1
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2025; 111:105532. [PMID: 39731853 PMCID: PMC11743550 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
2
|
Rendon-Romero LM, Rojas-Martinez A. Advances in the Development of Auricular Cartilage Bioimplants. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39723986 DOI: 10.1089/ten.teb.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Conditions such as congenital abnormalities, cancer, infections, and trauma can severely impact the integrity of the auricular cartilage, resulting in the need for a replacement structure. Current implants, carved from the patient's rib, involve multiple surgeries and carry risks of adverse events such as contamination, rejection, and reabsorption. Tissue engineering aims to develop lifelong auricular bioimplants using different methods, different cell types, growth factors and maintenance media formulations, and scaffolding materials compatible with the host. This review aims to examine the progress in auricular bioengineering, focusing on improvements derived from in vivo models and clinical trials, as well as the author's suggestions to enhance the methods. For this scope review, 30 articles were retrieved through Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, plus 6 manually selected articles. The methods reported in the articles were categorized into four levels according to the development phases: source of cells, cell media supplementation, scaffold, or scaffold-free methods, and experimental in vivo or clinical approaches. Many methods have demonstrated potential for the development of bioimplants; four clinical trials reported a structure like the external ear that could be maintained after overcoming post-transplant inflammation. However, several challenges must be solved, such as obtaining a structure that accurately replicates the shape and size of the patient's healthy contralateral auricle and improvements to avoid immunological rejection and resorption of the bioimplant.
Collapse
|
3
|
Pak K, Santavirta S, Shin S, Nam HY, De Maeyer S, Nummenmaa L. Glucose metabolism and radiodensity of abdominal adipose tissue: A 5-year longitudinal study in a large PET cohort. Clin Endocrinol (Oxf) 2024; 101:623-630. [PMID: 39038172 DOI: 10.1111/cen.15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) allows noninvasive assessment of glucose metabolism and radiodensity in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). We aimed to address the effects of ageing and metabolic factors on abdominal adipose tissue. DESIGN, PATIENTS AND MEASUREMENTS We retrospectively analyzed data from 435 healthy men (mean 42.8 years) who underwent a health check-up programme twice, at baseline and the 5-year follow-up. The mean standardized uptake value (SUV) was measured using SAT and VAT and divided by the liver SUV. The mean Hounsfield units (HU) of the SAT and VAT were measured from the CT scans. The effects of clinical variable clusters on SUVR were investigated using Bayesian hierarchical modelling; metabolic cluster (BMI, waist-to-hip ratio, fat percentage, muscle percentage*-1, HOMA-IR), blood pressure (systolic, diastolic), glucose (fasting plasma glucose level, HbA1c) and C-reactive protein. RESULTS All the clinical variables changed during the 5-year follow-up period. The SUVR and HU of the VAT increased during follow-up; however, those of the SAT did not change. SUVR and HU were positively correlated with both VAT and SAT. SAT and VAT SUVR were negatively associated with metabolic clusters. CONCLUSIONS Ageing led to increased glucose metabolism and radiodensity in VAT, but not in SAT. VAT may reflect the ageing process more directly than SAT. Glucose metabolism was higher and radiodensity was lower in VAT than in SAT, probably owing to differences in gene expression and lipid density. Both glucose metabolism and radiodensity of VAT and SAT reflect metabolic status.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan University, Changwon, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan University, Changwon, Republic of Korea
| | - Sven De Maeyer
- Department of Training and Education Sciences, Faculty of Social Sciences, University of Antwerp, Antwerp, Belgium
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Yanina IY, Genina EA, Tuchina DK, Timoshina PA, Navolokin NA, Bucharskaya AB, Maslyakova GN, Tuchin VV. Optical Clearing of Ex Vivo Adipose Tissue. Lasers Surg Med 2024; 56:829-835. [PMID: 39593274 DOI: 10.1002/lsm.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The paper focuses on the development of technology of adipose tissue optical clearing using different complex hyperosmotic optical clearing agents and tissue permeability enhancers. METHODS To quantify optical clearing efficiency, reduced scattering coefficient was estimated from the ex vivo spatially resolved backreflectance measurements using a multi-distant fiber optical device. Tissue morphology modification was monitored with the help of histological studies. RESULTS Kinetics and efficiency of the optical clearing were evaluated for ex vivo abdominal fat tissue at action of dimethyl sulfoxide, diatrizoic acid, metrizoic acid, sucrose, and fructose solutions accompanied by tissue permeability enhancers, such as various modes of fractional laser microablation and sonophoresis and their combinations. Histological studies allowed us to find agents that cause minimal morphological changes of the adipose tissue. CONCLUSIONS Maximal optical clearing efficiency of 83.5% was observed for the samples subjected to action of the fructose-ethanol solution during 90 min in combination with gentle modes of fractional laser microablation and sonophoresis.
Collapse
Affiliation(s)
- Irina Yu Yanina
- Institute of Physics, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Elina A Genina
- Institute of Physics, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Daria K Tuchina
- Institute of Physics, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Polina A Timoshina
- Institute of Physics, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Nikita A Navolokin
- "Smart Sleep" Laboratory, Saratov State University, Saratov, Russian Federation
- Centre of Collective Use of Experimental Oncology, Saratov State Medical University, Saratov, Russian Federation
| | - Alla B Bucharskaya
- "Smart Sleep" Laboratory, Saratov State University, Saratov, Russian Federation
- Centre of Collective Use of Experimental Oncology, Saratov State Medical University, Saratov, Russian Federation
- Science Medical Center, Saratov State University, Saratov, Russian Federation
| | - Galina N Maslyakova
- "Smart Sleep" Laboratory, Saratov State University, Saratov, Russian Federation
- Centre of Collective Use of Experimental Oncology, Saratov State Medical University, Saratov, Russian Federation
| | - Valery V Tuchin
- Institute of Physics, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
- Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Scientific Research Centre of the Russian Academy of Sciences", Saratov, Russian Federation
| |
Collapse
|
5
|
Nascimento JDF, de Oliveira KA, de Freitas PA, Falci JDAM, Vasconcelos RP, Magalhães SC, Farias TM, Alonso-Vale MIC, Loureiro ACC, de Carvalho DP, Fortunato RS, de Oliveira AC. Increased NOX-dependent ROS production and proportionally enhanced antioxidant response in white adipose tissue of male rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240136. [PMID: 39876964 PMCID: PMC11771750 DOI: 10.20945/2359-4292-2024-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 01/31/2025]
Abstract
Objective This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats. Materials and methods The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on H2O2 and gene expression of NOX1, NOX2, and NOX4. Results The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity. Additionally, their subcutaneous fat pad had greater NOX4 expression and higher intracellular H2O2 production, together with greater expression and activity of both superoxide dismutase and catalase. Conclusion The white adipose tissue of male rats had greater reactive oxygen species (ROS) production compared with that of female rats, but also a proportionally greater antioxidant response. These findings are important for ongoing investigations into how sex differences may be linked to the development of metabolic diseases and the unique susceptibilities of each sex.
Collapse
Affiliation(s)
- Jessica de Freitas Nascimento
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Keciany Alves de Oliveira
- Universidade Estadual do CearáPrograma de Pós-graduação em Nutrição e SaúdeFortalezaCEBrasilPrograma de Pós-graduação em Nutrição e Saúde, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Paula Alexandre de Freitas
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Júlia de Araújo Marques Falci
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaúdeRio de JaneiroRJBrasilCentro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Renata Prado Vasconcelos
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Saulo Chaves Magalhães
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Talita Mendes Farias
- Universidade Federal de São PauloDepartamento de Ciências BiológicasPiracicabaSPBrasilDepartamento de Ciências Biológicas, Universidade Federal de São Paulo, Piracicaba, SP, Brasil
| | - Maria Isabel Cardoso Alonso-Vale
- Universidade Federal de São PauloDepartamento de Ciências BiológicasPiracicabaSPBrasilDepartamento de Ciências Biológicas, Universidade Federal de São Paulo, Piracicaba, SP, Brasil
| | - Adriano Cesar Carneiro Loureiro
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Denise Pires de Carvalho
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaúdeRio de JaneiroRJBrasilCentro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Soares Fortunato
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaúdeRio de JaneiroRJBrasilCentro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ariclécio Cunha de Oliveira
- Universidade Estadual do CearáInstituto Superior de Ciências BiomédicasLaboratório de Fisiologia Endócrina e MetabolismoFortalezaCEBrasilLaboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
- Universidade Estadual do CearáPrograma de Pós-graduação em Nutrição e SaúdeFortalezaCEBrasilPrograma de Pós-graduação em Nutrição e Saúde, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
6
|
Rosell-Moll E, My NTK, Balbuena-Pecino S, Montblanch M, Rodríguez I, Gutiérrez J, Garcia de la Serrana D, Capilla E, Navarro I. Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111039. [PMID: 39396638 DOI: 10.1016/j.cbpb.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.
