1
|
Emikpe BO, Asare DA, Tasiame W, Segbaya S, Takyi PN, Allegye-Cudjoe E. Rabies control in Ghana: Stakeholders interventions, challenges and opportunities. Health Sci Rep 2024; 7:e70112. [PMID: 39323463 PMCID: PMC11422661 DOI: 10.1002/hsr2.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Background Rabies remains a significant public health issue in Ghana, predominantly affecting rural communities with limited access to health care and veterinary services. The disease is primarily transmitted through bites from infected domestic dogs and leads to many deaths worldwide each year. Despite various interventions, Ghana continues to struggle with rabies control and prevention. This narrative paper focuses on rabies control in Ghana, examining stakeholders' interventions, challenges faced, and opportunities available. Methods The paper reviews existing rabies control measures in Ghana, including dog vaccination efforts and One Health strategies. It also discusses the limitations of these interventions, such as minimal vaccination coverage, weak surveillance, and inadequate intersectoral coordination. Results Ghana has implemented dog vaccination campaigns, but coverage remains minimal. Additionally, weak disease surveillance, cultural perceptions, and inadequate coordination across sectors have hampered the country's ability to control rabies effectively. Conclusion Adopting One Health principles, which integrate human, animal, and environmental health efforts, is emphasized as a critical strategy to eliminate rabies in Ghana by 2030. By addressing these challenges and leveraging available opportunities, Ghana can strengthen its rabies control programs and work toward a rabies-free future.
Collapse
Affiliation(s)
- Benjamin Obukowho Emikpe
- Department of Pathobiology, School of Veterinary Medicine Kwame Nkrumah University of Science and Technology (KNUST) Kumasi Ghana
| | - Derrick Adu Asare
- Department of Pathobiology, School of Veterinary Medicine Kwame Nkrumah University of Science and Technology (KNUST) Kumasi Ghana
| | - William Tasiame
- Department of Public Health, School of Veterinary Medicine Kwame Nkrumah University of Science and Technology (KNUST) Kumasi Ghana
| | | | - Prince Nana Takyi
- Department of Pathobiology, School of Veterinary Medicine Kwame Nkrumah University of Science and Technology (KNUST) Kumasi Ghana
| | | |
Collapse
|
2
|
Salazar R, Brunker K, Díaz EW, Zegarra E, Monroy Y, Baldarrago GN, Borrini-Mayorí K, De la Puente-León M, Kasaragod S, Levy MZ, Hampson K, Castillo-Neyra R. Genomic Characterization of a Dog-Mediated Rabies Outbreak in El Pedregal, Arequipa, Peru. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608982. [PMID: 39229209 PMCID: PMC11370554 DOI: 10.1101/2024.08.21.608982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Rabies, a re-emerging zoonosis with the highest known human case fatality rate, has been largely absent from Peru, except for endemic circulation in the Puno region on the Bolivian border and re-emergence in Arequipa City in 2015, where it has persisted. In 2021, an outbreak occurred in the rapidly expanding city of El Pedregal near Arequipa, followed by more cases in 2022 after nearly a year of epidemiological silence. While currently under control, questions persist regarding the origin of the El Pedregal outbreak and implications for maintaining rabies control in Peru. Methods We sequenced 25 dog rabies virus (RABV) genomes from the El Pedregal outbreak (n=11) and Arequipa City (n=14) from 2021-2023 using Nanopore sequencing in Peru. Historical genomes from Puno (n=4, 2010-2012) and Arequipa (n=5, 2015-2019), were sequenced using an Illumina approach in the UK. In total, 34 RABV genomes were analyzed, including archived and newly obtained samples. The genomes were analyzed phylogenetically to understand the outbreak's context and origins. Results Phylogenomic analysis identified two genetic clusters in El Pedregal: 2021 cases stemmed from a single introduction unrelated to Arequipa cases, while the 2022 sequence suggested a new introduction from Arequipa rather than persistence. In relation to canine RABV diversity in Latin America, all new sequences belonged to a new minor clade, Cosmopolitan Am5, sharing relatives from Bolivia, Argentina, and Brazil. Conclusion Genomic insights into the El Pedregal outbreak revealed multiple introductions over a 2-year window. Eco-epidemiological conditions, including migratory worker patterns, suggest human-mediated movement drove introductions. Despite outbreak containment, El Pedregal remains at risk of dog-mediated rabies due to ongoing circulation in Arequipa, Puno, and Bolivia. Human-mediated movement of dogs presents a major risk for rabies re-emergence in Peru, jeopardizing regional dog-mediated rabies control. Additional sequence data is needed for comprehensive phylogenetic analyses.
