1
|
Nevejan L, Perkins M, Vercammen M, Vanhove T, Delforge M, Bossuyt X. Failure of Serum Immunofixation Electrophoresis to Detect Intact Monoclonal IgD Lambda Unraveled by Mass Spectrometry. Clin Chem 2024; 70:1291-1293. [PMID: 39162305 DOI: 10.1093/clinchem/hvae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Louis Nevejan
- Department of Laboratory Medicine, AZ Sint-Jan Brugge AV, Bruges, Belgium
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Mark Perkins
- Research and Development, Binding Site - Part of Thermo Fisher Scientific, Birmingham, United Kingdom
| | - Martine Vercammen
- Department of Laboratory Medicine, AZ Sint-Jan Brugge AV, Bruges, Belgium
- Observational Clinical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thibault Vanhove
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Michel Delforge
- Division of Haematology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Experimental Haematology, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Pursell T, Reers A, Mikelov A, Kotagiri P, Ellison JA, Hutson CL, Boyd SD, Frank HK. Genetically and Functionally Distinct Immunoglobulin Heavy Chain Locus Duplication in Bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606892. [PMID: 39211187 PMCID: PMC11360916 DOI: 10.1101/2024.08.09.606892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The genetic locus encoding immunoglobulin heavy chains (IgH) is critical for vertebrate humoral immune responses and diverse antibody repertoires. Immunoglobulin and T cell receptor loci of most bat species have not been annotated, despite the recurrent role of bats as viral reservoirs and sources of zoonotic pathogens. We investigated the genetic structure and function of IgH loci across the largest bat family, Vespertilionidae, focusing on big brown bats (Eptesicus fuscus ). We discovered that E. fuscus and ten other species within Vespertilionidae have two complete, functional, and distinct immunoglobulin heavy chain loci on separate chromosomes. This locus organization is previously unknown in mammals, but is reminiscent of more limited duplicated loci in teleost fish. Single cell transcriptomic data validate functional rearrangement and expression of immunoglobulin heavy chains of both loci in the expressed repertoire of Eptesicus fuscus , with maintenance of allelic exclusion, bias of usage toward the smaller and more compact IgH locus, and evidence of differential selection of antigen-experienced B cells and plasma cells varying by IgH locus use. This represents a unique mechanism for mammalian humoral immunity and may contribute to bat resistance to viral pathogenesis.
Collapse
|
3
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
4
|
Slight-Webb S, Thomas K, Smith M, Wagner CA, Macwana S, Bylinska A, Donato M, Dvorak M, Chang SE, Kuo A, Cheung P, Kalesinskas L, Ganesan A, Dermadi D, Guthridge CJ, DeJager W, Wright C, Foecke MH, Merrill JT, Chakravarty E, Arriens C, Maecker HT, Khatri P, Utz PJ, James JA, Guthridge JM. Ancestry-based differences in the immune phenotype are associated with lupus activity. JCI Insight 2023; 8:e169584. [PMID: 37606045 PMCID: PMC10543734 DOI: 10.1172/jci.insight.169584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.
Collapse
Affiliation(s)
- Samantha Slight-Webb
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kevin Thomas
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Miles Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Catriona A. Wagner
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Susan Macwana
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Aleksandra Bylinska
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | | | - Alex Kuo
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Peggie Cheung
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Carla J. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Wade DeJager
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Christian Wright
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Mariko H. Foecke
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Joan T. Merrill
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Eliza Chakravarty
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Cristina Arriens
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Judith A. James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Zhou J, Liu A, He F, Zhang Y, Shen L, Yu J, Zhang X. Draft Genome of White-blotched River Stingray Provides Novel Clues for Niche Adaptation and Skeleton Formation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:501-514. [PMID: 36470576 PMCID: PMC10787021 DOI: 10.1016/j.gpb.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The white-blotched river stingray (Potamotrygon leopoldi) is a cartilaginous fish native to the Xingu River, a tributary of the Amazon River system. As a rare freshwater-dwelling cartilaginous fish in the Potamotrygonidae family in which no member has the genome sequencing information available, P. leopoldi provides the evolutionary details in fish phylogeny, niche adaptation, and skeleton formation. In this study, we present its draft genome of 4.11 Gb comprising 16,227 contigs and 13,238 scaffolds, with contig N50 of 3937 kb and scaffold N50 of 5675 kb in size. Our analysis shows that P. leopoldi is a slow-evolving fish that diverged from elephant sharks about 96 million years ago. Moreover, two gene families related to the immune system (immunoglobulin heavy constant delta genes and T-cell receptor alpha/delta variable genes) exhibit expansion in P. leopoldi only. We also identified the Hox gene clusters in P. leopoldi and discovered that seven Hox genes shared by five representative fish species are missing in P. leopoldi. The RNA sequencing data from P. leopoldi and other three fish species demonstrate that fishes have a more diversified tissue expression spectrum when compared to mammals. Our functional studies suggest that lack of the gc gene encoding vitamin D-binding protein in cartilaginous fishes (both P. leopoldi and Callorhinchus milii) could partly explain the absence of hard bone in their endoskeleton. Overall, this genome resource provides new insights into the niche adaptation, body plan, and skeleton formation of P. leopoldi, as well as the genome evolution in cartilaginous fishes.
Collapse
Affiliation(s)
- Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Funan He
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Libing Shen
- International Human Phenome Institutes (Shanghai), Shanghai 200433, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jun Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiang Zhang
- Shanghai Nanmulin Biotechnology Company Limited, Shanghai 200031, China.
| |
Collapse
|
6
|
Davies AM, Beavil RL, Barbolov M, Sandhar BS, Gould HJ, Beavil AJ, Sutton BJ, McDonnell JM. Crystal structures of the human IgD Fab reveal insights into C H1 domain diversity. Mol Immunol 2023; 159:28-37. [PMID: 37267832 DOI: 10.1016/j.molimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45-2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Momchil Barbolov
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Balraj S Sandhar
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom.
| |
Collapse
|
7
|
Mei D, Zhang T, Liu R, Wang P, Hu L, Xu L, Ge J, Zhang X, Wang H, Xue Z, Liang F, Yu Q, Wei W, Zhang L. hIgD-Fc-Ig fusion protein regulates T cell functions by inhibiting TCR signaling pathway in adjuvant arthritis rats. Int Immunopharmacol 2023; 119:110154. [PMID: 37062257 DOI: 10.1016/j.intimp.2023.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
This study aimed to investigate the effect of hIgD-Fc-Ig on TCR-Lck-Erk activated by IgD in adjuvant arthritis (AA) rats. Wistar rats were divided into the normal, AA model, hIgD-Fc-Ig (1 mg/kg, 3 mg/kg and 9 mg/kg) and Etanercept (3 mg/kg) groups. The overall index of AA rats was measured every 3 days. The pathologic examination of knee joints and the proliferation of the spleen and thymus of AA rats were detected by H&E staining and CCK-8. The blood flow signal of knee joints of experimental rats was examined by US. The articular bone injury was detected by X-ray. The changes in PBMCs and spleen T cell subsets were detected by flow cytometry. The expression of CD3ε, p-Lck, p-Zap70, Ras, and p-Erk in rat spleens was detected by immunofluorescence and WB. Rat spleen T cells or Jurkat cells treated by IgD to observe the effect of hIgD-Fc-Ig on TCR and its downstream protein expression. The results showed that hIgD-Fc-Ig had a therapeutic effect on AA rats by reducing the secondary inflammation, improving pathological changes. hIgD-Fc-Ig can reduce the ratio of Th cells of PBMCs of AA rats, the ratio of Th, Th1, Th17 cells and increase the ratio of Th2, Treg cells of AA rat spleens. hIgD-Fc-Ig could down-regulate the expression of CD3ε, p-Lck, p-Zap70, Ras, p-Erk in vivo or in vitro. In conclusion, hIgD-Fc-Ig could alleviate the symptoms of AA rats and regulate T cells through TCR-Lck-Erk signaling pathway and maybe a new promising biological agent for RA.