Collapse
Affiliation(s)
- E Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - N T K My
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Rodríguez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - D Garcia de la Serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Bai J, Wang S, Pan H, Shi Z, Zhao M, Yue X, Yang K, Zhang X, Wang W, Liu C, Zhang T. Correlation analysis of dynamic changes of abdominal fat during rapid weight loss after bariatric surgery: A prospective magnetic resonance imaging study. Eur J Radiol 2024; 178:111630. [PMID: 39024662 DOI: 10.1016/j.ejrad.2024.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The factors related to the changes in the liver and abdominal adipose tissue during the rapid weight loss after bariatric surgery remain uncertain. METHODS This study included 44 participants who had undergone sleeve gastrectomy. The study aimed to analyze changes and correlations of body weight (BW), laboratory tests, and magnetic resonance imaging (MRI) indicators of the liver and abdominal adipose tissue conducted before and after bariatric surgery at 1, 3, and 6 months. RESULTS Following a rapid weight loss within 6 months of surgery, there was a concurrent decrease in blood glucose, blood lipids, and fat content of the liver and abdomen and the changes showed a correlation. The change of BW (ΔBW) was positively correlated with the change of hepatic proton density fat fraction (ΔPDFF) in one and three months after surgery and was positively correlated with the change of abdominal visceral fat area (ΔAVFA) in six months after surgery, (P<0.05). In one month after surgery, ΔPDFF was positively correlated with the change of aspartate aminotransferase (ΔAST), change of alanine aminotransferase (ΔALT), and change of triglyceride glucose (ΔTYG) index (P<0.05). ΔPDFF was positively correlated with the change of hepatic native T1 values (P<0.001) and was moderately negatively correlated with the change of hepatic apparent diffusion coefficient (ΔADC) values in three months after surgery (P<0.05). CONCLUSION ΔBW can serve as an indirect indicator for evaluating changes in liver fat fraction at 1 and 3 months after bariatric surgery and indicative of changes in visceral fat 6 months after surgery. ΔPDFF was positively correlated with ΔAST, ΔALT and ΔTYG index in 1 months after surgery.
Collapse
Affiliation(s)
- Jinquan Bai
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Shuting Wang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Hong Pan
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Zhenzhou Shi
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Min Zhao
- Pharmaceutical Diagnostics, GE Healthcare, No. 1, Tongji South Road, Daxing District, Beijing 100176, China
| | - Xiuzheng Yue
- Philips Healthcare, Tower No. 2, The World Profit Centre, No. 16, Tianze Road, Chaoyang District, Beijing 100600, China
| | - Kai Yang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Xia Zhang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Wei Wang
- The MRI Room, The First Affliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Chang Liu
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| | - Tong Zhang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
8
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
9
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
10
|
Sánchez-Terrón G, Martínez R, Morcuende D, Caballero V, Estévez M. Pomegranate supplementation alleviates dyslipidemia and the onset of non-alcoholic fatty liver disease in Wistar rats by shifting microbiota and producing urolithin-like microbial metabolites. Food Funct 2024; 15:7348-7363. [PMID: 38661445 DOI: 10.1039/d4fo00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), obesity and related chronic diseases are major non-communicable diseases with high mortality rates worldwide. While dietary sugars are known to be responsible for insulin resistance and metabolic syndrome (MetS), the underlying pathophysiological effects of sustained fructose consumption require further elucidation. We hypothesize that certain bioactive compounds (i.e. punicalagin and ellagic acid) from dietary pomegranate could counteract the harmful effects of sustained fructose consumption in terms of obesity and liver damage. The present study aimed to elucidate both the molecular mechanisms involved in the pathophysiology associated with fructose intake and the effect of a punicalagin-rich commercial pomegranate dietary supplement (P) used as a nutritional strategy to alleviate fructose-induced metabolic impairments. Thus, nineteen Wistar rats fed on a basal commercial feed were supplemented with either 30% (w/v) fructose in drinking water (F; n = 7) or 30% (w/v) fructose solution plus 0.2% (w/v) P (F + P; n = 6) for 10 weeks. The results were compared to those from a control group fed on the basal diet and provided with drinking water (C; n = 6). Body weight and energy intake were registered weekly. P supplementation decreased fat depots, counteracted the dyslipidemia caused by F and improved markers of liver injury including steatosis. The study of the microbiota by metagenomics and urine by untargeted MS-based metabolomics revealed microbial metabolites from P that may be responsible for these health benefits.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad of Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - David Morcuende
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Víctor Caballero
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Cáceres, 10003, Spain.
| |
Collapse
|
11
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
12
|
Mahmoodi M, Mirzarazi Dahagi E, Nabavi M, Penalva YCM, Gosaine A, Murshed M, Couldwell S, Munter LM, Kaartinen MT. Circulating plasma fibronectin affects tissue insulin sensitivity, adipocyte differentiation, and transcriptional landscape of adipose tissue in mice. Physiol Rep 2024; 12:e16152. [PMID: 39054559 PMCID: PMC11272447 DOI: 10.14814/phy2.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Plasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet. Diet-induced obesity model of the Fn1-/-ALB mouse showed normal weight gain and whole-body fat mass, and normal adipose tissue depot volumes and unaltered circulating leptin and adiponectin levels. However, Fn1-/-ALB adipose depots showed significant alterations in adipocyte size and gene expression profiles. The inguinal adipose tissue on a normal diet, which had alterations in fatty acid metabolism and thermogenesis suggesting browning. The presence of increased beige adipocyte markers Ucp1 and Prdm16 supported this. In the inguinal fat, the obesogenic diet resulted in downregulation of the browning markers and changes in gene expression reflecting development, morphogenesis, and mesenchymal stem cell maintenance. Epididymal adipose tissue showed alterations in developmental and stem cell gene expression on both diets. The data suggests a role for pFN in adipose tissue insulin sensitivity and cell profiles.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Mir‐Hamed Nabavi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Ylauna C. M. Penalva
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Amrita Gosaine
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Sandrine Couldwell
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Lisa M. Munter
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Mari T. Kaartinen
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Medicine (Division of Experimental Medicine), Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
13
|
Das S, Mukhuty A, Mullen GP, Rudolph MC. Adipocyte Mitochondria: Deciphering Energetic Functions across Fat Depots in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:6681. [PMID: 38928386 PMCID: PMC11203708 DOI: 10.3390/ijms25126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
Collapse
Affiliation(s)
- Snehasis Das
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alpana Mukhuty
- Department of Zoology, Rampurhat College, Rampurhat 731224, India
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Soskic MB, Zakic T, Korac A, Korac B, Jankovic A. Metabolic remodeling of visceral and subcutaneous white adipose tissue during reacclimation of rats after cold. Appl Physiol Nutr Metab 2024; 49:649-658. [PMID: 38241659 DOI: 10.1139/apnm-2023-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Deciphering lipid metabolism in white adipose tissue (WAT) depots during weight gain is important to understand the heterogeneity of WAT and its roles in obesity. Here, we examined the expression of key enzymes of lipid metabolism and changes in the morphology of representative visceral (epididymal) and subcutaneous (inguinal) WAT (eWAT and iWAT, respectively)-in adult male rats acclimated to cold (4 ± 1 °C) for 45 days and reacclimated to room temperature (RT, 22 ± 1 °C) for 1, 3, 7, 12, 21, or 45 days. The relative mass of both depots decreased to a similar extent after cold acclimation. However, fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase (G6PDH), and medium-chain acyl-CoA dehydrogenase (ACADM) protein level increased only in eWAT, whereas adipose triglyceride lipase (ATGL) expression increased only in iWAT. During reacclimation, the relative mass of eWAT reached control values on day 12 and that of iWAT on day 45 of reacclimation. The faster recovery of eWAT mass is associated with higher expression of FAS, acetyl-CoA carboxylase (ACC), G6PDH, and ACADM during reacclimation and a delayed increase in ATGL. The absence of an increase in proliferating cell nuclear antigen suggests that the observed depot-specific mass increase is predominantly due to metabolic adjustments. In summary, this study shows a differential rate of visceral and subcutaneous adipose tissue weight regain during post-cold reacclimation of rats at RT. Faster recovery of the visceral WAT as compared to subcutaneous WAT during reacclimation at RT could be attributed to observed differences in the expression patterns of lipid metabolic enzymes.
Collapse
Affiliation(s)
- Marta Budnar Soskic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Zakic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Magalhães PM, da Cruz SP, Carneiro OA, Teixeira MT, Ramalho A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients 2024; 16:1267. [PMID: 38732514 PMCID: PMC11085628 DOI: 10.3390/nu16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
To assess the correlation between vitamin D status and body composition variables in adult women of childbearing age, a cross-sectional study was conducted involving women aged 20-49 years. The participants were categorized based on their vitamin D status and further divided according to body mass index (BMI). Anthropometric and biochemical data were collected to compute body composition indices, specifically body fat and muscle mass. The sample included 124 women, with 63.70% exhibiting vitamin D inadequacy. Women with inadequate vitamin D status demonstrated a higher waist-to-height ratio (WHtR) and body adiposity index (BAI), along with a lower BMI-adjusted muscle mass index (SMI BMI), compared to those with adequate levels of vitamin D (p = 0.021; p = 0.019; and p = 0.039, respectively). A positive correlation was observed between circulating concentrations of 25(OH)D and SMI BMI, while a negative correlation existed between circulating concentrations of 25(OH)D and waist circumference (WC), WHtR, conicity index (CI), fat mass index (FMI), body fat percentage (% BF), and fat-to-muscle ratio (FMR). These findings suggest that inadequate vitamin D status may impact muscle tissue and contribute to higher body adiposity, including visceral adiposity. It is recommended that these variables be incorporated into clinical practice, with a particular emphasis on WHtR and SMI BMI, to mitigate potential metabolic consequences associated with vitamin D inadequacy.