Collapse
Affiliation(s)
- Renzo Salazar
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elvis W Díaz
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edith Zegarra
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | - Ynes Monroy
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | | | - Katty Borrini-Mayorí
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Micaela De la Puente-León
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sandeep Kasaragod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michael Z Levy
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Ricardo Castillo-Neyra
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Dellicour S, Bastide P, Rocu P, Fargette D, Hardy OJ, Suchard MA, Guindon S, Lemey P. How fast are viruses spreading in the wild? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588821. [PMID: 38645268 PMCID: PMC11030353 DOI: 10.1101/2024.04.10.588821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics allowing to unveil the dispersal dynamics and evaluate the capacity to spread among hosts. Heterogeneous sampling intensity of genomic sequences can however impact the accuracy of dispersal insights gained through phylogeographic inference. In our study, we implement a simulation framework to evaluate the robustness of three dispersal metrics - a lineage dispersal velocity, a diffusion coefficient, and an isolation-by-distance signal metric - to the sampling effort. Our results reveal that both the diffusion coefficient and isolation-by-distance signal metrics appear to be robust to the number of samples considered for the phylogeographic reconstruction. We then use these two dispersal metrics to compare the dispersal pattern and capacity of various viruses spreading in animal populations. Our comparative analysis reveals a broad range of isolation-by-distance patterns and diffusion coefficients mostly reflecting the dispersal capacity of the main infected host species but also, in some cases, the likely signature of rapid and/or long-distance dispersal events driven by human-mediated movements through animal trade. Overall, our study provides key recommendations for the lineage dispersal metrics to consider in future studies and illustrates their application to compare the spread of viruses in various settings.
Collapse
|
4
|
Jaramillo Ortiz L, Begeman L, Schillemans M, Kuiken T, de Boer WF. Presence of coronaviruses in the common pipistrelle (P. pipistrellus) and Nathusius´ pipistrelle (P. nathusii) in relation to landscape composition. PLoS One 2023; 18:e0293649. [PMID: 38019737 PMCID: PMC10686486 DOI: 10.1371/journal.pone.0293649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in land use can modify habitat and roosting behaviour of bats, and therefore the transmission dynamics of viruses. Within bat roosts the density and contact rate among individuals increase and may facilitate the transmission of bat coronaviruses (CoVs). Landscape components supporting larger bat populations may thus lead to higher CoVs prevalence, as the number of roosts and/or roost size are likely to be higher. Hence, relationships between landscape composition and the presence of CoVs are expected to exist. To increase our understanding of the spread and shedding of coronaviruses in bat populations we studied the relationships between landscape composition and CoVs prevalence in the species Pipistrellus pipistrellus and Pipistrellus nathusii. Faecal samples were collected across The Netherlands, and were screened to detect the presence of CoV RNA. Coordinates were recorded for all faecal samples, so that landscape attributes could be quantified. Using a backward selection procedure on the basis of AIC, the landscape variables that best explained the presence of CoVs were selected in the final model. Results suggested that relationships between landscape composition and CoVs were likely associated with optimal foraging opportunities in both species, e.g. nearby water in P. nathusii or in areas with more grassland situated far away from forests for P. pipistrellus. Surprisingly, we found no positive association between built-up cover (where roosts are frequently found) and the presence of bat-CoVs for both species. We also show that samples collected from large bat roosts, such as maternity colonies, substantially increased the probability of finding CoVs in P. pipistrellus. Interestingly, while maternity colonies of P. nathusii are rarely present in The Netherlands, CoVs prevalence was similar in both species, suggesting that other mechanisms besides roost size, participate in the transmission of bat-CoVs. We encourage further studies to quantify bat roosts and colony networks over the different landscape compositions to better understand the ecological mechanisms involved in the transmission of bat-CoVs.
Collapse
Affiliation(s)
- Laura Jaramillo Ortiz
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem Frederik de Boer
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Lu T, Cao JMD, Rahman AKMA, Islam SS, Sufian MA, Martínez-López B. Risk mapping and risk factors analysis of rabies in livestock in Bangladesh using national-level passive surveillance data. Prev Vet Med 2023; 219:106016. [PMID: 37696207 DOI: 10.1016/j.prevetmed.2023.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Rabies is a major zoonotic disease around the world, causing significant mortality to both humans and animals, especially in low- and middle-income countries. In Bangladesh, rabies is transmitted mostly by the bite of infected dogs and jackals to humans and domestic livestock, causing severe economic losses and public health hazards. Our study analyzed national passive surveillance data of veterinary hospital-reported rabies cases in cattle, buffalo, sheep, and goats from 2015 to 2017 in all 64 districts of Bangladesh. We used a zero-inflated negative binomial regression model to identify the main environmental and socio-economic risk factors associated with rabies occurrence in livestock, and we used model results to generate risk maps. Our study revealed that monsoon precipitation (RR=1.28, p-value=0.043) was positively associated with rabies cases in livestock, and the percentage of adults who have completed university education was also a significant predictor (RR=0.58, p-value<0.001) likely suggesting that districts with higher education levels tended to have a lower reporting of rabies cases in livestock. The standardized incidence ratio maps and predicted relative risk maps revealed a high risk of rabies cases in southeast areas in Bangladesh. We recommend implementing risk-based vaccination strategies in dogs and jackals in those high-risk areas before monsoon to reduce the burden of rabies cases in domestic ruminants and humans in Bangladesh.
