1
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Salagre D, Navarro-Alarcón M, Villalón-Mir M, Alcázar-Navarrete B, Gómez-Moreno G, Tamimi F, Agil A. Chronic melatonin treatment improves obesity by inducing uncoupling of skeletal muscle SERCA-SLN mediated by CaMKII/AMPK/PGC1α pathway and mitochondrial biogenesis in female and male Zücker diabetic fatty rats. Biomed Pharmacother 2024; 172:116314. [PMID: 38387135 DOI: 10.1016/j.biopha.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Melatonin acute treatment limits obesity of young Zücker diabetic fatty (ZDF) rats by non-shivering thermogenesis (NST). We recently showed melatonin chronically increases the oxidative status of vastus lateralis (VL) in both obese and lean adult male animals. The identification of VL skeletal muscle-based NST by uncoupling of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)- sarcolipin (SLN) prompted us to investigate whether melatonin is a SERCA-SLN calcium futile cycle uncoupling and mitochondrial biogenesis enhancer. Obese ZDF rats and lean littermates (ZL) of both sexes were subdivided into two subgroups: control (C) and 12 weeks orally melatonin treated (M) (10 mg/kg/day). Compared to the control groups, melatonin decreased the body weight gain and visceral fat in ZDF rats of both sexes. Melatonin treatment in both sex obese rats restored the VL muscle skin temperature and sensitized the thermogenic effect of acute cold exposure. Moreover, melatonin not only raised SLN protein levels in the VL of obese and lean rats of both sexes; also, the SERCA activity. Melatonin treatment increased the SERCA2 expression in obese and lean rats (both sexes), with no effects on SERCA1 expression. Melatonin increased the expression of thermogenic genes and proteins (PGC1-α, PPARγ, and NRF1). Furthermore, melatonin treatment enhanced the expression ratio of P-CaMKII/CaMKII and P-AMPK/AMPK. In addition, it rose mitochondrial biogenesis. These results provided the initial evidence that chronic oral melatonin treatment triggers the CaMKII/AMPK/PGC1α axis by upregulating SERCA2-SLN-mediated NST in ZDF diabetic rats of both sexes. This may further contribute to the body weight control and metabolic benefits of melatonin.
Collapse
Affiliation(s)
- D Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain
| | - M Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - M Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - B Alcázar-Navarrete
- CIBERES, Carlos III Health Institute, Madrid, and Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - G Gómez-Moreno
- Department of Medically Compromised Patients in Dentistry, School of Dentistry, University of Granada, Granada 18011, Spain
| | - F Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - A Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
3
|
Chowdhury-Paulino IM, Vaselkiv JB, Cheng I, Schernhammer ES, Lin Z, Haiman CA, Le Marchand L, Valdimarsdóttir U, Wilkens LR, Markt SC, Mucci LA. Adiposity, Weight Change, and Urinary Melatonin Levels among Men in the Multiethnic Cohort. Cancer Epidemiol Biomarkers Prev 2024; 33:136-142. [PMID: 37909946 DOI: 10.1158/1055-9965.epi-23-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Low levels of 6-sulfatoxymelatonin, the primary urinary metabolite of melatonin, have been linked to cancer and cardiometabolic outcomes in White and female populations. METHODS We examined the association between adulthood adiposity and 6-sulfatoxymelatonin levels in a racially and ethnically diverse population. Our study included 4,078 men in the Multiethnic Cohort with adiposity measurements at enrollment (1993-1996) and biomarkers measured in urines collected in 1995 and 2005. Multivariable linear regression models were used to estimate the percent change in 6-sulfatoxymelatonin levels and 95% confidence intervals (CI). Associations were examined separately by racial/ethnic group. RESULTS The prevalence of obesity varied by race and ethnicity, from 10% for Japanese American men to 34% for Native Hawaiian men. Compared with men with normal body mass index (BMI), men who were overweight (-7.8%; 95% CI, -11.9 to -3.5%) and obese (-18.1%; 95% CI, -23.2 to -12.6%) had significantly lower 6-sulfatoxymelatonin levels adjusting for potential confounding factors. Increasing weight gain in adulthood was also associated with lower 6-sulfatoxymelatonin (Ptrend < 0.0001). The inverse associations for BMI and weight change were qualitatively similar across racial and ethnic groups. CONCLUSIONS Obesity is inversely associated with melatonin in a racially diverse population. This finding is relevant given higher rates of obesity among Black, Native Hawaiian, and Latino men, as well as potential racial and ethnic differences in circadian function. IMPACT Melatonin may be a relevant biomarker among obesity-associated malignancies and could shed light on a potential mechanism of cancer disparities.
Collapse
Affiliation(s)
| | - Jane B Vaselkiv
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| | - Zhike Lin
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Christopher A Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Unnur Valdimarsdóttir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Unit of Integrative Epidemiology, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Sarah C Markt
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- American Cancer Society, Atlanta, Georgia
| |
Collapse
|
4
|
Salagre D, Raya Álvarez E, Cendan CM, Aouichat S, Agil A. Melatonin Improves Skeletal Muscle Structure and Oxidative Phenotype by Regulating Mitochondrial Dynamics and Autophagy in Zücker Diabetic Fatty Rat. Antioxidants (Basel) 2023; 12:1499. [PMID: 37627494 PMCID: PMC10451278 DOI: 10.3390/antiox12081499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity-induced skeletal muscle (SKM) inflexibility is closely linked to mitochondrial dysfunction. The present study aimed to evaluate the effects of melatonin on the red vastus lateralis (RVL) muscle in obese rat models at the molecular and morphological levels. Five-week-old male Zücker diabetic fatty (ZDF) rats and their age-matched lean littermates (ZL) were orally treated either with melatonin (10 mg/kg body weight (BW)/24 h) (M-ZDF and M-ZL) or non-treated (control) (C-ZDF and C-ZL) for 12 weeks. Western blot analysis showed that mitochondrial fission, fusion, and autophagy were altered in the C-ZDF group, accompanied by reduced SIRT1 levels. Furthermore, C-ZDF rats exhibited depleted ATP production and nitro-oxidative stress, as indicated by increased nitrites levels and reduced SOD activity. Western blotting of MyH isoforms demonstrated a significant decrease in both slow and fast oxidative fiber-specific markers expression in the C-ZDF group, concomitant with an increase in the fast glycolytic fiber markers. At the tissue level, marked fiber atrophy, less oxidative fibers, and excessive lipid deposition were noted in the C-ZDF group. Interestingly, melatonin treatment partially restored mitochondrial fission/fusion imbalance in the RVL muscle by enhancing the expression of fission (Fis1 and DRP1) markers and decreasing that of fusion (OPA1 and Mfn2) markers. It was also found to restore autophagy, as indicated by increased p62 protein level and LC3BII/I ratio. In addition, melatonin treatment increased SIRT1 protein level, mitochondrial ATP production, and SOD activity and decreased nitrites production. These effects were associated with enhanced oxidative phenotype, as evidenced by amplified oxidative fiber-specific markers expression, histochemical reaction for NADH enzyme, and muscular lipid content. In this study, we showed that melatonin might have potential therapeutic implications for obesity-induced SKM metabolic inflexibility among patients with obesity and T2DM.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.)
| | - Enrique Raya Álvarez
- Department of Rheumatology, University Hospital Clinic San Cecilio, 18016 Granada, Spain
| | - Cruz Miguel Cendan
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.)
| | - Samira Aouichat
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.)