Collapse
Affiliation(s)
- Paula Moreira Magalhães
- Postgraduate Program of Clinical Medicine, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, Brazil
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Sabrina Pereira da Cruz
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Orion Araújo Carneiro
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Michelle Teixeira Teixeira
- Department of Public Health Nutrition, Nutrition School, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil;
| | - Andréa Ramalho
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
- Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
16
|
Alser M, Naja K, Elrayess MA. Mechanisms of body fat distribution and gluteal-femoral fat protection against metabolic disorders. Front Nutr 2024; 11:1368966. [PMID: 38590830 PMCID: PMC10999599 DOI: 10.3389/fnut.2024.1368966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity is a major health problem that affects millions of individuals, and it is associated with metabolic diseases including insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular diseases (CVDs). However, Body fat distribution (BFD) rather than crude obesity is now considered as a more accurate factor associated with these diseases. The factors affecting BFD vary, from genetic background, epigenetic factors, ethnicity, aging, hormonal changes, to lifestyle and medication consumptions. The main goal of controlling BFD comes from the fact that fat accumulation in different depots has a different effect on the overall health and metabolic health of individuals. It is well established that fat storage in the abdominal visceral depot is associated with metabolic disorder occurrence, while gluteal-femoral subcutaneous fat depot seems to be protective against these diseases. In this paper, we will summarize the factors affecting fat distribution. Then, we will present evidence connecting gluteal-femoral fat depot with protection against metabolic disorders including IR, T2D, and CVDs. Finally, we will list the suggested mechanisms that lead to this protective effect. The abstract is visualized in Graphical Abstract.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
U-Din M, Ahmed BA, Syed SA, Ong FJ, Oreskovich SM, Gunn E, Surette MG, Punthakee Z, Steinberg GR, Morrison KM. Characteristics of Abdominal Visceral Adipose Tissue, Metabolic Health and the Gut Microbiome in Adults. J Clin Endocrinol Metab 2024; 109:680-690. [PMID: 37837606 DOI: 10.1210/clinem/dgad604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
CONTEXT Compared with the relatively benign effects of increased subcutaneous adipose tissue (SAT), increased visceral adipose tissue (VAT) volume is a causal risk factor for hypertension, hyperlipidemia, type 2 diabetes, and cardiovascular disease. In rodents, increased VAT volume and triglyceride density and ectopic lipid accumulation in kidneys and liver have been induced by alterations in the gut microbiome. However, few studies have characterized these relationships in humans. OBJECTIVE To evaluate the tissue triglyceride content of VAT and SAT, liver, kidneys, and pancreas in male and female adults and assess associations with markers of glucose tolerance, serum insulin, and lipids and characteristics of the gut microbiome. METHODS Cross-sectional observational study of healthy human adults (n = 60) at a clinical research center. Body mass index (BMI), body composition, and oral glucose tolerance were assessed. Microbiome analysis was conducted on stool samples using 16S rRNA v3 amplicon sequencing. The triglyceride content of VAT, SAT, liver, kidney and pancreas were determined by assessing proton density fat fraction (PDFF) with magnetic resonance imaging (MRI). RESULTS Higher VAT PDFF and the ratio of VAT to SAT PDFF were related to higher BMI, HbA1c, HOMA-IR, non-high-density lipoprotein cholesterol, plasma triglycerides, low-density lipoprotein (LDL) cholesterol, and lower high-density lipoprotein (HDL) cholesterol. A higher VAT PDFF and VAT to SAT PDFF ratio were associated with lower alpha diversity and altered beta diversity of the gut microbiome. Differences in VAT were associated with higher relative abundance of the phylum Firmicutes, lower relative abundance of the phylum Bacteroidetes, and enrichment of the bacterial genera Dorea, Streptococcus, and Solobacterium. CONCLUSION VAT PDFF measured with MRI is related to impaired glucose homeostasis, dyslipidemia, and differences in the gut microbiome, independently of the total body fat percentage.
Collapse
Affiliation(s)
- Mueez U-Din
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Turku PET Centre, Turku University Hospital, Turku 20520, Finland
| | - Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Saad A Syed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Frank J Ong
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Stephan M Oreskovich
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elizabeth Gunn
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael G Surette
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zubin Punthakee
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Paediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
19
|
Dogan N, Ozuynuk-Ertugrul AS, Balkanay OO, Yildiz CE, Guclu-Geyik F, Kirsan CB, Coban N. Examining the effects of coronary artery disease- and mitochondrial biogenesis-related genes' and microRNAs' expression levels on metabolic disorders in epicardial adipose tissue. Gene 2024; 895:147988. [PMID: 37977322 DOI: 10.1016/j.gene.2023.147988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Epicardial adipose tissue (EAT) surrounds the heart and coronary arteries and is important for comprehending the pathogenesis of coronary artery disease (CAD). We aimed to evaluate the expressions of mitochondrial biogenesis- and CAD-related genes and miRNAs in EAT by comparing them to visceral adipose tissue (VAT) in CAD, diabetes, and obesity subgroups. METHODS In this study, a total of 93 individuals were recruited, and EAT samples (63 CAD; 30 non-CAD) and VAT samples from 65 individuals (46 CAD; 19 non-CAD) were collected. For further analysis, the study population was divided according to obesity and diabetes status. PRKAA1, PPARGC1A, SIRT1, RELA, TNFA, and miR-155-5p, let-7g-5p, miR-1247-5p, miR-326 expression levels were examined. RESULTS PRKAA1 and let-7g-5p were differentially expressed in EAT compared to VAT. TNFA expression was upregulated significantly in both tissues of CAD patients. In EAT, PRKAA1, PPARGC1A, and SIRT1 were downregulated with diabetes. Moreover, PPARGC1A expression is decreased under the condition of obesity in both tissues. EAT expressions of miR-1247-5p and miR-326 were downregulated with obesity, while miR-155-5p is decreased only in the VAT of obese. Also, miRNAs and genes were correlated with biochemical parameters and each other in EAT and VAT (p < 0.050). CONCLUSIONS The findings demonstrating distinct let-7g-5p and AMPKα1 mRNA expression between EAT and VAT underscores the importance of tissue-specific regulation in different clinical outcomes. In addition, the differential expressions of investigated genes and miRNAs highlight their responsiveness to obesity, DM, and CAD in adipose tissues.
Collapse
Affiliation(s)
- Nazli Dogan
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Aybike S Ozuynuk-Ertugrul
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Ozan O Balkanay
- Department of Cardiovascular Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Cenk E Yildiz
- Department of Cardiovascular Surgery, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Filiz Guclu-Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cemre B Kirsan
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
20
|
Major G, Simcock J, Kumar A, Kleffmann T, Woodfield TBF, Lim KS. Comprehensive Matrisome Profiling of Human Adipose Tissue for Soft Tissue Reconstruction. Adv Biol (Weinh) 2024; 8:e2300448. [PMID: 37953659 DOI: 10.1002/adbi.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
For effective translation of research from tissue engineering and regenerative medicine domains, the cell-instructive extracellular matrix (ECM) of specific tissues must be accurately realized. As adipose tissue is gaining traction as a biomaterial for soft tissue reconstruction, with highly variable clinical outcomes obtained, a quantitative investigation of the adipose tissue matrisome is overdue. In this study, the human adipose tissue matrisome is profiled using quantitative sequential windowed acquisition of all theoretical fragment ion spectra - mass spectrometry (SWATH-MS) proteomics across a cohort of 13 fat-grafting patients, to provide characterization of ECM proteins within the tissue, and to understand human population variation. There are considerable differences in the expression of matrisome proteins across the patient cohort, with age and lipoaspirate collection technique contributing to the greatest variation across the core matrisome. A high abundance of basement membrane proteins (collagen IV and heparan sulfate proteoglycan) is detected, as well as fibrillar collagens I and II, reflecting the hierarchical structure of the tissue. This study provides a comprehensive proteomic evaluation of the adipose tissue matrisome and contributes to an enhanced understanding of the influence of the matrisome in adipose-related pathologies by providing a healthy reference cohort and details an experimental pipeline that can be further exploited for future biomaterial development.
Collapse
Affiliation(s)
- Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Jeremy Simcock
- Department of Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, Research Infrastructure Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, Research Infrastructure Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
- Light-Activated Biomaterials Group, School of Medical Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
21
|
Akan G, Nyawawa E, Nyangasa B, Turkcan MK, Mbugi E, Janabi M, Atalar F. Severity of coronary artery disease is associated with diminished circANRIL expression: A possible blood based transcriptional biomarker in East Africa. J Cell Mol Med 2024; 28:e18093. [PMID: 38149798 PMCID: PMC10844708 DOI: 10.1111/jcmm.18093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with coronary artery disease (CAD). ANRIL and its transcript variants were investigated for the susceptibility to CAD in adipose tissues (AT) and peripheral blood mononuclear cells (PBMCs) of the study group and the impact of 9p21.3 locus mutations was further analysed. Expressions of ANRIL, circANRIL (hsa_circ_0008574), NR003529, EU741058 and DQ485454 were detected in epicardial AT (EAT) mediastinal AT (MAT), subcutaneous AT (SAT) and PBMCs of CAD patients undergoing coronary artery bypass grafting and non-CAD patients undergoing heart valve surgery. ANRIL expression was significantly upregulated, while the expression of circANRIL was significantly downregulated in CAD patients. Decreased circANRIL levels were significantly associated with the severity of CAD and correlated with aggressive clinical characteristics. rs10757278 and rs10811656 were significantly associated with ANRIL and circANRIL expressions in AT and PBMCs. The ROC-curve analysis suggested that circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). We report the first data demonstrating the presence of ANRIL and its transcript variants expressions in the AT and PBMCs of CAD patients. circANRIL having a synergetic effect with ANRIL plays a protective role in CAD pathogenesis. Therefore, altered circANRIL expression may become a potential diagnostic transcriptional biomarker for early CAD diagnosis.
