuous exercise (MOD) in young women. Five young, sedentary women (mean ± SD; age: 22.6±1.3 years; BMI: 27.4±3.1 kg/m2) were tested during the early follicular phase of their menstrual cycle on three occasions. For each visit, participants reported to the laboratory at 1700 h, exercised from 1730–1800 h, and remained in the laboratory until 0700 h the following morning. The exercise component consisted of either 30‐min of moderate‐intensity continuous cycling at 50% of measured peak power (MOD), four 30‐s “all‐out” sprints with 4.5 min of active recovery (HIE), or a time‐matched sedentary control using a randomized, cross‐over design. The overnight GH secretory profile of each trial was determined from 10‐min sampling of venous blood from 1730–0600 h, using deconvolution analysis. Deconvolution GH parameters were log transformed prior to statistical analyses. Calculated GH AUC (0–120 min) was significantly greater in HIE than CON (P = 0.04), but HIE was not different from MOD. Total GH secretory rate (ng/mL/12.5 h) was significantly greater in the HIE than the CON (P = 0.05), but MOD was not different from CON or HIE. Nocturnal GH secretion (ng/mL/7.5 h) was not different between the three trials. For these women, in this pilot study, a single bout of HIE was sufficient to increase 12.5 h pulsatile GH secretion. It remains to be determined if regular HIE may contribute to increased daily GH secretion.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | | | - Chris Irvine
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Daniel E Newmire
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Michael Oldham
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - George A King
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Vic Ben-Ezra
- Department of Kinesiology, Texas Woman's University, Denton, Texas
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana
| | | |
Collapse
|
20
|
Bridge CA, Sparks AS, McNaughton LR, Close GL, Hausen M, Gurgel J, Drust B. Repeated Exposure to Taekwondo Combat Modulates the Physiological and Hormonal Responses to Subsequent Bouts and Recovery Periods. J Strength Cond Res 2018; 32:2529-2541. [PMID: 29781933 DOI: 10.1519/jsc.0000000000002591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bridge, CA, Sparks, SA, McNaughton, LR, Close, GL, Hausen, M, Gurgel, J, and Drust, B. Repeated exposure to taekwondo combat modulates the physiological and hormonal responses to subsequent bouts and recovery periods. J Strength Cond Res 32(9): 2529-2541, 2018-This study examined the physiological and hormonal responses to successive taekwondo combats using an ecologically valid competition time structure. Ten elite male international taekwondo competitors (age 19 ± 3 years) took part in a simulated championship event. The competitors performed 4 combats that were interspersed with different recovery intervals (63 ± 4, 31 ± 3 and 156 ± 5 minutes, respectively). Heart rate (HR) was measured during the combats and venous blood samples were obtained both before and after each combat to determine the plasma metabolite and hormone concentrations. The plasma noradrenaline (21.8 ± 12.8 vs. 15.0 ± 7.0 nmol·l) and lactate (13.9 ± 4.2 vs. 10.5 ± 3.2 mmol·l) responses were attenuated (p < 0.05) between combat 1 and 4. Higher (p < 0.05) HR responses were evident in the final combat when compared with the earlier combats. Higher (p < 0.05) resting HR (139 ± 10 vs. 127 ± 12 b·min), plasma lactate (3.1 ± 1.2 vs. 2.0 ± 0.7 mmol·l), glycerol (131 ± 83 vs. 56 ± 38 μmol·l) and nonesterified free fatty acid (0.95 ± 0.29 vs. 0.71 ± 0.28 mmol·l) concentrations were measured before combat 3 compared with combat 1. Repeated exposure to taekwondo combat using an ecologically valid time structure modulates the physiological and hormonal responses to subsequent bouts and recovery periods. Strategies designed to assist competitors to effectively manage the metabolic changes associated with the fight schedule and promote recovery between the bouts may be important during championship events.
Collapse
Affiliation(s)
- Craig A Bridge
- Sports Performance Research Group, Edge Hill University, Wilson Center, Ormskirk, United Kingdom
| | - Andy S Sparks
- Sports Performance Research Group, Edge Hill University, Wilson Center, Ormskirk, United Kingdom
| | - Lars R McNaughton
- Sports Performance Research Group, Edge Hill University, Wilson Center, Ormskirk, United Kingdom
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matheus Hausen
- Graduate Program, Cardiovascular Sciences, Medical Science Center, Fluminense Federal University, Niterói, Brazil
| | - Jonas Gurgel
- Graduate Program, Cardiovascular Sciences, Medical Science Center, Fluminense Federal University, Niterói, Brazil
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
21
|
Aslankeser Z, Balcı ŞS. The Acute Effect of a Single Exhaustive Sprint Exercise Session on Post-Exercise Fat Oxidation Rate. BIOMEDICAL HUMAN KINETICS 2018. [DOI: 10.1515/bhk-2018-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
It is well known that substrate oxidation rates are increased by exercise. The present study had two main objectives: firstly, to examine the effect of a single exhaustive exercise session on post-exercise substrate oxidation and energy expenditure; and secondly, to determine the differences between athletes and non-athletes.
