1
|
Thanos PK, Hanna C, Mihalkovic A, Hoffman A, Posner A, Butsch J, Blum K, Georger L, Mastrandrea LD, Quattrin T. Genetic Correlates as a Predictor of Bariatric Surgery Outcomes after 1 Year. Biomedicines 2023; 11:2644. [PMID: 37893019 PMCID: PMC10603884 DOI: 10.3390/biomedicines11102644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study analyzed genetic risk assessments in patients undergoing bariatric surgery to serve as a predictive factor for weight loss parameters 1 year after the operation. Thirty (30) patients were assessed for Genetic Addiction Risk Severity (GARS), which analyzes neurogenetic polymorphisms involved in addiction and reward deficiency. Genetic and psychosocial data collected before the operation were correlated with weight loss data, including changes in weight, body mass index (BMI), and percent of expected weight loss (%EWL). Results examined correlations between individual gene risk alleles, 1-year body weight data, and psychosocial trait scores. Spearman's correlations revealed that the OPRM1 (rs1799971) gene polymorphism had significant negative correlation with 1-year weight (rs = -0.4477, p < 0.01) and BMI (rs = -0.4477, p < 0.05). In addition, the DRD2 risk allele (rs1800497) was correlated negatively with BMI at 1 year (rs = -0.4927, p < 0.05), indicating that one risk allele copy was associated with lower BMI. However, this allele was positively correlated with both ∆Weight (rs = 0.4077, p < 0.05) and %EWL (rs = 0.5521, p < 0.05) at 1 year post-surgery. Moreover, the overall GARS score was correlated with %EWL (rs = 0.4236, p < 0.05), ∆Weight (rs = 0.3971, p < 0.05) and ∆BMI (rs = 0.3778, p < 0.05). Lastly, Food Cravings Questionnaire (FCQ) scores were negatively correlated with %EWL (rs = -0.4320, p < 0.05) and ∆Weight at 1 year post-surgery (rs = -0.4294, p < 0.05). This suggests that individuals with a higher genetic addiction risk are more responsive to weight loss treatment, especially in the case of the DRD2 polymorphism. These results should translate clinically to improve positivity and attitude related to weight management by those individuals born with the risk alleles (rs1800497; rs1799971).
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Aaron Hoffman
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75208, USA
| | - Alan Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Butsch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Nutrigenomics, SpliceGen, Therapeutics, Inc., Austin, TX 78701, USA;
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH 45435, USA
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Lesley Georger
- Department of Natural Sciences and Mathematics, D’Youville University, Buffalo, NY 14201, USA;
| | - Lucy D. Mastrandrea
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA (T.Q.)
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA (T.Q.)
| |
Collapse
|
2
|
Manco L, Machado-Rodrigues AM, Padez C. Association study of common functional genetic polymorphisms in SLC6A4 (5-HTT) and MAOA genes with obesity in portuguese children. Arch Physiol Biochem 2022; 128:1510-1515. [PMID: 32551914 DOI: 10.1080/13813455.2020.1779312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To investigate the association of polymorphisms in SLC6A4 and MAOA genes with obesity indices in children. MATERIAL AND METHODS A total of 637 Portuguese children (317 girls; 320 boys) aged 3-11 years-old were genotyped for the SLC6A4 polymorphisms, 5-HTTLPR and STin2, and for a MAOA VNTR. Polymorphisms were analysed by PCR-based methods. RESULTS Although non-significant (p = .089), our study revealed the Stin2 10 minor allele with a marked higher frequency in girls with overweight/obesity (0.466) in comparison with controls (0.376). Combining the two SLC6A4 polymorphisms, haplotype S/12 revealed in girls significant or nominally significant protective effects against BMI (β = -0.615; p = .009), BMI Z-score (β = -0.251; p = .006), WC (β = -1.4; p = .02) and WHtR (β = -0.008; p = .04). CONCLUSIONS We found some evidences for the role of SLC6A4 gene in measures of childhood obesity, mainly in girls.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Aristides M Machado-Rodrigues
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- High School of Education, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Cristina Padez
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:jpm12020321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, “the answer is blowin’ in the wind,” and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
- Correspondence: ; Tel.: +1-619-890-2167
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
4
|
Nogacka AM, de Los Reyes-Gavilán CG, Martínez-Faedo C, Ruas-Madiedo P, Suarez A, Mancabelli L, Ventura M, Cifuentes A, León C, Gueimonde M, Salazar N. Impact of Extreme Obesity and Diet-Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Mol Nutr Food Res 2020; 65:e2000030. [PMID: 32966685 DOI: 10.1002/mnfr.202000030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SCOPE A limited number of human studies have characterized fecal microbiota and metabolome in extreme obesity and after diet-induced weight loss. METHODS AND RESULTS Fecal samples from normal-weight and extremely obese adults and from obese participants before and after moderate diet-induced weight loss are evaluated for their interaction with the intestinal adenocarcinoma cell line HT29 using an impedance-based in vitro model, which reveals variations in the interaction between the gut microbiota and host linked to obesity status. Microbiota composition, short chain fatty acids, and other intestinal metabolites are further analyzed to assess the interplay among diet, gut microbiota, and host in extreme obesity. Microbiota profiles are distinct between normal-weight and obese participants and are accompanied by fecal signatures in the metabolism of biliary compounds and catecholamines. Moderate diet-induced weight loss promotes shifts in the gut microbiota, and the primary fecal metabolomics features are associated with diet and the gut-liver and gut-brain axes. CONCLUSIONS Analyses of the fecal microbiota and metabolome enable assessment of the impact of diet on gut microbiota composition and activity, supporting the potential use of certain fecal metabolites or members of the gut microbiota as biomarkers for the efficacy of weight loss in extreme obesity.
Collapse
Affiliation(s)
- Alicja M Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Carlos León
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| |
Collapse
|
5
|
Associations between adipose tissue volume and small molecules in plasma and urine among asymptomatic subjects from the general population. Sci Rep 2020; 10:1487. [PMID: 32001750 PMCID: PMC6992585 DOI: 10.1038/s41598-020-58430-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity is one of the major risk factor for cardiovascular and metabolic diseases. A disproportional accumulation of fat at visceral (VAT) compared to subcutaneous sites (SAT) has been suspected as a key detrimental event. We used non-targeted metabolomics profiling to reveal metabolic pathways associated with higher VAT or SAT amount among subjects free of metabolic diseases to identify possible contributing metabolic pathways. The study population comprised 491 subjects [mean (standard deviation): age 44.6 yrs (13.0), body mass index 25.4 kg/m² (3.6), 60.1% females] without diabetes, hypertension, dyslipidemia, the metabolic syndrome or impaired renal function. We associated MRI-derived fat amounts with mass spectrometry-derived metabolites in plasma and urine using linear regression models adjusting for major confounders. We tested for sex-specific effects using interactions terms and performed sensitivity analyses for the influence of insulin resistance on the results. VAT and SAT were significantly associated with 155 (101 urine) and 49 (29 urine) metabolites, respectively, of which 45 (27 urine) were common to both. Major metabolic pathways were branched-chain amino acid metabolism (partially independent of insulin resistance), surrogate markers of oxidative stress and gut microbial diversity, and cortisol metabolism. We observed a novel positive association between VAT and plasma levels of the potential pharmacological agent piperine. Sex-specific effects were only a few, e.g. the female-specific association between VAT and O-methylascorbate. In brief, higher VAT was associated with an unfavorable metabolite profile in a sample of healthy, mostly non-obese individuals from the general population and only few sex-specific associations became apparent.
Collapse
|
6
|
Ivezaj V, Benoit SC, Davis J, Engel S, Lloret-Linares C, Mitchell JE, Pepino MY, Rogers AM, Steffen K, Sogg S. Changes in Alcohol Use after Metabolic and Bariatric Surgery: Predictors and Mechanisms. Curr Psychiatry Rep 2019; 21:85. [PMID: 31410716 PMCID: PMC7057935 DOI: 10.1007/s11920-019-1070-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review synthesized the literature on predictors and mechanisms of post-bariatric alcohol problems, in order to guide future research on prevention and treatment targets. RECENT FINDINGS Consistent evidence suggests an elevated risk of developing problems with alcohol following bariatric surgery. While there is a paucity of empirical data on predictors of problematic alcohol use after bariatric surgery, being male, a younger age, smoking, regular alcohol consumption, pre-surgical alcohol use disorder, and a lower sense of belonging have predicted alcohol misuse post-operatively. This review synthesizes potential mechanisms including specific bariatric surgical procedures, peptides and reinforcement/reward pathways, pharmacokinetics, and genetic influences. Finally, potential misperceptions regarding mechanisms are explored. Certain bariatric procedures elevate the risk of alcohol misuse post-operatively. Future research should serve to elucidate the complexities of reward signaling, genetically mediated mechanisms, and pharmacokinetics in relation to alcohol use across gender and developmental period by surgery type.