Collapse
Affiliation(s)
- Gokce Akan
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Near East UniversityDESAM Research InstituteMersinNorth CyprusTurkey
| | | | | | | | - Erasto Mbugi
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
| | | | - Fatmahan Atalar
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Department of Rare DiseasesIstanbul University, Child Health InstituteIstanbulTurkey
| |
Collapse
|
22
|
Seike M, Ashida H, Yamashita Y. Dietary flaxseed oil induces production of adiponectin in visceral fat and prevents obesity in mice. Nutr Res 2024; 121:16-27. [PMID: 38039598 DOI: 10.1016/j.nutres.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Induction of obesity by dietary fats and oils differs according to the type of fat. Adiponectin is believed to be related to obesity prevention. We hypothesized that flaxseed oil is important for preventing obesity and producing adiponectin. To clarify this hypothesis, we investigated the relationship between obesity and different fat sources in mice fed diets with 6 types of fat and oils. C57BL/6J mice were given a control diet containing 5% corn oil or a high-fat diet containing 20% of either lard, palm oil, rapeseed oil, oleate-rich safflower oil, corn oil, or flaxseed oil for 14 weeks. In another experiment, mice were given a control diet and rosiglitazone (10 mg/kg body weight) by oral gavage for 1 week. At the end of study, plasma adiponectin and expression of fatty acid metabolism-related factors in white and brown adipose tissue and the liver were measured. Dietary flaxseed oil, which is rich in α-linolenic acid, did not induce obesity. Flaxseed oil resulted in increased β-oxidation-related factors in epididymal white adipose tissue, decreased fatty acid synthesis-related factors in the liver, and thermogenesis-related factor in brown adipose tissue following increase of plasma adiponectin. The results suggested that increase in plasma adiponectin after intake of flaxseed oil may be due to altered expression of AdipoQ and peroxisome proliferator-activated receptor γ in epididymal white adipose tissue. Flaxseed oil increased expression of adiponectin in visceral fat and regulated obesity-controlling fatty acid metabolism-related factors in white adipose tissue and liver, and thermogenesis-related factor in brown adipose tissue.
Collapse
Affiliation(s)
- Midori Seike
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
23
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
24
|
Dwaib HS, Michel MC. Is the β 3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules 2023; 13:1714. [PMID: 38136585 PMCID: PMC10742325 DOI: 10.3390/biom13121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
β3-Adrenoceptors mediate several functions in rodents that could be beneficial for the treatment of obesity and type 2 diabetes. This includes promotion of insulin release from the pancreas, cellular glucose uptake, lipolysis, and thermogenesis in brown adipose tissue. In combination, they lead to a reduction of body weight in several rodent models including ob/ob mice and Zucker diabetic fatty rats. These findings stimulated drug development programs in various pharmaceutical companies, and at least nine β3-adrenoceptor agonists have been tested in clinical trials. However, all of these projects were discontinued due to the lack of clinically relevant changes in body weight. Following a concise historical account of discoveries leading to such drug development programs we discuss species differences that explain why β3-adrenoceptors are not a meaningful drug target for the treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Haneen S. Dwaib
- Department of Clinical Nutrition and Dietetics, Palestine Ahliya University, Bethlehem P.O. Box 1041, Palestine;
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
25
|
Zur Tulod J, Witman ND, Grond K, Duddleston KN, Kurtz CC. Treatment with gut-specific nonsteroidal anti-inflammatory drug attenuates metabolic inflammation but not body mass in fattening ground squirrels. Am J Physiol Regul Integr Comp Physiol 2023; 325:R456-R464. [PMID: 37602382 PMCID: PMC11178295 DOI: 10.1152/ajpregu.00078.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The active season of hibernators corresponds to rapid adiposity in preparation for the next hibernation season. We have previously shown that this dramatic increase in adipose mass is associated with metabolic inflammation similar to what is seen in obesity and metabolic disease. We next sought to determine whether curbing this inflammation at its source (i.e., the gut) would attenuate weight gain in fattening 13-lined ground squirrels (Ictidomys tridecemlineatus). We fed active yearling ground squirrels a diet containing the gut-specific nonsteroidal anti-inflammatory drug mesalazine (5-aminosalicylic acid) for 10 wk. Mesalazine treatment had slight effects on microbial community diversity in the cecum and colon. Not surprisingly, mesalazine treatment decreased inflammatory cytokine levels in the ileum and colon. Mesalazine also decreased proinflammatory and increased anti-inflammatory cytokines in omental white adipose tissue (oWAT). Despite this, body mass was unaffected, and caloric intake increased in mesalazine-treated squirrels, mainly in males. Mass of the primary WAT depot, intra-abdominal WAT (iaWAT), or the highly metabolic oWAT were unaltered by treatment, as was adiposity index. Together, these results suggest that mesalazine treatment has some effects on adiposity in fattening ground squirrels, but this treatment needs to be modified to overcome the strong drive to fatten in this species.NEW & NOTEWORTHY Adiposity and obesity are caused, at least in part, by inflammation of metabolic tissues. Hibernators, like ground squirrels, undergo this same metabolic inflammation during their summer fattening period. We attempted to curb this inflammation, and thus fattening, using mesalazine. We found that mesalazine did curb the inflammation but did not affect fattening, likely due to the strong drive to fatten in hibernators.
Collapse
Affiliation(s)
- Jewel Zur Tulod
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Nathan D Witman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Khrystyne N Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| |
Collapse
|
26
|
Caprioli B, Eichler RAS, Silva RNO, Martucci LF, Reckziegel P, Ferro ES. Neurolysin Knockout Mice in a Diet-Induced Obesity Model. Int J Mol Sci 2023; 24:15190. [PMID: 37894869 PMCID: PMC10607720 DOI: 10.3390/ijms242015190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.
Collapse
Affiliation(s)
- Bruna Caprioli
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Rosangela A. S. Eichler
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Renée N. O. Silva
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Luiz Felipe Martucci
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Patricia Reckziegel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences (FCF), University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emer S. Ferro
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| |
Collapse
|
27
|
Ford H, Liu Q, Fu X, Strieder-Barboza C. White Adipose Tissue Heterogeneity in the Single-Cell Era: From Mice and Humans to Cattle. BIOLOGY 2023; 12:1289. [PMID: 37886999 PMCID: PMC10604679 DOI: 10.3390/biology12101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissue is a major modulator of metabolic function by regulating energy storage and by acting as an endocrine organ through the secretion of adipokines. With the advantage of next-generation sequencing-based single-cell technologies, adipose tissue has been studied at single-cell resolution, thus providing unbiased insight into its molecular composition. Recent single-cell RNA sequencing studies in human and mouse models have dissected the transcriptional cellular heterogeneity of subcutaneous (SAT), visceral (VAT), and intramuscular (IMAT) white adipose tissue depots and revealed unique populations of adipose tissue progenitor cells, mature adipocytes, immune cell, vascular cells, and mesothelial cells that play direct roles on adipose tissue function and the development of metabolic disorders. In livestock species, especially in bovine, significant gaps of knowledge remain in elucidating the roles of adipose tissue cell types and depots on driving the pathogenesis of metabolic disorders and the distinct fat deposition in VAT, SAT, and IMAT in meat animals. This review summarizes the current knowledge on the transcriptional and functional cellular diversity of white adipose tissue revealed by single-cell approaches and highlights the depot-specific function of adipose tissue in different mammalian species, with a particular focus on recent findings and future implications in cattle.
Collapse
Affiliation(s)
- Hunter Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
| | - Qianglin Liu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Xing Fu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
28
|
Major G, Longoni A, Simcock J, Magon NJ, Harte J, Bathish B, Kemp R, Woodfield T, Lim KS. Clinical Applicability of Visible Light-Mediated Cross-linking for Structural Soft Tissue Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300538. [PMID: 37424046 PMCID: PMC10502829 DOI: 10.1002/advs.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/28/2023] [Indexed: 07/11/2023]
Abstract
Visible light-mediated cross-linking has utility for enhancing the structural capacity and shape fidelity of laboratory-based polymers. With increased light penetration and cross-linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross-linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient-derived lipoaspirate for soft tissue reconstruction. Freshly-isolated tissue is photocross-linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross-linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross-linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically-relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures.