Collapse
Affiliation(s)
- Taotao Lu
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - José Manuel Díaz Cao
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - A K M Anisur Rahman
- Department of Medicine, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sk Shaheenur Islam
- Department of Livestock Services, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Md Abu Sufian
- Department of Livestock Services, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Layan M, Dacheux L, Lemey P, Brunker K, Ma L, Troupin C, Dussart P, Chevalier V, Wood JLN, Ly S, Duong V, Bourhy H, Dellicour S. Uncovering the endemic circulation of rabies in Cambodia. Mol Ecol 2023; 32:5140-5155. [PMID: 37540190 DOI: 10.1111/mec.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.
Collapse
Affiliation(s)
- Maylis Layan
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Laurent Dacheux
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Laurence Ma
- Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, Paris, France
| | - Cécile Troupin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Véronique Chevalier
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ. Montpellier CIRAD, INRAE, Montpellier, France
- Epidemiology and Clinical Research, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sowath Ly
- Epidemiology and Public Health, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
7
|
Abstract
Plant diseases are strongly influenced by host biodiversity, spatial structure, and abiotic conditions. All of these are undergoing rapid change, as the climate is warming, habitats are being lost, and nitrogen deposition is changing nutrient dynamics of ecosystems with ensuing consequences for biodiversity. Here, I review examples of plant-pathogen associations to demonstrate how our ability to understand, model and predict disease dynamics is becoming increasingly difficult, as both plant and pathogen populations and communities are undergoing extensive change. The extent of this change is influenced via both direct and combined effects of global change drivers, and especially the latter are still poorly understood. Change at one trophic level is expected to drive change also at the other, and hence feedback loops between plants and their pathogens are expected to drive changes in disease risk both through ecological as well as evolutionary mechanisms. Many of the examples discussed here demonstrate an increase in disease risk as a result of ongoing change, suggesting that unless we successfully mitigate global environmental change, plant disease is going to become an increasingly heavy burden on our societies with far-reaching consequences for food security and functioning of ecosystems.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO BOX 65 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Zhao J, Dellicour S, Yan Z, Veit M, Gill MS, He WT, Zhai X, Ji X, Suchard MA, Lemey P, Su S. Early Genomic Surveillance and Phylogeographic Analysis of Getah Virus, a Reemerging Arbovirus, in Livestock in China. J Virol 2023; 97:e0109122. [PMID: 36475767 PMCID: PMC9888209 DOI: 10.1128/jvi.01091-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022] Open
Abstract
Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.
Collapse
Affiliation(s)
- Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Xiaofeng Zhai
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
10
|
Chen S. Spatial and temporal dynamic analysis of rabies: A review of current methodologies. GEOSPATIAL HEALTH 2022; 17. [PMID: 36468590 DOI: 10.4081/gh.2022.1139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Rabies continues to be one of the deadliest, high risk diseases worldwide, posing a severe threat to public health. The lack of human-to-human transmission means that the spread of rabies is not significantly affected by the distribution of humans or migra- tion. Thus, the spatiotemporal dynamic of cases in both wild and domestic animals is an important issue that can result in human cases. This paper gives an overview of the methodologies for the spatial and temporal dynamic analysis of this disease. It introduces the most representative research progress of spatial aggregation, dynamic transmission, spatiotemporal distribution, epidemiologi- cal analysis and application of modelling in the study of rabies transmission in recent years. This overview should be useful for investigating the spatial and temporal dynamics of rabies, as it could help understanding the spread of cases as well as contribute to the development of better prevention and control strategies in ecology and epidemiology.
Collapse
Affiliation(s)
- Shuaicheng Chen
- College of Animal Science and Technology, Shandong Agricultural University.