Collapse
Affiliation(s)
- Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ruijin Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Pan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ling Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
8
|
Liang P, Huang Q, Xu Y, Chen L, Li J, Xu A, Yang Q. High serum immunoglobulin D levels in systemic lupus erythematosus: more to be found? Clin Rheumatol 2023; 42:1069-1076. [PMID: 36585530 DOI: 10.1007/s10067-022-06457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Many studies have shown that serum immunoglobulin D (IgD) is usually increased in autoimmune diseases. The potential role of IgD in systemic lupus erythematosus (SLE) is still unclear. Our study aimed to compare the serum IgD levels of SLE with different population and to evaluate the relationship between serum IgD and SLE. METHODS Fifty SLE patients, 40 non-SLE chronic kidney disease (CKD) patients, and 50 healthy volunteers were enrolled in this study. Serum IgD levels were analyzed by ELISA assay and compared between groups. The correlation of serum IgD and SLE disease were evaluated. The ability of serum IgD to predict SLE was analyzed by graphing receiver operating characteristic curves. RESULTS Serum IgD levels were significantly higher in SLE patients compared to non-SLE CKD and healthy controls (7436.1 ± 5862.1 vs. 4517.8 ± 5255.2 vs. 4180.4 ± 4881 ng/mL, p = 0.01, p = 0.002, respectively), and in patients with high SLE Disease Activity Index (SLEDAI) scores compared with those with low scores (8572.9 ± 5968.7 vs. 5020.4 ± 4972.5 ng/mL, p = 0.044). High level of inflammatory cytokines and decreased circulating basophil counts were found in SLE patients (p < 0.05). No correlations was identified between serum IgD levels and SLEDAI scores (p > 0.05). Serum IgD was noninferior to IgG or IgE in discriminating SLE with an area under the curve of 0.672 (95% CI, 0.59-0.75). CONCLUSIONS Serum IgD levels are significantly elevated in SLE patients with high SLEDAI scores. Simultaneous occurrence of increased inflammatory cytokines and decreased basophil counts highlights the potential role of IgD-targets interaction in SLE pathogenesis. Key points • Total serum IgD levels were elevated in SLE patients. • High IgD levels were significantly higher in SLE patients with high SLEDAI scores. • The ability of serum IgD was equivalent to IgG or IgE in discriminating SLE from CKD and healthy adult.
Collapse
Affiliation(s)
- Peifen Liang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiuyan Huang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yanchun Xu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liling Chen
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Anping Xu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Pan W, Xin Q, Xu J, He J, Chen Z, Hu X, Li T, Zhu Y, Wei W, Wu Y. IgD enhances the release of neutrophil extracellular traps (NETs) via FcδR in rheumatoid arthritis patients. Int Immunopharmacol 2023; 114:109484. [PMID: 36450207 DOI: 10.1016/j.intimp.2022.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disorder affecting primarily the joints. Neutrophils and the release of neutrophil extracellular traps (NETs) contribute to the pathogenesis of RA. However, IgD, which was abnormally higher in RA, has not been studied for its pathological role in neutrophil activation and NETs formation. To investigate the effects of IgD on neutrophil activation and NETs formation via IgD receptor (FcδR), we collect peripheral blood of RA patients and established adjuvant-induced arthritis (AA) rat model. We found that the expression of FcδR on neutrophils was significantly higher in RA patients compared with healthy controls. As a specific marker of NETs, the level of citrullinated histone H3 was positively correlated with sIgD and FcδR in RA patients. IgD enhances the release of NETs and promotes the proliferation of fibroblast-like synoviocytes (FLS) from RA patients by activating neutrophils. As a competitive FcδR blocker, IgD-Fc-Ig fusion protein could significantly reduce NETs formation and FcδR expression on neutrophils in vitro. In vivo, IgD-Fc-Ig could restrain IgD-induced neutrophil activation and NETs formation, thus inhibited FLS proliferation in AA rats. Data presented here demonstrate that neutrophils could be triggered by IgD to release NETs and take part in FLS proliferation in RA patients with excessive IgD. Blocking IgD-FcδR could inhibit neutrophil activation and NETs formation, and represent an additional attractive novel therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Wenwen Pan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jing Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jingjing He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanqing Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
10
|
Itoh N, Ohshima Y. The dual aspects of IgD in the development of tolerance and the pathogenesis of allergic diseases. Allergol Int 2022; 72:227-233. [PMID: 37010995 DOI: 10.1016/j.alit.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
The cell-surface form of IgD is co-expressed with IgM on mature, naïve B cells as B-cell receptors. The secreted IgD antibody (Ab) is found in relatively modest concentrations in the blood and other body fluids as it has a relatively short serum half-life. IgD Abs produced in the upper-respiratory mucosa presumably participate in host defense against pathogens. The allergen-mediated cross-linkage of basophil-bound IgD Ab enhances type 2 cytokine secretion; IgD Ab may also interfere with IgE-mediated basophil degranulation, suggesting dual and opposing roles of IgD Ab in allergen sensitization and the development of allergen immune tolerance. We recently demonstrated that children with egg allergies who avoided all forms of egg have lower ovomucoid-specific IgD and IgG4 Ab levels than those who only partially avoided egg products and that different mechanisms may regulate allergen-specific IgD Ab production compared to allergen-specific IgG4 Ab production. The relationship between antigen-specific IgD Ab levels and the clinical improvement of asthma and food allergies suggests that antigen-specific IgD Ab affects the process of outgrowing allergies. We discuss the possibility that allergen-specific IgD Ab production reflects low-affinity, allergen-specific IgE production as children outgrow a food allergy.
Collapse
Affiliation(s)
- Naohiro Itoh
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Yusei Ohshima
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
11
|
Lenti MV, Facciotti F, Miceli E, Vanoli A, Fornasa G, Lahner E, Spadoni I, Giuffrida P, Arpa G, Pasini A, Rovedatti L, Caprioli F, Travelli C, Lattanzi G, Conti L, Klersy C, Vecchi M, Paulli M, Annibale B, Corazza GR, Rescigno M, Di Sabatino A. Mucosal Overexpression of Thymic Stromal Lymphopoietin and Proinflammatory Cytokines in Patients With Autoimmune Atrophic Gastritis. Clin Transl Gastroenterol 2022; 13:e00510. [PMID: 35905420 PMCID: PMC10476748 DOI: 10.14309/ctg.0000000000000510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION The immune mechanisms underlying human autoimmune atrophic gastritis (AAG) are poorly understood. We sought to assess immune mucosal alterations in patients with AAG. METHODS In 2017-2021, we collected gastric corpus biopsies from 24 patients with AAG (median age 62 years, interquartile range 56-67, 14 women), 26 age-matched and sex-matched healthy controls (HCs), and 14 patients with Helicobacter pylori infection (HP). We investigated the lamina propria mononuclear cell (LPMC) populations and the mucosal expression of thymic stromal lymphopoietin (TSLP) and nicotinamide phosphoribosyltransferase (NAMPT). Ex vivo cytokine production by organ culture biopsies, under different stimuli (short TSLP and zinc-l-carnosine), and the gastric vascular barrier through plasmalemma vesicle-associated protein-1 (PV1) were also assessed. RESULTS In the subset of CD19+ LPMC, CD38+ cells (plasma cells) were significantly higher in AAG compared with HC. Ex vivo production of tumor necrosis factor (TNF)-α, interleukin (IL)-15, and transforming growth factor β1 was significantly higher in AAG compared with HC. At immunofluorescence, both IL-7R and TSLP were more expressed in AAG compared with HC and HP, and short TSLP transcripts were significantly increased in AAG compared with HC. In the supernatants of AAG corpus mucosa, short TSLP significantly reduced TNF-α, while zinc-l-carnosine significantly reduced interferon-γ, TNF-α, IL-21, IL-6, and IL-15. NAMPT transcripts were significantly increased in AAG compared with HC. PV1 was almost absent in AAG, mildly expressed in HC, and overexpressed in HP. DISCUSSION Plasma cells, proinflammatory cytokines, and altered gastric vascular barrier may play a major role in AAG. TSLP and NAMPT may represent potential therapeutic targets, while zinc-l-carnosine may dampen mucosal inflammation.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Emanuela Miceli
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Edith Lahner
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Ilaria Spadoni
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Paolo Giuffrida
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Arpa
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandra Pasini
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Laura Rovedatti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, IRCCS Ca' Granda Hospital Foundation, University of Milan, Milan, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Laura Conti
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Catherine Klersy
- Clinical Epidemiology & Biometry, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, IRCCS Ca' Granda Hospital Foundation, University of Milan, Milan, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Bruno Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Phenotype and cytokine profile description in a TRAPS Syndrome family with TNFRSF1A p.(Thr79Met): association with sacro-iliitis. Joint Bone Spine 2022; 89:105411. [DOI: 10.1016/j.jbspin.2022.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
13
|
Goncalves P, Doisne JM, Eri T, Charbit B, Bondet V, Posseme C, Llibre A, Casrouge A, Lenoir C, Neven B, Duffy D, Fischer A, Di Santo JP. Defects in mucosal immunity and nasopharyngeal dysbiosis in HSC-transplanted SCID patients with IL2RG/JAK3 deficiency. Blood 2022; 139:2585-2600. [PMID: 35157765 PMCID: PMC11022929 DOI: 10.1182/blood.2021014654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Collapse
Affiliation(s)
- Pedro Goncalves
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
| | - Vincent Bondet
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Celine Posseme
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alba Llibre
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Armanda Casrouge
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Christelle Lenoir
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alain Fischer
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Collège de France, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - The Milieu Intérieur Consortium
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
14
|
Purrahman D, Poniatowski ŁA, Wojdasiewicz P, Fathi MR, Yousefi H, Lak E, Mahmoudian-Sani MR. The role of inflammatory mediators in the pathogenesis of periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome. Mol Biol Rep 2022; 49:8061-8069. [PMID: 35320440 DOI: 10.1007/s11033-022-07352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION As a recurrent disease, periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is characterized by episodes of febrile attacks and is often prominent in children under five years of age. However, the etiology of this condition has not been fully understood yet. MATERIALS AND METHODS The search in the extensive literature of peer-reviewed articles published from the inception to December 2021 was conducted to identify the relevant studies, using the electronic databases of MEDLINE/PubMed, Embase, Scopus, the Cochrane Library, and the Web of Science. RESULTS The analysis of complex relationships indicates that inflammatory factors, such as various cytokines and acute-phase proteins (APPs), play leading roles in the pathogenesis of this disease. Accordingly, this article summarizes the current state of knowledge to explain the mechanisms involved in inflammatory responses among patients with PFAPA syndrome and investigate its role in the pathogenesis of this disease. Moreover, the possibilities for further implementation of new therapeutic strategies are pointed out. CONCLUSION It is concluded that some pathophysiological processes are associated with immune dysregulation, which itself may be secondary to environmental factors, genetic background, and underlying diseases, including latent infections that multiply inflammatory mediators. elevated inflammatory markers similarly play a significant part in the clinical outcomes of this condition, whose pyrogenic nature is the reason for the development of episodes of febrile attacks in the population of patients suffering from PFAPA syndrome.