Collapse
Affiliation(s)
- Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Alessia Longoni
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Jeremy Simcock
- Department of SurgeryUniversity of OtagoChristchurch8011New Zealand
| | - Nicholas J Magon
- Centre for Free Radical ResearchDepartment of Pathology and Biomedical ScienceUniversity of OtagoChristchurch8011New Zealand
| | - Jessica Harte
- Jacqui Wood Cancer CentreDivision of Cellular MedicineNinewells Hospital and Medical SchoolUniversity of DundeeDundeeScotlandDD2 1GZUK
| | - Boushra Bathish
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurch8011New Zealand
- Jacqui Wood Cancer CentreDivision of Cellular MedicineNinewells Hospital and Medical SchoolUniversity of DundeeDundeeScotlandDD2 1GZUK
| | - Roslyn Kemp
- Department of Microbiology and ImmunologyUniversity of OtagoDunedin9016New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurch8011New Zealand
- Light‐Activated Biomaterials GroupSchool of Medical SciencesUniversity of SydneySydney2006Australia
| |
Collapse
|
29
|
Chung E, Park Y, Kim SY, Park MS, Kim YS, Lee HJ, Kang YA. Myosteatosis as a prognostic factor of Mycobacterium avium complex pulmonary disease. Sci Rep 2023; 13:13680. [PMID: 37608053 PMCID: PMC10444847 DOI: 10.1038/s41598-023-40984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Quantitative body composition affects the prognosis of patients with Mycobacterium avium complex pulmonary disease (MAC-PD). However, whether the qualitative body composition obtained indirectly through computed tomography (CT) affects their prognosis is debatable. We retrospectively analyzed patients with MAC-PD who underwent non-contrast CT at MAC-PD diagnosis. The cross-sectional area of the erector spinae muscle (ESM area), the Hounsfield unit of the erector spinae muscle (ESM HU), and the cross-sectional area of subcutaneous fat (SQF area) were measured at the level of the first lumbar vertebra. Myosteatosis were defined below the median value of ESM HU for each sex. Of 377 patients, 45 (11.9%) died during the follow-up. Patients who died were older and had a lower ratio of females (33.3%). In body compositions, SQF area and ESM HU were lower in the patients who died. In multivariable analysis, a low ESM HU was associated with increased mortality (ESM HU adjusted hazard ratio [aHR] 0.95, 95% confidence interval [CI] 0.93-0.97) through body composition. SQF area revealed protective effects in MAC-PD patients with body mass index ≥ 18.5 kg/m2 (aHR 0.98, 95% CI 0.95-1.00). In conclusion, the decrease in ESM HU, which indirectly reflects myosteatosis, is associated with mortality in patients with MAC-PD.
Collapse
Affiliation(s)
- Eunki Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Jeong Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne) 2023; 14:1210414. [PMID: 37560296 PMCID: PMC10407661 DOI: 10.3389/fendo.2023.1210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The genetic code does not fully explain individual variability and inheritance of susceptibility to endocrine conditions, suggesting the contribution of epigenetic factors acting across generations. Methods We used a mouse model of developmental thyrotoxicosis (Dio3-/- mouse) to analyze endocrine outcomes in the adult offspring of Dio3-/- males using standard methods for body composition, and baseline and fasting hormonal and gene expression determinations in serum and tissues of relevance to the control of energy balance. Results Compared to controls, adult females with an exposed father (EF females) exhibited higher body weight and fat mass, but not lean mass, a phenotype that was much milder in EF males. After fasting, both EF females and males exhibited a more pronounced decrease in body weight than controls. EF females also showed markedly elevated serum leptin, increased white adipose tissue mRNA expression of leptin and mesoderm-specific transcript but decreased expression of type 2 deiodinase. EF females exhibited decreased serum ghrelin, which showed more pronounced post-fasting changes in EF females than in control females. EF female hypothalami also revealed significant decreases in the expression of pro-opiomelanocortin, agouti-related peptide, neuropeptide Y and melanocortin receptor 4. These markers also showed larger changes in response to fasting in EF females than in control females. Adult EF females showed no abnormalities in serum thyroid hormones, but pituitary expression of thyrotropin-releasing hormone receptor 1 and thyroid gland expression of thyroid-stimulating hormone receptor, thyroid peroxidase and iodotyrosine deiodinase were increased at baseline and showed differential regulation after fasting, with no increase in Trhr1 expression and more pronounced reductions in Tshr, Tpo and Iyd. In EF males, these abnormalities were generally milder. In addition, postnatal day 14 (P14) serum leptin was markedly reduced in EF pups. Discussion A paternal excess of thyroid hormone during development modifies the endocrine programming and energy balance in the offspring in a sexually dimorphic manner, with baseline and dynamic range alterations in the leptin-melanocortin system and thyroid gland, and consequences for adiposity phenotypes. We conclude that thyroid hormone overexposure may have important implications for the non-genetic, inherited etiology of endocrine and metabolic pathologies.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
31
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
32
|
Maturana FM, Rolf R, Schweda S, Reimer M, Widmann M, Burgstahler C, Nieß AM, Krauss I, Munz B. Adipokines as Predictive Biomarkers for Training Adaptation in Subjects with Multimorbidity-A Hypothesis-Generating Study. J Clin Med 2023; 12:4376. [PMID: 37445411 DOI: 10.3390/jcm12134376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Physical exercise exerts a positive effect on many chronic conditions, specifically lifestyle-related diseases such as overweight and obesity, type 2 diabetes mellitus (T2DM), cardiovascular conditions and osteoarthritis (OA). As a result of common risk factors, most of these patients present with multiple conditions. Exercise- and disease-related biomarkers, such as adipokines, are emerging tools in training supervision and regulation; however, their significance in subjects with multimorbidities is unknown. SUBJECTS AND METHODS To address this issue, adipokines leptin, adiponectin and resistin were assessed in a cohort of subjects with multimorbidities (n = 39) presenting with at least two of the abovementioned conditions or relevant risk factors before and after a six-month exercise and lifestyle intervention program ('MultiPill-Exercise'), and correlated with training adaptation, namely changes in relative maximum oxygen uptake (V·O2max). RESULTS There was a significant negative correlation between baseline leptin concentrations and training effect for relative V·O2max (after three months: rho = -0.54, p = 0.020 *; after six months: rho = -0.45, p = 0.013 *), with baseline leptin explaining 35% of the variance in delta relative V·O2max after three months and 23% after six months. CONCLUSIONS Leptin might be a suitable surrogate biomarker in the context of exercise-based lifestyle intervention programs in subjects with multimorbidity.
Collapse
Affiliation(s)
- Felipe Mattioni Maturana
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Rebecca Rolf
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Simone Schweda
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Max Reimer
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Manuel Widmann
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany
| | - Inga Krauss
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
33
|
Munkhzul C, Lee JM, Kim B, Nguyen TTM, Ginting RP, Jeong D, Kim YK, Lee MW, Lee M. H19X-encoded microRNAs induced by IL-4 in adipocyte precursors regulate proliferation to facilitate differentiation. Biol Direct 2023; 18:32. [PMID: 37322541 PMCID: PMC10273709 DOI: 10.1186/s13062-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Adipose tissue, an organ critical for systemic energy homeostasis, is influenced by type 2 immunity in its development and function. The type 2 cytokine interleukin (IL)-4 induces the proliferation of bipotential adipocyte precursors (APs) in white fat tissue and primes these cells for differentiation into beige adipocytes, which are specialized for thermogenesis. However, the underlying mechanisms have not yet been comprehensively examined. Here, we identified six microRNA (miRNA) genes upregulated upon IL-4 stimulation in APs, miR-322, miR-503, miR-351, miR-542, miR-450a, and miR-450b; these are encoded in the H19X locus of the genome. Their expression is positively regulated by the transcription factor Klf4, whose expression also increases upon IL-4 stimulation. These miRNAs shared a large set of target genes, of which 381 genes were downregulated in mRNA expression upon IL-4 stimulation and enriched in Wnt signaling pathways. Two genes with downregulated expression, Ccnd1 and Fzd6, were repressed by H19X-encoded miRNAs. Additionally, the Wnt signaling activator LiCl downregulated the expression of this group of miRNAs in APs, indicating that Wnt signaling-related genes and these miRNAs form a double-negative feedback regulatory loop. This miRNA/Wnt feedback regulation modulated the elevated proliferation of APs induced by IL-4 stimulation and contributed to priming them for beige adipocyte differentiation. Moreover, the aberrant expression of these miRNAs attenuates the differentiation of APs into beige adipocytes. Collectively, our results suggest that H19X-encoded miRNAs facilitate the transition of APs from proliferation to differentiation in the IL-4-mediated regulation.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Dahee Jeong
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| |
Collapse
|
34
|
Chen YR, Xiao F, Tang HN, Wang T, Zhou YH, Iqbal J, Yang SB, Li L, Zhou H. Plasticity of adipose tissues in response to fasting and refeeding declines with aging in mice. Aging (Albany NY) 2023; 15:204734. [PMID: 37227808 DOI: 10.18632/aging.204734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
To explore the plasticity of adipose tissues, C57BL/6J mice at the age of 1 month, 3 months, and 15 months corresponding to adolescence, adulthood, and middle-aged transitional period, respectively, were fasted and refed subsequently at different times. Body adipose tissues ratio (BATR) was calculated, the morphology of adipose tissue and the area of adipocytes were observed by histological analysis, and the mitochondria in adipocytes were observed under the transmission electron microscope. Furthermore, the expression levels of Ucp-1, Cidea, Cox7a1, Cpt-1m, Atgl, and Hsl were detected by qRT-PCR. Our results showed a significant increase in the adipocytes area and body visceral adipose tissue (VAT) ratio in all groups of mice with aging. Moreover, body mesenteric white adipose tissue (mWAT) ratio decreased the most after 72 h fasting. In the middle-aged transitional mice, the white adipocytes did not decrease until 72 h fasting, and most of them still appeared as unaffected unilocular cells. Besides, the number of mitochondria and the expression of Ucp-1, Cidea, Cox7a1, Cpt-1m, Atgl and Hsl were lower in these mice. After 72h refeeding, the body subcutaneous white adipose tissue (sWAT) ratio returned to normal, while the VAT kept decreasing. The above results indicated an impairment in adipose tissue plasticity in mice with aging, suggesting that age modulated the metabolic adaptiveness of adipose tissues in mice.