| |
Collapse
|
11
|
Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022; 11:1376. [PMID: 36422627 PMCID: PMC9692567 DOI: 10.3390/pathogens11111376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran P.O. Box. 1477893855, Iran
- Young Researchers and Elites Club Science and Research Branch, Islamic Azad University; Tehran P.O. Box. 1477893855, Iran
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal Bioscience, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
12
|
Dellicour S, Lemey P, Suchard MA, Gilbert M, Baele G. Accommodating sampling location uncertainty in continuous phylogeography. Virus Evol 2022; 8:veac041. [PMID: 35795297 PMCID: PMC9248920 DOI: 10.1093/ve/veac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Phylogeographic inference of the dispersal history of viral lineages offers key opportunities to tackle epidemiological questions about the spread of fast-evolving pathogens across human, animal and plant populations. In continuous space, i.e. when locations are specified by longitude and latitude, these reconstructions are however often limited by the availability or accessibility of precise sampling locations required for such spatially explicit analyses. We here review the different approaches that can be considered when genomic sequences are associated with a geographic area of sampling instead of precise coordinates. In particular, we describe and compare the approaches to define homogeneous and heterogeneous prior ranges of sampling coordinates.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles 1050, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1766, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles 1050, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
13
|
Sararat C, Changruenngam S, Chumkaeo A, Wiratsudakul A, Pan-ngum W, Modchang C. The effects of geographical distributions of buildings and roads on the spatiotemporal spread of canine rabies: An individual-based modeling study. PLoS Negl Trop Dis 2022; 16:e0010397. [PMID: 35536861 PMCID: PMC9126089 DOI: 10.1371/journal.pntd.0010397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Rabies is a fatal disease that has been a serious health concern, especially in developing countries. Although rabies is preventable by vaccination, the spread still occurs sporadically in many countries, including Thailand. Geographical structures, habitats, and behaviors of host populations are essential factors that may result in an enormous impact on the mechanism of propagation and persistence of the disease. To investigate the role of geographical structures on the transmission dynamics of canine rabies, we developed a stochastic individual-based model that integrates the exact configuration of buildings and roads. In our model, the spatial distribution of dogs was estimated based on the distribution of buildings, with roads considered to facilitate dog movement. Two contrasting areas with high- and low-risk of rabies transmission in Thailand, namely, Hatyai and Tepha districts, were chosen as study sites. Our modeling results indicated that the distinct geographical structures of buildings and roads in Hatyai and Tepha could contribute to the difference in the rabies transmission dynamics in these two areas. The high density of buildings and roads in Hatyai could facilitate more rabies transmission. We also investigated the impacts of rabies intervention, including reducing the dog population, restricting owned dog movement, and dog vaccination on the spread of canine rabies in these two areas. We found that reducing the dog population alone might not be sufficient for preventing rabies transmission in the high-risk area. Owned dog confinement could reduce more the likelihood of rabies transmission. Finally, a higher vaccination coverage may be required for controlling rabies transmission in the high-risk area compared to the low-risk area.
Collapse
Affiliation(s)
- Chayanin Sararat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suttikiat Changruenngam
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arun Chumkaeo
- Songkhla Provincial Livestock Office, Muang, Songkhla, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wirichada Pan-ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
- Centre of Excellence in Mathematics, CHE, Ministry of Education, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
14
|
Campbell K, Gifford RJ, Singer J, Hill V, O’Toole A, Rambaut A, Hampson K, Brunker K. Making genomic surveillance deliver: A lineage classification and nomenclature system to inform rabies elimination. PLoS Pathog 2022; 18:e1010023. [PMID: 35500026 PMCID: PMC9162366 DOI: 10.1371/journal.ppat.1010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/02/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.
Collapse
Affiliation(s)
- Kathryn Campbell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joshua Singer
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Verity Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Aine O’Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Antolin MF. From outbreaks to endemic disease. Science 2022; 376:453-454. [PMID: 35482884 DOI: 10.1126/science.abo7428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Relief from the effects of epidemics may signal the start of low-level disease persistence.
Collapse
Affiliation(s)
- Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Mancy R, Rajeev M, Lugelo A, Brunker K, Cleaveland S, Ferguson EA, Hotopp K, Kazwala R, Magoto M, Rysava K, Haydon DT, Hampson K. Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science 2022; 376:512-516. [PMID: 35482879 PMCID: PMC7613728 DOI: 10.1126/science.abn0713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How acute pathogens persist and what curtails their epidemic growth in the absence of acquired immunity remains unknown. Canine rabies is a fatal zoonosis that circulates endemically at low prevalence among domestic dogs in low- and middle-income countries. We traced rabies transmission in a population of 50,000 dogs in Tanzania from 2002 to 2016 and applied individual-based models to these spatially resolved data to investigate the mechanisms modulating transmission and the scale over which they operate. Although rabies prevalence never exceeded 0.15%, the best-fitting models demonstrated appreciable depletion of susceptible animals that occurred at local scales because of clusters of deaths and dogs already incubating infection. Individual variation in rabid dog behavior facilitated virus dispersal and cocirculation of virus lineages, enabling metapopulation persistence. These mechanisms have important implications for prediction and control of pathogens that circulate in spatially structured populations.