Material and methods: Eighteen healthy male athletes (mean ± SD age; 19.38 ± 2.26 years, VO2max; 60.57 ± 3.90 ml · kg-1 · min-1, n = 8) and non-athletes (age; 20.30 ± 1.26 years, VO2max; 44.97 ± 5.43 ml · kg-1 ·min-1, n = 10) volunteered to participate in the study. After an overnight fast, subjects performed a single sprint exercise session on a cycle ergometer with individual loads (0.075 kg per body weight) until volitional exhaustion. Energy expenditure (EE) and the substrate oxidation rate were measured at rest and during the post-exercise recovery period using indirect calorimetry. Results: Exhaustive exercise significantly increased post-exercise fat oxidation, energy expenditure and contribution of fat to EE (p < 0.05). Also, it significantly decreased post-exercise carbohydrate (CHO) oxidation and the contribution of CHO to EE (p < 0.05). However, the changes in the substrate oxidation rate and EE after the exercise test were not different between the groups (p > 0.05). Conclusions: The study results suggest that a single short-duration exhaustive exercise session causes a higher fat oxidation rate during recovery than at rest, whereas training status did not affect this situation
Collapse
Affiliation(s)
- Zübeyde Aslankeser
- Department of Recreation, Faculty of Sport Science, Selçuk University, Konya , Turkey
| | - Şükrü Serdar Balcı
- Department of Coaching Education, Faculty of Sport Science, Selçuk University, Konya , Turkey
| |
Collapse
|
22
|
Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barrès R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 2018; 10:1033-1050. [PMID: 29671347 PMCID: PMC6190185 DOI: 10.2217/epi-2018-0039] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To determine the genomic mechanisms by which adipose tissue responds to acute and chronic exercise. Methods: We profiled the transcriptomic and epigenetic response to acute exercise in human adipose tissue collected before and after endurance training. Results: Although acute exercises were performed at same relative intensities, the magnitude of transcriptomic changes after acute exercise was reduced by endurance training. DNA methylation remodeling induced by acute exercise was more prominent in trained versus untrained state. We found an overlap between gene expression and DNA methylation changes after acute exercise for 32 genes pre-training and six post-training, notably at adipocyte-specific genes. Conclusion: Training status differentially affects the epigenetic and transcriptomic response to acute exercise in human adipose tissue.
Collapse
Affiliation(s)
- Odile Fabre
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Garde
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Donkin
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Mechanisms of Disease & Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Romain Barrès
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Shamlan G, Bech P, Robertson MD, Collins AL. Acute effects of exercise intensity on subsequent substrate utilisation, appetite, and energy balance in men and women. Appl Physiol Nutr Metab 2017; 42:1247-1253. [DOI: 10.1139/apnm-2017-0280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise is capable of influencing the regulation of energy balance by acutely modulating appetite and energy intake coupled to effects on substrate utilization. Yet, few studies have examined acute effects of exercise intensity on aspects of both energy intake and energy metabolism, independently of energy cost of exercise. Furthermore, little is known as to the gender differences of these effects. One hour after a standardised breakfast, 40 (19 female), healthy participants (BMI 23.6 ± 3.6 kg·m−2, V̇O2peak 34.4 ± 6.8 mL·kg−1·min−1) undertook either high-intensity intermittent cycling (HIIC) consisting of 8 repeated 60 s bouts of cycling at 95% V̇O2peak or low-intensity continuous cycling (LICC), equivalent to 50% V̇O2peak, matched for energy cost (∼950 kJ) followed by 90 mins of rest, in a randomised crossover design. Throughout each study visit, satiety was assessed subjectively using visual analogue scales alongside blood metabolites and GLP-1. Energy expenditure and substrate utilization were measured over 75 min postexercise via indirect calorimetry. Energy intake was assessed for 48 h postintervention. No differences in appetite, GLP-1, or energy intakes were observed between HIIC and LICC, with or without stratifying for gender. Significant differences in postexercise nonesterified fatty acid concentrations were observed between intensities in both genders, coupled to a significantly lower respiratory exchange ratio following HIIC (P = 0.0028), with a trend towards greater reductions in respiratory exchange ratioin males (P = 0.079). In conclusion, high-intensity exercise, if energy matched, does not lead to greater appetite or energy intake, but may exert additional beneficial metabolic effects that may be more pronounced in males.
Collapse
Affiliation(s)
- Ghalia Shamlan
- Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Paul Bech
- Department of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - M. Denise Robertson
- Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Adam L. Collins
- Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
24
|
Petridou A, Chatzinikolaou A, Avloniti A, Jamurtas A, Loules G, Papassotiriou I, Fatouros I, Mougios V. Increased Triacylglycerol Lipase Activity in Adipose Tissue of Lean and Obese Men During Endurance Exercise. J Clin Endocrinol Metab 2017; 102:3945-3952. [PMID: 28605462 DOI: 10.1210/jc.2017-00168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Although there is increasing information on the mechanism of lipolysis in adipose tissue, the effect of exercise on individual factors of lipolysis is less well understood. OBJECTIVE We compared changes in adipose-tissue triacylglycerol lipase activity and gene expression of adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase (HSL), monoacylglycerol lipase, perilipin 1, and comparative gene identification 58 (CGI-58) during exercise between lean and obese men. DESIGN AND PARTICIPANTS Seven lean and nine obese men cycled for 30 minutes at a heart rate of 130 to 140 beats per minute. At baseline and 5, 10, 20, and 30 minutes of exercise, we sampled subcutaneous adipose tissue for triacylglycerol lipase activity and mRNA determination, and blood for glycerol, nonesterified fatty acid, glucose, lactate, insulin, and catecholamine determination. SETTING The study was conducted at a university research unit. RESULTS Triacylglycerol lipase activity increased at 10 minutes of exercise in the lean men and returned to baseline at 20 and 30 minutes. In the obese men, it was higher than baseline at 10, 20, and 30 minutes and higher than the corresponding values in the lean men at 20 and 30 minutes. No changes in mRNA levels were found during exercise, but the obese men had lower mRNA levels of ATGL, HSL, and CGI-58 compared with the lean men. CONCLUSION Our findings suggest different patterns of lipolytic stimulation during endurance exercise between lean and obese men. Differences in lipolytic rates seem to be due to differences in protein amount or activity, not mRNA levels.