Collapse
Affiliation(s)
- Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Mohammad-Reza Fathi
- Department of Pediatric Neurology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Homayon Yousefi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elena Lak
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Abstract
AbstractIn B cells, IgD is expressed together with IgM through alternative splicing of primary VHDJH-Cμ-s-m-Cδ-s-m RNAs, and also through IgD class switch DNA recombination (CSR) via double-strand DNA breaks (DSB) and synapse of Sμ with σδ. How such DSBs are resolved is still unknown, despite our previous report showing that Rad52 effects the ‘short-range’ microhomology-mediated synapsis of intra-Sμ region DSBs. Here we find that induction of IgD CSR downregulates Zfp318, and promotes Rad52 phosphorylation and recruitment to Sμ and σδ, thereby leading to alternative end-joining (A-EJ)-mediated Sμ-σδ recombination with extensive microhomologies, VHDJH-Cδs transcription and sustained IgD secretion. Rad52 ablation in mouse Rad52−/− B cells aborts IgD CSR in vitro and in vivo and dampens the specific IgD antibody response to OVA. Rad52 knockdown in human B cells also abrogates IgD CSR. Finally, Rad52 phosphorylation is associated with high levels of IgD CSR and anti-nuclear IgD autoantibodies in patients with systemic lupus erythematosus and in lupus-prone mice. Our findings thus show that Rad52 mediates IgD CSR through microhomology-mediated A-EJ in concert with Zfp318 downregulation.
Collapse
|
16
|
Hu XX, Zhang AJ, Pan WW, Xin QL, Chen JY, Zhang LL, Chang Y, Wu YJ, Wei W. An IgD-Fc-Ig fusion protein restrains the activation of T and B cells by inhibiting IgD-IgDR-Lck signaling in rheumatoid arthritis. Acta Pharmacol Sin 2022; 43:387-400. [PMID: 33864023 PMCID: PMC8791948 DOI: 10.1038/s41401-021-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/19/2021] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovitis and the destruction of small joints. Emerging evidence shows that immunoglobulin D (IgD) stimulation induces T-cell activation, which may contribute to diseases pathogenesis in RA. In this study, we investigated the downstream signaling pathways by which IgD activated T cells as well as the possible role of IgD in the T-B interaction. Peripheral blood mononuclear cells were isolated from peripheral blood of healthy controls and RA patients. We demonstrated that IgD activated T cells through IgD receptor (IgDR)-lymphocyte-specific protein tyrosine kinase (Lck)-zeta-associated protein 70 (ZAP70)/phosphatidylinositol 3-kinase (PI3K)/nuclear factor kappa-B (NF-κB) signaling pathways; IgD-induced CD4+ T cells promoted the proliferation of CD19+ B cells in RA patients. A novel fusion protein IgD-Fc-Ig (composed of human IgD-Fc domain and IgG1 Fc domain, which specifically blocked the IgD-IgDR binding) inhibited the coexpression of IgDR and phosphorylated Lck (p-Lck) and the expression levels of p-Lck, p-ZAP70, p-PI3K on CD4+ T cells, and decreased NF-κB nuclear translocation in Jurkat cells. Meanwhile, IgD-Fc-Ig downregulated the expression levels of CD40L on CD4+ T cells as well as CD40, CD86 on CD19+ B cells in RA patients and healthy controls. It also decreased the expression levels of CD40L on CD4+ T cells and CD40 on CD19+ B cells from spleens of collagen-induced arthritis (CIA) mice and reduced IL-17A level in mouse serum. Moreover, administration of IgD-Fc-Ig (1.625-13 mg/kg, iv, twice a week for 4 weeks) in CIA mice dose-dependently decreased the protein expression levels of CD40, CD40L, and IgD in spleens. IgD-Fc-Ig restrains T-cell activation through inhibiting IgD-IgDR-Lck-ZAP70-PI3K-NF-κB signaling, thus inhibiting B-cell activation. Our data provide experimental evidences for application of IgD-Fc-Ig as a highly selective T cell-targeting treatment for RA.
Collapse
Affiliation(s)
- Xiao-xi Hu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ai-jun Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wen-wen Pan
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Qian-ling Xin
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Jing-yu Chen
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yan Chang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yu-jing Wu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| |
Collapse
|
17
|
Tanaka S, Ise W, Baba Y, Kurosaki T. Silencing and activating anergic B cells. Immunol Rev 2021; 307:43-52. [PMID: 34908172 DOI: 10.1111/imr.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.
Collapse
Affiliation(s)
- Shinya Tanaka
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wataru Ise
- Team of Host Defense, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
18
|
Zhang X, Mei D, Wang H, Yu Q, Hong Z, Xu L, Ge J, Han L, Shu J, Liang F, Cai X, Zhu Y, Zhang F, Wang Q, Tai Y, Wang H, Zhang L, Wei W. hIgDFc-Ig inhibits B cell function by regulating the BCR-Syk-Btk-NF-κB signalling pathway in mice with collagen-induced arthritis. Pharmacol Res 2021; 173:105873. [PMID: 34500060 DOI: 10.1016/j.phrs.2021.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease targeting the synovium. Previous studies have found that IgD may be a potential target for the treatment of RA. We designed a new type of fusion protein, hIgDFc-Ig (DG), to block the binding of IgD to IgD receptor (IgDR). In this study, we found that DG has a significant therapeutic effect in mice with collagen-induced arthritis (CIA). DG improved the claw of irritation symptoms in these mice, inhibited the pathological changes in spleen and joint tissues, and had a moderating effect on B cell subsets at different inflammatory stages. Moreover, DG could also decrease the levels of IgA, IgD, IgM and IgG subtypes of immunoglobulin in the serum of mice with CIA. In vitro, B cell antigen receptor (BCR) knockout Ramos cells were established using the CRISPR/Cas9 technology to further study the activation of BCR signalling by IgD and the effect of DG. We found that the therapeutic effect of DG in mice with CIA may be achieved by inhibiting the activation of BCR signalling by IgD, which may be related to the activation of Igβ. In summary, DG may be a potential biological agent for the treatment of RA and it has broad application prospects in the future.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cell Line
- Gene Knockdown Techniques
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/pharmacology
- Immunoglobulins/therapeutic use
- Mice
- Mice, Inbred DBA
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/antagonists & inhibitors
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Syk Kinase/metabolism
- Thymus Gland/drug effects
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Zhongyang Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Le Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinling Shu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yue Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| |
Collapse
|
19
|
Ametrano A, Gerdol M, Vitale M, Greco S, Oreste U, Coscia MR. The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. FISH & SHELLFISH IMMUNOLOGY 2021; 116:124-139. [PMID: 34038801 DOI: 10.1016/j.fsi.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Cryonotothenioidea is the main group of fishes that thrive in the extremely cold Antarctic environment, thanks to the acquisition of peculiar morphological, physiological and molecular adaptations. We have previously disclosed that IgM, the main immunoglobulin isotype in teleosts, display typical cold-adapted features. Recently, we have analyzed the gene encoding the heavy chain constant region (CH) of the IgT isotype from the Antarctic teleost Trematomus bernacchii (family Nototheniidae), characterized by the near-complete deletion of the CH2 domain. Here, we aimed to track the loss of the CH2 domain along notothenioid phylogeny and to identify its ancestral origins. To this end, we obtained the IgT gene sequences from several species belonging to the Antarctic families Nototheniidae, Bathydraconidae and Artedidraconidae. All species display a CH2 remnant of variable size, encoded by a short Cτ2 exon, which retains functional splicing sites and therefore is included in the mature transcript. We also considered representative species from the three non-Antarctic families: Eleginopsioidea (Eleginops maclovinus), Pseudaphritioidea (Pseudaphritis urvillii) and Bovichtidae (Bovichtus diacanthus and Cottoperca gobio). Even though only E. maclovinus, the sister taxa of Cryonotothenioidea, shared the partial loss of Cτ2, the other non-Antarctic notothenioid species displayed early molecular signatures of this event. These results shed light on the evolutionary path that underlies the origins of this remarkable gene structural modification.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Vitale
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy.