Collapse
Affiliation(s)
- Rebecca Mancy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Malavika Rajeev
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ahmed Lugelo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Elaine A. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Karen Hotopp
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Rudovick Kazwala
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Kristyna Rysava
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Warwick, UK
| | - Daniel T. Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Bouslama Z, Kharmachi H, Basdouri N, Ben Salem J, Ben Maiez S, Handous M, Saadi M, Ghram A, Turki I. Molecular Epidemiology of Rabies in Wild Canidae in Tunisia. Viruses 2021; 13:v13122473. [PMID: 34960742 PMCID: PMC8703460 DOI: 10.3390/v13122473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Rabies is a viral zoonosis that is transmissible to humans via domestic and wild animals. There are two epidemiological cycles for rabies, the urban and the sylvatic cycles. In an attempt to study the epidemiological role of wild canidae in rabies transmission, the present study aimed to analyze the genetic characteristics of virus isolates and confirm prior suggestions that rabies is maintained through a dog reservoir in Tunisia. Virus strains isolated from wild canidae were subject to viral sequencing, and Bayesian phylogenetic analysis was performed using Beast2 software. Essentially, the virus strains isolated from wild canidae belonged to the Africa-1 clade, which clearly diverges from fox-related strains. Our study also demonstrated that genetic characteristics of the virus isolates were not as distinct as could be expected if a wild reservoir had already existed. On the contrary, the geographic landscape is responsible for the genetic diversity of the virus. The landscape itself could have also acted as a natural barrier to the spread of the virus.
Collapse
Affiliation(s)
- Zied Bouslama
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
- Faculty of Sciences, Université Tunis El Manar, Tunis 2092, Tunisia
- Correspondence:
| | - Habib Kharmachi
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Nourhene Basdouri
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Jihen Ben Salem
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Samia Ben Maiez
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Mariem Handous
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Mohamed Saadi
- Laboratory for Rabies Diagnostics, Institute Pasteur of Tunis, Belvedere, Tunis 1002, Tunisia; (H.K.); (N.B.); (J.B.S.); (S.B.M.); (M.H.); (M.S.)
| | - Abdeljalil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR 16 IPT 03, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Imed Turki
- Service des Maladies Contagieuses, Ecole Nationale de Médecine Vétérinaire-Sidi Thabet, Université Manouba, Sidi Thabet 2020, Tunisia;
| |
Collapse
|
18
|
Thanapongtharm W, Suwanpakdee S, Chumkaeo A, Gilbert M, Wiratsudakul A. Current characteristics of animal rabies cases in Thailand and relevant risk factors identified by a spatial modeling approach. PLoS Negl Trop Dis 2021; 15:e0009980. [PMID: 34851953 PMCID: PMC8668119 DOI: 10.1371/journal.pntd.0009980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/13/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
The situation of human rabies in Thailand has gradually declined over the past four decades. However, the number of animal rabies cases has slightly increased in the last ten years. This study thus aimed to describe the characteristics of animal rabies between 2017 and 2018 in Thailand in which the prevalence was fairly high and to quantify the association between monthly rabies occurrences and explainable variables using the generalized additive models (GAMs) to predict the spatial risk areas for rabies spread. Our results indicate that the majority of animals affected by rabies in Thailand are dogs. Most of the affected dogs were owned, free or semi-free roaming, and unvaccinated. Clusters of rabies were highly distributed in the northeast, followed by the central and the south of the country. Temporally, the number of cases gradually increased after June and reached a peak in January. Based on our spatial models, human and cattle population density as well as the spatio-temporal history of rabies occurrences, and the distances from the cases to the secondary roads and country borders are identified as the risk factors. Our predictive maps are applicable for strengthening the surveillance system in high-risk areas. Nevertheless, the identified risk factors should be rigorously considered and integrated into the strategic plans for the prevention and control of animal rabies in Thailand.
Collapse
Affiliation(s)
| | - Sarin Suwanpakdee
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Arun Chumkaeo
- Songkhla Provincial Livestock Office, Songkhla, Thailand
| | - Marius Gilbert
- Spatial Epidemiology Lab. (SpELL), University of Brussels, Brussels, Belgium
- Fonds National de la Recherche Scientifique (FNRS), University of Brussels, Brussels, Belgium
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
19
|
Nahata KD, Bollen N, Gill MS, Layan M, Bourhy H, Dellicour S, Baele G. On the Use of Phylogeographic Inference to Infer the Dispersal History of Rabies Virus: A Review Study. Viruses 2021; 13:v13081628. [PMID: 34452492 PMCID: PMC8402743 DOI: 10.3390/v13081628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Rabies is a neglected zoonotic disease which is caused by negative strand RNA-viruses belonging to the genus Lyssavirus. Within this genus, rabies viruses circulate in a diverse set of mammalian reservoir hosts, is present worldwide, and is almost always fatal in non-vaccinated humans. Approximately 59,000 people are still estimated to die from rabies each year, leading to a global initiative to work towards the goal of zero human deaths from dog-mediated rabies by 2030, requiring scientific efforts from different research fields. The past decade has seen a much increased use of phylogeographic and phylodynamic analyses to study the evolution and spread of rabies virus. We here review published studies in these research areas, making a distinction between the geographic resolution associated with the available sequence data. We pay special attention to environmental factors that these studies found to be relevant to the spread of rabies virus. Importantly, we highlight a knowledge gap in terms of applying these methods when all required data were available but not fully exploited. We conclude with an overview of recent methodological developments that have yet to be applied in phylogeographic and phylodynamic analyses of rabies virus.