Collapse
Affiliation(s)
- Valentina Ivezaj
- Yale School of Medicine, 301 Cedar Street, 2nd Floor, New Haven, CT, 06519, USA.
| | | | - Jon Davis
- Washington State University, Pullman, WA, 99164, USA
| | | | - Celia Lloret-Linares
- Maladies Nutritionnelles et métaboliques, Ramsay-Générale de Santé, Hôpital Privé Pays de Savoie, 74105, Annemasse, France
| | - James E Mitchell
- University of North Dakota School of Medicine and Health Sciences, Fargo, ND, 58202, USA
| | - M Yanina Pepino
- University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Ann M Rogers
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, 17033, USA
| | | | - Stephanie Sogg
- Massachusetts General Hospital Weight Center, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Yohn SE, Galbraith J, Calipari ES, Conn PJ. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci 2019; 10:2125-2143. [PMID: 30933466 PMCID: PMC7898461 DOI: 10.1021/acschemneuro.8b00601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated data from clinical and preclinical studies suggest that, in drug addiction and states of overeating, such as obesity and binge eating disorder (BED), there is an imbalance in circuits that are critical for motivation, reward saliency, executive function, and self-control. Central to these pathologies and the extensive topic of this Review are the aberrations in dopamine (DA) and glutamate (Glu) within the mesolimbic pathway. Group I metabotropic glutamate receptors (mGlus) are highly expressed in the mesolimbic pathway and are poised in key positions to modulate disruptions in synaptic plasticity and neurotransmitter release observed in drug addiction, obesity, and BED. The use of allosteric modulators of group I mGlus has been studied in drug addiction, as they offer several advantages over traditional orthosteric agents. However, they have yet to be studied in obesity or BED. With the substantial overlap between the neurocircuitry involved in drug addiction and eating disorders, group I mGlus may also provide novel targets for obesity and BED.
Collapse
Affiliation(s)
- Samantha E. Yohn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Jordan Galbraith
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
8
|
Osmanova DZ, Freidin MB, Fedorenko OY, Pozhidaev IV, Boiko AS, Vyalova NM, Tiguntsev VV, Kornetova EG, Loonen AJM, Semke AV, Wilffert B, Bokhan NA, Ivanova SA. A pharmacogenetic study of patients with schizophrenia from West Siberia gets insight into dopaminergic mechanisms of antipsychotic-induced hyperprolactinemia. BMC MEDICAL GENETICS 2019; 20:47. [PMID: 30967134 PMCID: PMC6454588 DOI: 10.1186/s12881-019-0773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hyperprolactinemia (HPRL) is a classical side effect of antipsychotic drugs primarily attributed to blockade of dopamine D2 receptors (DRD2s) on the membranes of lactotroph cells within the pituitary gland. Certain antipsychotic drugs, e.g. risperidone, are more likely to induce HPRL because of relative accumulation within the adenohypophysis. Nevertheless, due to competition for pituitary DRD2s by high dopamine levels may limit antipsychotic-induced HPRL. Moreover, the activity of prolactin-producing lactotrophs also depends on other hormones which are regulated by the extra-pituitary activity of dopamine receptors, dopamine transporters, enzymes of neurotransmitter metabolism and other factors. Polymorphic variants in the genes coding for these receptors and proteins can have functional significance and influence on the development of hyperprolactinemia. METHODS A set of 41 SNPs of genes for dopamine receptors DRD1, DRD2, DRD3, DRD4, the dopamine transporter SLC6A3 and dopamine catabolizing enzymes MAOA and MAOB was investigated in a population of 446 Caucasians (221 males/225 females) with a clinical diagnosis of schizophrenia (according to ICD-10: F20) with and without HPRL who were treated with classical and/or atypical antipsychotic drugs. Additive genetic model was tested and the analysis was carried out in the total group and in subgroup stratified by the use of risperidone/paliperidone. RESULTS One statistically significant association between polymorphic variant rs1799836 of MAOB gene and HPRL in men was found in the total group. Furthermore, the rs40184 and rs3863145 variants in SLC6A3 gene appeared to be associated with HPRL in the subgroup of patients using the risperidone/paliperidone, but not with HPRL induced by other antipsychotic drugs. CONCLUSIONS Our results indicate that genetic variants of MAOB and SLC6A3 may have consequences on the modulation of prolactin secretion. A further search for genetic markers associated with the development of antipsychotic-related hyperprolactinemia in schizophrenic patients is needed.
Collapse
Affiliation(s)
- Diana Z. Osmanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, School of Live Course Sciences, King’s College London, Lambeth Palace Road, London, SE1 7EH UK
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Naberezhnaya Ushaiki str, Tomsk, Russian Federation 10
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russian Federation 30
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Natalia M. Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Vladimir V. Tiguntsev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Anton J. M. Loonen
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661 AA Halsteren, The Netherlands
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk State University, Lenin Avenue, Tomsk, Russian Federation 36
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, Tomsk, Russian Federation 634014
- National Research Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russian Federation 30
| |
Collapse
|
9
|
Caldú X, Ottino-González J, Sánchez-Garre C, Hernan I, Tor E, Sender-Palacios MJ, Dreher JC, Garolera M, Jurado MÁ. Effect of the catechol-O-methyltransferase Val 158 Met polymorphism on theory of mind in obesity. EUROPEAN EATING DISORDERS REVIEW 2019; 27:401-409. [PMID: 30761671 DOI: 10.1002/erv.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Obesity is often accompanied with psychosocial adjustment problems, such as difficulties in social interactions and social withdrawal. A key aspect of social cognition is theory of mind, which allows inferring mental states, feelings, motivations, and beliefs of others and to use this information to predict their future behaviour. Theory of mind is highly dependent on prefrontal dopaminergic neurotransmission, which is regulated by catechol-O-methyltransferase (COMT) activity. We aimed at determining whether theory of mind is altered in obesity and if this ability is modulated by COMT. Fifty patients with obesity and 47 normal-weight individuals underwent the Reading the Mind in the Eyes Test, the Wisconsin Card Sorting Test, and the Vocabulary subscale of the Wechsler Adult Intelligence Scale. The genotype for the COMT Val 158 Met functional polymorphism was determined for all subjects. Patients with obesity obtained significantly lower scores in the negative items of the Reading the Mind in the Eyes Test than normal-weight subjects. Further, an interaction effect was observed between group and COMT genotype. Specifically, the presence of the Met allele was associated to a better identification of negative mental states only in patients with obesity. Our results indicate that obesity is accompanied with difficulties in theory of mind and that this ability is influenced by the COMT genotype.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jonatan Ottino-González
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genètica Molecular, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Encarnació Tor
- Centre d'atenció primària Terrassa Nord, Consorci Sanitari de Terrassa, Terrassa, Spain
| | | | - Jean-Claude Dreher
- Neuroeconomics, Reward and Decision Making Team, Cognitive Neuroscience Centre, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
10
|
Bozek T, Blazekovic A, Perkovic MN, Jercic KG, Sustar A, Smircic-Duvnjak L, Outeiro TF, Pivac N, Borovecki F. The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9:97. [PMID: 29225702 PMCID: PMC5716004 DOI: 10.1186/s13098-017-0295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Type II diabetes is an important health problem with a complex connection to obesity, leading to a broad range of cardiovascular complications. Insulin therapy often results in weight gain and does not always ensure adequate glycemic control. However, previous studies reported that insulin detemir is an efficient long-acting insulin with a weight sparing effect. The aim of this study was to determine the association of catechol O-methyltransferase (COMT) Val108/158Met and dopamine-beta-hydroxylase (DBH) 1021C/T polymorphisms with the effectiveness of insulin detemir in achieving glucose control and body weight control. Participants and methods: This 52-week observational study included 185 patients with inadequate glycemic control treated with premix insulin analogues, which were replaced with insulin aspart and insulin detemir, and 156 healthy controls. After DNA isolation from blood samples, genotyping of DBH-1021C/T polymorphism (rs1611115) and COMT Val108/158Met polymorphism (rs4680) was performed. RESULTS Our results confirmed that insulin detemir did not lead to weight gain. The most significant finding was that A carriers (the combined AG and AA genotype) of the COMT Val108/158Met achieved significantly better hemoglobin A1c (HbA1c) values compared to patients carrying GG genotype. No association between DBH-1021C/T genotypes and weight and/or glucose control was detected in diabetes patients or in healthy control subjects. CONCLUSIONS This study showed that the presence of one or two A allele of the COMT Val108/158Met was associated with improved glycemic response, and with a better response to insulin detemir therapy in patients with type II diabetes, separating them as best candidates for detemir therapy.