| |
Collapse
|
20
|
Lu K, Lai KP, Stoeger T, Ji S, Lin Z, Lin X, Chan TF, Fang JKH, Lo M, Gao L, Qiu C, Chen S, Chen G, Li L, Wang L. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126069. [PMID: 34492895 DOI: 10.1016/j.jhazmat.2021.126069] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Concerns that airborne microplastics (MP) may be detrimental to human health are rising. However, research on the effects of MP on the respiratory system are limited. We tested the effect of MP exposure on both normal and asthmatic pulmonary physiology in mice. We show that MP exposure caused pulmonary inflammatory cell infiltration, bronchoalveolar macrophage aggregation, increased TNF-α level in bronchoalveolar lavage fluid (BALF), and increased plasma IgG1 production in normal mice. MP exposure also affected asthma symptoms by increasing mucus production and inflammatory cell infiltration with notable macrophage aggregation. Further, we found co-labeling of macrophage markers with MP incorporating fluorescence, which indicates phagocytosis of the MP by macrophages. A comparative transcriptomic analysis showed that MP exposure altered clusters of genes related to immune response, cellular stress response, and programmed cell death. A bioinformatics analysis further uncovered the molecular mechanism whereby MP stimulated production of tumor necrosis factor and immunoglobulins to activate a group of transmembrane B-cell antigens, leading to the modulation of cellular stress and programmed cell death in the asthma model. In summary, we show that MP exposure had detrimental effects on the respiratory system in both healthy and asthmatic mice, which calls for urgent discourse and action to mitigate environmental microplastic pollutants.
Collapse
Affiliation(s)
- Kuo Lu
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China; Department of Chemistry, City University Hong Kong, Hong Kong SAR, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Germany
| | - Shuqin Ji
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ziyi Lin
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Michael Lo
- Department of Chemistry, City University Hong Kong, Hong Kong SAR, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Chen Qiu
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Guobing Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China; Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Lingwei Wang
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Bilal S, Etayo A, Hordvik I. Immunoglobulins in teleosts. Immunogenetics 2021; 73:65-77. [PMID: 33439286 DOI: 10.1007/s00251-020-01195-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulins are glycoproteins which are produced as membrane-bound receptors on B-cells or in a secreted form, known as antibodies. In teleosts, three immunoglobulin isotypes, IgM, IgT, and IgD, are present, each comprising two identical heavy and two identical light polypeptide chains. The basic mechanisms for generation of immunoglobulin diversity are similar in teleosts and higher vertebrates. The B-cell pre-immune repertoire is diversified by VDJ recombination, junctional flexibility, addition of nucleotides, and combinatorial association of light and heavy chains, while the post-immune repertoire undergoes somatic hypermutation during clonal expansion. Typically, the teleost immunoglobulin heavy chain gene complex has a modified translocon arrangement where the Dτ-Jτ-Cτ cluster of IgT is generally located between the variable heavy chain (VH) region and the Dμ/δ-Jμ/δ-Cμ-Cδ gene segments, or within the set of VH gene segments. However, multiple genome duplication and deletion events and loss of some individual genes through evolution has complicated the IgH gene organization. The IgH gene arrangement allows the expression of either IgT or IgM/IgD. Alternative splicing is responsible for the regulation of IgM/IgD expression and the secreted versus transmembrane forms of IgT, IgD, and IgM. The overall structure of IgM and IgT is usually conserved across species, whereas IgD has a large variety of structures. IgM is the main effector molecule in both systemic and mucosal immunity and shows a broad range of concentrations in different teleost species. Although IgM is usually present in higher concentrations under normal conditions, IgT is considered the main mucosal Ig.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Angela Etayo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Kim SH, Jang YS. Recent Insights into Cellular Crosstalk in Respiratory and Gastrointestinal Mucosal Immune Systems. Immune Netw 2020; 20:e44. [PMID: 33425429 PMCID: PMC7779865 DOI: 10.4110/in.2020.20.e44] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023] Open
Abstract
The human body is continuously threatened by pathogens, and the immune system must maintain a balance between fighting infection and becoming over-activated. Mucosal surfaces cover several anatomically diverse organs throughout the body, such as the respiratory and gastrointestinal tracts, and are directly exposed to the external environment. Various pathogens invade the body through mucosal surfaces, making the mucosa the frontline of immune defense. The immune systems of various mucosal tissues display distinctive features that reflect the tissues' anatomical and functional characteristics. This review discusses the cellular components that constitute the respiratory and gastrointestinal tracts; in particular, it highlights the complex interactions between epithelial and immune cells to induce Ag-specific immune responses in the lung and gut. This information on mucosal immunity may facilitate understanding of the defense mechanisms against infectious agents that invade mucosal surfaces, such as severe acute respiratory syndrome coronavirus 2, and provide insight into effective vaccine development.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
23
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
24
|
Yen WF, Sharma R, Cols M, Lau CM, Chaudhry A, Chowdhury P, Yewdell WT, Vaidyanathan B, Sun A, Coffre M, Pucella JN, Chen CC, Jasin M, Sun JC, Rudensky AY, Koralov SB, Chaudhuri J. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep 2020; 27:1472-1486.e5. [PMID: 31042474 PMCID: PMC6527137 DOI: 10.1016/j.celrep.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
The immunoglobulin heavy chain (Igh) locus features a dynamic chromatin landscape to promote class switch recombination (CSR), yet the mechanisms that regulate this landscape remain poorly understood. CHD4, a component of the chromatin remodeling NuRD complex, directly binds H3K9me3, an epigenetic mark present at the Igh locus during CSR. We find that CHD4 is essential for early B cell development but is dispensable for the homeostatic maintenance of mature, naive B cells. However, loss of CHD4 in mature B cells impairs CSR because of suboptimal targeting of AID to the Igh locus. Additionally, we find that CHD4 represses p53 expression to promote B cell proliferation. This work reveals distinct roles for CHD4 in B cell development and CSR and links the H3K9me3 epigenetic mark with AID recruitment to the Igh locus. Yen et al. demonstrate that CHD4, a component of the NuRD remodeling complex, is essential for early B cell development, represses p53 expression in mature B cells, and influences the recruitment of AID to DNA during class switch recombination.
Collapse
Affiliation(s)
- Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Joseph N Pucella
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Chun-Chin Chen
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
25
|
Novikova SE, Farafonova TE, Tikhonova OV, Shushkova NA, Pyatnitsky MA, Zgoda VG, Ponomarenko EA, Lisitsa AV, Grigoryev AI, Tutelyan VA, Archakov AI. [Mass-spectrometric MRM analysis of FDA-verified proteins in the blood plasma of healthy volunteers]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:294-316. [PMID: 32893820 DOI: 10.18097/pbmc20206604294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The proteomic composition of a biological sample serves as the most important feature of a biological object, and it allows discriminating normal and pathological conditions. Targeted mass spectrometric analysis, namely, multiple reaction monitoring (MRM) using synthetic isotopically-labeled internal standard (SIS), is the main alternative to the ELISA method for the analysis of diagnostically significant proteins. Based on the MRM results, a prototype test system has been developed; it employs the targeted mass spectrometric method for multiplex, quantitative analysis of FDA-verified proteins in whole blood plasma. Using this approach, it was possible to measure the content of 42 proteins in 31 samples in a concentration range spanning five orders of magnitude. The interindividual variability for 30 of the 42 registered proteins was less than 40%. The largest scatter was observed for haptoglobin (68%), immunoglobulin heavy constant delta IGHD (90%), angiotensin (72%), sex hormone-binding globulin SHBG (100%) and lipoprotein-(a) (136%). The obtained results on the concentration of proteins correlate with published data (Hortin et al., 2008, Clinical Chemistry, 54, 1608) with R2=0.84. The developed prototype test system based on targeted mass spectrometric analysis of proteins can be considered as an alternative to methods using monoclonal antibodies.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Grigoryev
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
26
|
Chen K, Magri G, Grasset EK, Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020; 20:427-441. [PMID: 32015473 PMCID: PMC10262260 DOI: 10.1038/s41577-019-0261-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Humoral immune responses at mucosal surfaces have historically focused on IgA. Growing evidence highlights the complexity of IgA-inducing pathways and the functional impact of IgA on mucosal commensal bacteria. In the gut, IgA contributes to the establishment of a mutualistic host-microbiota relationship that is required to maintain homeostasis and prevent disease. This Review discusses how mucosal IgA responses occur in an increasingly complex humoral defence network that also encompasses IgM, IgG and IgD. Aside from integrating the protective functions of IgA, these hitherto neglected mucosal antibodies may strengthen the communication between mucosal and systemic immune compartments.
Collapse
Affiliation(s)
- Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Giuliana Magri
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Emilie K Grasset
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain.