Collapse
Affiliation(s)
- Anatoli Petridou
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece 54124
| | | | - Alexandra Avloniti
- School of Physical Education and Sports Science, University of Thrace, Komotini, Greece 69100
| | - Athanasios Jamurtas
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece 42100
| | - Gedeon Loules
- School of Medicine, University of Thessaly, Larissa, Greece 41500
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece 11527
| | - Ioannis Fatouros
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece 42100
| | - Vassilis Mougios
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece 54124
| |
Collapse
|
25
|
Luszczyk M, Flis DJ, Szadejko I, Laskowski R, Ziolkowski W. Excess postexercise oxygen consumption and fat oxidation in recreationally trained men following exercise of equal energy expenditure: comparisons of spinning and constant endurance exercise. J Sports Med Phys Fitness 2017; 58:1781-1789. [PMID: 29072037 DOI: 10.23736/s0022-4707.17.08015-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Spinning exercise is one of the most popular types of exercise in fitness industry. Its effects on the post exercise metabolism compared to the isocaloric cyclic endurance exercise are not fully understood. The aim of the present study was to compare the effects of isocaloric (299.1±10.8 kcal) spinning vs. endurance exercise on fat and carbohydrate utilization, glucose, lactate, glycerol and NEFA blood concentration during exercise and recovery. METHODS Six recreationally active males (age: 23.5±0.71) were tested in two conditions: 1) 30-min spinning; 2) isocaloric continuous exercise. Each trial was followed by a 3-h recovery. Rates of carbohydrate and fat oxidation, the blood glucose, lactate, glycerol and NEFA concentration were assessed at rest, during exercise and recovery. RESULTS Spinning induced significantly higher fat and lower carbohydrate oxidation rate during a recovery period in comparison to isocaloric endurance exercise trial. Spinning induced almost six-fold higher increase in lipid to carbohydrate oxidation rate ratio at the beginning of second hour of postexercise period in comparison to constant intensity trial and reached similar values at 3 hours after exercise. Blood lactate was higher (P<0.01) at the end of exercise in spinning than continuous exercise (8.57±0.9 vs. 0.72±0.1 mmol·L-1), but became similar at the 60 min of recovery. CONCLUSIONS These data indicate that spinning induces higher metabolic responses during recovery period, and most effectively shifts the pattern of substrate use toward lipids vs. isocaloric endurance exercise.
Collapse
Affiliation(s)
- Marcin Luszczyk
- Departments of Physiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Damian J Flis
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ilona Szadejko
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Radoslaw Laskowski
- Departments of Physiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, Poland -
| |
Collapse
|
26
|
Cucchi F, Rossmeislova L, Simonsen L, Jensen MR, Bülow J. A vicious circle in chronic lymphoedema pathophysiology? An adipocentric view. Obes Rev 2017; 18:1159-1169. [PMID: 28660651 DOI: 10.1111/obr.12565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Chronic lymphoedema is a disease caused by a congenital or acquired damage to the lymphatic system and characterized by complex chains of pathophysiologic events such as lymphatic fluid stasis, chronic inflammation, lymphatic vessels impairment, adipose tissue deposition and fibrosis. These events seem to maintain and reinforce themselves through a positive feedback loop: regardless of the initial cause of lymphatic stasis, the dysfunctional adipose tissue and its secretion products can worsen lymphatic vessels' function, aggravating lymph leakage and stagnation, which can promote further adipose tissue deposition and fibrosis, similar to what may happen in obesity. In addition to the current knowledge about the tight and ancestral interrelation between immunity system and metabolism, there is evidence for similarities between obesity-related and lymphatic damage-induced lymphoedema. Together, these observations indicate strong reciprocal relationship between lymphatics and adipose tissue and suggest a possible key role of the adipocyte in the pathophysiology of chronic lymphoedema's vicious circle.
Collapse
Affiliation(s)
- F Cucchi
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - L Rossmeislova
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - M R Jensen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - J Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark.,Department of Biomedical Sciences, Copenhagen University, Denmark
| |
Collapse
|
27
|
van Hall G. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise. Sports Med 2016; 45 Suppl 1:S23-32. [PMID: 26553490 PMCID: PMC4672010 DOI: 10.1007/s40279-015-0394-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Energy substrates that are important to the working muscle at moderate intensities are the non-esterified fatty acids (NEFAs) taken up from the circulation and NEFAs originating from lipolysis of the intramuscular triacylglycerol (IMTAG). Moreover, NEFA from lipolysis via lipoprotein lipase (LPL) in the muscle of the very-low-density lipoproteins and in the (semi) post-prandial state chylomicrons may also contribute. In this review, the NEFA fluxes and oxidation by skeletal muscle during prolonged moderate-intensity exercise are described in terms of the integration of physiological systems. Steps involved in the regulation of the active muscle NEFA uptake include (1) increased energy demand; (2) delivery of NEFA to the muscle; (3) transport of NEFA into the muscle by NEFA transporters; and (4) activation of the NEFAs and either oxidation or re-esterification into IMTAG. The increased metabolic demand of the exercising muscle is the main driving force for all physiological regulatory processes. It elicits functional hyperemia, increasing the recruitment of capillaries and muscle blood flow resulting in increased NEFA delivery and accessibility to NEFA transporters and LPL. It also releases epinephrine that augments adipose tissue NEFA release and thereby NEFA delivery to the active muscle. Moreover, NEFA transporters translocate to the plasma membrane, further increasing the NEFA uptake. The majority of the NEFAs taken up by the active muscle is oxidized and a minor portion is re-esterified to IMTAG. Net IMTAG lipolysis occurs; however, the IMTAG contribution to total fat oxidation is rather limited compared to plasma-derived NEFA oxidation, suggesting a complex role and regulation of IMTAG utilization.