Collapse
Affiliation(s)
- Tomislav Bozek
- Vuk Vrhovac University Clinic, Merkur University Hospital, Zagreb, Croatia
| | - Antonela Blazekovic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Center Zagreb, Šalata 2, Zagreb, Croatia
| | | | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Center Zagreb, Šalata 2, Zagreb, Croatia
| | - Aleksandra Sustar
- Department of Cardiology, University Hospital Center Rijeka, Rijeka, Croatia
| | | | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Center Zagreb, Šalata 2, Zagreb, Croatia
| |
Collapse
|
11
|
Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Sci Rep 2017; 7:7927. [PMID: 28801594 PMCID: PMC5554180 DOI: 10.1038/s41598-017-08513-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
2-methoxyestradiol (2-ME), an estrogen metabolite generated via catechol-o-methyltransferase (COMT), is multifunctional methoxy-catechol. Here, we report that COMT deficiency leads to glucose intolerance and 2-ME rescues COMT-deficient-associated metabolic defects. Liver COMT protein was suppressed in high fat diet (HFD)-fed or in pregnant mice. COMT suppression, by Ro41-0960 or siRNA, in HFD fed mice or in pregnant mice exacerbated glucose intolerance; 2-ME intervention ameliorated these defects. 2-ME effects on glucose tolerance were associated with AMPK phosphorylation in the liver and in islet cells. Metformin restored liver COMT protein levels, and metformin-induced liver AMPK phosphorylation was abolished by COMT inhibition. The amelioration in glucose tolerance by 2-ME was associated with biphasic insulin secretion in an environment-dependent manner. 2-ME-induced insulin secretion was associated with the AMPK phosphorylation, PDX-1 phosphorylation, and MST-1 suppression in MIN-6 cells. Furthermore 2-ME displayed PPARγ agonist-like activity. These results suggest that COMT is an enzyme to maintain glucose homeostasis and 2-ME is a potential endogenous multi-target anti-diabetic candidate.
Collapse
|
12
|
Avsar O, Kuskucu A, Sancak S, Genc E. Are dopaminergic genotypes risk factors for eating behavior and obesity in adults? Neurosci Lett 2017. [DOI: 10.1016/j.neulet.2017.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Say YH. The association of insertions/deletions (INDELs) and variable number tandem repeats (VNTRs) with obesity and its related traits and complications. J Physiol Anthropol 2017; 36:25. [PMID: 28615046 PMCID: PMC5471687 DOI: 10.1186/s40101-017-0142-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the fact that insertions/deletions (INDELs) are the second most common type of genetic variations and variable number tandem repeats (VNTRs) represent a large portion of the human genome, they have received far less attention than single nucleotide polymorphisms (SNPs) and larger forms of structural variation like copy number variations (CNVs), especially in genome-wide association studies (GWAS) of complex diseases like polygenic obesity. This is exemplified by the vast amount of review papers on the role of SNPs and CNVs in obesity, its related traits (like anthropometric measurements, biochemical variables, and eating behavior), and its related complications (like hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin resistance-collectively known as metabolic syndrome). Hence, this paper reviews the types of INDELs and VNTRs that have been studied for association with obesity and its related traits and complications. These INDELs and VNTRs could be found in the obesity loci or genes from the earliest GWAS and candidate gene association studies, like FTO, genes in the leptin-proopiomelanocortin pathway, and UCP2/3. Given the important role of the brain serotonergic and dopaminergic reward system in obesity susceptibility, the association of INDELs and VNTRs in these neurotransmitters' metabolism and transport genes with obesity is also reviewed. Next, the role of INS VNTR in obesity and its related traits is questionable, since recent large-scale studies failed to replicate the earlier positive associations. As obesity results in chronic low-grade inflammation of the adipose tissue, the proinflammatory cytokine gene IL1RA and anti-inflammatory cytokine gene IL4 have VNTRs that are implicated in obesity. A systemic proinflammatory state in combination with activation of the renin-angiotensin system and decreased nitric oxide bioavailability as found in obesity leads to endothelial dysfunction. This explains why VNTR and INDEL in eNOS and ACE, respectively, could be predisposing factors of obesity. Finally, two novel genes, DOCK5 and PER3, which are involved in the regulation of the Akt/MAPK pathway and circadian rhythm, respectively, have VNTRs and INDEL that might be associated with obesity. SHORT CONCLUSION In conclusion, INDELs and VNTRs could have important functional consequences in the pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction, prevention, and treatment.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| |
Collapse
|
14
|
Cameron JD, Chaput JP, Sjödin AM, Goldfield GS. Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games. Annu Rev Nutr 2017; 37:183-205. [PMID: 28564556 DOI: 10.1146/annurev-nutr-071816-064855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Collapse
Affiliation(s)
- Jameason D Cameron
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Gary S Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| |
Collapse
|
15
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Liu W, Maccaferri M, Bulli P, Rynearson S, Tuberosa R, Chen X, Pumphrey M. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:649-667. [PMID: 28039515 DOI: 10.1007/s00122-016-2841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 05/06/2023]
Abstract
Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide. Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| | - Marco Maccaferri
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
17
|
Kravitz AV, O'Neal TJ, Friend DM. Do Dopaminergic Impairments Underlie Physical Inactivity in People with Obesity? Front Hum Neurosci 2016; 10:514. [PMID: 27790107 PMCID: PMC5063846 DOI: 10.3389/fnhum.2016.00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023] Open
Abstract
Obesity is associated with physical inactivity, which exacerbates the negative health consequences of obesity. Despite a wide consensus that people with obesity should exercise more, there are few effective methods for increasing physical activity in people with obesity. This lack is reflected in our limited understanding of the cellular and molecular causes of physical inactivity in obesity. We hypothesize that impairments in dopamine signaling contribute to physical inactivity in people with obesity, as in classic movement disorders such as Parkinson's disease. Here, we review two lines of evidence supporting this hypothesis: (1) chronic exposure to obesogenic diets has been linked to impairments in dopamine synthesis, release, and receptor function, particularly in the striatum, and (2) striatal dopamine is necessary for the proper control of movement. Identifying the biological determinants of physical inactivity may lead to more effective strategies for increasing physical activity in people with obesity, as well as improve our understanding of why it is difficult for people with obesity to alter their levels of physical activity.
Collapse
Affiliation(s)
- Alexxai V Kravitz
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD, USA; National Institutes of Health, National Institute on Drug AbuseBaltimore, MD, USA
| | - Timothy J O'Neal
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Danielle M Friend
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| |
Collapse
|
18
|
FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun 2016; 7:12733. [PMID: 27681312 PMCID: PMC5056402 DOI: 10.1038/ncomms12733] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 01/05/2023] Open
Abstract
Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. Dopaminergic neurons are important for regulating energy homeostasis. Here, the authors show the transcription factor FoxO1 negatively regulates tyrosine hydroxylase expression in midbrain dopaminergic neurons, and plays an important role in regulation of glucose homeostasis, energy expenditure, and resistance to diet-induced obesity.
Collapse
|
19
|
Lesniak A, Aarnio M, Jonsson A, Norberg T, Nyberg F, Gordh T. High-throughput screening and radioligand binding studies reveal monoamine oxidase-B as the primary binding target for d-deprenyl. Life Sci 2016; 152:231-7. [PMID: 27058977 DOI: 10.1016/j.lfs.2016.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
AIMS d-deprenyl is a useful positron emission tomography tracer for visualization of inflammatory processes. Studies with [(11)C]-d-deprenyl showed robust uptake in peripheral painful sites of patients with rheumatoid arthritis or chronic whiplash injury. The mechanism of preferential d-deprenyl uptake is not yet known, but the existence of a specific binding site was proposed. Thus, in the present study, we sought to identify the binding site for d-deprenyl and verify the hypothesis about the possibility of monoamine oxidase enzymes as major targets for this molecule. MAIN METHODS A high-throughput analysis of d-deprenyl activity towards 165G-protein coupled receptors and 84 enzyme targets was performed. Additionally, binding studies were used to verify the competition of [(3)H]d-deprenyl with ligands specific for targets identified in the high-throughput screen. KEY FINDINGS Our high-throughput investigation identified monoamine oxidase-B, monoamine oxidase-A and angiotensin converting enzyme as potential targets for d-deprenyl. Further competitive [(3)H]d-deprenyl binding studies with specific inhibitors identified monoamine oxidase-B as the major binding site. No evident high-affinity hits were identified among G-protein coupled receptors. SIGNIFICANCE Our study was the first to utilize a high-throughput screening approach to identify putative d-deprenyl targets. It verified 249 candidate proteins and confirmed the role of monoamine oxidase - B in d-deprenyl binding. Our results add knowledge about the possible mechanism of d-deprenyl binding, which might aid in explaining the increased uptake of this compound in peripheral inflammation. Monoamine oxidase-B will be further investigated in future studies utilizing human inflamed synovium.