Collapse
Affiliation(s)
- Kanika D. Nahata
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
- Correspondence:
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| | - Mandev S. Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| | - Maylis Layan
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Sorbonne Université, UMR2000, CNRS, 75015 Paris, France;
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, 75015 Paris, France;
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 75015 Paris, France
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| |
Collapse
|
20
|
Tasiame W, El-Duah P, Johnson SAM, Owiredu EW, Bleicker T, Veith T, Schneider J, Emikpe B, Folitse RD, Burimuah V, Akyereko E, Drosten C, Corman VM. Rabies virus in slaughtered dogs for meat consumption in Ghana: A potential risk for rabies transmission. Transbound Emerg Dis 2021; 69:e71-e81. [PMID: 34331389 DOI: 10.1111/tbed.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Dog-mediated rabies is responsible for approximately 60,000 human deaths annually worldwide. Although dog slaughter for human consumption and its potential risk for rabies transmission has been reported, mainly in some parts of Western Africa and South-East Asia, more information on this and factors that influence dog meat consumption is required for a better understanding from places like Ghana where the practice is common. We tested 144 brain tissues from apparently healthy dogs slaughtered for human consumption for the presence of rabies viruses using a Lyssavirus-specific real-Time RT-PCR. Positive samples were confirmed by virus genome sequencing. We also administered questionnaires to 541 dog owners from three regions in Ghana and evaluated factors that could influence dog meat consumption. We interacted with butchers and observed slaughtering and meat preparation procedures. Three out of 144 (2.1%) brain tissues from apparently healthy dogs tested positive for rabies virus RNA. Two of the viruses with complete genomes were distinct from one another, but both belonged to the Africa 2 lineage. The third virus with a partial genome fragment had high sequence identity to the other two and also belonged to the Africa 2 lineage. Almost half of the study participants practiced dog consumption [49% (265/541)]. Males were almost twice (cOR = 1.72, 95% CI (1.17-2.52), p-value = .006) as likely to consume dog meat compared to females. Likewise, the Frafra tribe from northern Ghana [cOR = 825.1, 95% CI (185.3-3672.9), p-value < .0001] and those with non-specific tribes [cOR = 47.05, 95% CI (10.18-217.41), p-value < .0001] presented with higher odds of dog consumption compared to Ewes. The butchers used bare hands in meat preparation. This study demonstrates the presence of rabies virus RNA in apparently healthy dogs slaughtered for human consumption in Ghana and suggests a potential risk for rabies transmission. Veterinary departments and local assemblies are recommended to monitor and regulate this practice.
Collapse
Affiliation(s)
- William Tasiame
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philip El-Duah
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sherry A M Johnson
- School of Veterinary Medicine, CBAS, University of Ghana, Legon, Accra, Ghana
| | - Eddie-Williams Owiredu
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Schneider
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Benjamin Emikpe
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael D Folitse
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Vitus Burimuah
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ernest Akyereko
- Disease Surveillance Department, Ghana Health Service, Accra, Ghana
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
22
|
Gold S, Donnelly CA, Woodroffe R, Nouvellet P. Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs. PLoS Negl Trop Dis 2021; 15:e0009581. [PMID: 34283827 PMCID: PMC8330898 DOI: 10.1371/journal.pntd.0009581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/03/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease.
Collapse
Affiliation(s)
- Susannah Gold
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxfordshire, United Kingdom
| | - Rosie Woodroffe
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
23
|
Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: A scoping review. PLoS Negl Trop Dis 2021; 15:e0009449. [PMID: 34043640 PMCID: PMC8189497 DOI: 10.1371/journal.pntd.0009449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/09/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99% of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dynamics and the impact of vaccination is essential to optimize existing control strategies and developing new ones. In this scoping review, we aimed at disentangling the respective contributions of mathematical models and phylodynamic approaches to advancing the understanding of rabies dynamics and control in domestic dog populations. We also addressed the methodological limitations of both approaches and the remaining issues related to studying rabies spread and how this could be applied to rabies control. METHODOLOGY/PRINCIPAL FINDINGS We reviewed how mathematical modelling of disease dynamics and phylodynamics have been developed and used to characterize dog rabies dynamics and control. Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolutionary and environmental determinants of rabies dispersal and consistently reported support for the role of reintroduction events and human-mediated transportation over long distances in the maintenance of rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive assessments through hypothesis generation and testing. They also represent new avenues, especially concerning the reconstruction of local transmission chains or clusters through data integration. CONCLUSIONS/SIGNIFICANCE Despite advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic analyses and mechanistic models within a single framework could take full advantage of not only viral sequences but also additional epidemiological information as well as dog ecology data to refine our understanding of rabies spread and control. This would represent a significant improvement on past studies and a promising opportunity for canine rabies research in the frame of the One Health concept that aims to achieve better public health outcomes through cross-sector collaboration.