Collapse
Affiliation(s)
- Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Section 7652, 9 Blegdamsvej, 2100, Copenhagen, Denmark.
| |
Collapse
|
28
|
Gahreman DE, Boutcher YN, Bustamante S, Boutcher SH. The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. J Exerc Nutrition Biochem 2016; 20:1-8. [PMID: 27298806 PMCID: PMC4899895 DOI: 10.20463/jenb.2016.03.20.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
[Purpose] This study investigated the combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. [Methods] Fourteen trained and 14 untrained males ingested one capsule containing either green tea or cellulose with breakfast, lunch, and dinner, 24 hours before two exercise sessions. A fourth capsule was consumed 90 minutes before exercise after overnight NPO (nil per os). Participants performed a 20-minute interval sprinting cycling protocol, consisting of repeated bouts of 8-seconds of sprint cycling (at 65% of maximum power output) and 12-seconds of recovery (at 25% of maximum power output), followed by 75 minutes of post-exercise recovery. [Results] Fat oxidation was significantly greater in the resting condition after green tea ingestion (p < 0.05) compared with the placebo. Fat oxidation was also significantly increased post-exercise in the green tea, compared with the placebo condition (p < 0.01). During and after exercise the plasma glycerol levels significantly increased in both groups after green tea consumption and were significantly higher in the untrained group compared with the trained group (p < 0.05). Compared with the placebo, the plasma epinephrine levels were significantly higher for both groups in the green tea condition during and after exercise, however, norepinephrine levels were only significantly greater, p < 0.05, during and after exercise in the untrained group. [Conclusion] Green tea significantly increased resting and post-exercise fat oxidation and also elevated plasma glycerol and epinephrine levels during and after interval sprinting. Glycerol and norepinephrine levels during interval sprinting were significantly higher in the untrained group compared with the trained group.
Collapse
Affiliation(s)
- Daniel E Gahreman
- Department of Exercise and Sport Science, Charles Darwin University, Northern Territory Australia
| | - Yati N Boutcher
- School of Medical Sciences, University of New South Wales, Sydney Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney Australia
| | - Stephen H Boutcher
- School of Medical Sciences, University of New South Wales, Sydney Australia
| |
Collapse
|
29
|
Tsiloulis T, Watt MJ. Exercise and the Regulation of Adipose Tissue Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:175-201. [PMID: 26477915 DOI: 10.1016/bs.pmbts.2015.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance.
Collapse
Affiliation(s)
- Thomas Tsiloulis
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
30
|
Noland RC. Exercise and Regulation of Lipid Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:39-74. [PMID: 26477910 DOI: 10.1016/bs.pmbts.2015.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The increased prevalence of hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, and fatty liver disease has provided increasingly negative connotations toward lipids. However, it is important to remember that lipids are essential components supporting life. Lipids are a class of molecules defined by their inherent insolubility in water. In biological systems, lipids are either hydrophobic (containing only polar groups) or amphipathic (possess polar and nonpolar groups). These characteristics lend lipids to be highly diverse with a multitude of functions including hormone and membrane synthesis, involvement in numerous signaling cascades, as well as serving as a source of metabolic fuel supporting energy production. Exercise can induce changes in the lipid composition of membranes that effect fluidity and cellular function, as well as modify the cellular and circulating environment of lipids that regulate signaling cascades. The purpose of this chapter is to focus on lipid utilization as metabolic fuel in response to acute and chronic exercise training. Lipids utilized as an energy source during exercise include circulating fatty acids bound to albumin, triglycerides stored in very-low-density lipoprotein, and intramuscular triglyceride stores. Dynamic changes in these lipid pools during and after exercise are discussed, as well as key factors that may be responsible for regulating changes in fat oxidation in response to varying exercise conditions.
Collapse
Affiliation(s)
- Robert C Noland
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
31
|
Yardley JE, Zaharieva DP, Jarvis C, Riddell MC. The "ups" and "downs" of a bike race in people with type 1 diabetes: dramatic differences in strategies and blood glucose responses in the Paris-to-Ancaster Spring Classic. Can J Diabetes 2014; 39:105-10. [PMID: 25492557 DOI: 10.1016/j.jcjd.2014.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/05/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Recommendations for insulin adjustments and carbohydrate intake exist for individuals with type 1 diabetes who are undertaking moderate exercise. Very few guidelines exist for athletes with type 1 diabetes who are competing in events of higher intensity or longer duration. This observational study reports the strategies adopted by 6 habitually active men with type 1 diabetes (glycated hemoglobin = 8.3%±2.0%) undertaking a relatively intense endurance cycling event. METHODS Participants wore continuous glucose monitoring (CGM) sensors for 24 hours before competition, while racing and overnight postrace. They were asked to eat their regular meals and snacks and make their usual insulin adjustments before, during and after competition. All food intake and insulin adjustments were recorded in detail. RESULTS Participants used a variety of adjustments for exercise. Of 6 participants, 4 decreased their insulin dosages and all participants consumed carbohydrates during the race (mean = 87±57 g). In spite of these strategies, 3 of the 6 participants experienced mild to moderate hypoglycemia (not requiring assistance) during the event. Hyperglycemia was seen in all participants 3 hours postexercise. There were no incidents of nocturnal hypoglycemia. CONCLUSIONS Individuals with type 1 diabetes can compete in intensive long-distance athletic events using a variety of nutrition- and insulin-adjustment strategies. In addition to finely tuned insulin adjustments and increased carbohydrate intake, vigilance will always be required to maintain some semblance of glycemic control during events of extended duration.
Collapse
Affiliation(s)
- Jane E Yardley
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; University of Alberta, Augustana Campus, Camrose, Alberta, Canada.
| | - Dessi P Zaharieva
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 2014; 307:E539-52. [PMID: 25096178 DOI: 10.1152/ajpendo.00276.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; -47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | - Sok Joo Tan
- School of Human Movement Studies, The University of Queensland, Brisbane, Australia; and
| | | | - James A Broadbent
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Tina L Skinner
- School of Human Movement Studies, The University of Queensland, Brisbane, Australia; and
| | | |
Collapse
|
33
|
Bosma M. Lipid homeostasis in exercise. Drug Discov Today 2014; 19:1019-23. [PMID: 24632001 DOI: 10.1016/j.drudis.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Abstract
Fatty acids (FA) are essential energy substrates during endurance exercise. In addition to systemic supply, intramyocellular neutral lipids form an important source of FA for the working muscle. Endurance exercise training is associated with an increased reliance on lipids as a fuel source, has systemic lipid-lowering effects and results in a remodeling of skeletal muscle lipid metabolism toward increased oxidation, neutral lipid storage and turnover. Interestingly, recent studies have indicated common exercise-induced regulatory pathways for genes involved in skeletal muscle mitochondrial oxidative metabolism and lipid droplet (LD) dynamics. In this review, I discuss lipid homeostasis during acute exercise and adaptations in lipid metabolism upon exercise training in the light of recent advances in the field.