Collapse
Affiliation(s)
- Anna Lesniak
- Uppsala University, Department of Pharmaceutical Biosciences, SE 751 24 Uppsala, Sweden.
| | - Mikko Aarnio
- Uppsala University Hospital, Department of Surgical Sciences, Anaesthesiology and Intensive Care, SE 751 85 Uppsala, Sweden
| | - Anna Jonsson
- Uppsala University, Department of Pharmaceutical Biosciences, SE 751 24 Uppsala, Sweden
| | - Thomas Norberg
- Uppsala University, Department of Chemistry, SE 751 23 Uppsala, Sweden
| | - Fred Nyberg
- Uppsala University, Department of Pharmaceutical Biosciences, SE 751 24 Uppsala, Sweden
| | - Torsten Gordh
- Uppsala University Hospital, Department of Surgical Sciences, Anaesthesiology and Intensive Care, SE 751 85 Uppsala, Sweden
| |
Collapse
|
20
|
Dias H, Muc M, Padez C, Manco L. Association of polymorphisms in 5-HTT (SLC6A4) and MAOA genes with measures of obesity in young adults of Portuguese origin. Arch Physiol Biochem 2016; 122:8-13. [PMID: 26698543 DOI: 10.3109/13813455.2015.1111390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate the association of polymorphisms in SLC6A4 and MAOA genes with overweight (including obesity). MATERIAL AND METHODS Young adults (n = 535) of Portuguese origin were genotyped for the SLC6A4 polymorphisms 5-HTTLPR and STin2 and a MAOA VNTR. BMI and body fat percentage were measured and a questionnaire was used to assess individual's sport practicing habits. RESULTS In whole study sample, haplotype-based analysis revealed significant association with overweight/obesity for the individual 5-HTTLPR/Stin2 haplotype L10 (p = 0.04). In men, the MAOA 3R genotype was nominally associated with body fat (p = 0.04). In inactive individuals, overweight/obesity was found significantly associated with 5-HTTLPR L-allele (p = 0.01) and nominally associated with STin2 10-allele (p = 0.03). A significant association was also found testing for all haplotype effects (χ(2 )= 8.7; p = 0.03). CONCLUSIONS We found some evidences for the association of SLC6A4 and MAOA genes with measures of obesity. Our results suggest physical inactivity accentuates the influence of SLC6A4 polymorphisms on obesity risk.
Collapse
Affiliation(s)
- Helena Dias
- a Research Centre for Anthropology and Health (CIAS), Department of Life Sciences , University of Coimbra , Portugal
| | - Magdalena Muc
- a Research Centre for Anthropology and Health (CIAS), Department of Life Sciences , University of Coimbra , Portugal
| | - Cristina Padez
- a Research Centre for Anthropology and Health (CIAS), Department of Life Sciences , University of Coimbra , Portugal
| | - Licínio Manco
- a Research Centre for Anthropology and Health (CIAS), Department of Life Sciences , University of Coimbra , Portugal
| |
Collapse
|
21
|
Stanfill AG, Conley Y, Cashion A, Thompson C, Homayouni R, Cowan P, Hathaway D. Neurogenetic and Neuroimaging Evidence for a Conceptual Model of Dopaminergic Contributions to Obesity. Biol Res Nurs 2015; 17:413-21. [PMID: 25576324 DOI: 10.1177/1099800414565170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the incidence of obesity continues to rise, clinicians and researchers alike are seeking explanations for why some people become obese while others do not. While caloric intake and physical activity most certainly play a role, some individuals continue to gain weight despite careful attention to these factors. Increasing evidence suggests that genetics may play a role, with one potential explanation being genetic variability in genes within the neurotransmitter dopamine pathway. This variability can lead to a disordered experience with the rewarding properties of food. This review of literature examines the extant knowledge about the relationship between obesity and the dopaminergic reward pathways in the brain, with particularly strong evidence provided from neuroimaging and neurogenetic data. Pubmed, Google Scholar, and Cumulative Index to Nursing and Allied Health Literature searches were conducted with the search terms dopamine, obesity, weight gain, food addiction, brain regions relevant to the mesocortical and mesolimbic (reward) pathways, and relevant dopaminergic genes and receptors. These terms returned over 200 articles. Other than a few sentinel articles, articles were published between 1993 and 2013. These data suggest a conceptual model for obesity that emphasizes dopaminergic genetic contributions as well as more traditional risk factors for obesity, such as demographics (age, race, and gender), physical activity, diet, and medications. A greater understanding of variables contributing to weight gain and obesity is imperative for effective clinical treatment.
Collapse
Affiliation(s)
- Ansley Grimes Stanfill
- University of Pittsburgh, School of Nursing, Pittsburgh, PA, USA University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Ann Cashion
- National Institutes of Health, Bethesda, MD, USA
| | | | | | - Patricia Cowan
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Donna Hathaway
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Yilmaz Z, Davis C, Loxton NJ, Kaplan AS, Levitan RD, Carter JC, Kennedy JL. Association between MC4R rs17782313 polymorphism and overeating behaviors. Int J Obes (Lond) 2015; 39:114-20. [PMID: 24827639 PMCID: PMC4232480 DOI: 10.1038/ijo.2014.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Melanocortins have a crucial role in appetite and weight regulation. Although the melanocortin 4 receptor (MC4R) gene has been repeatedly linked to obesity and antipsychotic-induced weight gain, the mechanism behind how it leads to this effect in still undetermined. The goal of this study was to conduct an in-depth and sophisticated analysis of MC4R polymorphisms, body mass index (BMI), eating behavior and depressed mood. SUBJECTS/METHODS We genotyped 328 individuals of European ancestry on the following MC4R markers based on the relevant literature on obesity and antipsychotic-induced weight gain: rs571312, rs17782313, rs489693, rs11872992, and rs8087522. Height and weight were measured, and information on depressed mood and overeating behaviors was obtained during the in-person assessment. RESULTS BMI was associated with rs17782313 C allele; however, this finding did not survive correction for multiple testing (P = 0.018). Although rs17782313 was significantly associated with depressed mood and overeating behaviors, tests of indirect effects indicated that emotional eating and food cravings, rather than depressed mood, uniquely accounted for the effect of this marker and BMI (n = 152). CONCLUSIONS To our knowledge, this is the first study to investigate the link between MC4R rs17782313, mood and overeating behavior, as well as to demonstrate possible mechanisms behind MC4R's influence on body weight. If replicated in a larger sample, these results may have important clinical implications, including potential for the use of MC4R agonists in the treatment of obesity and disordered eating.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Center of Excellence for Eating Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Caroline Davis
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Kinesiology & Health Sciences, York University, Toronto, Ontario, Canada
- Eating Disorders Program, Toronto General Hospital, Toronto, Ontario, Canada
| | - Natalie J. Loxton
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Allan S. Kaplan
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert D. Levitan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - James L. Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Xie B, Li D, London SJ, Palmer PH, Johnshon CA, Li Y, Shih J, Bergen AW, Nishita D, Swan GE, Ahn R, Conti DV. Gender difference in interactions between MAOA promoter uVNTR polymorphism and negative familial stressors on body mass index among Chinese adolescents. Pediatr Obes 2014; 9:e80-90. [PMID: 23761378 PMCID: PMC4159439 DOI: 10.1111/j.2047-6310.2013.00181.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Monoamine oxidase A (MAOA) modulates metabolism of serotonin and dopamine metabolism, neurotransmitters involved in regulation of appetite and food intake. The gene coding for MAOA contains a 30-bp tandem repeat (uVNTR) polymorphism in its promoter region that has been previously identified to be associated with obesity with mixed findings in the literature. Our goals were to replicate the population effects of this functional polymorphism on obesity risk, and to further explore gender differences and interaction effects with negative stressors. METHODS Analyses were conducted with data on genotypes, measured weight and height, and self-reported behavioural characteristics among 1101 Chinese adolescents 11-15 years old living in Wuhan, China. RESULTS Girls with the high-activity allele had significantly lower body mass index (BMI; β = -0.25 ± 0.98, P = 0.011) compared to those with the low activity allele. Experience of negative familial stressors (e.g., death or illness of family members, hit or scolded by parents and increased quarrelling with parents, parents argued frequently) significantly weakened this protective genetic effect on BMI (P for interaction = 0.043). Stratified analyses showed a significant protective genetic effect on BMI only within the stratum of low stress level (β = -0.44 ± 0.14, P = 0.002). No similar effect was observed among boys. CONCLUSIONS Our findings confirm the genetic effects of MAOA uVNTR polymorphism on BMI in a Chinese adolescent population and suggest potential genetic interactions with negative familial stressors.
