1
|
Li Y, Garg PK, Wu J. Associations between daytime napping, sleep duration, and depression and 15 cardiovascular diseases: a Mendelian randomization study. Cardiovasc Diagn Ther 2024; 14:771-787. [PMID: 39513145 PMCID: PMC11538837 DOI: 10.21037/cdt-24-313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 11/15/2024]
Abstract
Background Numerous studies have documented the effects of daytime napping, sleep duration, and depression on cardiovascular diseases (CVDs). However, the evidence has been gleaned from observational studies that might be riddled with confounding variables and the possibility of reverse causation bias. Therefore, the present study employed a Mendelian randomization (MR) methodology to meticulously explore the relationships between daytime napping, sleep duration, and depression, and the risk profiles of CVDs. Methods Genome-wide significant genetic variants associated with daytime napping, sleep duration, and depression were used as the instrumental variables (IVs). Data on the genetic correlations between these IVs and 15 CVDs were derived from the United Kingdom (UK) Biobank, Finnish Genome Studies, and other large-scale collaborations. We conducted both univariate and multivariate MR analyses to assess the overall effects and mediated relationships after adjusting for potential confounders, including body mass index (BMI), smoking status, and type 2 diabetes. The effect sizes were estimated using inverse variance-weighted (IVW) regression. Results The MR analysis revealed that an increased risk of heart failure (HF) [odds ratio (OR): 1.366; 95% confidence interval (CI): 1.013-1.842; P=0.04], coronary atherosclerosis (OR: 1.918; 95% CI: 1.257-2.927; P=0.003), myocardial infarction (MI) (OR: 1.505; 95% CI: 1.025-2.211; P=0.04), and coronary artery disease (CAD) (OR: 1.519; 95% CI: 1.130-2.043; P=0.006) was significantly associated with genetically predicted daytime napping. Prolonged sleep duration was found to be related to a reduced risk of HF (OR: 0.995; 95% CI: 0.993-0.998; P=2.69E-04), peripheral vascular disease (PVD) (OR: 0.984; 95% CI: 0.971-0.997; P=0.02), and CAD (OR: 0.997; 95% CI: 0.994-0.999; P=0.006). Additionally, a statistically significant positive relationship was observed between depressive disorders and the occurrence of atrial fibrillation (AF) (OR: 1.298, 95% CI: 1.065-1.583, P=0.01), indicating a heightened susceptibility. The multivariable MR analyses substantiated the reliability of the observed associations between daytime napping and the incidence of HF and CAD, following adjustments for genetically predicted BMI and smoking. The sensitivity analysis did not reveal any evidence of horizontal pleiotropy or heterogeneity, thus supporting the validity of the study's results. Conclusions This MR investigation posits a potential causal nexus between daytime napping, sleep duration, and depression, and the genesis of CVDs, offering new perspectives on the prevention and management of CVDs.
Collapse
Affiliation(s)
- Yilin Li
- Department of Geriatrics, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Parveen K. Garg
- Division of Cardiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jing Wu
- Department of Geriatrics, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Magajevski AS, Távora‐Mehta MZP, Mehta N, Maluf DLS, Silva ECP, Concato L, Ortiz MR, Doubrawa E, Lofrano‐Alves MS. Differential hemodynamic adaptations to tilt test in patients with idiopathic atrial fibrillation. Physiol Rep 2024; 12:e16131. [PMID: 38942728 PMCID: PMC11213645 DOI: 10.14814/phy2.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
The hemodynamic response during the transition from the supine to standing position in idiopathic atrial fibrillation (AF) patients is not completely understood. This study aimed to analyze the hemodynamic changes that occur during the head-up tilt test in idiopathic AF patients. We investigated the hemodynamic changes during the head-up tilt test with impedance cardiography in 40 AF patients (12 with AF rhythm-AFr and 28 with sinus rhythm-AFsr) and 38 non-AF controls. Patients with AFr had attenuated SVI decrease after standing when compared to AFsr and non-AF [ΔSVI in mL/m2: -1.3 (-3.4 to 1.7) vs. -6.4 (-17.3 to -0.1) vs. -11.8 (-18.7 to -8.0), respectively; p < 0.001]. PVRI decreased in AFr but increased in AFsr and non-AF [ΔPVRI in dyne.seg.m2/cm5: -477 (-1148 to 82.5) vs. 131 (-525 to 887) vs. 357 (-29 to 681), respectively; p < 0.01]. Similarly, compared with non-AF patients, AFr patients also had a greater HR and greater CI increase after standing. The haemodynamic response to orthostatic challenge suggests differential adaptations between patients with AF rhythm and those reverted to sinus rhythm or healthy controls. Characterizing the hemodynamic phenotype may be relevant for the individualized treatment of AF patients.
Collapse
Affiliation(s)
- Adriano Senter Magajevski
- Post Graduate Program in Internal Medicine, Internal Medicine DepartmentFederal University of ParanaCuritibaParanaBrazil
- Cardiac Electrophysiology Service of ParanaCuritibaParanaBrazil
| | - Maria Zildany P. Távora‐Mehta
- Post Graduate Program in Internal Medicine, Internal Medicine DepartmentFederal University of ParanaCuritibaParanaBrazil
- Cardiac Electrophysiology Service of ParanaCuritibaParanaBrazil
| | - Niraj Mehta
- Post Graduate Program in Internal Medicine, Internal Medicine DepartmentFederal University of ParanaCuritibaParanaBrazil
- Cardiac Electrophysiology Service of ParanaCuritibaParanaBrazil
| | | | | | - Leticia Concato
- Cardiac Electrophysiology Service of ParanaCuritibaParanaBrazil
| | | | | | - Marco Stephan Lofrano‐Alves
- Post Graduate Program in Internal Medicine, Internal Medicine DepartmentFederal University of ParanaCuritibaParanaBrazil
| |
Collapse
|
3
|
Dalal F, Hassan M, Widmer RJ. The Positive Impact of Bariatric Surgery on Vascular Health. Cureus 2024; 16:e57586. [PMID: 38707177 PMCID: PMC11069624 DOI: 10.7759/cureus.57586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Obesity is one of the most prevalent medical conditions in the Western world. There are many risk factors associated with obesity, including cardiovascular and pulmonary risk. Vascular health is not studied in obese patients, and whether obesity has an adverse effect on vascular health in these patients remains unknown. OBJECTIVE The first objective is to find a correlation between vascular health and obesity and whether obesity can be classified as a risk factor for vascular health. The second objective is to see if weight loss leads to an improvement in vascular health in patients. METHODS The study was conducted with pre- and post-surgical methods at Baylor Scott & White (BSWH) Medical Center, Temple, Texas, USA. Ten patients were approached, consented, and prepared to obtain baseline values through WatchPAT and EndoPAT devices prior to their bariatric surgery. Values obtained include their initial weight, respiratory disturbance index, apnea-hypopnea index, oxygen desaturation index, and degree of endothelial dysfunction via the EndoPAT device. Post-surgery, these values were obtained again and compared using Wilcoxon non-parametric analyses with a level of significance at p < 0.05. RESULTS Our study results demonstrate a correlation between obesity and vascular health as endothelial dysfunction is widely seen. In our patients, after bariatric surgery, we saw a significant weight change (31.2% +11.2, p < 0.0001). There was a significant degree of endothelial function improvement after the weight loss (31.2% +34.7, p < 0.04). CONCLUSION Our results indicate that there is a correlation between obesity and vascular health, which also correlates with cardiovascular risk. There is a significant reduction in endothelial dysfunction after weight loss. We believe that obesity is a risk factor for vascular health outcomes.