Collapse
Affiliation(s)
- Ya-Ru Chen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Ting Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shui-Bing Yang
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua 418000, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
35
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
36
|
Song Q, Liu S, Wang J, Chai J, Wen J, Xu C. Hypoxia promotes white adipose tissues browning in rats under simulated environment at altitude of 5000 m. Biochem Biophys Res Commun 2023; 666:146-153. [PMID: 37187092 DOI: 10.1016/j.bbrc.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
People living in plains tend to decrease in body weight or body fat percentage after entering the plateau. Previous studies have found that plateau animals can burn fat and release calories through white adipose tissues (WATs) browning. However, these studies have focused on the effect of cold stimulation that induced WATs browning while there's hardly study on the effect of hypoxia. In this study, we investigate that whether and how hypoxia contributes to WATs browning in rats from acute to chronic hypoxia. We constructed hypobaric hypoxic rat models by exposing 9-week-old male SD rats to a hypobaric hypoxic chamber for 1, 3, 14 and 28 days (Group H) under simulated environment at altitude of 5000 m. We also established normoxic control groups for each time period (Group C), as well as paired 1-day and 14-day normoxic food-restriction rats that were fed the same amount of food as the hypoxic group ate (Group R). We then observed the growth status of rats and recorded dynamic changes in histologic, cellular and molecular levels of perirenal WATs (PWAT), epididymal WATs (EWAT) and subcutaneous WATs (SWAT) in each group. Results showed that (1) Hypoxic rats had lower food intake, significantly lower body weight than control rats, and showed lower WATs index. (2) In group H14, ASC1 mRNA expressions of PWAT and EWAT in rats were lower than that in group C14, and PAT2 mRNA expression of EWAT was higher than that in both group C14 and R14. In group R14, however, ASC1 mRNA expressions of PWAT and EWAT in rats were higher than both group C14 and H14, and that of SWAT was also significantly higher than group C14. (3) In group H3, both the mRNA and protein levels of uncoupling protein 1 (UCP1) of PWAT in rats were significantly increased than group C3. And in group H14, those of EWAT in rats were significantly increased than group C14. (4) In plasma of rats, norepinephrine (NE) level was significantly increased in group H3 than group C3, and free fatty acids (FFAs) level was significantly increased in group H14 than both group C14 and R14. In group R1, FASN mRNA expressions of PWAT and EWAT in rats were down-regulated than group C1. In group H3, FASN mRNA expressions of PWAT and EWAT in rats were down-regulated while ATGL mRNA expression of EWAT was up-regulated than group C3. Conversely, in group R14, FASN mRNA expressions of PWAT and EWAT in rats were significantly up-regulated than group C14 and H14. These results suggested that hypoxia promoted different WATs browning in rats under simulated environment at altitude of 5000 m and changed the lipid metabolism in WATs. Furthermore, rats in the chronic hypoxic group showed a completely different lipid metabolism of WATs from that in paired food-restriction group.
Collapse
Affiliation(s)
- Qiaoyue Song
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiamin Chai
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jigang Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
37
|
Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, Niedźwiecki S, Stępień EŁ. Developing a novel positronium biomarker for cardiac myxoma imaging. EJNMMI Phys 2023; 10:22. [PMID: 36959477 PMCID: PMC10036702 DOI: 10.1186/s40658-023-00543-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Cardiac myxoma (CM), the most common cardiac tumor in adults, accounts for 50-75% of benign cardiac tumors. The diagnosis of CM is often elusive, especially in young stroke survivors and transthoracic echocardiography (TTE) is the initial technique for the differential diagnostics of CM. Less invasive cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are not available for the majority of cardiac patients. Here, a robust imaging approach, ortho-Positronium (o-Ps) imaging, is presented to determine cardiac myxoma extracted from patients undergoing urgent cardiac surgery due to unexpected atrial masses. We aimed to assess if the o-Ps atom, produced copiously in intramolecular voids during the PET imaging, serves as a biomarker for CM diagnosing. METHODS Six perioperative CM and normal (adipose) tissue samples from patients, with primary diagnosis confirmed by the histopathology examination, were examined using positron annihilation lifetime spectroscopy (PALS) and micro-CT. Additionally, cell cultures and confocal microscopy techniques were used to picture cell morphology and origin. RESULTS We observed significant shortening in the mean o-Ps lifetime in tumor with compare to normal tissues: an average value of 1.92(02) ns and 2.72(05) ns for CM and the adipose tissue, respectively. Microscopic differences between tumor samples, confirmed in histopathology examination and micro-CT, did not influenced the major positronium imaging results. CONCLUSIONS Our findings, combined with o-Ps lifetime analysis, revealed the novel emerging positronium imaging marker (o-PS) for cardiovascular imaging. This method opens the new perspective to facilitate the quantitative in vivo assessment of intracardiac masses on a molecular (nanoscale) level.
Collapse
Affiliation(s)
- Paweł Moskal
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Ewelina Kubicz
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Grzegorz Grudzień
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Eryk Czerwiński
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Bartosz Leszczyński
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Szymon Niedźwiecki
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| |
Collapse
|
38
|
Jibran MS, Suleman M, Khan SU. Increased Neck Circumference and Increased Waist-Hip Ratio: Predictive Factors of Acute Myocardial Infarction. Cureus 2023; 15:e36777. [PMID: 37123795 PMCID: PMC10133831 DOI: 10.7759/cureus.36777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Background We hypothesize that neck circumference (NC) is a better predictor of acute myocardial infarction (AMI) compared to the waist-hip ratio (WHR) in patients presenting with acute coronary syndrome (ACS). The objective of this study is to investigate the association between NC and WHR with AMI and determine whether NC is a superior predictor of AMI in ACS patients compared to WHR. Methods This cross-sectional observational study was conducted in the Department of Cardiology at the Medical Teaching Institute, Lady Reading Hospital, Peshawar. The study lasted from February 20, 2018, to September 12, 2018. Patients having ACS who presented to the emergency department were enrolled via non-probability convenient sampling. Demographic data and baseline variables, including NC and WHR, were documented using a pre-designed pro forma. SPSS V.20 (IBM Corp, Armonk, NY) was used for data analysis. Continuous variables were expressed as mean ± standard deviation, while categorical variables were presented as frequencies and percentages. Chi-square tests were performed to determine the association between variables, and logistic regression models were used to measure odds ratios (ORs). Results In this study, 180 patients were included, with a mean age of 54.48±8.48 years and a male predominance of 51.5%. The results indicated a significant association between increased NC and WHR with AMI. The chi-square values for NC and WHR were 78.26 (p≤0.001) and 43.38 (p≤0.001), respectively. As NC increased from <37 cm to >38.5 cm, the OR for AMI increased from 0.46 to 4.51. Furthermore, the prevalence odds ratio (POR) of AMI increased by 2.185 times with an increase in WHR from 0.90. Conclusion Increased NC and increased WHR are statistically significantly associated and strong predictors of AMI in ACS patients. However, NC being more reliable, effective, and user-friendly should be the preferred measure.
Collapse
Affiliation(s)
- Muhammad S Jibran
- Department of Cardiology, Medical Teaching Institute, Lady Reading Hospital, Peshawar, PAK
- Department of Cardiology, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, PAK
| | - Muhammad Suleman
- Department of Cardiology, Peshawar Institute of Cardiology, Peshawar, PAK
| | - Shafi Ullah Khan
- Department of Medicine, District Headquarter Hospital KDA (Kohat Development Authority), Kohat, PAK
| |
Collapse
|
39
|
Zhu S, Zhang J, Zhu D, Jiang X, Wei L, Wang W, Chen YQ. Adipose tissue plays a major role in retinoic acid-mediated metabolic homoeostasis. Adipocyte 2022; 11:47-55. [PMID: 34957917 PMCID: PMC8726720 DOI: 10.1080/21623945.2021.2015864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, has shown therapeutic effects in liver disease, and its effect in improving non-alcoholic fatty liver disease (NAFLD) is associated with the inhibition of adipogenesis in the white adipose tissue (WAT) and fatty acid oxidation induction in the liver. However, the major target organ of RA is unknown. We performed chronic administration of RA in high-fat diet (HFD)-induced NAFLD mice. Further, hepatic and adipose cells were used to study the direct effect of RA on lipid metabolism. In addition, qRT-PCR was performed to examine differential gene expression in mouse adipose tissue. RA administration ameliorated NAFLD in HFD-induced obese mice and increased mouse energy expenditure. Although RA had therapeutic effects on liver histology and lipid accumulation, it did not directly affect lipid metabolism in HepG2 cells. In contrast, RA reduced the weight of several adipose tissues and improved lipid accumulation in OP9 cells. In addition, RA upregulated genes responsible for fatty acid oxidation and thermogenesis in three different WATs. Our work suggests that the liver may not be the main target organ of RA during NAFLD treatment. WAT browning induced by RA may be the primary contributor towards the amelioration of NAFLD in HFD-induced obese mice.
Collapse
Affiliation(s)
- Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Jingwei Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Doudou Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuan Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lengyun Wei
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Kehler DS, Milic J, Guaraldi G, Fulop T, Falutz J. Frailty in older people living with HIV: current status and clinical management. BMC Geriatr 2022; 22:919. [PMID: 36447144 PMCID: PMC9708514 DOI: 10.1186/s12877-022-03477-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
This paper will update care providers on the clinical and scientific aspects of frailty which affects an increasing proportion of older people living with HIV (PLWH). The successful use of combination antiretroviral therapy has improved long-term survival in PLWH. This has increased the proportion of PLWH older than 50 to more than 50% of the HIV population. Concurrently, there has been an increase in the premature development of age-related comorbidities as well as geriatric syndromes, especially frailty, which affects an important minority of older PLWH. As the number of frail older PLWH increases, this will have an important impact on their health care delivery. Frailty negatively affects a PLWH's clinical status, and increases their risk of adverse outcomes, impacting quality of life and health-span. The biologic constructs underlying the development of frailty integrate interrelated pathways which are affected by the process of aging and those factors which accelerate aging. The negative impact of sarcopenia in maintaining musculoskeletal integrity and thereby functional status may represent a bidirectional interaction with frailty in PLWH. Furthermore, there is a growing body of literature that frailty states may be transitional. The recognition and management of related risk factors will help to mitigate the development of frailty. The application of interdisciplinary geriatric management principles to the care of older PLWH allows reliable screening and care practices for frailty. Insight into frailty, increasingly recognized as an important marker of biologic age, will help to understand the diversity of clinical status occurring in PLWH, which therefore represents a fundamentally new and important aspect to be evaluated in their health care.