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona, Spain.
| |
Collapse
|
27
|
Zhang J, Hu X, Dong X, Chen W, Zhang L, Chang Y, Wu Y, Wei W. Regulation of T Cell Activities in Rheumatoid Arthritis by the Novel Fusion Protein IgD-Fc-Ig. Front Immunol 2020; 11:755. [PMID: 32499775 PMCID: PMC7243948 DOI: 10.3389/fimmu.2020.00755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and T cell hyper-activation. Emerging evidence has shown that the stimulation of immunoglobulin D (IgD) induces T cell activation and may contribute to disease pathogenesis. In this study, the sIgD concentrations were positively associated with disease activity score in 28 joints (DAS28) and anti-cyclic citrullinated peptide (anti-CCP) in RA. We demonstrated that IgD-Fc-Ig (composed of human IgD Fc domain and IgG1 Fc domain, obtained through prokaryotic protein expression and chromatography purification) effectively inhibited the activation and proliferation of T cells in healthy controls and PBMCs in RA patients stimulated by IgD, recovered the Th17/Treg cell subset balance, and downregulated p-Lck and p-ZAP70 expression. Moreover, in vivo, IgD-Fc-Ig decreased the swollen joint counts and arthritis indices in mice with collagen-induced arthritis (CIA), and ameliorated histopathological changes in joint and spleen tissue. It also downregulated thymocyte proliferation and reduced the percentage of helper T cells (Th) and CD154+ T cells, reversed the imbalance of Th1/Th2 and Th17/Treg cell subsets, reduced cytokine and chemokine levels, and inhibited p-Lck and p-ZAP70 expression. Our data suggest that IgD-Fc-Ig fusion protein regulates T cell activity in RA. These findings have potential implications for IgD-targeted strategies to treat IgD-associated RA.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaoxi Hu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojie Dong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wensheng Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Development of a Monoclonal Antibody Specific to the IgM Heavy Chain of Bighead Catfish ( Clarias macrocephalus): A Biomolecular Tool for the Detection and Quantification of IgM Molecules and IgM + Cells in Clarias Catfish. Biomolecules 2020; 10:biom10040567. [PMID: 32272764 PMCID: PMC7226592 DOI: 10.3390/biom10040567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Catfish is a commonly-cultivated freshwater fish in Thailand and many Southeast Asian countries. The molecular data obtained for the IgM heavy chain (IgMH) of catfish have been useful for distinguishing monoclonal antibodies (mAbs). A mAb specific to Cμ1 of the IgMH of catfish (IgMHCμ1 mAb) was developed in a rabbit model using sequence information from bighead catfish (Clarias macrocephalus). The IgMHCμ1 mAb strongly recognized the IgM heavy chain of the tested catfish, namely, bighead catfish, African catfish (Clarias gariepinus) and their hybrid (C. macrocephalus × C. gariepinus), in immunological Western blot analysis and competitive ELISAs. Additionally, the IgMHCμ1 mAb successfully recognized IgM+ cells by detecting IgM molecules in both secreted and membrane-bound forms in peripheral blood leukocytes (PBLs). The IgMHCμ1 mAb was further used to quantify the percentage of IgM+ cells among PBLs through flow cytophotometry. The IgM+ cell percentages of healthy bighead catfish, African catfish and their hybrid were 38.0–39.9%, 45.6–53.2%, and 58.7–60.0%, respectively. Furthermore, the IgMHCμ1 mAb showed no cross-reactivity with the IgM of zebrafish. These findings suggest that this mAb can be used as an immunological tool for monitoring the health, immune status, and immune development of cultivated Clarias catfish.
Collapse
|
29
|
Antibody-coated microbiota in nasopharynx of healthy individuals and IVIg-treated patients with hypogammaglobulinemia. J Allergy Clin Immunol 2020; 145:1686-1690.e4. [PMID: 31954779 DOI: 10.1016/j.jaci.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/23/2022]
|
30
|
Tarbiah N, Todd I, Tighe PJ, Fairclough LC. Cigarette smoking differentially affects immunoglobulin class levels in serum and saliva: An investigation and review. Basic Clin Pharmacol Toxicol 2019; 125:474-483. [PMID: 31219219 DOI: 10.1111/bcpt.13278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to compare concentrations of IgG, IgA, IgM and IgD in both serum and saliva samples from smoking and non-smoking individuals using a protein microarray assay. The findings were also compared to previous studies. Serum and saliva were collected from 48 smoking male individuals and 48 age-matched never-smoker male individuals. The protein microarray assays for detection of human IgG, IgM, IgA and IgD were established and optimized using Ig class-specific affinity-purified goat anti-human Ig-Fc capture antibodies and horseradish peroxidase (HRP)-conjugated goat anti-human Ig-Fc detection antibodies. The Ig class specificity of the microarray assays was verified, and the optimal dilutions of serum and saliva samples were determined for quantification of Ig levels against standard curves. We found that smoking is associated with reduced IgG concentrations and enhanced IgA concentrations in both serum and saliva. By contrast, smoking differentially affected IgM concentrations-causing increased concentrations in serum, but decreased concentrations in saliva. Smoking was associated with decreased IgD concentrations in serum and did not have a significant effect on the very low IgD concentrations in saliva. Thus, cigarette smoking differentially affects the levels of Ig classes systemically and in the oral mucosa. Although there is variation between the results of different published studies, there is a consensus that smokers have significantly reduced levels of IgG in both serum and saliva. A functional antibody deficiency associated with smoking may compromise the body's response to infection and result in a predisposition to the development of autoimmunity.
Collapse
Affiliation(s)
- Nesrin Tarbiah
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Patrick J Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
31
|
Dai X, Wu YJ, Jia XY, Chang Y, Wu HX, Wang C, Wei W. Immunoglobulin D (IgD) and IgD receptor expression in diffuse large B-cell lymphoma. ACTA ACUST UNITED AC 2019; 24:544-551. [PMID: 31315540 DOI: 10.1080/16078454.2019.1642553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Immunoglobulin D (IgD) levels are often elevated in patients with autoimmune diseases. However, the oncogenic activities of IgD and IgD receptor (IgDR) in diffuse large B-cell lymphoma (DLBCL) have not been reported in detail. Therefore, we aimed to investigate the expression of IgD and IgDR in patients with DLBCL. Methods: Membrane IgD (mIgD) and IgDR expression in tissue samples was analyzed using IHC, mIgD and IgDR expression on peripheral blood mononuclear cells (PBMCs) was analyzed by FCM, and secreted IgD (sIgD) level was analyzed by ELISA. Fisher's exact test and Spearman correlation analysis were used to evaluate the relationship between IgD, IgDR, and clinical parameters. Results: The pathological lymph nodes of 34 patients with DLBCL were studied, and mIgD and IgDR expression was found in 16 and 19 patients. mIgD and IgDR expression was upregulated in patients with DLBCL and mIgD expression was significantly associated with IgDR expression. Further correlation analysis showed that mIgD expression was correlated with serum β2-MG level and Hans algorithm as germinal center B (GCB), whereas IgDR expression correlated with serum LDH level, IPI score and GCB. ELISA showed that sIgD level was significantly increased in DLBCL patients and it correlated with serum β2-MG and LDH levels. FCM showed that mIgD and IgDR expression in PBMCs of patients with DLBCL was significantly higher than that in healthy controls. Conclusion: Our findings suggest that overexpression of IgD and IgDR is an abnormal activation state in DLBCL.
Collapse
Affiliation(s)
- Xing Dai
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Yu-Jing Wu
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Xiao-Yi Jia
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Yan Chang
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Hua-Xun Wu
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Chun Wang
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Wei Wei
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| |
Collapse
|
32
|
Pineda S, Sigdel TK, Liberto JM, Vincenti F, Sirota M, Sarwal MM. Characterizing pre-transplant and post-transplant kidney rejection risk by B cell immune repertoire sequencing. Nat Commun 2019; 10:1906. [PMID: 31015506 PMCID: PMC6479061 DOI: 10.1038/s41467-019-09930-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Studying immune repertoire in the context of organ transplant provides important information on how adaptive immunity may contribute and modulate graft rejection. Here we characterize the peripheral blood immune repertoire of individuals before and after kidney transplant using B cell receptor sequencing in a longitudinal clinical study. Individuals who develop rejection after transplantation have a more diverse immune repertoire before transplant, suggesting a predisposition for post-transplant rejection risk. Additionally, over 2 years of follow-up, patients who develop rejection demonstrate a specific set of expanded clones that persist after the rejection. While there is an overall reduction of peripheral B cell diversity, likely due to increased general immunosuppression exposure in this cohort, the detection of specific IGHV gene usage across all rejecting patients supports that a common pool of immunogenic antigens may drive post-transplant rejection. Our findings may have clinical implications for the prediction and clinical management of kidney transplant rejection.