Collapse
Affiliation(s)
- Fazal Dalal
- Department of Internal Medicine, Baylor Scott & White Medical Center - Temple, Temple, USA
| | - Monique Hassan
- Department of Surgery and Bariatric Surgery, Baylor Scott & White Medical Center - Temple, Temple, USA
| | - Robert J Widmer
- Department of Cardiology, Baylor Scott & White Medical Center - Temple, Temple, USA
| |
Collapse
|
4
|
Liao J, Goodrich JA, Chen W, Qiu C, Chen JC, Costello E, Alderete TL, Chatzi L, Gilliland F, Chen Z. Cardiometabolic profiles and proteomics associated with obesity phenotypes in a longitudinal cohort of young adults. Sci Rep 2024; 14:7384. [PMID: 38548792 PMCID: PMC10978904 DOI: 10.1038/s41598-024-57751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
To assess cardiometabolic profiles and proteomics to identify biomarkers associated with the metabolically healthy and unhealthy obesity. Young adults (N = 156) enrolled were classified as not having obesity, metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO) based on NCEP ATP-III criteria. Plasma proteomics at study entry were measured using Olink Cardiometabolic Explore panel. Linear regression was used to assess associations between proteomics and obesity groups as well as cardiometabolic traits of glucose, insulin, and lipid profiles at baseline and follow-up visits. Enriched biological pathways were further identified based on the significant proteomic features. Among the baseline 95 (61%) and 61 (39%) participants classified as not having obesity and having obesity (8 MHO and 53 MUHO), respectively. Eighty of the participants were followed-up with an average 4.6 years. Forty-one proteins were associated with obesity (FDR < 0.05), 29 of which had strong associations with insulin-related traits and lipid profiles (FDR < 0.05). Inflammation, immunomodulation, extracellular matrix remodeling and endoplasmic reticulum lumen functions were enriched by 40 proteins. In this study population, obesity and MHO were associated with insulin resistance and dysregulated lipid profiles. The underlying mechanism included elevated inflammation and deteriorated extracellular matrix remodeling function.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Jesse A Goodrich
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Wu Chen
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Chenyu Qiu
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Jiawen Carmen Chen
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Elizabeth Costello
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Lida Chatzi
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Frank Gilliland
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA
| | - Zhanghua Chen
- Department of Public and Population Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90032, USA.
| |
Collapse
|
5
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Martino F, Niglio T, Barillà F, Martino E, Paravati V, Bassareo PP. The Association between Mid-Upper Arm Circumference and Blood Pressure in an Italian Population of School-Aged Children and Adolescents with Lipid Disorders. J Clin Med 2024; 13:663. [PMID: 38337357 PMCID: PMC10856649 DOI: 10.3390/jcm13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Many anthropometric measurements have been investigated concerning their association with blood pressure (BP) in paediatric age groups. This study aims to find a relationship between mid-upper arm circumference (MUAC) and BP in a population of children and adolescents aged 1-18 years. Methods: 5853 subjects (2977 females and 2876 males) were studied. MUAC, body mass index (BMI), and BP were measured. The individuals in the study were subdivided and grouped by gender and type of school attended in Italy: 1-5 years (pre-school), 6-10 years (primary school), 11-13 years (secondary school), 14-18 years (high school). Results: In the age range of 6-13 years, all the subjects with MUAC > 50th percentile had systolic and diastolic BP significantly higher than children with MUAC below 50th percentile (p < 0.0001). In the age range 14-18 years, the relationship persisted only in females (p < 0.001 and p < 0.05 for diastolic and systolic BP, respectively). A linear relationship was found between MUAC and BMI. Conclusions: In Italian children of both genders aged 6-13, arm distribution of body fat is strongly associated with increased systolic and diastolic BP. As such, a simple anthropometric measurement like MUAC might represent a tool to identify young subjects who are at risk for HTN.
Collapse
Affiliation(s)
- Francesco Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Science, La Sapienza University, 00161 Rome, Italy; (E.M.); (V.P.)
| | | | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Eliana Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Science, La Sapienza University, 00161 Rome, Italy; (E.M.); (V.P.)
| | - Vincenzo Paravati
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Science, La Sapienza University, 00161 Rome, Italy; (E.M.); (V.P.)
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, DO4 W6F6 Dublin, Ireland;
- Department of Cardiology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
| |
Collapse
|
7
|
Almuraikhy S, Doudin A, Domling A, Althani AAJF, Elrayess MA. Molecular regulators of exercise-mediated insulin sensitivity in non-obese individuals. J Cell Mol Med 2024; 28:e18015. [PMID: 37938877 PMCID: PMC10805515 DOI: 10.1111/jcmm.18015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research CenterQatar UniversityDohaQatar
- Groningen Research Institute of Pharmacy, Drug DesignGroningen UniversityGroningenThe Netherlands
| | - Asmaa Doudin
- Biomedical Research CenterQatar UniversityDohaQatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug DesignGroningen UniversityGroningenThe Netherlands
| | - Asmaa Ali J. F. Althani
- Biomedical Research CenterQatar UniversityDohaQatar
- Department of Biomedical Sciences, College of Health Science, QU HealthQatar UniversityDohaQatar
| | - Mohamed A. Elrayess
- Biomedical Research CenterQatar UniversityDohaQatar
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
8
|
Clayton TL. Obesity and hypertension: Obesity medicine association (OMA) clinical practice statement (CPS) 2023. OBESITY PILLARS 2023; 8:100083. [PMID: 38125655 PMCID: PMC10728712 DOI: 10.1016/j.obpill.2023.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 12/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) provides an overview of the mechanisms and treatment of obesity and hypertension. Methods The scientific support for this CPS is based upon published citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results Mechanisms contributing to obesity-related hypertension include unhealthful nutrition, physical inactivity, insulin resistance, increased sympathetic nervous system activity, renal dysfunction, vascular dysfunction, heart dysfunction, increased pancreatic insulin secretion, sleep apnea, and psychosocial stress. Adiposopathic factors that may contribute to hypertension include increased release of free fatty acids, increased leptin, decreased adiponectin, increased renin-angiotensin-aldosterone system activation, increased 11 beta-hydroxysteroid dehydrogenase type 1, reduced nitric oxide activity, and increased inflammation. Conclusions Increase in body fat is the most common cause of hypertension. Among patients with obesity and hypertension, weight reduction via healthful nutrition, physical activity, behavior modification, bariatric surgery, and anti-obesity medications mostly decrease blood pressure, with the greatest degree of weight reduction generally correlated with the greatest degree of blood pressure reduction.
Collapse
Affiliation(s)
- Tiffany Lowe Clayton
- Diplomate of American Board of Obesity Medicine, WakeMed Bariatric Surgery and Medical Weight Loss USA
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27546, Levine Hall Room 170 USA
| |
Collapse
|
9
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Vasile CM, Padovani P, Rujinski SD, Nicolosu D, Toma C, Turcu AA, Cioboata R. The Increase in Childhood Obesity and Its Association with Hypertension during Pandemics. J Clin Med 2023; 12:5909. [PMID: 37762850 PMCID: PMC10531996 DOI: 10.3390/jcm12185909] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
There has been a major ongoing health impact of the COVID-19 pandemic on children's lives, including lifestyle and overall health. Enforcement of prevention measures, such as school closures and social distancing, has significantly affected children's daily routines and activities. This perspective manuscript aims to explore the rise in childhood obesity and its association with hypertension during pandemics. The COVID-19 pandemic has led to significant disruptions in children's routines, including reduced physical activity, increased sedentary behavior, and changes in dietary patterns. These factors, coupled with the psychological impact of the pandemic, have contributed to an alarming increase in childhood obesity rates. This paper has highlighted the concerning increase in childhood obesity and hypertension during pandemics. The disruptions caused by the COVID-19 pandemic, including reduced physical activity, increased sedentary behaviors, and changes in dietary patterns, have contributed to the rise in these health conditions. It is crucial to recognize the long-term consequences of childhood obesity and hypertension and the urgent need for a comprehensive approach to address them.