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.)
| |
Collapse
|
5
|
Watanabe K, Nakano M, Maruyama Y, Hirayama J, Suzuki N, Hattori A. Nocturnal melatonin increases glucose uptake via insulin-independent action in the goldfish brain. Front Endocrinol (Lausanne) 2023; 14:1173113. [PMID: 37288290 PMCID: PMC10242130 DOI: 10.3389/fendo.2023.1173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Melatonin, a neurohormone nocturnally produced by the pineal gland, is known to regulate the circadian rhythm. It has been recently reported that variants of melatonin receptors are associated with an increased risk of hyperglycemia and type 2 diabetes, suggesting that melatonin may be involved in the regulation of glucose homeostasis. Insulin is a key hormone that regulates circulating glucose levels and cellular metabolism after food intake in many tissues, including the brain. Although cells actively uptake glucose even during sleep and without food, little is known regarding the physiological effects of nocturnal melatonin on glucose homeostasis. Therefore, we presume the involvement of melatonin in the diurnal rhythm of glucose metabolism, independent of insulin action after food intake. In the present study, goldfish (Carassius auratus) was used as an animal model, since this species has no insulin-dependent glucose transporter type 4 (GLUT4). We found that in fasted individuals, plasma melatonin levels were significantly higher and insulin levels were significantly lower during the night. Furthermore, glucose uptake in the brain, liver, and muscle tissues also significantly increased at night. After intraperitoneal administration of melatonin, glucose uptake by the brain and liver showed significantly greater increases than in the control group. The administration of melatonin also significantly decreased plasma glucose levels in hyperglycemic goldfish, but failed to alter insulin mRNA expression in Brockmann body and plasma insulin levels. Using an insulin-free medium, we demonstrated that melatonin treatment increased glucose uptake in a dose-dependent manner in primary cell cultures of goldfish brain and liver cells. Moreover, the addition of a melatonin receptor antagonist decreased glucose uptake in hepatocytes, but not in brain cells. Next, treatment with N1-acetyl-5-methoxykynuramine (AMK), a melatonin metabolite in the brain, directly increased glucose uptake in cultured brain cells. Taken together, these findings suggest that melatonin is a possible circadian regulator of glucose homeostasis, whereas insulin acquires its effect on glucose metabolism following food intake.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Masaki Nakano
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
- Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Ishikawa, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| |
Collapse
|
6
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Mankhong S, Kim S, Moon S, Lee JS, Cho EJ, Kwak HB, Park DH, Ryu JK, Kang JH. Melatonin and Exercise Counteract Sarcopenic Obesity through Preservation of Satellite Cell Function. Int J Mol Sci 2023; 24:ijms24076097. [PMID: 37047070 PMCID: PMC10094434 DOI: 10.3390/ijms24076097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Sarcopenic obesity (SO) is characterized by atrophic skeletal muscle impairment (sarcopenia) and obesity, which is associated with adverse outcomes of morbidity and mortality in elderly people. We investigated the effects of melatonin and exercise training on SO in 32-week-old senescence-accelerated mouse-prone-8 (SAMP8) mice fed a normal diet or a high-fat diet for 16 weeks. Melatonin, exercise, or melatonin and exercise for 8 weeks displayed reductions in the SO-induced impairment of skeletal muscle function and atrophy. Specifically, a decrease in mitochondrial calcium retention capacity in skeletal muscles observed in the HFD-con group was attenuated in melatonin and/or exercise intervention groups. More importantly, HFD-con mice displayed a lower number of Pax7+ satellite cells (SCs) and higher expression of p16ink than P8ND mice, which were attenuated by melatonin and/or exercise interventions. The cellular senescence in SC-derived primary myoblasts from HFD-con mice was significantly attenuated in myoblasts from the melatonin and/or exercise groups, which was reproduced in a senescence model of H2O2-treated C2C12 myoblasts. Our results suggest that melatonin and exercise training attenuate SO-induced skeletal muscle dysfunction, at least in part, through preserving the SC pool by inhibiting cellular senescence and attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Eun-Jeong Cho
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Urology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
8
|
Benchoula K, Mediani A, Hwa WE. The functions of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression. J Cell Commun Signal 2023; 17:25-34. [PMID: 35551607 PMCID: PMC10030766 DOI: 10.1007/s12079-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
The increase in blood glucose causes a myriad of pathways and molecular components to malfunction, leading to diabetes. Diabetes affects each organ differently by activating distinct pathways. It has an impact on the liver, pancreas, kidney (nephropathy), eyes (retinopathy), and nervous system (neuropathy). Understanding the effects of diabetes on each organ is the first step in developing a sustained treatment for the disease. Among the many cellular molecules impacted by diabetes is Ca2+/calmodulin-dependent protein kinase II (CaMKII), a complex Ca2+/calmodulin-activated serine/threonine-protein kinase. When intracellular [Ca2+] rises, it binds to calmodulin (CaM) to produce Ca2+/CaM, which activates CaMKIIs. This factor is involved in the pancreas, liver, heart, muscles, and various organs. Thus, Understanding CaMKII action in each organ is critical for gaining a complete picture of diabetic complications. Therefore, this review covers CaMKII's functions in many organs and how it affects and has been affected by diabetes.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
10
|
Chen W, Tu Y, Cai P, Wang L, Zhou Y, Liu S, Huang Y, Zhang S, Gu X, Yi W, Shan T. Melatonin supplementation promotes muscle fiber hypertrophy and regulates lipid metabolism of skeletal muscle in weaned piglets. J Anim Sci 2023; 101:skad256. [PMID: 37531568 PMCID: PMC10439708 DOI: 10.1093/jas/skad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.
Collapse
Affiliation(s)
- Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Li C, Li N, Zhang Z, Song Y, Li J, Wang Z, Bo H, Zhang Y. The specific mitochondrial unfolded protein response in fast- and slow-twitch muscles of high-fat diet-induced insulin-resistant rats. Front Endocrinol (Lausanne) 2023; 14:1127524. [PMID: 37008907 PMCID: PMC10061072 DOI: 10.3389/fendo.2023.1127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Skeletal muscle insulin resistance (IR) plays an important role in the pathogenesis of type 2 diabetes mellitus. Skeletal muscle is a heterogeneous tissue composed of different muscle fiber types that contribute distinctly to IR development. Glucose transport shows more protection in slow-twitch muscles than in fast-twitch muscles during IR development, while the mechanisms involved remain unclear. Therefore, we investigated the role of the mitochondrial unfolded protein response (UPRmt) in the distinct resistance of two types of muscle in IR. METHODS Male Wistar rats were divided into high-fat diet (HFD) feeding and control groups. We measured glucose transport, mitochondrial respiration, UPRmt and histone methylation modification of UPRmt-related proteins to examine the UPRmt in the slow fiber-enriched soleus (Sol) and fast fiber-enriched tibialis anterior (TA) under HFD conditions. RESULTS Our results indicate that 18 weeks of HFD can cause systemic IR, while the disturbance of Glut4-dependent glucose transport only occurred in fast-twitch muscle. The expression levels of UPRmt markers, including ATF5, HSP60 and ClpP, and the UPRmt-related mitokine MOTS-c were significantly higher in slow-twitch muscle than in fast-twitch muscle under HFD conditions. Mitochondrial respiratory function is maintained only in slow-twitch muscle. Additionally, in the Sol, histone methylation at the ATF5 promoter region was significantly higher than that in the TA after HFD feeding. CONCLUSION The expression of proteins involved in glucose transport in slow-twitch muscle remains almost unaltered after HFD intervention, whereas a significant decline of these proteins was observed in fast-twitch muscle. Specific activation of the UPRmt in slow-twitch muscle, accompanied by higher mitochondrial respiratory function and MOTS-c expression, may contribute to the higher resistance to HFD in slow-twitch muscle. Notably, the different histone modifications of UPRmt regulators may underlie the specific activation of the UPRmt in different muscle types. However, future work applying genetic or pharmacological approaches should further uncover the relationship between the UPRmt and insulin resistance.