Collapse
Affiliation(s)
- Madeleen Bosma
- Department of Cell and Molecular Biology, Karolinska Institutet, PO Box 285, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
34
|
Guo Z, Jensen MD. Arterio-venous balance studies of skeletal muscle fatty acid metabolism: What can we believe? Am J Physiol Endocrinol Metab 2013; 305:E925-30. [PMID: 23941872 PMCID: PMC4073993 DOI: 10.1152/ajpendo.00346.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterio-venous balance (A-V balance/difference) technique has been used by a number of groups, including ours, to study skeletal muscle fatty acid metabolism. Several lines of evidence indicate that, like glycogen, intramyocellular triglycerides (imcTG) are an energy source for local use. As such, the report that increased release of free fatty acids (FFA) via lipolysis from skeletal muscle, but not from adipose tissue, is responsible for the increased systemic lipolysis during IL-6 infusion in healthy humans is somewhat unexpected (26). It appears that given the complex anatomy of human limbs, as to be discussed in this review, it is virtually impossible to determine whether any fatty acids being released into the venous circulation of an arm or leg derive from the lipolysis of intermuscular fat residing between muscle groups, intramuscular fat residing within muscle groups (between epimysium and perimysium, or bundles), or the intramyocellular triglyceride droplets (imcTG). In many cases, it may even be difficult to be confident that there is no contribution of FFA from subcutaneous adipose tissue. This question is fundamentally important as one attempts to interpret the results of skeletal muscle fatty acid metabolism studies using the A-V balance technique. In this Perspectives article, we examine the reported results of fatty acid kinetics obtained using the techniques to evaluate the degree of and how to minimize contamination when attempting to sample skeletal muscle-specific fatty acids.
Collapse
Affiliation(s)
- ZengKui Guo
- Endocrine Research Unit, Mayo Foundation, Rochester, Minnesota
| | | |
Collapse
|
35
|
Kelly B, King JA, Goerlach J, Nimmo MA. The impact of high-intensity intermittent exercise on resting metabolic rate in healthy males. Eur J Appl Physiol 2013; 113:3039-47. [PMID: 24097174 DOI: 10.1007/s00421-013-2741-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION High-intensity intermittent exercise training (HIT) may favourably alter body composition despite low training volumes and predicted energy expenditure (EE). PURPOSE To characterise the acute impact of two common HIT protocols on EE and post-exercise oxygen consumption (11 h EPOC). METHODS Oxygen consumption (l min(-1)), respiratory exchange ratio (RER) and EE were measured in nine healthy, lean males over 12 h under three conditions: control (CON), HIT1 (10 × 1 min high-intensity cycling bouts followed by 1 min rest) and HIT2 (10 × 4 min high-intensity cycling bouts followed by 2 min rest). RESULTS Total exercise period EE during HIT1 (1,151 ± 205 kJ) (mean ± SD) was significantly lower than HIT2 (2,788 ± 322 kJ; p < 0.001). EE within the 60 min after exercise was significantly albeit marginally higher after HIT1 (388 ± 44 kJ; p = 0.02) and HIT2 (389 ± 39 kJ; p = 0.01) compared with CON (329 ± 39 kJ), with no difference between exercise conditions (p = 0.778). RER during this period was significantly lower in HIT1 (0.78 ± 0.06; p = 0.011) and HIT2 (0.76 ± 0.04; p = 0.004) compared with CON (0.87 ± 0.06). During the 'slow phase' of EPOC (1.25-9.75 h), there were no significant differences in EE (p = 0.07) or RER (p = 0.173) between trials. CONCLUSIONS Single HIT sessions notably increases EE during exertion; however, the influence on metabolic rate post-exercise is transient and relatively minor.
Collapse
Affiliation(s)
- Benjamin Kelly
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | | | | | | |
Collapse
|
36
|
Kimber NE, Cameron-Smith D, McGee SL, Hargreaves M. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. J Appl Physiol (1985) 2013; 114:1577-85. [PMID: 23519231 DOI: 10.1152/japplphysiol.00824.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P < 0.01), except at 4 h. The alteration of the availability of plasma FFA during recovery induced a significant increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P < 0.05); however, this response was unrelated to changes in skeletal muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5'AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.
Collapse
Affiliation(s)
- Nicholas E Kimber
- Department of Applied Science and Allied Health, Christchurch Polytechnic Institute of Technology, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
37
|
Jackson KC, Wohlers LM, Lovering RM, Schuh RA, Maher AC, Bonen A, Koves TR, Ilkayeva O, Thomson DM, Muoio DM, Spangenburg EE. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice. Am J Physiol Regul Integr Comp Physiol 2012. [PMID: 23193112 DOI: 10.1152/ajpregu.00428.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Collapse
Affiliation(s)
- Kathryn C Jackson
- Univ. of Maryland, School of Public Health, Dept. of Kinesiology, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tobin L, Simonsen L, Galbo H, Bülow J. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes. Nutr Diabetes 2012; 2:e46. [PMID: 23446661 PMCID: PMC3461355 DOI: 10.1038/nutd.2012.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM). Design: Clinical intervention study with 1-h intravenous adrenaline infusion. Subjects: Eight male overweight T2DM subjects and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by 133Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging. Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue. Results: ATBF increased similarly in both groups during the adrenaline infusion. One hour post adrenaline, ATBF was still increased in overweight T2DM subjects. Adrenaline increased microvascular volume in non-T2DM subjects while this response was impaired in overweight T2DM subjects. Adrenaline-induced increase in lipolysis was similar in both groups, but NEFA output from adipose tissue was delayed in overweight T2DM subjects. Glucose uptake in adipose tissue increased in non-T2DM subjects during adrenaline infusion but was unchanged in overweight T2DM subjects. This results in a delayed excess release of NEFA from the adipose tissue in overweight T2DM subjects after cessation of the adrenaline infusion. Conclusion: Capillaries in the adipose tissue are recruited by adrenaline in non-T2DM subjects; however, this response is impaired in overweight T2DM subjects. NEFA, released in adipose tissue during adrenaline stimulation, is insufficiently re-esterified in situ in overweight T2DM subjects, probably owing to increased ATBF after adrenaline infusion and inability to increase adipose tissue glucose uptake.