Collapse
Affiliation(s)
- D. Scott Kehler
- grid.55602.340000 0004 1936 8200Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS Canada ,grid.55602.340000 0004 1936 8200School of Physiotherapy, Faculty of Health, Dalhousie University, Room 402 Forrest Building 5869 University Ave, B3H 4R2, PO Box 15000 Halifax, NS Canada
| | - Jovana Milic
- grid.7548.e0000000121697570Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Guaraldi
- grid.7548.e0000000121697570Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tamas Fulop
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Geriatric Division, Research Center On Aging, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Julian Falutz
- grid.63984.300000 0000 9064 4811Division of Geriatric Medicine, Division of Infectious Diseases, Comprehensive HIV Aging Initiative, McGill University Health Center, Montreal, QC Canada
| |
Collapse
|
41
|
Wang L, Zabri H, Gorressen S, Semmler D, Hundhausen C, Fischer JW, Bottermann K. Cardiac ischemia modulates white adipose tissue in a depot-specific manner. Front Physiol 2022; 13:1036945. [DOI: 10.3389/fphys.2022.1036945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called ‘brown-in-white’ phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2+ macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia.
Collapse
|
42
|
Thomaz FM, de Jesus Simão J, da Silva VS, Machado MMF, Oyama LM, Ribeiro EB, Alonso Vale MIC, Telles MM. Ginkgo biloba Extract Stimulates Adipogenesis in 3T3-L1 Preadipocytes. Pharmaceuticals (Basel) 2022; 15:ph15101294. [PMID: 36297406 PMCID: PMC9610090 DOI: 10.3390/ph15101294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Smaller adipocytes are related to the reversal of metabolic disorders, suggesting that molecules that can act in the adipogenesis pathway are of great interest. The objective of this study was to investigate the effect of Ginkgo biloba extract (GbE) in modulating the differentiation in preadipocytes. 3T3-L1 preadipocytes were differentiated for 7 days into adipocytes without (control group) and with GbE at 1.0 mg/mL. Lipid content and gene expression were analyzed on day 7 (D7) by Oil Red O staining and PCR Array Gene Expression. Western blotting analysis of the key adipogenesis markers was evaluated during the differentiation process at days 3 (D3), 5 (D5), and 7 (D7). GbE increased lipid content and raised the gene expression of the main adipogenesis markers. Key proteins of the differentiation process were modulated by GbE, since C/EBPβ levels were decreased, while C/EBPα levels were increased at D7. Regarding the mature adipocytes’ markers, GbE enhanced the levels of both FABP4 at D5, and perilipin at D3 and D5. In summary, the present findings showed that GbE modulated the adipogenesis pathway suggesting that the treatment could accelerate the preadipocyte maturation, stimulating the expression of mature adipocyte proteins earlier than expected.
Collapse
Affiliation(s)
- Fernanda Malanconi Thomaz
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Jussara de Jesus Simão
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Viviane Simões da Silva
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Meira Maria Forcelini Machado
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Lila Missae Oyama
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| | - Eliane Beraldi Ribeiro
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| | - Maria Isabel Cardoso Alonso Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
- Correspondence:
| | - Monica Marques Telles
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| |
Collapse
|
43
|
Boby N, Abbas MA, Lee EB, Im ZE, Lee SJ, Park SC. Microbiota modulation and anti-obesity effects of fermented Pyrus ussuriensis Maxim extract against high-fat diet-induced obesity in rats. Biomed Pharmacother 2022; 154:113629. [PMID: 36058150 DOI: 10.1016/j.biopha.2022.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine due to its strong phytochemical profile and pharmacological efficacy. In this study, we evaluated the anti-obesity potential of Pyrus ussuriensis Maxim extracts (PUE) and investigated the underlying mechanisms using a combination of in vitro, in vivo, and microbiota regulation approaches. In an adipogenesis assay, the fermented (F)PUE and non-fermented (NF)PUE significantly reduced the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 85.33 and 96.67 µg/mL, respectively. In a high-fat diet (HFD)-induced obese rat model (n = 8 animals/group), oral administration of FPUE additionally reduced the total body weight gain significantly. No difference in food intake was observed, however, between the control-chow diet, FPUE, and NFPUE-treated HFD rats. Adipose tissue mass and systemic insulin resistance were markedly reduced in FPUE-treated HFD rats, in a dose-dependent manner. Treatment with FPUE also greatly improved obesity-related biomarkers, including total cholesterol, leptin, active ghrelin, Total GIP, adiponectin, and proinflammatory cytokines. Moreover, FPUE significantly suppressed HFD-induced adipogenic genes expression, while increasing fatty acid oxidation-related genes expression. Additionally, FPUE treatment attenuated the HFD-induced Firmicutes proportion within the intestinal microbiota by regulating key metabolic pathways, thus enhancing microbial population diversity (e.g., increasing Bacteroides, Bifidobacterium, Prevotella, Eubacterium, and Clostridium). Together, these results reveal a strong anti-obesity potential of FPUE through adipogenesis, lipid metabolism, weight reduction, and microbiota regulation, raising the possibility of developing FPUE as a novel therapeutic agent to control obesity and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea; Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, the Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Gukchabosang-ro 680, Jung-Gu, Daegu 41944, the Republic of Korea.
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea.
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea.
| | - Zi-Eum Im
- Institute of Forest Resources Development, Andong-si, Gyeongsangbuk-do 36605, the Republic of Korea.
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea.
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Gukchabosang-ro 680, Jung-Gu, Daegu 41944, the Republic of Korea.
| |
Collapse
|
44
|
Albrecht FB, Schmidt FF, Volz AC, Kluger PJ. Bioprinting of 3D Adipose Tissue Models Using a GelMA-Bioink with Human Mature Adipocytes or Human Adipose-Derived Stem Cells. Gels 2022; 8:gels8100611. [PMID: 36286112 PMCID: PMC9601941 DOI: 10.3390/gels8100611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue is related to the development and manifestation of multiple diseases, demonstrating the importance of suitable in vitro models for research purposes. In this study, adipose tissue lobuli were explanted, cultured, and used as an adipose tissue control to evaluate in vitro generated adipose tissue models. During culture, lobule exhibited a stable weight, lactate dehydrogenase, and glycerol release over 15 days. For building up in vitro adipose tissue models, we adapted the biomaterial gelatin methacryloyl (GelMA) composition and handling to homogeneously mix and bioprint human primary mature adipocytes (MA) and adipose-derived stem cells (ASCs), respectively. Accelerated cooling of the bioink turned out to be essential for the homogeneous distribution of lipid-filled MAs in the hydrogel. Last, we compared manual and bioprinted GelMA hydrogels with MA or ASCs and the explanted lobules to evaluate the impact of the printing process and rate the models concerning the physiological reference. The viability analyses demonstrated no significant difference between the groups due to additive manufacturing. The staining of intracellular lipids and perilipin A suggest that GelMA is well suited for ASCs and MA. Therefore, we successfully constructed physiological in vitro models by bioprinting MA-containing GelMA bioinks.
Collapse
Affiliation(s)
- Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany
- Faculty of Natural Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Freia F. Schmidt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany
| | - Ann-Cathrin Volz
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany
| | - Petra J. Kluger
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-271-2061
| |
Collapse
|
45
|
Sui X, Wang H, Wu F, Yang C, Zhang H, Xu Z, Guo Y, Guo Z, Xin B, Ma T, Li Y, Dai Z. Hepatic metabolite responses to 4-day complete fasting and subsequent refeeding in rats. PeerJ 2022; 10:e14009. [PMID: 36157064 PMCID: PMC9504452 DOI: 10.7717/peerj.14009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Fasting has been widely used to improve various metabolic diseases in humans. Adaptive fasting is necessary for metabolic adaptation during prolonged fasting, which could overcome the great advantages of short-term fasting. The liver is the main organ responsible for energy metabolism and metabolic homeostasis. To date, we lack literature that describes the physiologically relevant adaptations of the liver during prolonged fasting and refeeding. For that reason, this study aims to evaluate the response of the liver of Sprague-Dawley (SD) rats to prolonged fasting and refeeding. Methods Sixty-six male SD rats were divided into the fasting groups, which were fasted for 0, 4, 8, 12, 24, 48, 72, or 96 h, and the refeeding groups, which were refed for 1, 3, or 6 days after 96 h of fasting. Serum glucose, TG, FFA, β-hydroxybutyrate, insulin, glucagon, leptin, adiponectin and FGF21 levels were assessed. The glucose content, PEPCK activity, TG concentration and FFA content were measured in liver tissue, and the expression of genes involved in gluconeogenesis (PEPCK and G6Pase), ketogenesis (PPARα, CPT-1a and HMGCS2) and the protein expression of nutrient-sensing signaling molecules (AMPK, mTOR and SIRT1) were determined by RT-qPCR and western blotting, respectively. Results Fasting significantly decreased the body weight, which was totally recovered to baseline after 3 days of refeeding. A 4-day fast triggered an energy metabolic substrate shift from glucose to ketones and caused serum hormone changes and changes in the protein expression levels of nutrient-sensing signaling molecules. Glycogenolysis served as the primary fuel source during the first 24 h of fasting, while gluconeogenesis supplied the most glucose thereafter. Serum FFA concentrations increased significantly with 48 h of fasting. Serum FFAs partly caused high serum β-hydroxybutyrate levels, which became an important energy source with the prolongation of the fasting duration. One day of refeeding quickly reversed the energy substrate switch. Nutrient-sensing signaling molecules (AMPK and SIRT1 but not mTOR signaling) were highly expressed at the beginning of fasting (in the first 4 h). Serum insulin and leptin decreased with fasting initiation, and serum glucagon increased, but adiponectin and FGF21 showed no significant changes. Herein, we depicted in detail the timing of the metabolic response and adaptation of the liver to a 4-day water-only fast and subsequent refeeding in rats, which provides helpful support for the design of safe prolonged and intermittent fasting regimens.