Collapse
Affiliation(s)
- Corina Maria Vasile
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, F-33600 Bordeaux, France;
| | - Paul Padovani
- Nantes Université, CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PreciCare, F-44000 Nantes, France;
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, F-44000 Nantes, France
| | | | - Dragos Nicolosu
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
| | - Claudia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania;
| | - Adina Andreea Turcu
- Faculty of Dentistry, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Ramona Cioboata
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| |
Collapse
|
11
|
Sharebiani H, Keramat S, Chavoshan A, Fazeli B, Stanek A. The Influence of Antioxidants on Oxidative Stress-Induced Vascular Aging in Obesity. Antioxidants (Basel) 2023; 12:1295. [PMID: 37372025 PMCID: PMC10295268 DOI: 10.3390/antiox12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a worldwide trend that is growing in incidence very fast. Adipose tissue dysfunction caused by obesity is associated with the generation of oxidative stress. Obesity-induced oxidative stress and inflammation play a key role in the pathogenesis of vascular diseases. Vascular aging is one of the main pathogenesis mechanisms. The aim of this study is to review the effect of antioxidants on vascular aging caused by oxidative stress in obesity. In order to achieve this aim, this paper is designed to review obesity-caused adipose tissue remodeling, vascular aging generated by high levels of oxidative stress, and the effects of antioxidants on obesity, redox balance, and vascular aging. It seems that vascular diseases in obese individuals are complex networks of pathological mechanisms. In order to develop a proper therapeutic tool, first, there is a need for a better understanding of interactions between obesity, oxidative stress, and aging. Based on these interactions, this review suggests different lines of strategies that include change in lifestyle to prevent and control obesity, strategies for adipose tissue remodelling, oxidant-antioxidant balance, inflammation suppression, and strategies against vascular aging. Some antioxidants support different lines of these strategies, making them appropriate for complex conditions such as oxidative stress-induced vascular diseases in obese individuals.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Shayan Keramat
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Abdolali Chavoshan
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Bahar Fazeli
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
12
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
13
|
Ben Tahar S, Garnier J, Eller K, DiMauro N, Piet J, Mehta S, Bajpayee AG, Shefelbine SJ. Adolescent obesity incurs adult skeletal deficits in murine induced obesity model. J Orthop Res 2023; 41:386-395. [PMID: 35578981 DOI: 10.1002/jor.25378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023]
Abstract
Adolescent obesity has risen dramatically in the last few decades. While adult obesity may be osteoprotective, the effects of obesity during adolescence, which is a period of massive bone accrual, are not clear. We used a murine model of induced adolescent obesity to examine the structural, mechanical, and compositional differences between obese and healthy weight bone in 16-week-old female C57Bl6 mice. We also examined the effects of a return to normal weight after skeletal maturity (24 weeks old). We found obese adolescent bone exhibited decreased trabecular bone volume, increased cortical diameter, increased ultimate stress, and increased brittleness (decreased plastic energy to fracture), similar to an aging phenotype. The trabecular bone deficits remained after return to normal weight after skeletal maturity. However, after returning to normal diet, there was no difference in ultimate stress nor plastic energy to fracture between groups as the normal diet group increased ultimate stress and brittleness. Interestingly, compositional changes appeared in the former high-fat diet mice after skeletal maturity with a lower mineral to matrix ratio compared to normal diet mice. In addition there was a trend toward increased fluorescent advanced glycation endproducts in the former high-fat diet mice compared to normal diet mice but this did not reach significance (p < 0.05) due to the large variability. The skeletal consequences of adolescent obesity may have lasting implications for the adult skeleton even after return to normal weight. Given the rates of adolescent obesity, skeletal health should be a concern.
Collapse
Affiliation(s)
- Soha Ben Tahar
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Julien Garnier
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kerry Eller
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Nicole DiMauro
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Judith Piet
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Shihkar Mehta
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Vick LV, Collins CP, Khuat LT, Wang Z, Dunai C, Aguilar EG, Stoffel K, Yendamuri S, Smith R, Mukherjee S, Barbi J, Canter RJ, Monjazeb AM, Murphy WJ. Aging augments obesity-induced thymic involution and peripheral T cell exhaustion altering the "obesity paradox". Front Immunol 2023; 13:1012016. [PMID: 36776393 PMCID: PMC9910174 DOI: 10.3389/fimmu.2022.1012016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The incidence of obesity, a condition characterized by systemic chronic inflammation, has reached pandemic proportions and is a poor prognostic factor in many pathologic states. However, its role on immune parameters has been diverse and at times contradictory. We have previously demonstrated that obesity can result in what has been called the "obesity paradox" which results in increased T cell exhaustion, but also greater efficacy of immune checkpoint blockade in cancer treatment. Methods The role of obesity, particularly in the context of aging, has not been robustly explored using preclinical models. We therefore evaluated how age impacts the immune environment on T cell development and function using diet-induced obese (DIO) mice. Results We observed that DIO mice initially displayed greater thymopoiesis but then developed greater thymic involution over time compared to their lean counterparts. Both aging and obesity resulted in increased T cell memory conversion combined with increased expression of T cell exhaustion markers and Treg expansion. This increased T cell immunosuppression with age then resulted in a loss of anti-tumor efficacy by immune checkpoint inhibitors (ICIs) in older DIO mice compared to the younger DIO counterparts. Discussion These results suggest that both aging and obesity contribute to T cell dysfunction resulting in increased thymic involution. This combined with increased T cell exhaustion and immunosuppressive parameters affects immunotherapy efficacy reducing the advantage of obesity in cancer immunotherapy responses.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Craig P. Collins
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Lam T. Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ethan G. Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kevin Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall Smith
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph Barbi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
15
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|
16
|
Wakui H, Ozawa M, Tamura K. TRPC5 as a possible therapeutic target for vascular dysfunction associated with obesity. Hypertens Res 2022; 45:2018-2020. [PMID: 36123400 DOI: 10.1038/s41440-022-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
17
|
TRPC5 mediates endothelium-dependent contraction in the carotid artery of diet-induced obese mice. Hypertens Res 2022; 45:1945-1953. [PMID: 36123395 DOI: 10.1038/s41440-022-01017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Little is known about the contribution of the transient receptor potential canonical channel isoform 5 (TRPC5), a Ca2+-sensitive channel, to vasoconstriction in obesity. In this study, we found that the TRPC5 expression and carotid artery contraction of diet-induced obese (DIO) mice were significantly higher than those of wild-type mice. Endothelium-dependent vasocontraction was inhibited by the TRPC5 inhibitor clemizole and the knockout of TRPC5 in DIO mouse carotid arteries, while activation of TRPC5 enhanced contraction in wild-type mice. TRPC5-regulated vasocontraction can be inhibited by the ROS scavenger NAC and the COX-2 inhibitor NS-398. Our study suggested that upregulation of TRPC5 contributes to endothelium-dependent contraction, which is involved in ROS production and COX-2 expression in DIO mouse carotid arteries. From these results, we speculated that TRPC5 mediated endothelium-dependent contraction in the carotid artery of DIO mice, which was achieved by increasing the levels of ROS and COX-2 expression.