Collapse
MESH Headings
- Adolescent
- Adult
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Child
- Child, Preschool
- Clone Cells
- Female
- Gene Expression
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Graft Survival/genetics
- Humans
- Immunocompromised Host
- Infant
- Kidney/immunology
- Kidney/pathology
- Kidney/surgery
- Kidney Transplantation
- Longitudinal Studies
- Male
- Middle Aged
- Polymorphism, Genetic/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/surgery
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Silvia Pineda
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), 550 16th Street, San Francisco, CA, 94158, USA.
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Tara K Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Juliane M Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Flavio Vincenti
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), 550 16th Street, San Francisco, CA, 94158, USA.
- Department of Pediatrics, University of California, San Francisco (UCSF), 550 16th Street, San Francisco, CA, 94158, USA.
| | - Minnie M Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco (UCSF), 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| |
Collapse
|
33
|
Setz CS, Khadour A, Renna V, Iype J, Gentner E, He X, Datta M, Young M, Nitschke L, Wienands J, Maity PC, Reth M, Jumaa H. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J 2019; 38:embj.2018100249. [PMID: 31015337 PMCID: PMC6545559 DOI: 10.15252/embj.2018100249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to other B‐cell antigen receptor (BCR) classes, the function of IgD BCR on mature B cells remains largely elusive as mature B cells co‐express IgM, which is sufficient for development, survival, and activation of B cells. Here, we show that IgD expression is regulated by the forkhead box transcription factor FoxO1, thereby shifting the responsiveness of mature B cells towards recognition of multivalent antigen. FoxO1 is repressed by phosphoinositide 3‐kinase (PI3K) signaling and requires the lipid phosphatase Pten for its activation. Consequently, Pten‐deficient B cells expressing knock‐ins for BCR heavy and light chain genes are unable to upregulate IgD. Furthermore, in the presence of autoantigen, Pten‐deficient B cells cannot eliminate the autoreactive BCR specificity by secondary light chain gene recombination. Instead, Pten‐deficient B cells downregulate BCR expression and become unresponsive to further BCR‐mediated stimulation. Notably, we observed a delayed germinal center (GC) reaction by IgD‐deficient B cells after immunization with trinitrophenyl‐ovalbumin (TNP‐Ova), a commonly used antigen for T‐cell‐dependent antibody responses. Together, our data suggest that the activation of IgD expression by Pten/FoxO1 results in mature B cells that are selectively responsive to multivalent antigen and are capable of initiating rapid GC reactions and T‐cell‐dependent antibody responses.
Collapse
Affiliation(s)
- Corinna S Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Valerio Renna
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Joseena Iype
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Eva Gentner
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Xiaocui He
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Marc Young
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wienands
- Cellular and Molecular Immunology, Georg August University Göttingen, Göttingen, Germany
| | - Palash C Maity
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
34
|
Martínez-Orellana P, Maristany C, Baxarias M, Álvarez-Fernández A, Baldassarre A, Ordeix L, Solano-Gallego L. Total serum IgD from healthy and sick dogs with leishmaniosis. Parasit Vectors 2019; 12:119. [PMID: 30909975 PMCID: PMC6434875 DOI: 10.1186/s13071-019-3384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Canine leishmaniosis (CanL) due to Leishmania infantum is characterized by the development of both cellular and humoral immune responses. The dysfunction of T cell-mediated immunity leads to a lack of proliferation of T cells in response to Leishmania antigens with the consequence of parasite dissemination that seems to be related to a T cell exhaustion mediated by regulatory B cells expressing immunoglobulin D (IgD). The aim of this study was to determine and compare the total serum IgD in dogs with clinical leishmaniosis and in clinically healthy dogs. Results A total of 147 dog sera were studied. All dogs were tested for L. infantum-specific antibodies by quantitative ELISA. Interferon-gamma (IFN-γ) production was also determined by sandwich ELISA after blood stimulation with L. infantum soluble antigen (LSA) or concanavalin A (ConA). The quantification of total IgD was performed using a human IgD sandwich ELISA quantification set. Dogs were classified in three different groups. Group 1 included 40 clinically healthy non-infected dogs, all serologically negative to L. infantum-specific antibodies and non-producers of IFN-γ upon LSA stimulation. Group 2 included 63 clinically healthy infected dogs that were LSA IFN-γ producers (n = 61) and/or IFN-γ non-producers (n = 2) as well as negative to medium seropositive to L. infantum antigen. Finally, Group 3 included 44 dogs with clinical leishmaniosis (IFN-γ producers, n = 23; and IFN-γ non-producers, n = 21) that were negative to highly positive to L. infantum-specific antibodies. No significant differences were observed when the total IgD concentration was compared within groups. Additionally, total IgD of sick IFN-γ producers and IFN-γ non-producers was not significantly different. Finally, total IgD concentration was not statistically related to demographic parameters such as age, sex and breed. Conclusions The results of this study demonstrated that there were no differences between groups in total serum IgD. Total serum IgD does not appear to be a marker of disease in CanL.
Collapse
Affiliation(s)
- Pamela Martínez-Orellana
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Maristany
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marta Baxarias
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alejandra Álvarez-Fernández
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Laura Ordeix
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
35
|
Zhai GT, Wang H, Li JX, Cao PP, Jiang WX, Song J, Yao Y, Wang ZC, Wang ZZ, Wang MC, Liao B, Feng QM, Lu X, Wang H, Gao P, Liu Z. IgD-activated mast cells induce IgE synthesis in B cells in nasal polyps. J Allergy Clin Immunol 2018; 142:1489-1499.e23. [DOI: 10.1016/j.jaci.2018.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
|
36
|
Ohm-Laursen L, Meng H, Chen J, Zhou JQ, Corrigan CJ, Gould HJ, Kleinstein SH. Local Clonal Diversification and Dissemination of B Lymphocytes in the Human Bronchial Mucosa. Front Immunol 2018; 9:1976. [PMID: 30245687 PMCID: PMC6137163 DOI: 10.3389/fimmu.2018.01976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The efficacy of the adaptive humoral immune response likely requires diverse, yet focused regional B cell antibody production throughout the body. Here we address, in the first study of its kind, the B cell repertoire in the bronchial mucosa, an important barrier to antigens inhaled from the atmosphere. To accomplish this, we have applied high-throughput Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) to 10 bronchial biopsies from altogether four different sites in the right lungs from an asthmatic patient and a healthy subject. While the majority of identified B cell clones were restricted to a single site, many were disseminated in multiple sites. Members of a clone were shared more between adjacent biopsies than between distal biopsies, suggesting local mucosal migration and/or a homing mechanism for B cells through the blood or lymph. A smaller fraction of clones spanned the bronchial mucosa and peripheral blood, suggesting ongoing trafficking between these compartments. The bronchial mucosal B cell repertoire in the asthmatic patient was geographically more variable but less diverse compared to that of the healthy subject, suggesting an ongoing, antigen-driven humoral immune response in atopic asthma. Whether this is a feature of atopy or disease status remains to be clarified in future studies. We observed a subset of highly mutated and antigen-selected IgD-only cells in the bronchial mucosa. These cells were found in relative high abundance in the asthmatic individual but also, albeit at lower abundance, in the healthy subject. This novel finding merits further exploration using a larger cohort of subjects.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Jessica Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Chris J Corrigan
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. Eur J Immunol 2018; 48:1101-1113. [PMID: 29733429 DOI: 10.1002/eji.201646547] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
IgD emerged soon after IgM at the time of inception of the adaptive immune system. Despite its evolutionary conservation from fish to humans, the specific functions of IgD have only recently begun to be elucidated. Mature B cells undergo alternative mRNA splicing to express IgD and IgM receptors with identical antigenic specificity. The enigma of dual IgD and IgM expression has been tackled by several recent studies showing that IgD helps peripheral accumulation of physiologically autoreactive B cells through its functional unresponsiveness to self-antigens but prompt readiness against foreign antigens. IgD achieves this balance by attenuating IgM-mediated anergy while promoting specific responses to multimeric non-self-antigens. Additional research has clarified how and why certain mucosal B cells become plasmablasts or plasma cells specializing in IgD secretion. In particular, the microbiota has been shown to play an important role in driving class switch-mediated replacement of IgM with IgD. Secreted IgD appears to enhance mucosal homeostasis and immune surveillance by "arming" myeloid effector cells such as basophils and mast cells with IgD antibodies reactive against mucosal antigens, including commensal and pathogenic microbes. Here we will review these advances and discuss their implications in humoral immunity in human and mice.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
38
|
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Díaz Rosales P, Granja AG, Secombes CJ, Holland JW, Tafalla C. Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol 2018; 9:1203. [PMID: 29904385 PMCID: PMC5990594 DOI: 10.3389/fimmu.2018.01203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/15/2022] Open
Abstract
Proliferative kidney disease (PKD) is a widespread disease caused by the endoparasite Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). Clinical disease, provoked by the proliferation of extrasporogonic parasite stages, is characterized by a chronic kidney pathology with underlying transcriptional changes indicative of altered B cell responses and dysregulated T-helper cell-like activities. Despite the relevance of PKD to European and North American salmonid aquaculture, no studies, to date, have focused on further characterizing the B cell response during the course of this disease. Thus, in this work, we have studied the behavior of diverse B cell populations in rainbow trout (Oncorhynchus mykiss) naturally infected with T. bryosalmonae at different stages of preclinical and clinical disease. Our results show a clear upregulation of all trout immunoglobulins (Igs) (IgM, IgD, and IgT) demonstrated by immunohistochemistry and Western blot analysis, suggesting the alteration of diverse B cell populations that coexist in the infected kidney. Substantial changes in IgM, IgD, and IgT repertoires were also identified throughout the course of the disease further pointing to the involvement of the three Igs in PKD through what appear to be independently regulated mechanisms. Thus, our results provide strong evidence of the involvement of IgD in the humoral response to a specific pathogen for the first time in teleosts. Nevertheless, it was IgT, a fish-specific Ig isotype thought to be specialized in mucosal immunity, which seemed to play a prevailing role in the kidney response to T. bryosalmonae. We found that IgT was the main Ig coating extrasporogonic parasite stages, IgT+ B cells were the main B cell subset that proliferated in the kidney with increasing kidney pathology, and IgT was the Ig for which more significant changes in repertoire were detected. Hence, although our results demonstrate a profound dysregulation of different B cell subsets during PKD, they point to a major involvement of IgT in the immune response to the parasite. These results provide further insights into the pathology of PKD that may facilitate the future development of control strategies.