Collapse
Affiliation(s)
- L Tobin
- Department of Clinical Physiology and Nuclearmedicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | | | | | | |
Collapse
|
39
|
Miyamoto T, Fukuda K, Kimura T, Matsubara Y, Tsuda K, Moritani T. Effect of percutaneous electrical muscle stimulation on postprandial hyperglycemia in type 2 diabetes. Diabetes Res Clin Pract 2012; 96:306-12. [PMID: 22296854 DOI: 10.1016/j.diabres.2012.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 10/14/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
AIMS The aim of this study was to examine whether percutaneous electrical muscle stimulation (EMS) attenuates postprandial hyperglycemia in type 2 diabetes. METHODS Eleven patients with type 2 diabetes participated in two experimental sessions; one was a 30-min EMS 30 min after a breakfast (EMS trial) and the other was a complete rest after a breakfast (Control trial). In each trial, blood was sampled before and at 30, 60, 90, and 120 min after the meal. RESULTS Postprandial glucose level was significantly attenuated in EMS trial at 60, 90, and 120 min after a meal (p<0.05). The C-peptide concentration was also significantly lowered in EMS trial (p<0.01). On the other hand, there was no significant increase in creatine phosphokinase (CPK) concentration in each trial. CONCLUSIONS The present results provide first evidence indicating that EMS is a new exercise method for treating postprandial hyperglycemia in individuals with type 2 diabetes, especially who cannot perform adequate voluntary exercise because of excessive obesity, orthopedic diseases, or severe diabetic complications.
Collapse
Affiliation(s)
- Toshiaki Miyamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 2012; 92:157-91. [PMID: 22298655 DOI: 10.1152/physrev.00012.2011] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.
Collapse
|
41
|
Gaesser GA, Angadi SS, Ryan DM, Johnston CS. Lifestyle Measures to Reduce Inflammation. Am J Lifestyle Med 2012. [DOI: 10.1177/1559827611411646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic low-grade inflammation associated with cardiovascular disease and type 2 diabetes (T2D) may be ameliorated with exercise and/or diet. High levels of physical activity and/or cardiorespiratory fitness are associated with reduced risk of low-grade inflammation. Both aerobic and resistance exercise have been found to improve inflammatory status, with the majority of evidence suggesting that aerobic exercise may have broader anti-inflammatory effects. In particular, aerobic exercise appears to improve the balance between pro- and anti-inflammatory markers. Improvement in inflammatory status is most likely to occur in persons with elevated levels of pro-inflammatory markers prior to intervention. A number of dietary factors, including fiber-rich foods, whole grains, fruits (especially berries), omega-3 fatty acids, antioxidant vitamins (eg, C and E), and certain trace minerals (eg, zinc) have been documented to reduce blood concentrations of inflammatory markers. Anti-inflammatory foods may also help mitigate the pro-inflammatory postprandial state that is particularly evident after ingestion of meals high in saturated fat. Intensive lifestyle interventions involving both exercise and diet appear to be most effective. For the most part, anti-inflammatory effects of exercise and diet are independent of weight loss. Thus overweight and obese men and women, who are most likely to have a pro-inflammatory profile, do not necessarily have to normalize body mass index to improve inflammatory status and reduce risk of type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Glenn A. Gaesser
- School of Nutrition and Health Promotion, Arizona State University, Mesa, Arizona
| | - Siddhartha S. Angadi
- School of Nutrition and Health Promotion, Arizona State University, Mesa, Arizona
| | - Dana M. Ryan
- School of Nutrition and Health Promotion, Arizona State University, Mesa, Arizona
| | - Carol S. Johnston
- School of Nutrition and Health Promotion, Arizona State University, Mesa, Arizona
| |
Collapse
|
42
|
Tobin L, Simonsen L, Bülow J. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment. Clin Physiol Funct Imaging 2010; 30:447-52. [DOI: 10.1111/j.1475-097x.2010.00964.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Abstract
Lactate production in skeletal muscle has now been studied for nearly two centuries and still its production and functional role at rest and during exercise is much debated. In the early days skeletal muscle was mainly seen as the site of lactate production during contraction and lactate production associated with a lack of muscle oxygenation and fatigue. Later it was recognized that skeletal muscle not only played an important role in lactate production but also in lactate clearance and this led to a renewed interest, not the least from the Copenhagen School in the 1930s, in the metabolic role of lactate in skeletal muscle. With the introduction of lactate isotopes muscle lactate kinetics and oxidation could be studied and a simultaneous lactate uptake and release was observed, not only in muscle but also in other tissues. Therefore, this review will discuss in vivo human: (1) skeletal muscle lactate metabolism at rest and during exercise and suggestions are put forward to explain the simultaneous lactate uptake and release; and (2) lactate metabolism in the heart, liver, kidneys, brain, adipose tissue and lungs will be discussed and its potential importance in these tissues.