Collapse
|
18
|
Villa-Martínez E, López-Vaquera SR, Alvarado-Coutiño LK, Gámez-Méndez AM, Ríos A, Escalante B. Thromboxane-dependent coronary vasoconstriction in obese mice: Role of peroxynitrite. Prostaglandins Other Lipid Mediat 2022; 160:106631. [PMID: 35272056 DOI: 10.1016/j.prostaglandins.2022.106631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Obesity leads to chronic oxidative stress promoting the development of cardiovascular diseases including coronary artery disease and endothelial dysfunction. Increased reactive oxygen species production associated with obesity might lead to endothelial dysfunction through cyclooxygenase (COX) pathway. We evaluated arachidonic acid (AA)-dependent coronary vascular responses and explored COX metabolism in obese C57BL/6 mice. In response to arachidonic acid (AA), isolated hearts from obese mice showed increased vasoconstriction compared with control mice. Released thromboxane (TX) A2 during AA-induced vasoconstriction phase was increased in heart perfusates from obese mice. Indomethacin and 1-benzylimidazole, both reduced vasoconstriction response in control and obese mice. Vasoconstriction response to TXA2 mimetic analog U46619 was 2.7 higher in obese mice. Obesity increased COX-2, TXS and TX receptor protein expression as well as oxidative stress evaluated by nitrotyrosine and peroxynitrite levels, compared with control mice. Obese mice treated with FeTMPyP, a peroxynitrite scavenger, reversed all these parameters to control levels. These data suggest that alterations in COX pathway may be associated with increased generation of free radicals, including peroxynitrite, that result from the oxidative stress observed in obesity.
Collapse
Affiliation(s)
- Elisa Villa-Martínez
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| | - Selma Romina López-Vaquera
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| | | | - Ana María Gámez-Méndez
- Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, San Pedro Garza García, NL, Mexico
| | - Amelia Ríos
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico.
| | - Bruno Escalante
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| |
Collapse
|
19
|
Zhu Y, Wang S, Chu Y, Zhang K, Wen X, Feng L, Yu F, Ma X. TRPC5 is essential in endothelium-dependent contraction of aorta from diet-induced obese mice. FUNDAMENTAL RESEARCH 2022; 2:429-436. [PMID: 38933403 PMCID: PMC11197789 DOI: 10.1016/j.fmre.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the Ca2+-permeable ion channel TRPC5 in regulating vasocontraction in obesity is poorly understood. Here, we investigated whether TRPC5 contributes to vascular dysfunction in obesity by promoting endothelium-dependent contraction via activation of cytosolic phospholipase A2 (cPLA2) in the aortic endothelial cells of obese mice. Acetylcholine-induced endothelium-dependent relaxation and contraction in the aorta were measured using wire myography. PLA2 activity was measured by the fluorogenic PLA2 substrate Bis-BODIPY™ FL C11-PC. The intracellular Ca2+ level in response to acetylcholine was measured by Fluo-4 fluorescence. Endothelium-derived contracting factors were assessed by enzyme immunoassay. Diet-induced obesity (DIO) attenuated endothelium-dependent vasodilation, enhanced endothelium-dependent contraction (EDC), and increased the expression of TRPC5 in the mouse aorta. Activation of TRPC5 promoted EDC in the wild-type mouse aorta, whereas pharmacological inhibition and genetic knockout of TRPC5 decreased EDC in the DIO mouse aorta. Moreover, cPLA2 phosphorylation and activity were higher in aortic endothelial cells from DIO mice, and this was attenuated by inhibition and knockout of TRPC5. Cyclooxygenase 2 (COX-2) expression was increased in DIO mouse endothelium and was decreased by a TRPC5 inhibitor and knockout of TRPC5. Release of prostaglandins F2α (PGF2α) and E2 (PGE2) was involved in TRPC5-regulated EDC in DIO mice. This study demonstrated that TRPC5 contributes to endothelial and vascular dysfunction and is involved in EDC through activation of cPLA2 and enhanced COX-2-PGF2α/PGE2 levels in DIO mice.
Collapse
Affiliation(s)
| | | | - Yuan Chu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
20
|
Ananda Rao A, Johncy S. Tennis Courts in the Human Body: A Review of the Misleading Metaphor in Medical Literature. Cureus 2022; 14:e21474. [PMID: 35223255 PMCID: PMC8863270 DOI: 10.7759/cureus.21474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Medical literature is home to fancy descriptions, poetic metaphors, and ingenious comparisons. However, some comparisons can disguise the knowledge gap. Large surfaces in the human body, like the alveolar surface for gas exchange, villi for food absorption, and the endothelial lining of blood vessels, are frequently compared to a “tennis court.” This narrative review explores this metaphor in detail, the discrepancies and factual inaccuracies across medical literature. It highlights the inappropriate use of Euclidean geometry and introduces fractal geometry, a language to define roughness.
Collapse
|
21
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
22
|
Schinzari F, Tesauro M, Cardillo C. Vasodilator Dysfunction in Human Obesity: Established and Emerging Mechanisms. J Cardiovasc Pharmacol 2021; 78:S40-S52. [PMID: 34840258 DOI: 10.1097/fjc.0000000000001108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
ABSTRACT Human obesity is associated with insulin resistance and often results in a number of metabolic abnormalities and cardiovascular complications. Over the past decades, substantial advances in the understanding of the cellular and molecular pathophysiological pathways underlying the obesity-related vascular dysfunction have facilitated better identification of several players participating in this abnormality. However, the complex interplay between the disparate mechanisms involved has not yet been fully elucidated. Moreover, in medical practice, the clinical syndromes stemming from obesity-related vascular dysfunction still carry a substantial burden of morbidity and mortality; thus, early identification and personalized clinical management seem of the essence. Here, we will initially describe the alterations of intravascular homeostatic mechanisms occurring in arteries of obese patients. Then, we will briefly enumerate those recognized causative factors of obesity-related vasodilator dysfunction, such as vascular insulin resistance, lipotoxicity, visceral adipose tissue expansion, and perivascular adipose tissue abnormalities; next, we will discuss in greater detail some emerging pathophysiological mechanisms, including skeletal muscle inflammation, signals from gut microbiome, and the role of extracellular vesicles and microRNAs. Finally, it will touch on some gaps in knowledge, as well as some current acquisitions for specific treatment regimens, such as glucagon-like peptide-1 enhancers and sodium-glucose transporter2 inhibitors, that could arrest or slow the progression of this abnormality full of unwanted consequences.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy; and
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, Italy
| |
Collapse
|
23
|
Salvia miltiorrhiza Protects Endothelial Dysfunction against Mitochondrial Oxidative Stress. Life (Basel) 2021; 11:life11111257. [PMID: 34833133 PMCID: PMC8622679 DOI: 10.3390/life11111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.