Collapse
Affiliation(s)
- Beatriz Abos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Itziar Estensoro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.,Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Madrid, Spain
| | - Pedro Perdiguero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Marc Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
39
|
Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F, Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 2018. [PMID: 29521626 PMCID: PMC5897097 DOI: 10.7554/elife.35074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn-/- B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells.
Collapse
Affiliation(s)
- Mark Noviski
- Biomedical Sciences (BMS) Graduate Program, University of California San Francisco, San Francisco, United States
| | - James L Mueller
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Anne Satterthwaite
- Department of Immunology, UT Southwestern Medical Center, Dallas, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, United States
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, Faculty of Health Sciences, University of Cape Town & Medical Research Council (SAMRC), Cape Town, South Africa
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| |
Collapse
|
40
|
Hiramoto T, Li LB, Funk SE, Hirata RK, Russell DW. Nuclease-free Adeno-Associated Virus-Mediated Il2rg Gene Editing in X-SCID Mice. Mol Ther 2018; 26:1255-1265. [PMID: 29606506 DOI: 10.1016/j.ymthe.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) has been successfully treated by hematopoietic stem cell (HSC) transduction with retroviral vectors expressing the interleukin-2 receptor subunit gamma gene (IL2RG), but several patients developed malignancies due to vector integration near cellular oncogenes. This adverse side effect could in principle be avoided by accurate IL2RG gene editing with a vector that does not contain a functional promoter or IL2RG gene. Here, we show that adeno-associated virus (AAV) gene editing vectors can insert a partial Il2rg cDNA at the endogenous Il2rg locus in X-SCID murine bone marrow cells and that these ex vivo-edited cells repopulate transplant recipients and produce CD4+ and CD8+ T cells. Circulating, edited lymphocytes increased over time and appeared in secondary transplant recipients, demonstrating successful editing in long-term repopulating cells. Random vector integration events were nearly undetectable, and malignant transformation of the transplanted cells was not observed. Similar editing frequencies were observed in human hematopoietic cells. Our results demonstrate that therapeutically relevant HSC gene editing can be achieved by AAV vectors in the absence of site-specific nucleases and suggest that this may be a safe and effective therapy for hematopoietic diseases where in vivo selection can increase edited cell numbers.
Collapse
Affiliation(s)
- Takafumi Hiramoto
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Li B Li
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah E Funk
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Roli K Hirata
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David W Russell
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Wu YJ, Chen HS, Chen WS, Dong J, Dong XJ, Dai X, Huang Q, Wei W. CP-25 Attenuates the Activation of CD4 + T Cells Stimulated with Immunoglobulin D in Human. Front Pharmacol 2018; 9:4. [PMID: 29410624 PMCID: PMC5787084 DOI: 10.3389/fphar.2018.00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4+ T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4+ T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4+ T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr394). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4+ T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr394) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4+ T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Yu-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Heng-Shi Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wen-Sheng Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Jin Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiao-Jie Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qiong Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
42
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
43
|
Min JY, Nayak JV, Hulse KE, Stevens WW, Raju PA, Huang JH, Suh LA, Van Roey GA, Norton JE, Carter RG, Price CPE, Weibman AR, Rashan AR, Ghosn EE, Patel ZM, Homma T, Conley DB, Welch KC, Shintani-Smith S, Peters AT, Grammer LC, Harris KE, Kato A, Hwang PH, Kern RC, Herzenberg LA, Schleimer RP, Tan BK. Evidence for altered levels of IgD in the nasal airway mucosa of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2017; 140:1562-1571.e5. [PMID: 28625807 PMCID: PMC5723216 DOI: 10.1016/j.jaci.2017.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND IgD is an enigmatic antibody isotype best known when coexpressed with IgM on naive B cells. However, increased soluble IgD (sIgD) levels and increased IgD+IgM- B-cell populations have been described in the human upper respiratory mucosa. OBJECTIVE We assessed whether levels of sIgD and IgD+ B cell counts are altered in nasal tissue from patients with chronic rhinosinusitis (CRS). We further characterized IgD+ B-cell populations and explored clinical and local inflammatory factors associated with tissue sIgD levels. METHODS sIgD levels were measured by means of ELISA in nasal tissues, nasal lavage fluid, sera, and supernatants of dissociated nasal tissues. IgD+ cells were identified by using immunofluorescence and flow cytometry. Inflammatory mediator levels in tissues were assessed by using real-time PCR and multiplex immunoassays. Bacterial cultures from the middle meatus were performed. Underlying medical history and medicine use were obtained from medical records. RESULTS sIgD levels and numbers of IgD+ cells were significantly increased in uncinate tissue (UT) of patients with chronic rhinosinusitis without nasal polyps (CRSsNP) compared with that of control subjects (4-fold, P < .05). IgD+ cells were densely scattered in the periglandular regions of UT from patients with CRSsNP. We also found that IgD+CD19+CD38bright plasmablast numbers were significantly increased in tissues from patients with CRSsNP compared with control tissues (P < .05). Among numerous factors tested, IL-2 levels were increased in UT from patients with CRSsNP and were positively correlated with tissue IgD levels. Additionally, supernatants of IL-2-stimulated dissociated tissue from patients with CRSsNP had significantly increased sIgD levels compared with those in IL-2-stimulated dissociated control tissue ex vivo (P < .05). Tissue from patients with CRS with preoperative antibiotic use or those with pathogenic bacteria showed higher IgD levels compared with tissue from patients without these variables (P < .05). CONCLUSION sIgD levels and IgD+CD19+CD38bright plasmablast counts were increased in nasal tissue of patients with CRSsNP. IgD levels were associated with increased IL-2 levels and the presence of pathogenic bacteria. These findings suggest that IgD might contribute to enhancement mucosal immunity or inflammation or respond to bacterial infections in patients with CRS, especially CRSsNP.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Paul A Raju
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Griet A Van Roey
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ava R Weibman
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ali R Rashan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Eliver E Ghosn
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Tetsuya Homma
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Robert P Schleimer
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
44
|
Dual-route targeted vaccine protects efficiently against botulinum neurotoxin A complex. Vaccine 2017; 36:155-164. [PMID: 29180028 DOI: 10.1016/j.vaccine.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023]
Abstract
Clostridium botulinum readily persists in the soil and secretes life-threatening botulinum neurotoxins (BoNTs) that are categorized into serotypes A to H, of which, serotype A (BoNT/A) is the most commonly occurring in nature. An efficacious vaccine with high longevity against BoNT intoxication is urgent. Herein, we developed a dual-route vaccine administered over four consecutive weeks by mucosal and parenteral routes, consisting of the heavy chain (Hc) of BoNT/A targeting dendritic cell peptide (DCpep) expressed by Lactobacillus acidophilus as a secretory immunogenic protein. The administered dual-route vaccine elicited robust and long-lasting memory B cell responses comprising germinal center (GC) B cells and follicular T cells (Tfh) that fully protected mice from lethal oral BoNT/A fatal intoxication. Additionally, passively transferring neutralizing antibodies against BoNT/A into naïve mice induced robust protection against BoNT/A lethal intoxication. Together, a targeted vaccine employing local and systemic administrative routes may represent a novel formulation eliciting protective B cell responses with remarkable longevity against threatening biologic agents such as BoNTs.