Collapse
Affiliation(s)
- Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Nan Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin, China
- *Correspondence: Hai Bo, ; Yong Zhang,
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin, China
- *Correspondence: Hai Bo, ; Yong Zhang,
| |
Collapse
|
12
|
Souissi A, Ben Maaouia G, Dergaa I, Ghram A, Ben Saad H. The fat burning ability of melatonin during submaximal exercise. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2157531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Ghazwa Ben Maaouia
- Research Unit Physical Activity, Sport & Health, National Observatory of Sports, Tunis, Tunisia
| | - Ismail Dergaa
- Preventative Health Department, PHCC, Primary Health Care Corporation, Wellness, Doha, Qatar
| | - Amine Ghram
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
13
|
Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J. Mitochondrial Stress in Metabolic Inflammation: Modest Benefits and Full Losses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8803404. [PMID: 36457729 PMCID: PMC9708372 DOI: 10.1155/2022/8803404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/02/2023]
Abstract
Energy intake and metabolic balance are the pillars of health preservation. Overnutrition causes nonspecific, persistently low inflammatory state known as metabolic inflammation. This condition contributes to the pathophysiology of various metabolic disorders, such as atherosclerosis, obesity, diabetes mellitus, and metabolic syndrome. The mitochondria maintain the balance of energy metabolism. Excessive energy stress can lead to mitochondrial dysfunction, which promotes metabolic inflammation. The inflammatory environment further impairs mitochondrial function. Accordingly, excellent organism design keeps the body metabolically healthy in the context of mitochondrial dysfunction, and moderate mitochondrial stress can have a beneficial effect. This review summarises the research progress on the multifaceted characterisation of mitochondrial dysfunction and its role in metabolic inflammation.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Z. L. Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiqi Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
14
|
Melatonin-related signaling pathways and their regulatory effects in aging organisms. Biogerontology 2022; 23:529-539. [PMID: 35895186 DOI: 10.1007/s10522-022-09981-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/17/2022]
Abstract
Melatonin is a tryptophan-derived ancestral molecule evolved in bacteria. According to the endosymbiotic theory, eukaryotic cells received mitochondria, plastids, and other organelles from bacteria by internalization. After the endosymbiosis, bacteria evolved into organelles and retained their ability of producing melatonin. Melatonin is a small, evolutionarily conserved indole with multiple receptor-mediated, receptor-dependent, and independent actions. Melatonin's initial function was likely a radical scavenger in bacteria that's why there was high intensity of free radicals on primitive atmosphere in the ancient times, and hormetic functions of melatonin, which are effecting through the level of gene expression via prooxidant and antioxidant redox pathways, are developed in throughout the eukaryotic evolution. In the earlier stages of life, endosymbiotic events between mitochondria and other downstream organelles continue with mutual benefits. However, this interaction gradually deteriorates as a result of the imperfection of both mitochondrial and extramitochondrial endosymbiotic crosstalk with the advancing age of eukaryotic organisms. Throughout the aging process melatonin levels tend to reduce and as a manifestation of this, many symptoms in organisms' homeostasis, such as deterioration in adjustment of cellular clocks, are commonly seen. In addition, due to deterioration in mitochondrial integrity and functions, immunity decreases, and lower levels of melatonin renders older individuals to be more susceptible to impaired redox modulation and age-related diseases. Our aim in this paper is to focus on the several redox modulation mechanisms in which melatonin signaling has a central role, to discuss melatonin's gerontological aspects and to provide new research ideas with researchers.
Collapse
|
15
|
Faria AVS, Fonseca EMB, Fernandes-Oliveira PDS, de Lima TI, Clerici SP, Justo GZ, Silveira LR, Durán N, Ferreira-Halder CV. Violacein switches off low molecular weight tyrosine phosphatase and rewires mitochondria in colorectal cancer cells. Bioorg Chem 2022; 127:106000. [PMID: 35853296 DOI: 10.1016/j.bioorg.2022.106000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
In the last decade, emerging evidence has shown that low molecular weight protein tyrosine phosphatase (LMWPTP) not only contributes to the progression of cancer but is associated with prostate low survival rate and colorectal cancer metastasis. We report that LMWPTP favors the glycolytic profile in some tumors. Therefore, the focus of the present study was to identify metabolic enzymes that correlate with LMWPTP expression in patient samples. Exploratory data analysis from RNA-seq, proteomics, and histology staining, confirmed the higher expression of LMWPTP in CRC. Our descriptive statistical analyses indicate a positive expression correlation between LMWPTP and energy metabolism enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). In addition, we examine the potential of violacein to reprogram energetic metabolism and LMWPTP activity. Violacein treatment induced a shift of glycolytic to oxidative metabolism associated with alteration in mitochondrial efficiency, as indicated by higher oxygen consumption rate. Particularly, violacein treated cells displayed higher proton leak and ATP-linked oxygen consumption rate (OCR) as an indicator of the OXPHOS preference. Notably, violacein is able to bind and inhibit LMWPTP. Since the LMWPTP acts as a hub of signaling pathways that offer tumor cells invasive advantages, such as survival and the ability to migrate, our findings highlight an unexplored potential of violacein in circumventing the metabolic plasticity of tumor cells.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Emanuella M B Fonseca
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Federal Institute of Education, Science and Technology of São Paulo (IFSP), São Roque, São Paulo, Brazil
| | | | - Tanes I de Lima
- Department of Structural and Functional Biology, University of Campinas, (UNICAMP), Campinas, SP, Brazil
| | - Stefano P Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, University of Campinas, (UNICAMP), Campinas, SP, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
16
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Faria VS, Manchado-Gobatto FB, Scariot PPM, Zagatto AM, Beck WR. Melatonin Potentiates Exercise-Induced Increases in Skeletal Muscle PGC-1 α and Optimizes Glycogen Replenishment. Front Physiol 2022; 13:803126. [PMID: 35557975 PMCID: PMC9087193 DOI: 10.3389/fphys.2022.803126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and metabolic recovery after exercise. However, the literature still lacks reports on these proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of the current study was to determine the effects of acute melatonin administration on muscle PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nine Wistar rats were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9), rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals received melatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn (tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for the measurement of glycogen content. Student t-test for independent samples, two-way ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXG with respect to the CG (p < 0.05); however, only PGC-1α was higher for MEXG when compared to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic environment for future efforts.