Collapse
|
24
|
Zhu Y, Wen L, Wang S, Zhang K, Cui Y, Zhang C, Feng L, Yu F, Chen Y, Wang R, Ma X. Omega-3 fatty acids improve flow-induced vasodilation by enhancing TRPV4 in arteries from diet-induced obese mice. Cardiovasc Res 2021; 117:2450-2458. [PMID: 33070195 DOI: 10.1093/cvr/cvaa296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Previous studies have shown the intake of omega-3 polyunsaturated fatty acids is associated with low rates of obesity and ischaemic pathologies. Omega-3 also have anti-inflammatory and plaque-stabilization effects and regulate vasodilation and constriction. However, there are few studies of the role of omega-3 in flow-induced vasodilation involving Ca2+-permeable ion channel TRPV4 in high-fat diet-induced obese (DIO) mouse. Here, we determined whether omega-3 protect against vascular dysfunction induced by a high-fat diet by enhancing TRPV4 activity and subsequently improving flow-mediated vasodilation. METHODS AND RESULTS Flow-mediated vasodilation in second-order mesenteric arteries from mice was measured using a pressure myograph. The intracellular Ca2+ concentration in response to flow and GSK1016790A (a TRPV4 agonist) was measured by Fluo-4 fluorescence. Whole-cell current was measured by patch clamp. Cell membrane tether force was measured by atomic force microscopy. Impairment of flow-mediated vasodilation in arteries and Ca2+ influx in endothelial cells from DIO mice was restored by omega-3 treatment. The improved flow-induced vasodilation was inhibited by the TRPV4 antagonist HC067047 and in TRPV4-/- mice. Omega-3 treatment enhanced endothelial TRPV4 activity and altered cell membrane mechanic property, as indicated by enhanced GSK1016790A-induced Ca2+ influx and whole-cell current and altered membrane mean tether force in endothelial cells from DIO mice. CONCLUSION Omega-3 improve vascular function by improving flow-induced vasodilation via enhancing TRPV4 activity in the endothelium of obese mice which may be related to improved cell membrane physical property. Activation of TRPV4 in endothelium plays an important role in the protective mechanisms of omega-3 against vascular dysfunction in obesity by improving flow-mediated vasodilation.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Lei Wen
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Sheng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yue Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Chi Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | | | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
25
|
Akgol S, Kalkan BM, Yucel D, Kocabas F. SC1 limits tube formation, branching, migration, expansion and induce apoptosis of endothelial cells. Vascul Pharmacol 2021; 141:106903. [PMID: 34481979 DOI: 10.1016/j.vph.2021.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Endothelial cells (ECs) are essential in the growth and progression of the tumor cells by supplying nutrition and angiogenesis factors. Targeting ECs emerged as a major strategy to prevent the growth of tumors. Studies suggest that ERK1/2 signaling is important for endothelial cells, which could be specifically targeted by small molecule SC1. We aimed to study the effects of SC1 treatments on endothelial cell proliferation, angiogenesis, and death. To this end, we performed viability, apoptosis, cell cycle, gene expression, wound closure, tube formation, and western blot analysis in endothelial cells post SC1 treatments. Intriguingly, we found that SC1 has an antiangiogenic effect on endothelial cells, which limits the endothelial cell expansion, tube formation, branching, and migration. The proliferation is especially limited in dose dependent manner by SC1. In addition, we found that SC1 elevates the apoptosis of endothelial cells and associated pathways including BAK1, Stat1, Sox4, and Caspase1. We believe that these findings could contribute to the development of improved therapies based on the SC1 as an attractive candidate for anticancer clinical studies targeted to tumor angiogenesis.
Collapse
Affiliation(s)
- Sezer Akgol
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Dogacan Yucel
- Department of Medicine, University of Minnesota, USA
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
26
|
Meyer MR. Chronic Coronary Syndromes in Women: Challenges in Diagnosis and Management. Mayo Clin Proc 2021; 96:1058-1070. [PMID: 33814074 DOI: 10.1016/j.mayocp.2020.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022]
Abstract
Sex matters in science. This particularly applies to ischemic heart disease, which displays key differences in pathophysiology, presentation, and effectiveness in diagnostic strategies and management between women and men. However, underrepresentation of women in randomized trials has led to an evidence gap in clinical practice. Nevertheless, it has become clear that women present with a higher burden of symptoms and comorbidities, experience worse outcomes, but are less likely to have flow-limiting stenosis in epicardial coronary arteries than men. A major contributor to this paradox is coronary microvascular disease, a heterogeneous disorder with multifactorial etiology that predominantly affects women. There is a significant interplay between coronary microvascular disease, obstructive coronary artery disease, and the cardiovascular risk associated with it, with impaired vasomotor function often preceding the development of advanced atheroma. This novel concept has recently been referred to as chronic coronary syndromes, which better meets the female phenotype of ischemic heart disease, questioning current management recommendations that still largely apply to flow-limiting stenoses in epicardial coronary arteries typically found in men. The goal of this review is to highlight the most recent scientific advances in understanding chronic coronary syndromes in women. It provides practical advice with focus on challenges in diagnosis and management, and discusses perspectives towards the implementation of sex-specific, safer, and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Matthias R Meyer
- Division of Cardiology, Triemli Hospital, Zurich, Switzerland; Division of Gender Medicine, Institute of Primary Care, University of Zurich, Switzerland.
| |
Collapse
|
27
|
Gonzaga NA, Awata WMC, Ficher SP, Assis VO, Alves JV, Tostes RC, Tirapelli CR. Melatonin reverses the loss of the anticontractile effect of perivascular adipose tissue in obese rats. J Pineal Res 2021; 70:e12710. [PMID: 33332655 DOI: 10.1111/jpi.12710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Perivascular adipose tissue (PVAT) undergoes functional changes in obesity. Increased oxidative stress is a central mechanism whereby obesity induces loss of the anticontractile effect of PVAT. Melatonin is an antioxidant that displays vasoprotective action in cardiovascular disease. Here, we sought to investigate whether melatonin would restore the anticontractile effect of periaortic PVAT in obesity. Male Wistar Hannover rats were treated for 10 weeks with a high-calorie diet. Melatonin (5 mg/kg/d, p.o., gavage) was administered for 2 weeks. Functional findings showed that obesity-induced loss of the anticontractile effect of PVAT and treatment with melatonin reversed this response. Tiron [a scavenger of superoxide anion (O2 - )] restored the anticontractile effect of PVAT in aortas from obese rats, suggesting a role for reactive oxygen species (ROS) in such response. Decreased superoxide dismutase (SOD) activity and augmented levels of ROS were detected in periaortic PVAT from obese rats. These responses were accompanied by decreased levels of nitric oxide (NO) in PVAT. Treatment with melatonin restored SOD activity, decreased ROS levels, and increased NO bioavailability in PVAT from obese rats. Here, we first reported the beneficial effects of melatonin in periaortic PVAT in obesity. Melatonin reversed the adverse effects of obesity in PVAT that included overproduction of ROS, reduced SOD activity, and decreased bioavailability of NO. Therefore, PVAT may constitute an important target for the treatment of obesity-induced vascular dysfunction and melatonin emerges as a potential tool in the management of the vascular complications induced by obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita C Tostes
- University of São Paulo (USP), Ribeirão Preto, Brazil
| | | |
Collapse
|
28
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
29
|
Fouda YB, Ngo Lemba Tom E, Atsamo AD, Bonabe C, Dimo T. Effects of stem bark aqueous extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: In vivo and in vitro assessments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112972. [PMID: 32446928 DOI: 10.1016/j.jep.2020.112972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fagara tessmannii is a shrub of the African rainforests in South-West, Centre, South and East provinces in Cameroon. It is used in traditional medicine for the treatment of tumors, swellings, inflammation, gonorrhoea, schistosomiasis, antifungal, heart diseases and as anti-hypertensive. AIM OF THE STUDY We investigated the potential effects of F. tessmannii on cardiovascular risk related to monosodium glutamate-induced obesity. MATERIALS AND METHODS Monosodium glutamate (MSG, 4 mg/g/day) was injected subcutaneously to newborn Wistar rats for the four consecutive first days of their life and on the 6th, 8th and 10th day after birth. After 21 weeks, obese rats were treated orally with F. tessmannii (100 or 200 mg/kg/day), orlistat (10 mg/kg/day) or telmisartan (10 mg/kg/day) for 6 weeks. Body weight, obesity, body mass index (BMI), Lee index, insulin sensitivity and glucose tolerance, blood pressure, lipid profile as a Coronary Risk Index (CRI), and reactivity of isolated thoracic aorta were evaluated. RESULTS In addition to significantly decrease body weight (17.60% and 20.34%), BMI, Lee's index, retroperitoneal fat, total adiposity, and coronary risk indicators, F. tessmannii has significantly decreased insulin resistance and hyperglycemia and high blood pressure observed in MSG-obese rats. The high contractility to phenylephrine as well as the hypersensitivity to sodium nitroprusside (a nitric oxide-donor), observed in MSG aortic rings were significantly reduced by the F. tessmannii extract. Enhanced serum Na+ and Cl- levels and decreased K+ observed in obese rats were also significantly reversed after F. tessmannii treatment. CONCLUSIONS F. tessmannii fights against obesity and associated cardiovascular risks by modulating production and vascular responsiveness to vasoactive factors, monitoring premature aging. F. tessmannii promotes the loss of ectopic fat and other fatty tissues, the sensitivity of the peripherical tissues to insulin, the energy expenditure and the renovascular decompression and regulates ions movement which prevents hypertension.