Collapse
Affiliation(s)
- Bin Xie
- School of Community and Global Health, Claremont Graduate University, Claremont, CA 91711
| | - Dalin Li
- Medical Genetics Institute, Cedars-Sinai Medical Center/University of California at Los Angeles, Los Angeles, CA 90048
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Paula H. Palmer
- School of Community and Global Health, Claremont Graduate University, Claremont, CA 91711
| | - C. Anderson Johnshon
- School of Community and Global Health, Claremont Graduate University, Claremont, CA 91711
| | - Yan Li
- Wuhan City Food and Drug Administration, Wuhan, P. R. China
| | - Jean Shih
- School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Andrew W. Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | - Denise Nishita
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | - Gary E. Swan
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | - Rosa Ahn
- Joint Science Program, Scripps College, Claremont, CA 91711
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
24
|
Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 2014; 5:919. [PMID: 25278909 PMCID: PMC4166230 DOI: 10.3389/fpsyg.2014.00919] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain’s production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization of powerful dopamine D2 agonists have failed due to chronic down regulation of D2 receptors newer targets based on novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of reward deficiency.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| | - Panayotis K Thanos
- Behavior Neuropharmacology and Neuroimaging Lab, Department of Psychology, State University of New York Stony Brook, NY, USA
| | - Mark S Gold
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| |
Collapse
|
25
|
BLUM KENNETH, FEBO MARCELO, MCLAUGHLIN THOMAS, CRONJÉ FRANSJ, HAN DAVID, GOLD SMARK. Hatching the behavioral addiction egg: Reward Deficiency Solution System (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. J Behav Addict 2014; 3:149-56. [PMID: 25317338 PMCID: PMC4189308 DOI: 10.1556/jba.3.2014.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Following the first association between the dopamine D2 receptor gene polymorphism and severe alcoholism, there has been an explosion of research reports in the psychiatric and behavioral addiction literature and neurogenetics. With this increased knowledge, the field has been rife with controversy. Moreover, with the advent of Whole Genome-Wide Studies (GWAS) and Whole Exome Sequencing (WES), along with Functional Genome Convergence, the multiple-candidate gene approach still has merit and is considered by many as the most prudent approach. However, it is the combination of these two approaches that will ultimately define real, genetic allelic relationships, in terms of both risk and etiology. Since 1996, our laboratory has coined the umbrella term Reward Deficiency Syndrome (RDS) to explain the common neurochemical and genetic mechanisms involved with both substance and non-substance, addictive behaviors. METHODS This is a selective review of peer-reviewed papers primary listed in Pubmed and Medline. RESULTS A review of the available evidence indicates the importance of dopaminergic pathways and resting-state, functional connectivity of brain reward circuits. DISCUSSION Importantly, the proposal is that the real phenotype is RDS and impairments in the brain's reward cascade, either genetically or environmentally (epigenetically) induced, influence both substance and non-substance, addictive behaviors. Understanding shared common mechanisms will ultimately lead to better diagnosis, treatment and prevention of relapse. While, at this juncture, we cannot as yet state that we have "hatched the behavioral addiction egg", we are beginning to ask the correct questions and through an intense global effort will hopefully find a way of "redeeming joy" and permitting homo sapiens live a life, free of addiction and pain.
Collapse
Affiliation(s)
- KENNETH BLUM
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA,Department of Clinical Medicine, Malibu Beach Recovery Center, Malibu Beach, CA, USA,Department of Personalized Medicine, IGENE, LLC, Austin, TX, USA,Corresponding author: Kenneth Blum, PhD; Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, PO Box 103424 Gainesville, Florida, USA, 32610-3424; Phone: +-619-890-2167; Fax: +-352-392-9887; E-mail:
| | - MARCELO FEBO
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | | | | | - DAVID HAN
- Department of Management Science and Statistics, University of Texas at San Antonio, Texas, USA
| | - S. MARK GOLD
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA,Department of Clinical Medicine, Malibu Beach Recovery Center, Malibu Beach, CA, USA
| |
Collapse
|
26
|
Valomon A, Holst SC, Bachmann V, Viola AU, Schmidt C, Zürcher J, Berger W, Cajochen C, Landolt HP. Genetic polymorphisms of DAT1 and COMT differentially associate with actigraphy-derived sleep-wake cycles in young adults. Chronobiol Int 2014; 31:705-14. [PMID: 24625311 DOI: 10.3109/07420528.2014.896376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that dopamine plays a key role in sleep-wake regulation. Cerebral dopamine levels are regulated primarily by the dopamine transporter (DAT) in the striatum and by catechol-O-methyl-transferase (COMT) in the prefrontal cortex. We hypothesized that the variable-number-tandem-repeat (VNTR) polymorphism in the 3'-untranslated region of the gene encoding DAT (DAT1, SLC6A3; rs28363170) and the Val158Met polymorphism of COMT (rs4680) differently affect actigraphy-derived rest-activity cycles and sleep estimates in healthy adults (65 men; 45 women; age range: 19-35 years). Daytime sleepiness, continuous rest-actigraphy and sleep diary data during roughly 4-weeks were analyzed. Nine-repeat (9R) allele carriers of DAT1 (n = 48) more often reported elevated sleepiness (Epworth sleepiness score ≥10) than 10-repeat (10R) allele homozygotes (n = 62, p < 0.02). Moreover, male 9R allele carriers showed higher wrist activity, whereas this difference was not present in women ("DAT1 genotype" × "gender" interaction: p < 0.005). Rest-activity patterns did not differ among COMT genotypes. Nevertheless, a significant "COMT genotype" × "type of day" (workdays vs. rest days) interaction for sleep duration was observed (p = 0.04). The Val/Val (n = 36) and Met/Met (n = 24) homozygotes habitually prolonged sleep on rest days compared to workdays by more than 30 min, while Val/Met heterozygotes (n = 50) did not significantly extend their sleep (mean difference: 7 min). Moreover, whereas the proportion of women among the genotype groups did not differ, COMT genotype affected body-mass-index (BMI), such that Val/Met individuals had lower BMI than the homozygous genotypes (p < 0.04). While awaiting independent replication and confirmation, our data support an association of genetically-determined differences in cerebral dopaminergic neurotransmission with daytime sleepiness and individual rest-activity profiles, as well as other sleep-associated health characteristics such as the regulation of BMI. The differential associations of DAT1 and COMT polymorphisms may reflect the distinct local expression of the encoded proteins in the brain.
Collapse
Affiliation(s)
- Amandine Valomon
- Institute of Pharmacology and Toxicology, University of Zürich , Zürich , Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carlin J, Hill-Smith TE, Lucki I, Reyes TM. Reversal of dopamine system dysfunction in response to high-fat diet. Obesity (Silver Spring) 2013; 21:2513-21. [PMID: 23512420 PMCID: PMC3700634 DOI: 10.1002/oby.20374] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/31/2012] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. DESIGN AND METHODS Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. RESULTS After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. CONCLUSIONS These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention.
Collapse
Affiliation(s)
- Jesselea Carlin
- Department of Pharmacology, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
28
|
Wallmeier D, Winkler JK, Fleming T, Woehning A, Huennemeyer K, Roeder E, Nawroth PP, Friederich HC, Wolfrum C, Schultz JH, Rudofsky G. Genetic modulation of the serotonergic pathway: influence on weight reduction and weight maintenance. GENES & NUTRITION 2013; 8:601-610. [PMID: 23797338 PMCID: PMC3824832 DOI: 10.1007/s12263-013-0350-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The serotonergic pathway plays a major role in the development of obesity. Its activity can be modulated by the 5-HT transporter-linked polymorphic region in the SLC6A4 gene and the upstream variable number of tandem repeats polymorphism in the MAOA gene. We studied whether these genetic modulations have an influence on weight reduction and weight maintenance in a one-year weight reduction program (OPTIFAST®52). The polymorphisms were genotyped by PCR in a sample of 135 female and 67 male subjects with severe obesity (44 ± 13 years, 122.3 ± 22.2 kg, BMI: 41.7 ± 6.7 kg/m2). The program leads to a total weight loss of 19.9 ± 9.8 kg (16.9 ± 8.3 %) in women and 27.4 ± 13.6 kg (20.4 ± 9.9 %) in men. Anthropometric measurements and blood levels were determined at the start of the program (T0), after the weight reduction phase (T1) and after the subsequent weight maintenance phase at the end of the program (T2). Each polymorphism alone did not significantly influence weight loss or weight maintenance neither in men nor in women. However, women carrying both risk genotypes (SS and 3/3) displayed a lower total weight loss during the program (p = 0.05). This effect derived mainly from difficulties in the weight maintenance phase (p = 0.11), while the weight reduction phase was not affected (p = 0.61). No influence was found in men (p = 0.93). Modulation of the serotonergic pathway by carrying both risk alleles seems to influence success of weight loss programs in women with severe obesity due to problems in stabilizing body weight after weight reduction.
Collapse
Affiliation(s)
- Dirk Wallmeier
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Julia K. Winkler
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Annika Woehning
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Katharina Huennemeyer
- />Department of Psychosomatic and General Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Eva Roeder
- />Institute of Food Nutrition and Health, Swiss Federal Institute of Technology, ETH Zürich, SLA C94, Schorenstraße 16, 8603 Schwerzenbach, Switzerland
| | - Peter P. Nawroth
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hans-Christoph Friederich
- />Department of Psychosomatic and General Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christian Wolfrum
- />Institute of Food Nutrition and Health, Swiss Federal Institute of Technology, ETH Zürich, SLA C94, Schorenstraße 16, 8603 Schwerzenbach, Switzerland
| | - Jobst-Hendrik Schultz
- />Department of Psychosomatic and General Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gottfried Rudofsky
- />Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Goldfield GS, Dowler LM, Walker M, Cameron JD, Ferraro ZM, Doucet E, Adamo KB. Are dopamine-related genotypes risk factors for excessive gestational weight gain? Int J Womens Health 2013; 5:253-9. [PMID: 23723720 PMCID: PMC3665497 DOI: 10.2147/ijwh.s43935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Excessive gestational weight gain is associated with postpartum weight retention and downstream child obesity. Dopamine plays a critical role in the regulation of energy intake and body weight. The purpose of this study was to examine the relationship between excessive gestational weight gain and dopamine pathway-related polymorphisms, namely the variable nucleotide tandem repeat in the 3′untranslated region (UTR) region of the SLC6A3 (DAT-1) dopamine transporter gene and the 30-base pair variable nucleotide tandem repeat polymorphism of the 5′UTR of the monoamine oxidase-A (MAO-A) gene. Methods Ninety-three women of mean age 31.7 ± 4.2 years were recruited from the Ottawa and Kingston birth cohort and assessed at 12–20 weeks’ gestation. Mean body mass index was 22.7 ± 2.5 kg/m2. Excessive gestational weight gain was defined according to the 2009 Institute of Medicine guidelines based on body mass index. Genotype analyses were performed using polymerase chain reaction and agarose gel electrophoresis. Results There was no relationship between the prevalence or magnitude of excessive gestational weight gain among women with the 3′ UTR single nucleotide polymorphism of the DAT-1 gene. However, 70% (19 of 27) of women carrying the MAO-A 4/4 (high activity) allele exceeded recommendations for gestational weight gain compared with 48% (32 of 60) of those with the pooled 3/3, 3/4, and 3/3.5 (low activity) alleles (P < 0.05). Similarly, those with the MAO-A 4/4 allele had significantly greater gestational weight gain than those with the 3/3, 3/4, or 3/3.5 pooled genotypes (19.3 ± 4.1 versus 17.0 ± 5.0 kg, P = 0.03). Conclusion Carriers of the 4/4 variants of the MAO-A gene may be at increased risk for excessive gestational weight gain.