Collapse
Affiliation(s)
- Xiukun Sui
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,Space Science and Technology Institute, Shenzhen, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zihan Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - ZhiFeng Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingmu Xin
- Space Science and Technology Institute, Shenzhen, China
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
46
|
Meneses MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lausanne) 2022; 13:898471. [PMID: 36060961 PMCID: PMC9428722 DOI: 10.3389/fendo.2022.898471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots. Methods We have studied the impact of 12 weeks of a control (11.50% calories from fat, 26.93% from protein, and 61.57% from carbohydrates), high-fat/sucrose (HFat), or high-fructose (HFruct) feeding on C57Bl/6J male mice. Besides glucose homeostasis, we analyzed the hepatic levels of glucose and lipid-metabolism-related genes and the metabolome of the liver, the muscle, and white (WAT) and brown adipose tissue (BAT) depots. Results HFat diet led to a more profound impact on hepatic glucose and lipid metabolism than HFruct, with mice presenting glucose intolerance, increased saturated fatty acids, and no glycogen pool, yet both HFat and HFruct presented hepatic insulin resistance. HFat diet promoted a decrease in glucose and lactate pools in the muscle and an increase in glutamate levels. While HFat had alterations in BAT metabolites that indicate increased thermogenesis, HFruct led to an increase in betaine, a protective metabolite against fructose-induced inflammation. Conclusions Our data illustrate that HFat and HFruct have a negative but distinct impact on the metabolome of the liver, muscle, WAT, and BAT.
Collapse
Affiliation(s)
- Maria João Meneses
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Inês Sousa-Lima
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - João F. Raposo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
- Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
47
|
Zhang K, Chen L, Zheng H, Zeng Y. Cytokines secreted from adipose tissues mediate tumor proliferation and metastasis in triple negative breast cancer. BMC Cancer 2022; 22:886. [PMID: 35964108 PMCID: PMC9375239 DOI: 10.1186/s12885-022-09959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Obesity is a high-risk factor for development and poor prognosis of triple-negative breast cancer (TNBC), which was considered as a high malignant and poor clinical outcome breast cancer subtype. TNBC proliferation and migration regulated by obesity is complex. Here, we studied effects of cytokines secreted from adipose tissue on development of TNBC. METHODS Forty postmenopausal cases by Yuebei People's Hospital of Shaoguan with stage I/IIA TNBC were enrolled. Cytokine concentrations were examined using ELISA analysis. Proliferation and migration of TNBC cell lines were performed using CCK8 assays and Transwell tests. The Log-rank (Mantel-Cox) test, two-tailed Mann-Whitney U test and two-tailed unpaired t test were performed using GraphPad Prism 8.4.2. RESULTS Survival analysis indicated that obese patients with TNBC had worse disease free survival (DFS) as compared with normal weight group (Hazard Ratio 4.393, 95% confidence interval (CI) of ratio 1.071-18.02, p < 0.05). Obese patients with TNBC had severe insulin resistance and high plasma triglycerides. However, plasma adiponectin concentration was decreased and interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration was increased in obese TNBC patients as compared with the nonobese group. The similar results were found in the cytokine secretion from adipose tissues and insulin-resistant adipocytes. The secretion of adipose tissue from obese TNBC patients could promote proliferation and migration of TNBC cell lines, including MDA-MB-157, MDA-MB-231, MDA-MB-453 and HCC38 cells. These TNBC cell lines co-incubated with insulin-resistant 3T3-L1 adipocytes or supplementing these cytokines medium also exhibited increase of proliferative and migratory capacity. CONCLUSION TNBC patients with obesity had worse prognosis compared with the normal weight groups. Alteration of cytokines secreted from adipose tissues mediated proliferation and migration of TNBC, leading to tumor progression in TNBC patients with obesity.
Collapse
Affiliation(s)
- Kai Zhang
- Head and Neck Breast Surgery, The Yuebei People's Hospital of Shaoguan, Guangdong Province, 512025, Shaoguan, China
| | - Lin Chen
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Hubei Province, 430070, Wuhan, China
| | - Hongbo Zheng
- Department of Medicine, Genecast Biotechnology Co., Ltd, Jiangsu Province, 214000, Wuxi, China
| | - Yi Zeng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Fuzhou, Fujian Province, 350014, China.
| |
Collapse
|
48
|
Wang Y, Zhu L, James-Todd T, Sun Q. Urinary polycyclic aromatic hydrocarbon excretion and regional body fat distribution: evidence from the U.S. National Health and Nutrition Examination Survey 2001-2016. Environ Health 2022; 21:75. [PMID: 35945606 PMCID: PMC9364531 DOI: 10.1186/s12940-022-00890-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/24/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that may contribute to the etiology of obesity. However, it is unclear whether PAHs from environmental sources are associated with regional body fat distribution, and whether the association varies across racial/ethnic groups who may have differential PAH exposure patterns. OBJECTIVES To examine correlations between PAHs and body fat distribution, and potential racial/ethnic differences among U.S. adults. METHODS Ten PAHs were measured in spot urine samples from 2691 non-smoking adults (age ≥ 20 years) in the NHANES 2001-2016. Dual-energy X-ray absorptiometry was used to measure fat mass percent (FM%). Partial Pearson correlation coefficients (r) with multivariable adjustment were used to assess PAH-FM% associations. RESULTS In the total population, 1-naphthalene, 3-fluorene, and 1-pyrene were inversely correlated with total FM% or trunk FM% (adjusted r ranged: - 0.06 to - 0.08), while 2-naphthalene, 9-fluorene, and 4-phenanthrene were positively correlated with the FM% measurements (r: 0.07-0.11). PAH levels are highest among non-Hispanic Blacks, followed by Hispanics and Whites and some of the correlations were different by these races/ethnicities. Among non-Hispanic Whites, no PAH was correlated with FM%. In contrast, 9-fluorene was positively correlated with total FM% (r = 0.20) and trunk FM% (r = 0.22) among Blacks, and 4-phenanthrene was positively correlated with total FM% (r = 0.23) and trunk FM% (r = 0.24) among Hispanics (P-interaction: 0.010-0.025). DISCUSSION In this US adult population, certain PAHs are significantly associated with higher body fat contents among non-Hispanic Blacks and Hispanics but not non-Hispanic Whites, suggesting that minority groups might be particularly susceptible to PAH's obesogenic effects or the effects of other factors that determine the PAH exposure levels. Alternatively, differences in body composition may contribute to differential PAH metabolism in minority groups. Future studies are warranted to explore the racial/ethnic disparity in PAH exposures, drivers of these exposure differences, and mechanisms through which PAHs may influence body composition by races/ethnicities.
Collapse
Affiliation(s)
- Yeli Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Lu Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
50
|
Fernández-Felipe J, Plaza A, Domínguez G, Pérez-Castells J, Cano V, Cioni F, Del Olmo N, Ruiz-Gayo M, Merino B. Effect of Lauric vs. Oleic Acid-Enriched Diets on Leptin Autoparacrine Signalling in Male Mice. Biomedicines 2022; 10:biomedicines10081864. [PMID: 36009410 PMCID: PMC9405789 DOI: 10.3390/biomedicines10081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF. Phosphorylation of kinases integral to leptin receptor (LepR) signalling pathways (705Tyr-STAT3, 473Ser-Akt, 172Thr-AMPK), adipocyte-size distribution, fatty acid content, and gene expression were analyzed in WAT. SOLF enhanced basal levels of phosphorylated proteins but reduced the ability of leptin to enhance kinase phosphorylation. In contrast, UOLF failed to increase basal levels of phosphorylated proteins and did not modify the effect of leptin. Both SOLF and UOLF similarly affected adipocyte-size distribution, and the expression of genes related with adipogenesis and inflammation. WAT composition was different between groups, with SOLF samples mostly containing palmitic, myristic and lauric acids (>48% w/w) and UOLF WAT containing more than 80% (w/w) of oleic acid. In conclusion, SOLF appears to be more detrimental than UOLF to the autoparacrine leptin actions, which may have an impact on WAT inflammation. The effect of SOLF and UOLF on WAT composition may affect WAT biophysical properties, which are able to condition LepR signaling.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Laboratory of Bioactive Products and Metabolic Syndrome (BIOPROMET), IMDEA Food Institute, 28049 Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Francesco Cioni
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Nuria Del Olmo
- Departament of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| |
Collapse
|