Collapse
Affiliation(s)
- Yannick Bekono Fouda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Esther Ngo Lemba Tom
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Christian Bonabe
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Théophile Dimo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
30
|
Nobiletin ameliorates high-fat diet-induced vascular and renal changes by reducing inflammation with modulating AdipoR1 and TGF-β1 expression in rats. Life Sci 2020; 260:118398. [PMID: 32920004 DOI: 10.1016/j.lfs.2020.118398] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
AIMS We investigate the effect of nobiletin on vascular and renal alterations and possible mechanisms involved in high-fat diet (HFD)-fed rats. MAIN METHODS Male Sprague-Dawley rats were fed a HFD with fructose 15% in drinking water for 16 weeks. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. KEY FINDINGS HFD-fed rats treated with nobiletin was significantly reduced obesity, hypertension, dyslipidemia and hyperinsulinemia. Nobiletin improved vascular endothelial function, restored creatinine clearance, and reduced plasma urea and creatinine levels, as well as urinary protein excretion. Nobiletin markedly alleviated vascular medial cross-sectional area (CSA) and collagen deposition, glomerular extracellular matrix (ECM) accumulation, and renal fibrosis. Nobiletin significantly elevated plasma adiponectin levels, together with upregulated adiponectin receptor 1 (AdipoR1) and suppressed transforming growth factor-β1 (TGF-β1) expression in kidney. In addition, an increase of plasma tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was significantly attenuated after nobiletin treatment. SIGNIFICANCE Our results suggest that nobiletin attenuates HFD-induced vascular and renal alterations in rats, which is possibly related to the modulation of AdipoR1 and TGF-β1expression, and suppression of inflammation.
Collapse
|
31
|
Briones-Espinoza MJ, Cortés-García JD, Vega-Cárdenas M, Uresti-Rivera EU, Gómez-Otero A, López-López N, Mejía-Torres M, Portales-Pérez DP. Decreased levels and activity of Sirt1 are modulated by increased miR-34a expression in adipose tissue mononuclear cells from subjects with overweight and obesity: A pilot study. Diabetes Metab Syndr 2020; 14:1347-1354. [PMID: 32755834 DOI: 10.1016/j.dsx.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/20/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Overweight and obesity are important risk factors for chronic disorders. Fat accumulation is one of the central manifestations; it occurs via a complex mechanism where multiple metabolic signals converge. Sirtuins are an enzyme family with deacetylase functions that are implicated in the regulation of several genes. Sirt1 and its upstream regulator (miR-34a) are elements of a converging mechanism that integrates the dynamic metabolic state. In this work, we hypothesized that elevated levels of miR-34a in overweight/obese group inhibits Sirt1 activity. Therefore, we studied the miR-34a/Sirt1 axis in mononuclear cells obtained from adipose tissue. METHODS Adipose tissue samples were collected from 36 subjects, and they were categorized according to body mass index (BMI) as overweight/obesity and normoweight. Subcutaneous adipose tissue samples were enzymatically dissociated, and mononuclear cells from adipose tissue were isolated by Ficoll Hypaque. Sirt1-positive cells and relative Sirt1 expression were determined by flow cytometry and real-time polymerase chain reaction (qPCR), respectively. Finally, Sirt1 activity was measured with a luminescence assay. RESULTS The percentage of Sirt1-positive mononuclear cells from adipose tissue decreased along with Sirt1 enzymatic activity in overweight/obese participants. miR-34a expression increased in the overweight/obese group compared to normoweight individuals. There was a negative association between the relative miR-34a expression and Sirt1-positive cells and a synergistic effect on Sirt1-positive cells mediated by the miR-34a inhibitor and Sirt1 agonist. CONCLUSIONS Our results describe for the first time the presence of miR-34a and Sirt1 in mononuclear cells isolated from subcutaneous adipose tissue. Additionally, these results suggest altered sirtuin function in overweight/obese patients and open the possibility for new therapies that involve these metabolic targets.
Collapse
Affiliation(s)
- Margarita J Briones-Espinoza
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Juan D Cortés-García
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Mariela Vega-Cárdenas
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Edith U Uresti-Rivera
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Arturo Gómez-Otero
- Aesthetic and Corrective Plastic Surgery Clinic, San Luis Potosí, Mexico
| | - Nallely López-López
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Manuel Mejía-Torres
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Diana P Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico.
| |
Collapse
|
32
|
Kataru RP, Park HJ, Baik JE, Li C, Shin J, Mehrara BJ. Regulation of Lymphatic Function in Obesity. Front Physiol 2020; 11:459. [PMID: 32499718 PMCID: PMC7242657 DOI: 10.3389/fphys.2020.00459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.
Collapse
Affiliation(s)
- Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hyeong Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Claire Li
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
33
|
Kalkan BM, Akgol S, Ak D, Yucel D, Guney Esken G, Kocabas F. CASIN and AMD3100 enhance endothelial cell proliferation, tube formation and sprouting. Microvasc Res 2020; 130:104001. [PMID: 32198058 DOI: 10.1016/j.mvr.2020.104001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction is prominent in atherosclerosis, hypertension, diabetes, peripheral and cardiovascular diseases, and stroke. Novel therapeutic approaches to these conditions often involve development of tissue-engineered veins with ex vivo expanded endothelial cells. However, high cell number requirements limit these approaches to become applicable to clinical applications and highlight the requirement of technologies that accelerate expansion of vascular-forming cells. We have previously shown that novel small molecules could induce hematopoietic stem cell expansion ex vivo. We hypothesized that various small molecules targeting hematopoietic stem cell quiescence and mobilization could be used to induce endothelial cell expansion and angiogenesis due to common origin and shared characteristics of endothelial and hematopoietic cells. Here, we have screened thirty-five small molecules and found that CASIN and AMD3100 increase endothelial cell expansion up to two-fold and induce tube formation and ex vivo sprouting. In addition, we have studied how CASIN and AMD3100 affect cell migration, apoptosis and cell cycle of endothelial cells. CASIN and AMD3100 upregulate key endothelial marker genes and downregulate a number of cyclin dependent kinase inhibitors. These findings suggest that CASIN and AMD3100 could be further tested in the development of artificial vascular systems and vascular gene editing technologies. Furthermore, these findings may have potential to contribute to the development of alternative treatment methods for diseases that cause endothelial damage.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Sezer Akgol
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Deniz Ak
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Middle East Technical University, Ankara, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, MN, USA
| | - Gulen Guney Esken
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
34
|
Dietary Supplemental Glutamine Enhances the Percentage of Circulating Endothelial Progenitor Cells in Mice with High-Fat Diet-Induced Obesity Subjected to Hind Limb Ischemia. Mediators Inflamm 2020; 2020:3153186. [PMID: 32104148 PMCID: PMC7040416 DOI: 10.1155/2020/3153186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
This study investigated whether glutamine (GLN) pretreatment can enhance circulating endothelial progenitor cells (EPCs) and attenuate inflammatory reaction in high-fat diet-induced obese mice with limb ischemia. Mice were assigned to a normal control (NC), high-fat control (HC), limb ischemia (HI), and GLN limb ischemia (HG) groups. The NC group provided chow diet and treated as a negative control. Mice in the HC and HI groups were fed a high-fat diet which 60% energy provided by fat for 8 weeks. Mice in the HG group were fed the same diet for 4 weeks and then transferred to a high-fat diet with 25% of total protein nitrogen provided as GLN to replace part of the casein for the subsequent 4 weeks. After feeding 8 weeks, mice in the HC group were sham-operated, while the HI and HG groups underwent an operation to induce limb ischemia. All mice except the NC group were euthanized on either day 1 or 7 after the operation. The results showed that the 8 weeks' high-fat diet feeding resulted in obesity. The HG group had higher circulating EPCs on day 1 while muscle vascular endothelial growth factor, matrix metalloproteinase-9, and hypoxia-inducible factor-1 gene expressions were higher on day 7 postischemia than those of the HI group. The superoxide dismutase activity and reduced glutathione content in affected muscles were higher, whereas mRNA expressions of interleukin-6 and tumor necrosis factor-α were lower in the HG than those in the HI group. These findings suggest that obese mice pretreated with GLN-supplemented high-fat diet increased circulating EPC percentage, enhanced the antioxidant capacity, and attenuated inflammatory reactions in response to limb ischemia.