Collapse
Affiliation(s)
- Gary S Goldfield
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada ; Department of Paediatrics, University of Ottawa, Ottawa, ON, Canada ; School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada ; School of Psychology, University of Ottawa, Ottawa, ON, Canada ; Department of Psychology, Carleton University, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Balodis IM, Kober H, Worhunsky PD, White MA, Stevens MC, Pearlson GD, Sinha R, Grilo CM, Potenza MN. Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry 2013; 73:877-86. [PMID: 23462319 PMCID: PMC3686098 DOI: 10.1016/j.biopsych.2013.01.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND An important step in obesity research involves identifying neurobiological underpinnings of nonfood reward processing unique to specific subgroups of obese individuals. METHODS Nineteen obese individuals seeking treatment for binge eating disorder (BED) were compared with 19 non-BED obese individuals (OB) and 19 lean control subjects (LC) while performing a monetary reward/loss task that parses anticipatory and outcome components during functional magnetic resonance imaging. Differences in regional activation were investigated in BED, OB, and LC groups during reward/loss prospect, anticipation, and notification. RESULTS Relative to the LC group, the OB group demonstrated increased ventral striatal and ventromedial prefrontal cortex activity during anticipatory phases. In contrast, the BED group relative to the OB group demonstrated diminished bilateral ventral striatal activity during anticipatory reward/loss processing. No differences were observed between the BED and LC groups in the ventral striatum. CONCLUSIONS Heterogeneity exists among obese individuals with respect to the neural correlates of reward/loss processing. Neural differences in separable groups with obesity suggest that multiple, varying interventions might be important in optimizing prevention and treatment strategies for obesity.
Collapse
|
31
|
Chen C, Chen W, Chen C, Moyzis R, He Q, Lei X, Li J, Wang Y, Liu B, Xiu D, Zhu B, Dong Q. Genetic variations in the serotoninergic system contribute to body-mass index in Chinese adolescents. PLoS One 2013; 8:e58717. [PMID: 23554917 PMCID: PMC3598805 DOI: 10.1371/journal.pone.0058717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Obesity has become a worldwide health problem in the past decades. Human and animal studies have implicated serotonin in appetite regulation, and behavior genetic studies have shown that body mass index (BMI) has a strong genetic component. However, the roles of genes related to the serotoninergic (5-hydroxytryptamine,5-HT) system in obesity/BMI are not well understood, especially in Chinese subjects. SUBJECTS AND DESIGN With a sample of 478 healthy Chinese volunteers, this study investigated the relation between BMI and genetic variations of the serotoninergic system as characterized by 136 representative polymorphisms. We used a system-level approach to identify SNPs associated with BMI, then estimated their overall contribution to BMI by multiple regression and verified it by permutation. RESULTS We identified 12 SNPs that made statistically significant contributions to BMI. After controlling for gender and age, four of these SNPs accounted for 7.7% additional variance of BMI. Permutation analysis showed that the probability of obtaining these findings by chance was low (p = 0.015, permuted for 1000 times). CONCLUSION These results showed that genetic variations in the serotoninergic system made a moderate contribution to individual differences in BMI among a healthy Chinese sample, suggesting that a similar approach can be used to study obesity.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Robert Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Qinghua He
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - Xuemei Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yunxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Bin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Daiming Xiu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Abstract
In genomic research phenotype transformations are commonly used as a straightforward way to reach normality of the model outcome. Many researchers still believe it to be necessary for proper inference. Using regression simulations, we show that phenotype transformations are typically not needed and, when used in phenotype with heteroscedasticity, result in inflated Type I error rates. We further explain that important is to address a combination of rare variant genotypes and heteroscedasticity. Incorrectly estimated parameter variability or incorrect choice of the distribution of the underlying test statistic provide spurious detection of associations. We conclude that it is a combination of heteroscedasticity, minor allele frequency, sample size, and to a much lesser extent the error distribution, that matter for proper statistical inference.
Collapse
Affiliation(s)
- Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
33
|
A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content. BMC Genomics 2012; 13:704. [PMID: 23241142 PMCID: PMC3557156 DOI: 10.1186/1471-2164-13-704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/10/2012] [Indexed: 01/04/2023] Open
Abstract
Background Genomic regions controlling abdominal fatness (AF) were studied in the Northeast Agricultural University broiler line divergently selected for AF. In this study, the chicken 60KSNP chip and extended haplotype homozygosity (EHH) test were used to detect genome-wide signatures of AF. Results A total of 5357 and 5593 core regions were detected in the lean and fat lines, and 51 and 57 reached a significant level (P<0.01), respectively. A number of genes in the significant core regions, including RB1, BBS7, MAOA, MAOB, EHBP1, LRP2BP, LRP1B, MYO7A, MYO9A and PRPSAP1, were detected. These genes may be important for AF deposition in chickens. Conclusions We provide a genome-wide map of selection signatures in the chicken genome, and make a contribution to the better understanding the mechanisms of selection for AF content in chickens. The selection for low AF in commercial breeding using this information will accelerate the breeding progress.
Collapse
|
34
|
Zhao J, Forsberg CW, Goldberg J, Smith NL, Vaccarino V. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample. BMC MEDICAL GENETICS 2012; 13:100. [PMID: 23116433 PMCID: PMC3532355 DOI: 10.1186/1471-2350-13-100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. METHODS We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. RESULTS When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. CONCLUSIONS The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.
Collapse
Affiliation(s)
- Jinying Zhao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | | | | | | | | |
Collapse
|
35
|
van de Giessen E, Hesse S, Caan MWA, Zientek F, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Guignard R, Akdemir UO, Knudsen GM, Nobili F, Pagani M, Vander Borght T, Van Laere K, Varrone A, Tatsch K, Booij J, Sabri O. No association between striatal dopamine transporter binding and body mass index: a multi-center European study in healthy volunteers. Neuroimage 2012; 64:61-7. [PMID: 22982354 DOI: 10.1016/j.neuroimage.2012.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated. METHODS The study included 123 healthy individuals from a large European multi-center database. They had a BMI range of 18.2-41.1 kg/m(2) and were scanned using [(123)I]FP-CIT SPECT imaging. Scans were analyzed with both region-of-interest and voxel-based analysis to determine the binding potential for DAT availability in the caudate nucleus and putamen. A direct relation between BMI and DAT availability was assessed and groups with high and low BMI were compared for DAT availability. RESULTS No association between BMI and striatal DAT availability was found. CONCLUSION The lack of an association between BMI and striatal DAT availability suggests that the regulation of striatal synaptic dopamine levels by DAT plays no or a limited role in the pathophysiology of overweight and obesity.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Department of Nuclear Medicine, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pilot study examining the frequency of several gene polymorphisms involved in morphine pharmacodynamics and pharmacokinetics in a morbidly obese population. Obes Surg 2012; 21:1257-64. [PMID: 20411349 DOI: 10.1007/s11695-010-0143-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Morbidly obese patients are at significantly elevated risk of postsurgery complications and merit closer monitoring by health care professionals after bariatric surgery. It is now recognized that genetic factors influence individual patient's response to drug used in anesthesia and analgesia. Among the many drug administered by anesthetists, we focused in this pilot study on morphine, since morphine patient-controlled anesthesia in obese patients undergoing gastric bypass surgery is frequently prescribed. We examined the allelic frequency of three polymorphisms involved in morphine pharmacodynamics and pharmacokinetics in patients with body mass index (BMI) >40. One hundred and nine morbidly obese patients (BMI = 49.1 ± 7.7 kg/m²) were genotyped for three polymorphisms c.A118G of mu opioid receptor (OPRM1), c.C3435T of the P-glycoprotein gene (ABCB1), and p.Val158Met of catechol-O-methyltransferase gene (COMT). Allelic frequencies were 118G-0.22, C3435-0.55, and 158Met-0.5 in our whole population and 0.23, 0.5, and 0.47 in Caucasian population. Allelic frequencies did not differ according to gender. Mean BMI did no differ according to the allelic variant. OPRM1118G allele was more frequent in our population than in most previously described European populations. Since the concept of "personalized medicine" promises to individualize therapeutics and optimize medical treatment in term of efficacy and safety, especially when prescribing drugs with a narrow therapeutic index such as morphine, further clinical studies examining the clinical consequences of the OPRM1 c.A118G polymorphism in patients undergoing gastric bypass surgery are needed.