Collapse
|
24
|
Hassine TB, Ali MB, Ghodhbane I, Said ZB, Hammami S. Rabies in Tunisia: A spatio-temporal analysis in the region of CapBon-Nabeul. Acta Trop 2021; 216:105822. [PMID: 33421422 DOI: 10.1016/j.actatropica.2021.105822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022]
Abstract
Human rabies is a significant public health concern in Tunisia. However, the spatiotemporal spread pattern of rabies in dogs, the major reservoir and vector, and its determinants are poorly understood. We collected geographic locations and timeline of reported animal rabies cases in the region of CapBon (study area), for the years 2015-2019 and integrated them in Geographical Information System (GIS) approach to explore the spatio-temporal pattern of dog rabies. The results show that roads and irrigated areas can act as ecological corridors to viral spread. Our study showed that there was a significant seasonal variation in the number of cases of rabies recorded, with a strong peak in spring and lower peak in winter and summer. These findings may play a role in updating and directing public health policy, as well as providing opportunities for authorities to explore control options in time and space. A better knowledge of the ecology and dog population dynamics is still necessary and important to achieve an effective rabies control.
Collapse
|
25
|
Harvey WT, Mulatti P, Fusaro A, Scolamacchia F, Zecchin B, Monne I, Marangon S. Spatiotemporal reconstruction and transmission dynamics during the 2016-17 H5N8 highly pathogenic avian influenza epidemic in Italy. Transbound Emerg Dis 2021; 68:37-50. [PMID: 31788978 PMCID: PMC8048528 DOI: 10.1111/tbed.13420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Effective control of avian diseases in domestic populations requires understanding of the transmission dynamics facilitating viral emergence and spread. In 2016-17, Italy experienced a significant avian influenza epidemic caused by a highly pathogenic A(H5N8) virus, which affected domestic premises housing around 2.7 million birds, primarily in the north-eastern regions with the highest density of poultry farms (Lombardy, Emilia-Romagna and Veneto). We perform integrated analyses of genetic, spatiotemporal and host data within a Bayesian phylogenetic framework. Using continuous and discrete phylogeography, we estimate the locations of movements responsible for the spread and persistence of the epidemic. The information derived from these analyses on rates of transmission between regions through time can be used to assess the success of control measures. Using an approach based on phylogenetic-temporal distances between domestic cases, we infer the presence of cryptic wild bird-mediated transmission, information that can be used to complement existing epidemiological methods for distinguishing transmission within the domestic population from incursions across the wildlife-domestic interface, a common challenge in veterinary epidemiology. Spatiotemporal reconstruction of the epidemic reveals a highly skewed distribution of virus movements with a high proportion of shorter distance local movements interspersed with occasional long-distance dispersal events associated with wild birds. We also show how such inference be used to identify possible instances of human-mediated movements where distances between phylogenetically linked domestic cases are unusually high.
Collapse
Affiliation(s)
- William T. Harvey
- Boyd Orr Centre for Population and Ecosystem HealthInstitute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | | | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Stefano Marangon
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| |
Collapse
|
26
|
Whitmer SLM, Lo MK, Sazzad HMS, Zufan S, Gurley ES, Sultana S, Amman B, Ladner JT, Rahman MZ, Doan S, Satter SM, Flora MS, Montgomery JM, Nichol ST, Spiropoulou CF, Klena JD. Inference of Nipah virus evolution, 1999-2015. Virus Evol 2021; 7:veaa062. [PMID: 34422315 PMCID: PMC7947586 DOI: 10.1093/ve/veaa062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV.
Collapse
Affiliation(s)
- Shannon L M Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Hossain M S Sazzad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sara Zufan
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Brian Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Stephanie Doan
- The Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329
| | - Syed M Satter
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Meerjady S Flora
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| |
Collapse
|
27
|
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat Commun 2020; 11:5620. [PMID: 33159066 PMCID: PMC7648063 DOI: 10.1038/s41467-020-19122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Bastide
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Alexander A Fisher
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
28
|
Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly CA. A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. Commun Biol 2020; 3:353. [PMID: 32636525 PMCID: PMC7340795 DOI: 10.1038/s42003-020-1032-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The maintenance of infectious diseases requires a sufficient number of susceptible hosts. Host culling is a potential control strategy for animal diseases. However, the reduction in biodiversity and increasing public concerns regarding the involved ethical issues have progressively challenged the use of wildlife culling. Here, we assess the potential of wildlife culling as an epidemiologically sound management tool, by examining the host ecology, pathogen characteristics, eco-sociological contexts, and field work constraints. We also discuss alternative solutions and make recommendations for the appropriate implementation of culling for disease control.
Collapse
Affiliation(s)
- Eve Miguel
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France.