Collapse
Affiliation(s)
- Vinícius Silva Faria
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| | | | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sports Performance, Department of Physical Education, School of Science—Bauru Campus, São Paulo State University—UNESP, Bauru, Brazil
| | - Wladimir Rafael Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| |
Collapse
|
18
|
Akhzari M, Barazesh M, Jalili S. Melatonin as an antioxidant agent in disease prevention: A biochemical focus. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220325124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract:
In the recent years, free radicals and oxidative stress have been found to be associated with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases. Confirming the role of oxidants in numerous pathological situations including cancer, developing antioxidants as therapeutic platforms is needed. It has been well established that melatonin and its derived metabolites function as endogenous free-radical scavengers and broad spectrum antioxidants. To achieve this function, melatonin can directly detoxify reactive oxygen and reactive nitrogen species and indirectly overexpress antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. Many investigations have also confirmed the role of melatonin and its derivatives in different physiological processes and therapeutic functions such as controlling the circadian rhythm and immune functions. This review aimed to focus on melatonin as a beneficial agent for the stimulation of antioxidant enzymes and inhibition of lipid peroxidation and to evaluate its contribution to protection against oxidative damages. In addition, the clinical application of melatonin in several diseases is discussed. Finally, the safety and efficacy of melatonin in clinical backgrounds is also reviewed.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie 2022; 202:2-14. [PMID: 35007648 DOI: 10.1016/j.biochi.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) and diabetes-related complications are amongst the leading causes of mortality worldwide. The international diabetes federation (IDF) has estimated 592 million people to suffer from DM by 2035. Hence, finding a novel biomolecule that can effectively aid diabetes management is vital, as other existing drugs have numerous side effects. Melatonin, a pineal hormone having antioxidative and anti-inflammatory properties, has been implicated in circadian dysrhythmia-linked DM. Reduced levels of melatonin and a functional link between melatonin and insulin are implicated in the pathogenesis of type 2 diabetes (T2D) Additionally, genomic studies revealed that rare variants in melatonin receptor 1b (MTNR1B) are also associated with impaired glucose tolerance and increased risk of T2D. Moreover, exogenous melatonin treatment in cell lines, rodent models, and diabetic patients has shown a potent effect in alleviating diabetes and other related complications. This highlights the role of melatonin in glucose homeostasis. However, there are also contradictory reports on the effects of melatonin supplementation. Thus, it is essential to explore if melatonin can be taken from bench to bedside for diabetes management. This review summarizes the therapeutic potential of melatonin in various diabetic models and whether it can be considered a safe drug for managing diabetic complications and diabetic manifestations like oxidative stress, inflammation, ER stress, mitochondrial dysfunction, metabolic dysregulation, etc.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
21
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
22
|
Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X, Kwan HLR, Brobst D, Herlea-Pana O, Yang X, Du G, Saengnipanthkul S, Noh HL, Jiao B, Kim JK, Lee CW, Ye K, Chan CB. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2021; 18:1367-1384. [PMID: 34689722 DOI: 10.1080/15548627.2021.1985257] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Chun Fai Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Daniel Brobst
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Oana Herlea-Pana
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Keqiang Ye
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Li Y, Xu Z. Effects of Melatonin Supplementation on Insulin Levels and Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm Metab Res 2021; 53:616-624. [PMID: 34496412 DOI: 10.1055/a-1544-8181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance (IR) is a pivotal process in various metabolic diseases. The well-known treatment is lifestyle modification and medication therapy, which may result in poor compliance and side effects. Melatonin has been suggested to have a role in glucose metabolism, yet the results across studies have been inconsistent. Therefore, we performed a systematic review to evaluate the effects of melatonin supplementation on insulin levels and IR. We searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov, and identified randomized controlled trials (RCTs) published prior to August 2020. Articles were reviewed, selected and extracted by two reviewers independently. In total, 8 RCTs of 376 participants were included. Data were pooled using a random-effects model, with mean differences (MDs) and 95% confidence intervals (CIs). Our results showed that melatonin administration significantly reduced insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR), and increased the quantitative insulin sensitivity check index (QUICKI). We conclude that melatonin ameliorated hyperinsulinemia, insulin resistance, and insulin sensitivity, and the results are an update of a previous meta-analysis. Although more investigations are required, we clearly provide evidence for the use of melatonin as an adjuvant treatment for metabolic disorders involving IR.
Collapse
Affiliation(s)
- Yan Li
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhenbin Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
24
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
25
|
The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants (Basel) 2021; 10:antiox10081269. [PMID: 34439517 PMCID: PMC8389221 DOI: 10.3390/antiox10081269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
To investigate the role of NLRP3 inflammasome in cardiac aging, we evaluate here morphological and ultrastructural age-related changes of cardiac muscles fibers in wild-type and NLRP3-knockout mice, as well as studying the beneficial effect of melatonin therapy. The results clarified the beginning of the cardiac sarcopenia at the age of 12 months, with hypertrophy of cardiac myocytes, increased expression of β-MHC, appearance of small necrotic fibers, decline of cadiomyocyte number, destruction of mitochondrial cristae, appearance of small-sized residual bodies, and increased apoptotic nuclei ratio. These changes were progressed in the cardiac myocytes of 24 old mice, accompanied by excessive collagen deposition, higher expressions of IL-1α, IL-6, and TNFα, complete mitochondrial vacuolation and damage, myofibrils disorganization, multivesicular bodies formation, and nuclear fragmentation. Interestingly, cardiac myocytes of NLRP3-/- mice showed less detectable age-related changes compared with WT mice. Oral melatonin therapy preserved the normal cardiomyocytes structure, restored cardiomyocytes number, and reduced β-MHC expression of cardiac hypertrophy. In addition, melatonin recovered mitochondrial architecture, reduced apoptosis and multivesicular bodies' formation, and decreased expressions of β-MHC, IL-1α, and IL-6. Fewer cardiac sarcopenic changes and highly remarkable protective effects of melatonin treatment detected in aged cardiomyocytes of NLRP3-/- mice compared with aged WT animals, confirming implication of the NLRP3 inflammasome in cardiac aging. Thus, NLRP3 suppression and melatonin therapy may be therapeutic approaches for age-related cardiac sarcopenia.
Collapse
|
26
|
Huang R, Xu Y, Lu X, Tang X, Lin J, Cui K, Yu S, Shi Y, Ye D, Liu Y, Liang X. Melatonin protects inner retinal neurons of newborn mice after hypoxia-ischemia. J Pineal Res 2021; 71:e12716. [PMID: 33426650 DOI: 10.1111/jpi.12716] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
Retinopathy of prematurity is a vision-threatening disease associated with retinal hypoxia-ischemia, leading to the death of retinal neurons and chronic neuronal degeneration. During this study, we used the oxygen-induced retinopathy mice model to mimic retinal hypoxia-ischemia phenotypes to investigate further the neuroprotective effect of melatonin on neonatal retinal neurons. Melatonin helped maintain relatively normal inner retinal architecture and thickness and preserve inner retinal neuron populations in avascular areas by rescuing retinal ganglion and bipolar cells, and horizontal and amacrine neurons, from apoptosis. Meanwhile, melatonin recovered visual dysfunction, as reflected by the improved amplitudes and implicit times of a-wave, b-wave, and oscillatory potentials. Additionally, elevated cleaved caspase-3 and Bax protein levels and reduced Bcl-2 protein levels in response to hypoxia-ischemia were diminished after melatonin treatment. Moreover, melatonin increased BDNF and downstream phospho-TrkB/Akt/ERK/CREB levels. ANA-12, a TrkB receptor antagonist, antagonized these melatonin actions and reduced melatonin-induced neuroprotection. Furthermore, melatonin rescued the reduction in melatonin receptor expression. This study suggests that melatonin exerted anti-apoptotic and neuroprotective effects in inner retinal neurons after hypoxia-ischemia, at least partly due to modulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Mao ZJ, Xia WS, Chai F. Yunpi Heluo decoction attenuates insulin resistance by regulating SIRT1-FoxO1 autophagy pathway in skeletal muscle of Zucker diabetic fatty rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113828. [PMID: 33476712 DOI: 10.1016/j.jep.2021.113828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a serious chronic metabolic disorder, and type 2 diabetes mellitus (T2DM) accounts for more than 90% of all diabetes cases. Insulin resistance (IR) is an early symptom, typical feature and main pathogenesis of T2DM due to the combined effects of genetic and environmental factors. Current evidence shows that IR is mainly caused by nutrient overload, systemic fatty acid excess, fatty tissue inflammation, endoplasmic reticulum stress, oxidative stress and abnormal autophagy. Autophagy plays an important role in the development of IR and decreased autophagy activity can cause IR through various ways. AIM OF THE STUDY Yunpiheluo (YPHL) decoction is a Chinese herbal formula with unique advantages for the treatment of T2DM. The aim of the present study was to investigate the regulatory mechanism of YPHL on the autophagy pathway in the skeletal muscle of IR Zucker diabetic fatty (ZDF) rats. METHODS T2DM ZDF rats were treated with YPHL or transfected with SIRT1 adeno-associated virus. Serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), insulin resistance index (IRI) and skeletal muscle TG levels were detected in a T2DM ZDF rat model. The skeletal muscle morphology was observed by histological analysis and Oil Red O Staining. Autophagosomes were observed by transmission electron microscopy (TEM). The skeletal muscle morphology and fat deposition were observed by histological examination and Oil Red O Staining. A rat skeletal muscle IR cell model was established and transfected with SIRT1 overexpression plasmids. Cell apoptosis was observed by DAPI staining. SIRT1 levels in skeletal muscle tissues and cells were detected by qRT-PCR. The protein expressions of SIRT1, FOXo1, LC3B and P62 were detected by Western blotting. RESULTS Large numbers of lipid droplets and swollen mitochondria were observed in the skeletal muscle in both model group and negative control (NC) group receiving blank plasmid. Autophagosomes were seen in the skeletal muscle of YPHL and SIRT1 groups, with no significant structural abnormality. In addition, the protein expression of LC3B was decreased and the protein expression of p62 was increased significantly in the model group as compared with the NC group. After intervention with YPHL and SIRT1 overexpression, the protein expression of LC3B was significantly increased and p62 was significantly decreased. However, there was no significant difference in cell apoptosis between the two groups. CONCLUSION The SIRT1-FoxO1 autophagy pathway may play a significant role in the pathogenesis of IR. YPHL could increase the autophagy level by regulating the SIRT1-FoxO1 signaling pathway in the skeletal muscle and improving the lipid metabolism, thereby attenuating IR.