Collapse
|
37
|
Association of MAOA and COMT gene polymorphisms with palatable food intake in children. J Nutr Biochem 2012; 23:272-7. [DOI: 10.1016/j.jnutbio.2010.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/23/2022]
|
38
|
Cordero MD, Alcocer-Gómez E. Respuesta. Med Clin (Barc) 2011. [DOI: 10.1016/j.medcli.2010.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Vucetic Z, Reyes TM. Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:577-593. [PMID: 20836049 DOI: 10.1002/wsbm.77] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prevalence of obesity in the general population has increased in the past 15 years from 15% to 35%. With increasing obesity, the coincident medical and social consequences are becoming more alarming. Control over food intake is crucial for the maintenance of body weight and represents an important target for the treatment of obesity. Central nervous system mechanisms responsible for control of food intake have evolved to sense the nutrient and energy levels in the organism and to coordinate appropriate responses to adjust energy intake and expenditure. This homeostatic system is crucial for maintenance of stable body weight over long periods of time of uneven energy availability. However, not only the caloric and nutritional value of food but also hedonic and emotional aspects of feeding affect food intake. In modern society, the increased availability of highly palatable and rewarding (fat, sweet) food can significantly affect homeostatic balance, resulting in dysregulated food intake. This review will focus on the role of hypothalamic and mesolimbic/mesocortical dopaminergic (DA) circuitry in coding homeostatic and hedonic signals for the regulation of food intake and maintenance of caloric balance. The interaction of dopamine with peripheral and central indices of nutritional status (e.g., leptin, ghrelin, neuropeptide Y), and the susceptibility of the dopamine system to prenatal insults will be discussed. Additionally, the importance of alterations in dopamine signaling that occur coincidently with obesity will be addressed.
Collapse
Affiliation(s)
- Zivjena Vucetic
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Teresa M Reyes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
40
|
Kring SII, Werge T, Holst C, Toubro S, Astrup A, Hansen T, Pedersen O, Sørensen TIA. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes. PLoS One 2009; 4:e6696. [PMID: 19690620 PMCID: PMC2724686 DOI: 10.1371/journal.pone.0006696] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49). Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16). The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4) and acute insulin response (OR = 0.65, CI = 0.44-0.94) in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09). Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40), no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21), fat-BMI (OR = 1.22, CI = 1.08-1.38), waist (OR = 1.13, CI = 1.04-1.22), and cholesterol (OR = 5.60, CI = 0.99-31.4). Analyses of impaired glucose tolerance (IGT) and type 2 diabetes (T2D) revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2), p = 0.05 and p = 0.06, respectively). Examination of the combined genotypes of 5HT2C and COMT showed a 34.0% increased frequency of IGT or T2D (chi(2), p = 0.01). CONCLUSIONS The findings lend further support to the involvement of serotonin, noradrenaline and dopamine pathways on obesity and glucose homeostasis, in particular when combined genotype associations are explored.
Collapse
Affiliation(s)
- Sofia I I Kring
- Institute of Preventive Medicine, Copenhagen University Hospital, Centre for Health and Society, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fuemmeler BF, Agurs-Collins T, McClernon FJ, Kollins SH, Garrett ME, Ashley-Koch AE. Interactions between genotype and depressive symptoms on obesity. Behav Genet 2009; 39:296-305. [PMID: 19337825 PMCID: PMC2884968 DOI: 10.1007/s10519-009-9266-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
Depression and Genetic variation in serotonin and monoamine transmission have both been associated with body mass index (BMI), but their interaction effects are not well understood. We examined the interaction between depressive symptoms and functional polymorphisms of serotonin transporter (SLC6A4) and monoamine oxidase A (MAOA) on categories of BMI. Participants were from the National Longitudinal Study of Adolescent Health. Multiple logistic regression was used to investigate interactions between candidate genes and depression on risk of obesity (BMI > or = 30) or overweight + obese combined (BMI > or = 25). Males with an MAOA active allele with high depressive symptoms were at decreased risk of obesity (OR 0.22; 95% CI 0.06-0.78) and overweight + obesity (OR 0.48; 95% CI 0.26-0.89). No similar effect was observed among females. These findings highlight that the obesity-depression relationship may vary as a function of gender and genetic polymorphism, and suggest the need for further study.
Collapse
|
42
|
Gao X, Schwarzschild MA, Wang H, Ascherio A. Obesity and restless legs syndrome in men and women. Neurology 2009; 72:1255-61. [PMID: 19349606 DOI: 10.1212/01.wnl.0000345673.35676.1c] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Obesity and restless legs syndrome (RLS) are both associated with hypofunction of dopamine in the CNS. We therefore examined whether individuals who are obese have an increased risk of RLS in two ongoing US cohorts, the Nurses' Health Study II and the Health Professional Follow-up Study. METHODS We included 65,554 women and 23,119 men free of diabetes, arthritis, and pregnancy in the current analyses. Information on RLS was assessed using a set of standardized questions. Participants were considered to have RLS if they met four RLS diagnostic criteria recommended by the International RLS Study Group and had restless legs > or =5 times/month. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using logistic regression models adjusting for age, smoking, use of antidepressant, phobic anxiety score, and other covariates. Log ORs from the two cohorts were pooled by a fixed-effects model. RESULTS There were 6.4% of women and 4.1% of men who were considered to have RLS. Multivariate adjusted ORs for RLS were 1.42 (95% CI: 1.3, 1.6; p trend <0.0001) for participants with body mass index (BMI) >30 vs <23 kg/m(2) and 1.60 (95% CI: 1.5, 1.8; p trend <0.0001) for highest vs lowest waist circumference quintiles. Greater BMI in early adulthood (age 18-21 years) and weight gain were also associated with a higher prevalence of RLS (p trend <0.01 for both). CONCLUSIONS Both overall and abdominal adiposity are associated with increased likelihoods of having restless legs syndrome (RLS). Further prospective studies are warranted to clarify causative association between obesity and risk of developing RLS.
Collapse
Affiliation(s)
- Xiang Gao
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
43
|
Azzato EM, Morton LM, Bergen AW, Wang SS, Chatterjee N, Kvale P, Yeager M, Hayes RB, Chanock SJ, Caporaso NE. SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. BMC MEDICAL GENETICS 2009; 10:9. [PMID: 19183461 PMCID: PMC2640369 DOI: 10.1186/1471-2350-10-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/30/2009] [Indexed: 11/29/2022]
Abstract
Background To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(SLC6A3) and body mass index (BMI), among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Methods Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR) polymorphism) at the SLC6A3 gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥ 30 kg/m2, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of SLC6A3 genotypes and haplotypes were computed using conditional logistic regression. Results Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the 3' VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR*9 = 0.80, OR99 = 0.47, ptrend = 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; ORA-C-G-9 = 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is referent; ORA-C-G-9 = 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype with the 3'variant allele (A-C-G-9). Conclusion Our results support a role of genetic variation at the dopamine transporter gene, SLC6A3, as a modifier of BMI.
Collapse
Affiliation(s)
- Elizabeth M Azzato
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barnard ND, Noble EP, Ritchie T, Cohen J, Jenkins DJA, Turner-McGrievy G, Gloede L, Green AA, Ferdowsian H. D2 dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes. Nutrition 2008; 25:58-65. [PMID: 18834717 DOI: 10.1016/j.nut.2008.07.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/05/2008] [Accepted: 07/18/2008] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Certain D2 dopamine receptor Taq 1A genotypes (A1A1, A1A2) have been associated with obesity and substance abuse. We hypothesized that their presence would be associated with reduced efficacy of dietary interventions in individuals with type 2 diabetes. METHODS In the course of a randomized clinical trial in an outpatient research center in which 93 adults with type 2 diabetes were assigned to a low-fat vegan diet or a diet following 2003 American Diabetes Association guidelines for 74 wk, Taq 1A genotype was determined. Nutrient intake, body weight, and hemoglobin A1c (A1c) were measured over 74 wk. RESULTS The A1 allele was highly prevalent, occurring in 47% of white participants (n = 49), which was significantly higher than the 29% prevalence previously reported in non-diabetic whites (P = 0.01). The A1 allele was found in 55% of black participants (n = 44). Black participants with A1(+) genotypes had significantly greater mean body weight (11.2 kg heavier, P = 0.05) and greater intake of fat (P = 0.002), saturated fat (P = 0.01), and cholesterol (P = 0.02) compared with A2A2 (A1(-)) individuals; dietary changes during the study did not favor one genotype group. Among whites, baseline anthropometric and nutrient differences between gene groups were small. However, among whites in the vegan group, A1(+) individuals reduced fat intake (P = 0.04) and A1c (P = 0.01) significantly less than did A1(-) individuals. CONCLUSION The A1 allele appears to be highly prevalent among individuals with type 2 diabetes. Potential influences on diet, weight, and glycemic control merit further exploration.