Collapse
|
45
|
The immunoglobulin D Fc receptor expressed on fibroblast-like synoviocytes from patients with rheumatoid arthritis contributes to the cell activation. Acta Pharmacol Sin 2017; 38:1466-1474. [PMID: 28770826 DOI: 10.1038/aps.2017.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Immunoglobulin IgD might play an important role in autoimmune diseases, but the function of IgD has remained elusive, despite multiple attempts to define its biological function. Fibroblast-like synoviocytes (FLSs) are specialized cells of the synovium that play a key role in the pathogenesis of rheumatoid arthritis (RA). In this study we explored the possible roles of excessive IgD expression on the function of FLSs from RA patients (RA-FLSs). We showed that IgD Fc receptor (IgDR) was constitutively expressed on FLSs, and was significantly elevated in RA-FLSs compared with FLSs prepared from synovial tissues of healthy controls (HC-FLSs). Furthermore, IgDR was mainly detected on the cell surface and in the cytoplasm. We further detected the intrinsic binding affinity of IgD to IgDR on HC-FLSs with an equilibrium dissociation constant (KD) of 0.067 nmol/L. Incubation of RA-FLSs with IgD (1-10 μg/mL) for 48 h dose-dependently promoted the expression of IgDR, and stimulated the production of inflammatory cytokines and chemokines, such as IL-1β, IL-6, monocyte chemotactic protein (MCP)-1, TNF-α and receptor activator of nuclear factor-κB ligand (RANKL), thus potentially contributing to IgD-IgDR crosslinking. Moreover, incubation with IgD (0.1-10 μg/mL) for 48 h dose-dependently enhanced viability for both HC-FLSs and RA-FLSs. Our results demonstrate that IgDR is expressed on RA-FLSs and contributes to the activation of FLSs, and suggest that IgD-IgDR is a potential novel immunotherapeutic target for the management of RA.
Collapse
|
46
|
IgD class switch recombination is not controlled through the immunoglobulin heavy chain 3' regulatory region super-enhancer. Cell Mol Immunol 2017; 14:871-874. [PMID: 29026218 DOI: 10.1038/cmi.2017.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/18/2023] Open
|
47
|
Tang X, Liu F, Sheng X, Xing J, Zhan W. Production, characterization and application of monoclonal antibody against immunoglobulin D heavy chain of flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2017; 64:401-406. [PMID: 28359942 DOI: 10.1016/j.fsi.2017.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Immunoglobulin D (IgD) is considered to be an enigmatic Ig molecule because of the lack understanding of its immunological functions. In the present study, a partial δ region of the flounder IgD was recombinantly expressed, purified and used as an immunogen to produce monoclonal antibodies (MAbs) against the H chain of flounder IgD. After fusion, a total of 97 hybridomas were generated and observed under an inverted microscope One of the hybridomas, designated 5G7, gave strong positive results in an indirect enzyme-linked immunosorbent assay (ELISA) and was cloned and subcloned by limiting dilution. Western blot analysis showed that MAb 5G7 could specifically recognize a 118 kDa protein from peripheral blood lymphocytes (PBLs), which was identified to be the H chain of flounder IgD by mass spectrometric analysis. Indirect immunofluorescence assay tests (IIFAT) showed that specific fluorescence signals were observed on the membranes of the PBLs, which suggests that MAb 5G7 could recognize the membrane-bound IgD molecule. Moreover, only the subset of IgD+/IgM + B cells were observed in the PBLs of healthy flounder when tested by flow cytometry analysis. Consistent with the results of flow cytometry, a double immunofluorescence assay test (DIFAT) showed that the positive lymphocytes were stained with both green and red fluorescence signals, which represent the IgM+/IgD + lymphocytes subset. These results demonstrate that the produced MAb 5G7 could specifically recognize the flounder IgD, which provides a useful tool to study the functions of flounder IgD.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Fuguo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China.
| |
Collapse
|
48
|
Carballo I, Rabuñal N, Alvela L, Pérez LF, Vidal C, Alonso M, Sopeña B, Gude F, Gonzalez-Quintela A. Factors Influencing Serum Concentrations of Immunoglobulin D in the Adult Population: An Observational Study in Spain. Scand J Immunol 2017; 85:272-279. [DOI: 10.1111/sji.12529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- I. Carballo
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - N. Rabuñal
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - L. Alvela
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - L.-F. Pérez
- Department of Clinical Biochemistry; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - C. Vidal
- Department of Allergy; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - M. Alonso
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
- Department of Clinical Epidemiology; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - B. Sopeña
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - F. Gude
- Department of Clinical Epidemiology; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - A. Gonzalez-Quintela
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| |
Collapse
|
49
|
Buonocore F, Stocchi V, Nunez-Ortiz N, Randelli E, Gerdol M, Pallavicini A, Facchiano A, Bernini C, Guerra L, Scapigliati G, Picchietti S. Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecular characterization, tissue localization and expression after nodavirus infection. BMC Mol Biol 2017; 18:8. [PMID: 28298204 PMCID: PMC5353873 DOI: 10.1186/s12867-017-0085-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Immunoglobulins (Igs) are fundamental components of the adaptive immune system of vertebrates, with the IgT/IgZ isotype specific of Teleosts. In this paper we describe the identification of an IgT heavy chain from the European sea bass (Dicentrarchus labrax L.), its molecular characterization and tissue mRNA localization by in situ hybridization. Results Sea bass IgT consists of 552 aa (Accession Number KM410929) and it contains a putative 19 amino acids long signal peptide and one potential N-glycosylation site. The C-region consists of four CH domains; each contains the cysteine and tryptophan residues required for their correct folding. Based on the recent sequencing of sea bass genome, we have identified five different genomic contigs bearing exons unequivocally pertaining to IgT (CH2, CH3 and CH4), but none corresponded to a complete IgH locus as IgT sequences were found in the highly fragmented assembled genomic regions which could not be assigned to any major scaffold. The 3D structure of sea bass IgT has been modelled using the crystal structure of a mouse Ig gamma as a template, thus showing that the amino acid sequence is suitable for the expected topology referred to an immunoglobulin-like architecture. The basal expression of sea bass IgT and IgM in different organs has been analysed: gut and gills, important mucosal organs, showed high IgT transcripts levels and this was the first indication of the possible involvement of sea bass IgT in mucosal immune responses. Moreover, sea bass IgT expression increased in gills and spleen after infection with nodavirus, highlighting the importance of IgT in sea bass immune responses. In situ hybridization confirmed the presence of IgT transcripts in the gut and it revealed a differential expression along the intestinal tract, with a major expression in the posterior intestine, suggesting the hindgut as a site for the recruitment of IgT+ cells in this species. IgT transcripts were also found in gill filaments and parallel lamellae and, for the first time, we identified scattered IgT positive cells in the liver, with a strong signal in the hepatic parenchyma. Conclusions In conclusion, we performed a full molecular characterization of IgT in sea bass that points out its possible involvement in mucosal immune responses of this species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
| | - Valentina Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Noelia Nunez-Ortiz
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Angelo Facchiano
- Institute of Food Science, CNR, Via Roma, 64, 83100, Avellino, AV, Italy
| | - Chiara Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| |
Collapse
|
50
|
Martinsson K, Johansson A, Kastbom A, Skogh T. Immunoglobulin (Ig)G1 and IgG4 anti-cyclic citrullinated peptide (CCP) associate with shared epitope, whereas IgG2 anti-CCP associates with smoking in patients with recent-onset rheumatoid arthritis (the Swedish TIRA project). Clin Exp Immunol 2017; 188:53-62. [PMID: 27859022 DOI: 10.1111/cei.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Given the possible importance of anti-citrullinated peptide/protein antibodies (ACPA) for initiation and progression of rheumatoid arthritis (RA), extended knowledge about the different isotypes and subclasses is important. In the present study, we analysed the immunoglobulin (Ig)G subclasses regarding reactivity against cyclic citrullinated peptides (anti-CCP) among 504 clinically well-characterized patients with recent-onset RA in relation to smoking habits, shared epitope (SE) status and IgA and pan-IgG anti-CCP antibodies. All patients, regardless of pan-IgG anti-CCP status, were analysed for IgG1-4 CCP reactivity. Sixty-nine per cent were positive in any IgG anti-CCP subclass, and of these 67% tested positive regarding IgG1, 35% IgG2, 32% IgG3, and 59% IgG4 anti-CCP. Among ever-smokers the percentages of IgG2 anti-CCP (P = 0·01) and IgA anti-CCP (P = 0·002)-positive cases were significantly higher compared to never-smokers. A positive IgG anti-CCP subclass -negative cases. Combining SE and smoking data revealed that IgG1 and IgG4 anti-CCP were the IgG anti-CCP isotypes associated with expression of SE, although the lower number of patients positive for IgG2 or IgG3 anti-CCP could, however, have influenced the results. High levels of IgG2 anti-CCP were shown to correlate with expression of the 'non-SE' allele human leucocyte antigen (HLA)-DRB1*15. In conclusion, in this study we describe different risk factor characteristics across the IgG anti-CCP subclasses, where IgG2 appears similar to IgA anti-CCP regarding the predominant association with smoking, while IgG1 and IgG4 related more distinctly to the carriage of SE genes.
Collapse
Affiliation(s)
- K Martinsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - A Johansson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - A Kastbom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - T Skogh
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|