Collapse
Affiliation(s)
- Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Wen-Shu Xia
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
28
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
29
|
Tavares BS, Tsosura TVS, Mattera MSLC, Santelli JO, Belardi BE, Chiba FY, Cintra LTA, Silva CC, Matsushita DH. Effects of melatonin on insulin signaling and inflammatory pathways of rats with apical periodontitis. Int Endod J 2021; 54:926-940. [PMID: 33411973 DOI: 10.1111/iej.13474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
AIM To verify the effects of melatonin supplementation on insulin sensitivity, plasma concentrations of inflammatory cytokines, insulin signalling and inflammatory pathways in the soleus (SM) and extensor digitorum longus (EDL) muscles of rats with apical periodontitis (AP). METHODOLOGY Seventy-two Wistar rats were distributed into 4 groups: (a) control (C), (b) control supplemented with melatonin (M), (c) AP (AP), and (d) AP supplemented with melatonin (AP + M). AP was induced by pulp exposure of the maxillary and mandibular right first and second molars to the oral environment. After AP induction, oral supplementation with 5 mg kg-1 melatonin (diluted in drinking water) for 60 days was initiated. At the end of the treatment, the following were analysed: (1) plasma concentrations of insulin and inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) using ELISA kits; (2) glycaemia using enzymatic assay; (3) insulin resistance using homoeostasis model assessment of insulin resistance (HOMA-IR) index; and (4) phosphorylation status of pp185 tyrosine, Akt serine, IKKα/β, and JNK in SM and EDL using Western blot. Analysis of variance of two or three factors was performed, followed by the Bonferroni test. P values < 0.05 were considered statistically significant. RESULTS AP promoted insulin resistance, significantly increased (P < 0.05) plasma concentrations of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), significantly decreased (P < 0.05) the concentration of anti-inflammatory cytokine IL-10, impaired insulin signalling in SM, and increased IKKα/β phosphorylation status in SM and EDL. Melatonin supplementation in rats with AP improved insulin sensitivity, significantly decreased (P < 0.05) TNF-α and IL-1β, significantly increased (P < 0.05) IL-10 plasma concentrations, and changed the insulin signalling in soleus muscle and IKKα/β phosphorylation status in SM and EDL muscles. CONCLUSIONS Melatonin is a potent adjuvant treatment for improving apical periodontitis-associated changes in insulin sensitivity, insulin signalling and inflammatory pathways. In addition, the negative impact of AP on general health was also demonstrated.
Collapse
Affiliation(s)
- B S Tavares
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - T V S Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - M S L C Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - J O Santelli
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - B E Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - F Y Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - L T A Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - C C Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - D H Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
30
|
Sayed RKA, Mokhtar DM, Fernández-Ortiz M, Fernández-Martínez J, Aranda-Martínez P, Escames G, Acuña-Castroviejo D. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY) 2020; 12:12648-12668. [PMID: 32644943 PMCID: PMC7377884 DOI: 10.18632/aging.103654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The role of retinoid acid receptor-related orphan receptor alpha (RORα) on male reproductive functions during aging is unclear. Here, we analyze the morphological changes in the testis of both young and aged RORα-deficient mice, with and without melatonin supplementation. Young mutants showed vacuolation, degeneration and pyknosis of spermatogenic epithelium and Sertoli cells. Aged mutants showed atrophy of the seminiferous tubules and absence of mitotic spermatogenic cells. Absence of sperms in many tubules, loss of acrosomal cap, vacuolation and hypertrophy of Sertoli cells were detected in aged mice, with a significant reduction in the number of seminiferous tubules and a significant increase in the number of Leydig cells and telocytes. Repair in seminiferous tubules and interstitial tissues with enhancement of spermatogenesis was observed in melatonin-treated aged mice. Young mutants overexpressed VEGF that was weaker in aged animals and observed only in the spermatocytes, while melatonin increased VEGF expression in spermatocytes and spermatids. Caspase 3 increased in both young and aged mutant mice in all seminiferous tubules and interstitium; caspase 3 immunostaining in seminiferous tubules, however, showed a normal pattern of apoptosis with melatonin supplementation. The present study reports that age-dependent testicular changes in RORα mutant mice were recovered by melatonin treatment.
Collapse
Affiliation(s)
- Ramy K A Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - José Fernández-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Paula Aranda-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| |
Collapse
|
31
|
Lee YH, Jung HS, Kwon MJ, Jang JE, Kim TN, Lee SH, Kim MK, Park JH. Melatonin protects INS-1 pancreatic β-cells from apoptosis and senescence induced by glucotoxicity and glucolipotoxicity. Islets 2020; 12:87-98. [PMID: 32673151 PMCID: PMC7527021 DOI: 10.1080/19382014.2020.1783162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Melatonin is a hormone known as having very strong anti-oxidant property. Senescence is a biological state characterized by the loss of cell replication and the changes consisting of a pro-inflammatory phenotype, leading to Senescence Associated Secretory Phenotype (SASP) which is now regarded as one of the fundamental processes of many degenerative diseases. Increased cell division count induces cell senescence via DNA damage in response to elevated Reactive Oxygen Species (ROS). We wanted to test whether melatonin could reduce apoptosis and stress induced premature pancreatic β-cell senescence induced by glucotoxicity and glucolipotoxicity. MATERIALS AND METHOD Cultured rodent pancreatic β-cell line (INS-1 cell) was used. Glucotoxicity (HG: hyperglycemia) and glucolipotoxicity (HGP: hyperglycemia with palmitate) were induced by hyperglycemia and the addition of palmitate. The degrees of the senescence were measured by SA-β-Gal and P16lnk4A staining along with the changes of cell viabilities, cell cycle-related protein and gene expressions, endogenous anti-oxidant defense enzymes, and Glucose Stimulated Insulin Secretion (GSIS), before and after melatonin treatment. RESULTS Cultured INS-1 cells in HG and HGP conditions revealed accelerated senescence, increased apoptosis, cell cycle arrest, compromised endogenous anti-oxidant defense, and impaired glucose-stimulated insulin secretion. Melatonin decreased apoptosis and expressions of proteins related to senescence, increase the endogenous anti-oxidant defense, and improved glucose-stimulated insulin secretion. CONCLUSION Melatonin protected pancreatic β-cell from apoptosis, decreased expressions of the markers related to the accelerated senescence, and improved the biological deteriorations induced by glucotoxicity and glucolipotoxicity.