Collapse
Affiliation(s)
- Neal D Barnard
- Department of Medicine, George Washington University School of Medicine, Washington, D.C., USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Annerbrink K, Westberg L, Nilsson S, Rosmond R, Holm G, Eriksson E. Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism 2008; 57:708-11. [PMID: 18442637 DOI: 10.1016/j.metabol.2008.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 01/07/2008] [Indexed: 11/22/2022]
Abstract
Catechol O-methyltransferase (COMT) degrades catecholamines and estrogens, both of which are of known importance for cardiovascular risk factors such as obesity and hypertension. The gene coding for COMT contains a val158-met polymorphism that exerts a considerable influence on enzymatic activity. We hypothesized that this polymorphism might influence risk factors for cardiovascular disease. Deoxyribonucleic acid samples and data regarding blood pressure and anthropometry were collected from 240 Swedish men, all 51 years old. Subjects homozygous for the low-activity allele (met) displayed higher blood pressure, heart rate, waist-to-hip ratio, and abdominal sagittal diameter as compared with heterozygous subjects, who in turn displayed higher blood pressure, heart rate, waist-to-hip ratio, and abdominal sagittal diameter than subjects homozygous for the high-activity allele (val). All measured variables were significantly correlated; however, the associations between COMT val158-met and cardiovascular variables, and the association between COMT val158-met and anthropometry, respectively, were partly independent of each other, as revealed by multiple linear regression.
Collapse
Affiliation(s)
- Kristina Annerbrink
- Institute of Neuroscience and Physiology, Göteborg University, and Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, S-405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
46
|
Fuemmeler BF, Agurs-Collins TD, McClernon FJ, Kollins SH, Kail ME, Bergen AW, Ashley-Koch AE. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity (Silver Spring) 2008; 16:348-55. [PMID: 18239643 PMCID: PMC2919156 DOI: 10.1038/oby.2007.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study addressed the hypothesis that variation in genes associated with dopamine function (SLC6A3, DRD2, DRD4), serotonin function (SLC6A4, and regulation of monoamine levels (MAOA) may be predictive of BMI categories (obese and overweight + obese) in young adulthood and of changes in BMI as adolescents transition into young adulthood. Interactions with gender and race/ethnicity were also examined. METHODS AND PROCEDURES Participants were a subsample of individuals from the National Longitudinal Study of Adolescent Health (Add Health), a nationally representative sample of adolescents followed from 1995 to 2002. The sample analyzed included a subset of 1,584 unrelated individuals with genotype data. Multiple logistic regressions were conducted to evaluate the associations between genotypes and obesity (BMI > 29.9) or overweight + obese combined (BMI > or = 25) with normal weight (BMI = 18.5-24.9) as a referent. Linear regression models were used to examine change in BMI from adolescence to young adulthood. RESULTS Significant associations were found between SLC6A4 5HTTLPR and categories of BMI, and between MAOA promoter variable number tandem repeat (VNTR) among men and categories of BMI. Stratified analyses revealed that the association between these two genes and excess BMI was significant for men overall and for white and Hispanic men specifically. Linear regression models indicated a significant effect of SLC6A4 5HTTLPR on change in BMI from adolescence to young adulthood. DISCUSSION Our findings lend further support to the involvement of genes implicated in dopamine and serotonin regulation on energy balance.
Collapse
Affiliation(s)
- Bernard F Fuemmeler
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Davis C, Fox J. Sensitivity to reward and body mass index (BMI): Evidence for a non-linear relationship. Appetite 2008; 50:43-9. [PMID: 17614159 DOI: 10.1016/j.appet.2007.05.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/24/2022]
Abstract
The role of brain reward mechanisms, and associated personality traits, are of growing interest to researchers in the field of eating behaviours and obesity. However, the direction of causal influence has produced some debate and inconsistency in the literature. Some have argued that a reward deficiency syndrome increases the risk for obesity while others have claimed that a heightened sensitivity to reward is linked to higher body mass index (BMI). To reconcile these two perspectives, a non-linear relationship between reward sensitivity and BMI was predicted. Previous research has also not considered whether sex moderates the relationship between these two variables. Results indicated that although men had significantly higher reward sensitivity than women, the interaction between sex and BMI was not significant. As predicted, the quadratic term of BMI was statistically significant indicating a moderately positive relationship between BMI and reward sensitivity in the normal and overweight range of BMI (18-30) after which the relationship changed direction and was inversely related in those with moderate and extreme obesity. This curvilinear relationship meshes with, and helps to integrate, the two perspectives described above and found in previous studies. It would behoove future researchers to identify behaviours that might explain the association between a psychobiological trait like reward sensitivity and a physical characteristic like body size, and to explicate the possibly reciprocal causal mechanisms that underlie this association.
Collapse
Affiliation(s)
- Caroline Davis
- Kinesiology & Health Sciences, York University, 343 Bethune College, 4700 Keele Street, Toronto Ont., Canada, M3J 1P3.
| | | |
Collapse
|
48
|
Does dopaminergic reward system contribute to explaining comorbidity obesity and ADHD? Med Hypotheses 2007; 70:1118-20. [PMID: 18158220 DOI: 10.1016/j.mehy.2007.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 10/28/2007] [Indexed: 11/23/2022]
Abstract
Some recent studies have reported a strong link between obesity and attention-deficit/hyperactivity disorder (ADHD). However, to date, the factors underlying this newly described comorbidity are still unclear and unexplored. In the present article, we proposed that the dopamine system and implicate dopamine genes contribute to explaining the association between ADHD and obesity. The background for this hypothesis comes from studies on the association between ADHD and dopamine, as well as from investigations on dopamine in obese individuals. There is strong evidence that indicate catecholamines dopamine is very important in the pathophysiology of ADHD, as well as in the mechanism of therapeutic action of stimulant drugs. Furthermore, increasing evidence indicated that dopaminergic reward system is significantly associated with obesity. With regard to the therapeutic implications, recent studies indicate that methylphenidate (MPH) - a drug widely used for ADHD reduced overall energy intake with a selective reduction in dietary fat. Findings are consistent with a reward deficiency model of obesity whereby low brain dopamine predicts overeating and obesity, and administering agents that increase dopamine results in reduced feeding behavior. Given the above background, we hypothesize that the increased prevalence of ADHD in obese individual could be explained by the imbalance of dopaminergic reward system.
Collapse
|
49
|
Abstract
Eating represents a choice among many alternative behaviors. The purpose of this review is to provide an overview of how food reinforcement and behavioral choice theory are related to eating and to show how this theoretical approach may help organize research on eating from molecular genetics through treatment and prevention of obesity. Special emphasis is placed on how food reinforcement and behavioral choice theory are relevant to understanding excess energy intake and obesity and how they provide a framework for examining factors that may influence eating and are outside of those that may regulate energy homeostasis. Methods to measure food reinforcement are reviewed, along with factors that influence the reinforcing value of eating. Contributions of neuroscience and genetics to the study of food reinforcement are illustrated by using the example of dopamine. Implications of food reinforcement for obesity and positive energy balance are explored, with suggestions for novel approaches to obesity treatment based on the synthesis of behavioral and pharmacological approaches to food reinforcement.
Collapse
Affiliation(s)
- Leonard H Epstein
- Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA.
| | | | | | | |
Collapse
|
50
|
Haddley K, Vasiliou AS, Ali FR, Paredes UM, Bubb VJ, Quinn JP. Molecular genetics of monoamine transporters: relevance to brain disorders. Neurochem Res 2007; 33:652-67. [PMID: 17960477 DOI: 10.1007/s11064-007-9521-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2007] [Indexed: 02/07/2023]
Abstract
We have demonstrated in both the human serotonin transporter gene (5HTT) and the dopamine transporter gene (DAT1) that specific polymorphic variants termed Variable Number Tandem Repeats (VNTRs), which correlate with predisposition to a number of neurological and psychiatric disorders, act as transcriptional regulatory domains. We have demonstrated that these domains can act as both tissue-specific and stimulus-inducible regulators of gene expression. As such they can act to be mechanistically associated with the progression or initiation of a behavioural disorder by altering the level of transporter mRNA, which in turn regulates the concentration of transporter in specific cells or in response to a challenge; chemical, environmental or physiological. The synergistic actions of such transcriptional domains will modulate gene expression. Our hypothesis is that these VNTR variants are one mechanism by which nurture can modify concentrations of neurotransmitters in a differential manner.
Collapse
Affiliation(s)
- K Haddley
- Physiology Laboratory, School of Biomedical Science, University of Liverpool, Liverpool, L69 3BX, England
| | | | | | | | | | | |
Collapse
|