Collapse
|
35
|
Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
The impact of obesity to antioxidant defense parameters in adolescents with increased cardiovascular risk. J Med Biochem 2019; 39:346-354. [PMID: 33269023 DOI: 10.2478/jomb-2019-0051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background The goal of this study was to assess the oxidative stress status through the values of antioxidant defense parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and total antioxidant status (TAS), as well as cardiovascular risk factors (total cholesterol, LDL-cholesterol, VLDL-cholesterol, non-HDL-cholesterol and triglycerides), anthropometric parameters (Body mass index-BMI, waist circumference-WC, hipp circumferemce-HC, waist-to-hipp ratio-WHR and inflammatory markers (high sensitive C-reactive protein) in a group of obese adolescents. Methods A total of 238 students of both sexes, age of 22.32 ± 1.85 yr. were included in the study. According to the values of BMI lower and higher than 25 kg/m2 and WC higher and lower than 94 cm (males)/80 cm (females) the tested group of students was divided into 2 subgroups: Group 1 (increased risk for CVD) and Group 2 (lower risk for CVD). Results Significantly reduced SOD and GPx with increased GR, TAS, inflammatory and lipoprotein parameters were obtained in Group 1 compared to Group 2. Significant positive association of hsCRP (OR:1.41; 95%CI 1.08-1.83; P=0.007), TAS (OR:827.2; 95%CI 19.27-35498; P=0.007) and GR (OR:1.13; 95%CI 1.05-1.21; P=0.002) and negative association of GPx (OR:0.97; 95%CI 0.94-1.003; P=0.043) and HDL-cholesterol (OR:0.41; 95%CI 0.176-0.963; P=0.0014) with cardiovascular risk factors were found in obese students. According to the ROC analysis GR>44.8 U/L, TAS>1.35 mmol/L, hsCRP>1.71 mg/L and HDL-cholesterol <1.13 mmol/L have sufficient predictive ability for cardiovascular disease in obese students. Conclusions Significant association of antioxidant defense parameters with anthropometric, lipid and inflammatory markers in obese students with increased cardiovascular risk suggest that screening of these parameters is necessary and highly recommended.
Collapse
|
37
|
Badimon L, Bugiardini R, Cenko E, Cubedo J, Dorobantu M, Duncker DJ, Estruch R, Milicic D, Tousoulis D, Vasiljevic Z, Vilahur G, de Wit C, Koller A. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J 2019; 38:1951-1958. [PMID: 28873951 DOI: 10.1093/eurheartj/ehx181] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni M Claret 167, 08025 Barcelona, Spain.,Cardiovascular Research Chair UAB, Barcelona, Spain
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Maria Dorobantu
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila" of Bucharest, Emergency Clinical Hospital of Bucharest, 8, Calea Floreasca, Sector 1, 014461 Bucuresti, Romania
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Ramón Estruch
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain.,CIBER Obesity and Nutrition, Instituto de Salud Carlos III, Spain
| | - Davor Milicic
- Department for Cardiovascular Diseases, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, HR-10000 Zagreb, Croatia
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Vasilissis Sofias 114, TK 115 28 Athens, Greece
| | - Zorana Vasiljevic
- Clinical Center of Serbia, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrumfür Herz-Kreislauf-Forschung (DZHK) e.V., partner site: Hamburg/Kiel/Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Akos Koller
- Institute of Natural Sciences, University of Physical Education, Alkotas street, 44, 1123 Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
38
|
In Biomedicine, Thin Is Still In: Obesity Surveillance among Racialized, (Im)migrant, and Female Bodies. SOCIETIES 2019. [DOI: 10.3390/soc9030059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently there is a plethora of research literature which constructs obesity as an alarming new global pandemic associated with a multitude of acute and chronic diseases rooted in lifestyle factors. Although most of these claims related to obesity are well accepted in the research community, some challenges remain. For instance, lifestyle factors only partially explain the risks of developing obesity. In this paper, I advocated for greater caution in interpreting some of the medical claims of obesity due to the epistemological and methodological assumptions that inform certain groups of obesity researchers. While most of the literature has reported lifestyle factors and behavior modification as the major mechanisms to achieving health and wellbeing, a few scholars have raised issues about structural factors.
Collapse
|
39
|
García-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, González-Blázquez R, Alcalá M, Rodríguez-Rodríguez P, Viana M, Aránguez I, Gollasch M, Somoza B, Fernández-Alfonso MS. Caloric restriction induces H 2O 2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic Biol Med 2019; 139:35-45. [PMID: 31100477 DOI: 10.1016/j.freeradbiomed.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ± 0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ± 0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | | | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
40
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
41
|
Szulińska M, Łoniewski I, Skrypnik K, Sobieska M, Korybalska K, Suliburska J, Bogdański P. Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women-A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients 2018; 10:E1672. [PMID: 30400570 PMCID: PMC6265939 DOI: 10.3390/nu10111672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Obesity in the postmenopausal period is associated with an increased risk of cardiovascular diseases in women. One of the key drivers of cardiovascular risk is endothelial dysfunction; thus, this is also a crucial point for studies on new therapeutic methods of cardioprotective properties. The aim of the current study was to evaluate the effect of two doses of multispecies probiotic Ecologic® Barrier supplement on functional (primary endpoint) and biochemical parameters (secondary endpoint) of endothelial dysfunction in obese postmenopausal women in a 12-week randomized, placebo-controlled clinical trial. A total of 81 obese Caucasian women participated in the trial. The subjects were randomly assigned to three groups that received a placebo, a low dose (LD) (2.5 × 10⁸ colony forming units (CFU) per day), or a high dose (HD) (1 × 1010 CFU per day) of lyophilisate powder containing live multispecies probiotic bacteria. The probiotic supplement was administered each day for 12 weeks in two equal portions. A high dose probiotic supplementation for 12 weeks decreased systolic blood pressure, vascular endothelial growth factor, pulse wave analysis systolic pressure, pulse wave analysis pulse pressure, pulse wave analysis augmentation index, pulse wave velocity, interleukin-6, tumor necrosis factor alpha, and thrombomodulin. Low doses of probiotic supplementation decreased the systolic blood pressure and interleukin-6 levels. The mean changes in the estimated parameters, compared among the three groups, revealed significant differences in the vascular endothelial growth factor, the pulse wave analysis systolic pressure, the pulse wave analysis augmentation index, the pulse wave velocity, the tumor necrosis factor alpha, and thrombomodulin. The post hoc tests showed significant differences for all parameters between HD and the placebo group, and HD and LD (besides pulse wave analysis augmentation index). We show for the first time that supplementation with multispecies probiotic Ecologic® Barrier favorably modifies both functional and biochemical markers of vascular dysfunction in obese postmenopausal women.
Collapse
Affiliation(s)
- Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Szamarzewskiego Str. 84, 60-569 Poznań, Poland.
| | - Igor Łoniewski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznań, Poland.
| | - Magdalena Sobieska
- Department of Rheumatology and Rehabilitation, Poznan University of Medical Sciences, 28. Czerwca 1956r 135/147, 61-55 Poznań, Poland.
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland.