Collapse
Affiliation(s)
- Gerrit van Hall
- Metabolic Mass-Spectrometry Facility, Rigshospitalet and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Katayama K, Goto K, Ishida K, Ogita F. Substrate utilization during exercise and recovery at moderate altitude. Metabolism 2010; 59:959-66. [PMID: 20036404 DOI: 10.1016/j.metabol.2009.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/09/2009] [Accepted: 10/19/2009] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that exercise training at moderate altitude or in moderate hypoxia improved glycemic parameters. From these data, it has been supposed that endurance exercise in moderate hypoxia affects substrate utilization and that exposure to moderate hypoxia in combination with exercise may be utilized as part of metabolic or diabetes prevention program. However, the influence of exercise at moderate hypoxia on circulating metabolites and hormones in terms of substrate utilization is unclear. The purpose of this study was to elucidate the influence of exercise in moderate hypoxia on substrate utilization. We determined cardiorespiratory, metabolic, and hormonal parameters during exercise and postexercise recovery at a simulated moderate altitude of 2000 m, and then we compared these variables with values obtained at sea level. Seven men participated in this study; subjects reported to the laboratory on 4 occasions. Two maximal exercise tests were performed to estimate peak oxygen uptake at the simulated 2000-m altitude and sea level on different days. Afterward, submaximal exercise tests were carried out at a simulated altitude of 2000 m or sea level, separated by 1 week. Subjects performed submaximal exercise at the same relative exercise intensity (50% peak oxygen uptake) at a simulated altitude of 2000 m and at sea level for 30 minutes. The tests were performed in random order, and subjects were blinded to the respective altitudes. Venous blood samples and expired gases were obtained before, during exercise (15 and 30 minutes), and during postexercise recovery periods (15, 30, 45, and 60 minutes). The respiratory exchange ratio during exercise and recovery at moderate altitude was greater than at sea level. The epinephrine and norepinephrine concentrations during exercise and recovery were higher (P < .05) at moderate altitude than at sea level. Free fatty acids and glycerol concentrations during recovery were lower (P < .05) at moderate altitude than at sea level. These results suggest that carbohydrate utilization is increased during exercise and postexercise recovery period in moderate hypoxia as compared with normoxia. It is also suggested that moderate hypoxia influences the changes in circulating metabolites and hormones in terms of substrate metabolism during exercise and the recovery.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
45
|
Shin KO, Yeo NH, Kang S. Autonomic nervous activity and lipid oxidation postexercise with capsaicin in the humans. J Sports Sci Med 2010; 9:253-261. [PMID: 24149693 PMCID: PMC3761736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/16/2010] [Indexed: 06/02/2023]
Abstract
This study evaluated the synergistic effects of acute exercise with capsaicin (200mg) upon the restoration of cardiac autonomic functions and depolarization- repolarization interval as well as substrate oxidation. Nine healthy males [21.9(0.8) yrs] volunteered for this study. Cardiac autonomic activity, metabolic responses, and the ECG QT intervals were continuously measured during 5 min at rest and postexercise recovery after 30 min exercise at 50% VO2max on a stationary ergometer with placebo (ECON) or capsaicin intake (ECAP), and no exercise control (NCON) were randomized. Results indicated that the HF power reflecting parasympathetic activity significantly returned to the baseline much faster during ECAP than ECON trial during postexercise [122.1 (23.2) vs. 60.2 (11.7) %, p < 0.05]. The ECAP trial significantly decreased RQ [0.79(0.02) vs. 0.85 (0.03), p < 0.05] with significantly greater fat oxidation [69.3 (6.0) vs. 49.4 (10.8) %, p < 0.05] in comparison to NCON trial during 120 min postexercise recovery without any adverse effects on cardiac electrical stability as determined by trigger-averaged ECG QT interval analyses. We suggest that capsaicin before the exercise may contribute to the improvement of cardio-protective functions and metabolic responses as one of the beneficial supplements accelerating faster restoration of autonomic activity and enhanced lipolysis during postexercise recovery without any adverse effects on cardiac electrical stability. Key pointsCapsaicin before exercise may contribute to the improvement of cardio-protective functions as one of the beneficial supplements accelerating faster restoration of autonomic activityCapsaicin before exercise enhanced lipolysis during postexercise recovery periodCapsaicin intake does not influence cardiac electrical stability during recovery period.
Collapse
Affiliation(s)
- Ki Ok Shin
- Department of Physical Education, College of Sport Sciences, Dong-A University , Busan, Korea
| | | | | |
Collapse
|
46
|
Hansen D, Dendale P, Jonkers RAM, Beelen M, Manders RJF, Corluy L, Mullens A, Berger J, Meeusen R, van Loon LJC. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients. Diabetologia 2009; 52:1789-97. [PMID: 19370339 PMCID: PMC2723667 DOI: 10.1007/s00125-009-1354-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 03/10/2009] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. METHODS Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. RESULTS The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. CONCLUSIONS/INTERPRETATION When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. TRIAL REGISTRATION ISRCTN32206301 FUNDING None.