Collapse
Affiliation(s)
- Yu Hee Lee
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Hye Sook Jung
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Min Jeong Kwon
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jung Eun Jang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Tae Nyun Kim
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Soon Hee Lee
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
- CONTACT Jeong Hyun Park Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan47392, Republic of Korea
| |
Collapse
|
32
|
Liu Y, Yang C, Feng X, Qi L, Guo J, Zhu D, Thai PN, Zhang Y, Zhang P, Sun M, Lv J, Zhang L, Xu Z, Lu X. Prenatal High-Salt Diet-Induced Metabolic Disorders via Decreasing Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α in Adult Male Rat Offspring. Mol Nutr Food Res 2020; 64:e2000196. [PMID: 32506826 DOI: 10.1002/mnfr.202000196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Although prenatal high-salt (HS) intake leads to physiological complications in the offspring, little is known regarding its effects on the offspring's glucose metabolism. Therefore, the objectives of this study are to determine the consequences of prenatal HS diet on the offspring's metabolism and to test a potential therapy. METHODS AND RESULTS Pregnant rats are fed either a normal-salt (1% NaCl) or high-salt (8% NaCl) diet during the whole pregnancy. Experiments are conducted in five-month-old male offspring. It is found that the prenatal HS diet reduced the glucose tolerance and insulin sensitivity of the offspring. Additionally, there is down-regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a/PPARGC1A) at the transcript and protein level, which leads to decreased mitochondrial biogenesis and oxidative respiration in skeletal muscle. Moreover, the down-regulation of Ppargc1a is accompanied by decreases in the expression of glucose transporter type 4 (Glut4). With endurance exercise training, these changes are mitigated, which ultimately resulted in improved insulin resistance. CONCLUSION These findings suggest that prenatal HS intake induces metabolic disorders via the decreased expression of Ppargc1a in the skeletal muscle of adult offspring, providing novel information concerning the mechanisms and early prevention of metabolic diseases of fetal origins.
Collapse
Affiliation(s)
- Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Jun Guo
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Dan Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xiyuan Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
33
|
The regulatory role of melatonin in skeletal muscle. J Muscle Res Cell Motil 2020; 41:191-198. [PMID: 32157560 DOI: 10.1007/s10974-020-09578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is an effective antioxidant and free radical scavenger, that has important biological effects in multiple cell types and species. Melatonin research in muscle has recently gained attention, mainly focused on its role in cells or tissue repair and regeneration after injury, due to its powerful biological functions, including its antioxidant, anti-inflammation, anti-tumor and anti-cancer, circadian rhythm, and anti-apoptotic effects. However, the effect of melatonin in regulating muscle development has not been systematically summarized. In this review, we outline the latest research on the involvement of melatonin in the regulation of muscle development and regeneration in order to better understand its underlying molecular mechanisms and potential applications.
Collapse
|
34
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
35
|
Zhang Y, Zheng Y, Fu Y, Wang C. Identification of biomarkers, pathways and potential therapeutic agents for white adipocyte insulin resistance using bioinformatics analysis. Adipocyte 2019; 8:318-329. [PMID: 31407623 PMCID: PMC6768254 DOI: 10.1080/21623945.2019.1649578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For the better understanding of insulin resistance (IR), the molecular biomarkers in IR white adipocytes and its potential mechanism, we downloaded two mRNA expression profiles from Gene Expression Omnibus (GEO). The white adipocyte samples in two databases were collected from the human omental adipose tissue of IR obese (IRO) subjects and insulin-sensitive obese (ISO) subjects, respectively. We identified 86 differentially expressed genes (DEGs) between the IRO and ISO subjects using limma package in R software. Gene Set Enrichment Analysis (GSEA) provided evidence that the most gene sets enriched in kidney mesenchyme development in the ISO subjects, as compared with the IRO subjects. The Gene Ontology (GO) analysis indicated that the most significantly enriched in cellular response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were most significantly enriched in cytokine-cytokine receptor interaction. Protein–Protein Interaction (PPI) network was performed with the STRING, and the top 10 hub genes were identified with the Cytohubba. CMap analysis found several small molecular compounds to reverse the altered DEGs, including dropropizine, aceclofenac, melatonin, and so on. Our outputs could empower the novel potential targets to treat omental white adipocyte insulin resistance, diabetes, and diabetes-related diseases.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yalin Fu
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
36
|
de Souza CAP, Gallo CC, de Camargo LS, de Carvalho PVV, Olesçuck IF, Macedo F, da Cunha FM, Cipolla-Neto J, do Amaral FG. Melatonin multiple effects on brown adipose tissue molecular machinery. J Pineal Res 2019; 66:e12549. [PMID: 30597601 DOI: 10.1111/jpi.12549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) influences energy balance through nonshivering thermogenesis, and its metabolism daily and seasonal variations are regulated by melatonin through partially known mechanisms. We evaluated the role of melatonin in BAT molecular machinery of male Control, pinealectomized (PINX), and melatonin-treated pinealectomized (PINX/Mel) adult rats. BAT was collected either every 3 hours over 24 hours or after cold or high-fat diet (HFD) acute exposure. HFD PINX animals presented decreased Dio2 expression, while HFD PINX/Mel animals showed increased Dio2, Ucp1, and Cidea expression. Cold-exposed PINX rats showed decreased Dio2 and Lhs expression, and melatonin treatment augmented Adrβ3, Dio2, Ucp1, and Cidea expression. Daily profiles analyses showed altered Dio2, Lhs, Ucp1, Pgc1α, and Cidea gene and UCP1 protein expression in PINX animals, leading to altered rhythmicity under sub-thermoneutral conditions, which was partially restored by melatonin treatment. The same was observed for mitochondrial complexes I, II, and IV protein expression and enzyme activity. Melatonin absence seems to impair BAT responses to metabolic challenges, and melatonin replacement reverses this effect, with additional increase in the expression of crucial genes, suggesting that melatonin plays an important role in several key points of the thermogenic activation pathway, influencing both the rhythmic profile of the tissue and its ability to respond to metabolic challenges, which is crucial for the organism homeostasis.
Collapse
Affiliation(s)
- Caroline A P de Souza
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Congentino Gallo
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Ingrid Fernandes Olesçuck
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Felipe Macedo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Fernanda G do Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Fang Y, Zhao C, Xiang H, Zhao X, Zhong R. Melatonin Inhibits Formation of Mitochondrial Permeability Transition Pores and Improves Oxidative Phosphorylation of Frozen-Thawed Ram Sperm. Front Endocrinol (Lausanne) 2019; 10:896. [PMID: 31969863 PMCID: PMC6960123 DOI: 10.3389/fendo.2019.00896] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Structural and functional damages to mitochondria of frozen-thawed sperm are a typical cryoinjury, with mitochondrial permeability transition pore (MPTP) formation being the hallmark change. Mitochondria are both a primary synthesis site and principle target for melatonin; this compound can directly inhibit MPTP formation and therefore confer protection at a mitochondrial level. The objective was to determine effects of melatonin on MPTP opening, viability, motility, and oxidative phosphorylation (OXPHOS) of frozen-thawed ram sperm. Ram semen was diluted in glucose-egg yolk buffer with 0 or 10-7 M melatonin (frozen and frozen + melatonin groups, respectively) and slow frozen, with fresh semen as Control. In frozen-thawed sperm, melatonin inhibited MPTP opening and lactate concentrations and improved sperm viability, motility, acetyl-CoA concentration and adenosine triphosphate (ATP) production. With regard to the underlying physiological mechanism, melatonin suppressed movement of citrate synthase, isocitrate dehydrogenase, oxoglutarate dehydrogenase complex, and F0F1-ATP synthase permeability from mitochondrial to cytosolic fractions induced by MPTP opening; furthermore, it increased mRNA expressions of respiratory chain complex components and activities of complexes I, II, III, and IV and thereby improved oxygen consumption capacity in frozen-thawed sperm. In conclusion, melatonin improved OXPHOS of frozen-thawed ram sperm, attributed to inhibition of cryopreservation-induced MPTP opening.