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznań, Poland.
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Szamarzewskiego Str. 84, 60-569 Poznań, Poland.
| |
Collapse
|
42
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
43
|
Effect of obesity on biodistribution of nanoparticles. J Control Release 2018; 281:11-18. [PMID: 29753960 DOI: 10.1016/j.jconrel.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/21/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Nanoparticles have specific features (lipophilicity, surface charge, composition and size). Studies regarding the biological behavior of nanoparticles in diseases such diabetics and obesity are scarce. Here, we evaluated two nanoparticles: magnetic core mesoporous silica (MSN) (58 nm) and polycaprolactone (PCL) nanoparticle (280 nm) in obese mice. Changes in the biodistribution were observed, especially considering the mononuclear phagocyte system (MPS), and the visceral fat tissue. Nonetheless, our data corroborates the influence of size in the biodistribution in obese animals, supporting that smaller nanoparticles, may show a higher tissue deposition at spleen, due the associated splenomegaly and the complications arising from this state. Finally, our study demonstrated that, in obesity, probably due the low-grade inflammatory state associated with metabolic syndrome a difference in accumulation of nanoparticles was found, with profound impact in the tissue deposition of nanoparticles.
Collapse
|
44
|
Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Front Physiol 2018; 9:253. [PMID: 29618983 PMCID: PMC5871983 DOI: 10.3389/fphys.2018.00253] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Núbia S Lobato
- Institute of Health Sciences, Federal University of Goias, Jatai, Brazil
| |
Collapse
|
45
|
Barton M, Husmann M. Obesity causes lymphatic vascular injury: time for clinical translation. J Physiol 2018; 594:6807-6808. [PMID: 27905133 DOI: 10.1113/jp273253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Marc Husmann
- Division of Angiology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Morel S, Kwak B, Rohner-Jeanrenaud F, Steffens S, Molica F. Adipokines at the crossroad between obesity and cardiovascular disease. Thromb Haemost 2017; 113:553-66. [DOI: 10.1160/th14-06-0513] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
SummaryObesity, and especially excessive visceral adipose tissue accumulation, is considered as a low-grade inflammatory state that is responsible for adipocyte dysfunction and associated metabolic disorders. Adipose tissue displays endocrine functions by releasing pro- or antiinflammatory bioactive molecules named adipokines. An altered expression of these molecules, provoked by obesity or adipocyte dysregulation, contributes to major metabolic diseases such as insulin resistance and type 2 diabetes mellitus that are important risk factors for cardiovascular disease. However, obesity is also characterised by the expansion of perivascular adipose tissue that acts locally via diffusion of adipokines into the vascular wall. Local inflammation within blood vessels induced by adipokines contributes to the onset of endothelial dysfunction, atherosclerosis and thrombosis, but also to vascular remodelling and hypertension. A fast expansion of obesity is expected in the near future, which will rapidly increase the incidence of these cardiovascular diseases. The focus of this review is to summarise the link between metabolic and cardiovascular disease and discuss current treatment approaches, limitations and future perspectives for more targeted therapies.
Collapse
|
47
|
Alba BK, Greaney JL, Ferguson SB, Alexander LM. Endothelial function is impaired in the cutaneous microcirculation of adults with psoriasis through reductions in nitric oxide-dependent vasodilation. Am J Physiol Heart Circ Physiol 2017; 314:H343-H349. [PMID: 29054972 DOI: 10.1152/ajpheart.00446.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Psoriasis is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not fully understood. Deficits in conduit arterial function are evident in patients with psoriasis, but potential impairments in microcirculatory endothelial function remain unclear. We hypothesized that cutaneous microvascular dysfunction would be detectable in otherwise healthy individuals with psoriasis. Two intradermal microdialysis fibers were placed in (nonlesional) forearm skin of nine patients (3 men and 6 women, 39 ± 5 yr) with moderate (16 ± 2% of body surface area) plaque psoriasis and nine healthy (nonpsoriatic) control subjects (3 men and 6 women, 38 ± 5 yr) for local delivery of 1) lactated Ringer solution (control) and 2) 10 mM l-ascorbate (a nonspecific antioxidant). An index of skin blood flow was measured using laser-Doppler flowmetry during local heating (42°C). Nitric oxide (NO)-dependent vasodilation was directly quantified after perfusion of the nonspecific NO synthase inhibitor NG-nitro-l-arginine methyl ester (15 mM). A third fiber was perfused with increasing concentrations (10-10 - 10-2 M) of norepinephrine to elicit adrenoreceptor-mediated cutaneous vasoconstriction. NO-dependent vasodilation was attenuated in patients with psoriasis (57 ± 5% and 39 ± 7% maximum cutaneous vascular conductance in control subjects and adults with psoriasis, respectively, P < 0.01). l-Ascorbate did not improve NO-dependent vasodilation ( P > 0.05). There was no group difference in maximal vasoconstriction or microvascular sensitivity to norepinephrine ( P > 0.05). These data suggest that NO bioavailability is reduced in otherwise healthy individuals with psoriasis, which contributes to systemic microvascular dysfunction. NEW & NOTEWORTHY In adults with psoriasis, reduced nitric oxide bioavailability mediates impaired endothelium-dependent vasodilation, independent of increases in oxidative stress. Furthermore, the degree of psoriatic symptomology is directly related to greater reductions in nitric oxide-dependent vasodilation.
Collapse
Affiliation(s)
- Billie K Alba
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| | - Jody L Greaney
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| | - Sara B Ferguson
- Penn State Hershey Medical Group , State College, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| |
Collapse
|
48
|
Medvedyuk S, Ali A, Raphael D. Ideology, obesity and the social determinants of health: a critical analysis of the obesity and health relationship. CRITICAL PUBLIC HEALTH 2017. [DOI: 10.1080/09581596.2017.1356910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stella Medvedyuk
- School of Health Policy and Management, Faculty of Health, York University , Toronto, Canada
| | - Ahmednur Ali
- School of Health Policy and Management, Faculty of Health, York University , Toronto, Canada
| | - Dennis Raphael
- School of Health Policy and Management, Faculty of Health, York University , Toronto, Canada
| |
Collapse
|
49
|
Schütten MTJ, Houben AJHM, de Leeuw PW, Stehouwer CDA. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology (Bethesda) 2017; 32:197-209. [PMID: 28404736 DOI: 10.1152/physiol.00037.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Obese individuals frequently develop hypertension, which is for an important part attributable to renin-angiotensin-aldosterone system (RAAS) overactivity. This review summarizes preclinical and clinical evidence on the involvement of dysfunctional adipose tissue in RAAS activation and on the renal, central, and vascular mechanisms linking RAAS components to obesity-associated hypertension.
Collapse
Affiliation(s)
- Monica T J Schütten
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter W de Leeuw
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
50
|
Rodriguez-Rodriguez R, Jiménez-Altayó F, Alsina L, Onetti Y, Rinaldi de Alvarenga JF, Claro C, Ogalla E, Casals N, Lamuela-Raventos RM. Mediterranean tomato-based sofrito
protects against vascular alterations in obese Zucker rats by preserving NO bioavailability. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Rosalia Rodriguez-Rodriguez
- Basic Sciences Department; Faculty of Medicine and Health Sciences; Universitat Internacional de Catalunya; Sant Cugat del Vallès Barcelona Spain
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Laia Alsina
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Yara Onetti
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | | | - Carmen Claro
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Sevilla; Sevilla Spain
| | - Elena Ogalla
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Sevilla; Sevilla Spain
| | - Núria Casals
- Basic Sciences Department; Faculty of Medicine and Health Sciences; Universitat Internacional de Catalunya; Sant Cugat del Vallès Barcelona Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Rosa M. Lamuela-Raventos
- Nutrition, Food Science Department and Gastronomy; XaRTA, INSA-UB Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|