Collapse
Affiliation(s)
- D. Hansen
- Department of Human Physiology and Sports Medicine, Vrije Universiteit Brussel, Brussels, Belgium
- Rehabilitation and Health Centre, Virga Jesse Hospital, Hasselt, Belgium
| | - P. Dendale
- Rehabilitation and Health Centre, Virga Jesse Hospital, Hasselt, Belgium
| | - R. A. M. Jonkers
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute (NUTRIM), Maastricht University Medical Centre+, Universiteitssingel 50, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - M. Beelen
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute (NUTRIM), Maastricht University Medical Centre+, Universiteitssingel 50, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - R. J. F. Manders
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute (NUTRIM), Maastricht University Medical Centre+, Universiteitssingel 50, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - L. Corluy
- Department of Rheumatology, Virga Jesse Hospital, Hasselt, Belgium
| | - A. Mullens
- Department of Endocrinology, Virga Jesse Hospital, Hasselt, Belgium
| | - J. Berger
- Rehabilitation and Health Centre, Virga Jesse Hospital, Hasselt, Belgium
| | - R. Meeusen
- Department of Human Physiology and Sports Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - L. J. C. van Loon
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute (NUTRIM), Maastricht University Medical Centre+, Universiteitssingel 50, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
47
|
Magkos F, Mohammed BS, Patterson BW, Mittendorfer B. Free fatty acid kinetics in the late phase of postexercise recovery: importance of resting fatty acid metabolism and exercise-induced energy deficit. Metabolism 2009; 58:1248-55. [PMID: 19500809 PMCID: PMC2728784 DOI: 10.1016/j.metabol.2009.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/05/2009] [Indexed: 10/20/2022]
Abstract
Free fatty acid (FFA) availability increases several-fold during exercise and remains significantly elevated for at least 3 to 6 hours after exercise cessation. Little, however, is known regarding the duration of the postexercise rise in FFA flux. In the present study, we used stable isotope-labeled palmitate infusion to examine fatty acid metabolism in 27 healthy untrained men and women (age, 29 +/- 7 years; body mass index, 25 +/- 4 kg/m2) between 13 to 16 hours and 21 to 24 hours after a single bout of moderate-intensity endurance exercise (1-2 hours at 60% of peak oxygen consumption), performed in the evening, and after a time-matched resting trial. Postabsorptive FFA rate of appearance (Ra) and FFA concentration in plasma were significantly greater after exercise than rest throughout the recovery period (P < .015), but the exercise-induced increases declined from approximately 40% at 13 to 16 hours to approximately 10% at 21 to 24 hours postexercise (P = .001). The magnitude of the exercise-induced increase in plasma FFA concentration was proportional to the increase in FFA Ra. Correlation analysis demonstrated that exercise-induced changes in plasma FFA Ra at 13 to 16 hours are (1) negatively associated with resting plasma FFA Ra and (2) positively associated with the net energy expenditure of exercise and the exercise-induced changes in whole-body fat oxidation rate (all P values < .05). In multivariate stepwise linear regression analysis, baseline plasma FFA Ra (P < or = .008) and net energy expenditure of exercise (P < or = .005) independently predicted the exercise-induced change in plasma FFA Ra at 13 to 16 hours. We conclude that the exercise-induced increase in FFA mobilization is (1) long-lived, persisting for 12 to 24 hours after exercise, with a progressive decline with time; (2) greater in subjects with low than high resting plasma FFA availability; and (3) greater after exercise with high than low energy demand.
Collapse
Affiliation(s)
- Faidon Magkos
- Washington University School of Medicine, St. Louis, MO, USA
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | | | - Bettina Mittendorfer
- Washington University School of Medicine, St. Louis, MO, USA
- Corresponding author: Bettina Mittendorfer, Ph.D., Washington University School of Medicine, Division of Geriatrics & Nutritional Science, 660 South Euclid Avenue; Campus Box 8031, St. Louis, MO 63110; USA, Phone: (314) 362 8450, Fax: (314) 362 8230, E-mail:
| |
Collapse
|
48
|
Malatesta D, Werlen C, Bulfaro S, Chenevière X, Borrani F. Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery. Med Sci Sports Exerc 2009; 41:364-74. [PMID: 19151592 DOI: 10.1249/mss.0b013e3181857edo] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.
Collapse
Affiliation(s)
- Davide Malatesta
- Institute of Sport Sciences and Physical Education (ISSEP), University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
de Glisezinski I, Larrouy D, Bajzova M, Koppo K, Polak J, Berlan M, Bulow J, Langin D, Marques MA, Crampes F, Lafontan M, Stich V. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. J Physiol 2009; 587:3393-404. [PMID: 19417097 DOI: 10.1113/jphysiol.2009.168906] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched for age and physical fitness performed 60 min exercise bouts at 50% of their maximal oxygen consumption on two occasions: (1) during i.v. infusion of octreotide, and (2) during placebo infusion. Lipolysis and local blood flow changes in SCAT were evaluated using in situ microdialysis. Infusion of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean men. Under placebo, no difference was found in the exercise-induced increase in glycerol between the probe perfused with Ringer solution alone and that with phentolamine (an alpha-adrenergic receptor antagonist) in lean subjects while a greater increase in glycerol was observed in the obese subjects. Under placebo, propranolol infusion in the probe containing phentolamine reduced by about 45% exercise-induced glycerol release; this effect was fully suppressed under octreotide infusion while noradrenaline was still elevated and exercise-induced lipid mobilization maintained in both lean and obese individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent contributing to exercise-induced lipolysis in SCAT. Moreover, it is the combined action of insulin suppression and NPs release which explains the lipolytic response which remains under octreotide after full local blockade of fat cell adrenergic receptors. For the moment, it is unknown if results apply specifically to SCAT and exercise only or if conclusions could be extended to all forms of lipolysis in humans.
Collapse
Affiliation(s)
- I de Glisezinski
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Recent studies consistently support a hypoxia response in the adipose tissue in obese animals. The observations have led to the formation of an exciting concept, adipose tissue hypoxia (ATH), in the understanding of major disorders associated with obesity. ATH may provide cellular mechanisms for chronic inflammation, macrophage infiltration, adiponectin reduction, leptin elevation, adipocyte death, endoplasmic reticulum stress and mitochondrial dysfunction in white adipose tissue in obesity. The concept suggests that inhibition of adipogenesis and triglyceride synthesis by hypoxia may be a new mechanism for elevated free fatty acids in the circulation in obesity. ATH may represent a unified cellular mechanism for a variety of metabolic disorders and insulin resistance in patients with metabolic syndrome. It suggests a new mechanism of pathogenesis of insulin resistance and inflammation in obstructive sleep apnea. In addition, it may help us to understand the beneficial effects of caloric restriction, physical exercise and angiotensin II inhibitors in the improvement of insulin sensitivity. In this review article, literatures are reviewed to summarize the evidence and possible cellular mechanisms of ATH. The directions and road blocks in the future studies are analyzed.
Collapse
|