Collapse
|
38
|
de Farias TDSM, Cruz MM, de Sa RCDC, Severi I, Perugini J, Senzacqua M, Cerutti SM, Giordano A, Cinti S, Alonso-Vale MIC. Melatonin Supplementation Decreases Hypertrophic Obesity and Inflammation Induced by High-Fat Diet in Mice. Front Endocrinol (Lausanne) 2019; 10:750. [PMID: 31749764 PMCID: PMC6848267 DOI: 10.3389/fendo.2019.00750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity results from critical periods of positive energy balance characterized by caloric intake greater than energy expenditure. This disbalance promotes adipose tissue dysfunction which is related to other comorbidities. Melatonin is a low-cost therapeutic agent and studies indicate that its use may improve obesity-related disorders. To evaluate if the melatonin is efficient in delaying or even blocking the damages caused by excessive ingestion of a high-fat diet (HFD) in mice, as well as improving the inflammatory profile triggered by obesity herein, male C57BL/6 mice of 8 weeks were induced to obesity by a HFD and treated for 10 weeks with melatonin. The results demonstrate that melatonin supplementation attenuated serum triglyceride levels and total and LDL cholesterol and prevented body mass gain through a decreased lipogenesis rate and increased lipolytic capacity in white adipocytes, with a concomitant increment in oxygen consumption and Pgc1a and Prdm16 expression. Altogether, these effects prevented adipocyte hypertrophy caused by HFD and reflected in decreased adiposity. Finally, melatonin supplementation reduced the crown-like-structure (CLS) formation, characteristic of the inflammatory process by macrophage infiltration into white adipose tissue of obese subjects, as well as decreased the gene expression of inflammation-related factors, such as leptin and MCP1. Thus, the melatonin can be considered a potential therapeutic agent to attenuate the metabolic and inflammatory disorders triggered by obesity.
Collapse
Affiliation(s)
- Talita da Silva Mendes de Farias
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Maysa Mariana Cruz
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Roberta Cavalcante da Cunha de Sa
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Suzete Maria Cerutti
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Maria Isabel Cardoso Alonso-Vale
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
- *Correspondence: Maria Isabel Cardoso Alonso-Vale
| |
Collapse
|
39
|
Obayashi K, Yamagami Y, Iwamoto J, Kurumatani N, Saeki K. Gender differences in the association between melatonin secretion and diabetes in elderly: The HEIJO-KYO cohort. Clin Endocrinol (Oxf) 2018; 89:750-756. [PMID: 30151926 DOI: 10.1111/cen.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Reportedly, melatonin protects the pancreatic islets and decreases insulin resistance; thus, it may contribute to preventing diabetes. Epidemiological data suggested that lower melatonin secretion is associated with higher incidence of diabetes in female nurses. Such associations are unknown in the general population. We evaluated the association between melatonin secretion and diabetes in a general population, including both genders. DESIGN Cross-sectional study. PARTICIPANTS A total of 1096 community-based elderly males (n = 519) and females (n = 577) (mean age, 71.8 years) were enrolled. MEASUREMENTS Overnight urinary 6-sulfatoxymelatonin excretion (UME) and diabetes prevalence were measured. RESULTS The median UME was 6.7 μg (interquartile range, 4.0-10.5); the prevalence of diabetes was 17.5% in males and 10.7% in females. The prevalence of diabetes decreased with increasing UME quartiles among males (P for trend = 0.009) but not among females (P for trend = 0.96). In a multivariable logistic regression analysis adjusting for potential confounding factors, such as age, smoking and drinking habits, economic status, caloric intake, and physical activity, the odds ratio (OR) for diabetes was significantly lower in the highest UME quartile group compared with the lowest quartile group among males (OR, 0.35; 95% CI, 0.17-0.70; P = 0.003) but not females (OR, 0.94; 95% CI, 0.45-1.95; P = 0.87). Consistent results were observed in the analysis after adjusting for clinical parameters or using continuous UME data. CONCLUSIONS Melatonin secretion was significantly and inversely associated with diabetes in males but not in females. This association was independent of several important confounding factors.
Collapse
Affiliation(s)
- Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Yuki Yamagami
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Junko Iwamoto
- Department of Nursing, Tenri Health Care University, Nara, Japan
| | - Norio Kurumatani
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
40
|
Liu Y, Neumann D, Glatz JFC, Luiken JJFP. Molecular mechanism of lipid-induced cardiac insulin resistance and contractile dysfunction. Prostaglandins Leukot Essent Fatty Acids 2018; 136:131-141. [PMID: 27372802 DOI: 10.1016/j.plefa.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/04/2023]
Abstract
Long-chain fatty acids are the main cardiac substrates from which ATP is generated continually to serve the high energy demand and sustain the normal function of the heart. Under healthy conditions, fatty acid β-oxidation produces 50-70% of the energy demands with the remainder largely accounted for by glucose. Chronically increased dietary lipid supply often leads to excess lipid accumulation in the heart, which is linked to a variety of maladaptive phenomena, such as insulin resistance, cardiac hypertrophy and contractile dysfunction. CD36, the predominant cardiac fatty acid transporter, has a key role in setting the heart on a road to contractile dysfunction upon the onset of chronic lipid oversupply by translocating to the cell surface and opening the cellular 'doors' for fatty acids. The sequence of events after the CD36-mediated myocellular lipid accumulation is less understood, but in general it has been accepted that the excessively imported lipids cause insulin resistance, which in turn leads to contractile dysfunction. There are several gaps of knowledge in this proposed order of events which this review aims to discuss. First, the molecular mechanisms underlying lipid-induced insulin resistance are not yet completely disclosed. Specifically, several mediators have been proposed, such as diacylglycerols, ceramides, peroxisome proliferator-activated receptors (PPAR), inflammatory kinases and reactive oxygen species (ROS), but their relative contributions to the onset of insulin resistance and their putatively synergistic actions are topics of controversy. Second, there are also pieces of evidence that lipids can induce contractile dysfunction independently of insulin resistance. Perhaps, a more integrative view is needed, in which several lipid-induced pathways operate synergistically or in parallel to induce contractile dysfunction. Unraveling of these processes is expected to be important in designing effective therapeutic strategies to protect the lipid-overloaded heart.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
41
|
Al-Sarraf IAK, Kasabri V, Akour A, Naffa R. Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study. Horm Mol Biol Clin Investig 2018; 35:/j/hmbci.ahead-of-print/hmbci-2018-0016/hmbci-2018-0016.xml. [PMID: 29813030 DOI: 10.1515/hmbci-2018-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
Abstract
Background Metabolic syndrome (MetS) is a cluster of metabolic risk factors which increases the chances for future cardiovascular diseases, as well as diabetes. The underlying causes of MetS include overweight and obesity, physical inactivity and genetic factors. Our intension here was to focus in this study on the importance of the chronobiology, represented by melatonin (MT) and cryptochrome 2 (CRY2), in developing MetS and type 2 diabetes mellitus (T2DM). Thus, we aimed to compare MT and CRY2 plasma levels and correlate both biomarkers with adiposity, atherogenicity and hematological indices in MetS and T2DM cohorts. Methods In a cross-sectional study, 28 normoglycemic lean subjects (controls), 29 normoglycemic MetS subjects and 30 MetS (pre-diabetic/diabetic) were recruited. Results MT (pg/mL) was elevated significantly in MetS arm p-value < 0.05, whereas CRY2 levels (ng/mL) were markedly higher in both MetS groups (non-diabetic and pre-diabetic/diabetic) (all with p-value < 0.001). A reciprocal MT-CRY2 relationship was observed in the MetS (non-diabetic) group (p-value = 0.003). Of note in the total study population, both MT and CRY2 proportionally correlated with each of the following: atherogenicity index of plasma (AIP), waist circumference (WC) and systolic blood pressure (SBP) (all with p-value < 0.05) for MT and CRY2, respectively). Whereas MT correlated inversely with high-density lipoprotein-cholesterol (HDL-C) (p-value < 0.05). Additionally, CRY2 correlated directly with each of the following: diastolic blood pressure (DBP), total cholesterol (TC), low-density lipoprotein (LDL-C), hip circumference (HC), body adiposity index (BAI), weight-to-height (WHtR) ratio, mean platelet volume (MPV) and platelet/lymphocyte ratio (PLR) (p-value < 0.05). Conclusion These findings substantiate that both metabolic risk biomarkers can be prognostic tools and pharmacotherapeutic targets to slowdown the accelerated nature of T2DM.
Collapse
Affiliation(s)
| | - Violet Kasabri
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan, Phone: +96265355000, Fax: +9625300520
| | - Amal Akour
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Randa Naffa
- School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
42
|
Sayed RKA, Fernández-Ortiz M, Diaz-Casado ME, Rusanova I, Rahim I, Escames G, López LC, Mokhtar DM, Acuña-Castroviejo D. The Protective Effect of Melatonin Against Age-Associated, Sarcopenia-Dependent Tubular Aggregate Formation, Lactate Depletion, and Mitochondrial Changes. J Gerontol A Biol Sci Med Sci 2018; 73:1330-1338. [DOI: 10.1093/gerona/gly059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ramy K A Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Egypt
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
| | - María E Diaz-Casado
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
| | - Iryna Rusanova
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Complejo Hospitalario de Granada, Spain
| | - Ibtissem Rahim
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Laboratory of Cellular and Molecular Biology, Faculty of Science Biologiques, University of Science and Technology Houari Boumedienne (USTHB), Algeria
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Complejo Hospitalario de Granada, Spain
| | - Luis C López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Complejo Hospitalario de Granada, Spain
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Complejo Hospitalario de Granada, Spain
| |
Collapse
|
43
|
Maarman GJ, Reiter RJ. Melatonin therapy for blunt trauma and strenuous exercise: A mechanism involving cytokines, NFκB, Akt, MAFBXand MURF-1. J Sports Sci 2018; 36:1897-1901. [DOI: 10.1080/02640414.2018.1424491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gerald J. Maarman
- Hatter Institute for Cardiovascular Disease in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
44
|
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193:20-33. [DOI: 10.1016/j.lfs.2017.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/19/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
|
45
|
Buonfiglio D, Parthimos R, Dantas R, Cerqueira Silva R, Gomes G, Andrade-Silva J, Ramos-Lobo A, Amaral FG, Matos R, Sinésio J, Motta-Teixeira LC, Donato J, Reiter RJ, Cipolla-Neto J. Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats. Front Endocrinol (Lausanne) 2018; 9:122. [PMID: 29636725 PMCID: PMC5881424 DOI: 10.3389/fendo.2018.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night.
Collapse
Affiliation(s)
- Daniella Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Rafaela Parthimos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Rosana Dantas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Raysa Cerqueira Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Gomes
- Department of Physics and Interdisciplinary Science (FCI), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Andrade-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Angela Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Gaspar Amaral
- Department of Physiology, Universidade Federal de São Paulo – Unifesp, São Paulo, Brazil
| | - Raphael Matos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - José Sinésio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Lívia Clemente Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, United States
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
- *Correspondence: José Cipolla-Neto,
| |
Collapse
|
46
|
Reutrakul S, Sumritsopak R, Saetung S, Chanprasertyothin S, Chailurkit LO, Anothaisintawee T. Lower nocturnal urinary 6-sulfatoxymelatonin is associated with more severe insulin resistance in patients with prediabetes. Neurobiol Sleep Circadian Rhythms 2018; 4:10-16. [PMID: 31236502 PMCID: PMC6584596 DOI: 10.1016/j.nbscr.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 06/24/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Melatonin, a neurohormone secreted by the pineal gland, controls circadian rhythmicity, modulates sleep and plays a role in glucose metabolism. Low secretion of nocturnal urinary 6-sulfatoxymelatonin (aMT6S) was associated with incident diabetes. Sleep disturbances have also been shown to be risk factors for diabetes. In this study, we explored the relationship between nocturnal urinary aMT6s and markers of glucose metabolism in prediabetes patients, considering sleep related factors. METHODS Sixty two non-shift working patients with prediabetes [hemoglobin A1c (HbA1c) 5.7-6.49%] who were not on beta-blockers participated. Sleep duration and efficiency was recorded using 7-day actigraphy. Obstructive sleep apnea was evaluated using an overnight in-home monitoring device. Nocturnal urinary aMT6s/creatinine ratio was measured from an overnight urine sample. Oral glucose tolerance test (OGTT, 75-grams glucose) was performed, with measurements of insulin and glucose levels. RESULTS Mean (SD) age was 55.3 (8.2) years and mean HbA1c level was 6.01 (0.2)%. Mean (SD) sleep duration 6.0 (0.9) h, sleep efficiency was 83.4 (6.6)% and a median (interquartile rage) apnea hypopnea index was 10.3 (3.6, 16.4). Median nocturnal urinary aMT6s was 17.4 (9.4, 28.2) ng/mg creatinine. Higher nocturnal urinary aMT6s significantly correlated with lower fasting insulin (p = 0.004), lower insulin response to OGTT (p = 0.027), and lower fasting and whole body insulin resistance as indicated by lower HOMA-IR and higher Matsuda insulin sensitivity index (p = 0.006 and p = 0.011, respectively), but it was not correlated with fasting glucose, glucose response to OGTT, or HbA1c. Sleep duration inversely correlated with HbA1c but no other correlations were found between other sleep variables and markers of glucose metabolism or nocturnal urinary aMT6s. After adjusting for body mass index, higher nocturnal urinary aMT6s significantly correlated with lower HOMA-IR (p = 0.025) and fasting insulin levels (p = 0.014). CONCLUSION Nocturnal urinary aMT6s inversely correlated with fasting insulin resistance and insulin levels in patients with prediabetes. These results support the role of melatonin in glucose metabolism.
Collapse
Affiliation(s)
- Sirimon Reutrakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rungtip Sumritsopak
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sunee Saetung
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suwannee Chanprasertyothin
- Research Center, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - La-or Chailurkit
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thunyarat Anothaisintawee
- Department of Family Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
47
|
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74:3941-3954. [PMID: 28819865 PMCID: PMC11107716 DOI: 10.1007/s00018-017-2611-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina.
| | - Daniel E Vigo
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina
| |
Collapse
|
48
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
49
|
Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6:jcm6110100. [PMID: 29077060 PMCID: PMC5704117 DOI: 10.3390/jcm6110100] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress arises when cellular antioxidant defences become overwhelmed by a surplus generation of reactive oxygen species (ROS). Once this occurs, many cellular biomolecules such as DNA, lipids, and proteins become susceptible to free radical-induced oxidative damage, and this may consequently lead to cellular and ultimately tissue and organ dysfunction. Mitochondria, as well as being a source of ROS, are vulnerable to oxidative stress-induced damage with a number of key biomolecules being the target of oxidative damage by free radicals, including membrane phospholipids, respiratory chain complexes, proteins, and mitochondrial DNA (mt DNA). As a result, a deficit in cellular energy status may occur along with increased electron leakage and partial reduction of oxygen. This in turn may lead to a further increase in ROS production. Oxidative damage to certain mitochondrial biomolecules has been associated with, and implicated in the pathophysiology of a number of diseases. It is the purpose of this review to discuss the impact of such oxidative stress and subsequent damage by reviewing our current knowledge of the pathophysiology of several inherited mitochondrial disorders together with our understanding of perturbations observed in the more commonly acquired neurodegenerative disorders such as Parkinson’s disease (PD). Furthermore, the potential use and feasibility of antioxidant therapies as an adjunct to lower the accumulation of damaging oxidative species and hence slow disease progression will also be discussed.
Collapse
|
50
|
Zhai M, Liu Z, Zhang B, Jing L, Li B, Li K, Chen X, Zhang M, Yu B, Ren K, Yang Y, Yi W, Yang J, Liu J, Yi D, Liang H, Jin Z, Reiter RJ, Duan W, Yu S. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: In vivo and in vitro studies. J Pineal Res 2017; 63. [PMID: 28708271 DOI: 10.1111/jpi.12433] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload-induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8-week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α-myosin heavy chain, downregulated the expression level of β-myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator-activated receptor-gamma co-activator-1 beta (PGC-1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II-induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC-1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC-1β.
Collapse
Affiliation(s)
- Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Jing
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaifeng Li
- Institute of Material Medical, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiuju Chen
- The First Brigade of Student, Fourth Military Medical University, Xi'an, China
| | - Meng Zhang
- Institute of Material Medical, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Bo Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|