- CREES Centre for Research on the Ecology and Evolution of Disease, Montpellier, France.
| | - Vladimir Grosbois
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Alexandre Caron
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Diane Pople
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Benjamin Roche
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France
- UMMISCO (Unité Mixte Internationnale de Modélisation Mathématique et Informatiques des Systèmes Complèxes, IRD/Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de, México, México
| | - Christl A Donnelly
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Dellicour S, Desmecht D, Paternostre J, Malengreaux C, Licoppe A, Gilbert M, Linden A. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL) Université Libre de Bruxelles Bruxelles Belgium
- Department of Microbiology, Immunology and Transplantation Rega Institute, KU Leuven Leuven Belgium
| | - Daniel Desmecht
- FARAH Research Center Faculty of Veterinary Medicine University of Liège Liège Belgium
| | - Julien Paternostre
- FARAH Research Center Faculty of Veterinary Medicine University of Liège Liège Belgium
| | - Céline Malengreaux
- Department of Environmental and Agricultural Studies Public Service of Wallonia Gembloux Belgium
| | - Alain Licoppe
- Department of Environmental and Agricultural Studies Public Service of Wallonia Gembloux Belgium
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL) Université Libre de Bruxelles Bruxelles Belgium
| | - Annick Linden
- FARAH Research Center Faculty of Veterinary Medicine University of Liège Liège Belgium
| |
Collapse
|
30
|
Brunker K, Jaswant G, Thumbi S, Lushasi K, Lugelo A, Czupryna AM, Ade F, Wambura G, Chuchu V, Steenson R, Ngeleja C, Bautista C, Manalo DL, Gomez MRR, Chu MYJV, Miranda ME, Kamat M, Rysava K, Espineda J, Silo EAV, Aringo AM, Bernales RP, Adonay FF, Tildesley MJ, Marston DA, Jennings DL, Fooks AR, Zhu W, Meredith LW, Hill SC, Poplawski R, Gifford RJ, Singer JB, Maturi M, Mwatondo A, Biek R, Hampson K. Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Res 2020; 5:3. [PMID: 32090172 PMCID: PMC7001756 DOI: 10.12688/wellcomeopenres.15518.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gurdeep Jaswant
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
| | - S.M. Thumbi
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anna M. Czupryna
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Ade
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gati Wambura
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Veronicah Chuchu
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rachel Steenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory Agency, Ministry of Livestock and Fisheries Development, Dar es Salaam, Tanzania
| | - Criselda Bautista
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | - Daria L. Manalo
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | | | | | - Mary Elizabeth Miranda
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
- Field Epidemiology Training Program Alumni Foundation (FETPAFI), Manilla, Philippines
| | - Maya Kamat
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kristyna Rysava
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Jason Espineda
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Eva Angelica V. Silo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Ariane Mae Aringo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Rona P. Bernales
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Florencio F. Adonay
- Albay Veterinary Office, Provincial Government of Albay, Albay Farmers' Bounty Village, Cabangan, Camalig, Albay, Philippines
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Denise A. Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Daisy L. Jennings
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
- Institute of Infection and Global Health,, University of Liverpool, Liverpool, UK
| | - Wenlong Zhu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Radoslaw Poplawski
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Advanced Research Computing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Mathew Maturi
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Yu J, Xiao H, Yang W, Dellicour S, Kraemer MUG, Liu Y, Cai J, Huang ZXY, Zhang Y, Feng Y, Huang W, Zhang H, Gilbert M, Tian H. The impact of anthropogenic and environmental factors on human rabies cases in China. Transbound Emerg Dis 2020; 67:2544-2553. [PMID: 32348020 DOI: 10.1111/tbed.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Human rabies is a public health problem in Asia, especially in less-developed regions where the disease is under-reported because of a lack of epidemiological surveillance. To address this gap, we collected data on human rabies in Yunnan Province, China, between 2005 and 2016. Using statistical mapping techniques, we correlated the occurrence of human rabies to environmental (elevation, precipitation, normalized difference vegetation index [NDVI], temperature and distance to the nearest main rivers) and anthropogenic (human and dog population density, distance to the nearest main roads and gross domestic product [GDP]) factors. We used a performance score, the average area under the receiver operator characteristic curve (0.88), to validate our risk model. Using this model, we found that environmental factors were more strongly associated with human rabies occurrence than anthropogenic factors. Areas with elevation below 2000 metres, GDP per capita between $750 and $4500/year and NDVI below 0.07 were associated with greater risk of human rabies. Rabies control in China should specifically target these areas.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.,Key Laboratory of Geospatial Big Data Mining and Application, College of Resources and Environmental Sciences, Hunan Normal University, Changsha, China
| | - Hong Xiao
- Key Laboratory of Geospatial Big Data Mining and Application, College of Resources and Environmental Sciences, Hunan Normal University, Changsha, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium.,Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford, UK.,Harvard Medical School, Harvard University, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA
| | - Yonghong Liu
- Key Laboratory of Geospatial Big Data Mining and Application, College of Resources and Environmental Sciences, Hunan Normal University, Changsha, China
| | - Jun Cai
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Zheng X Y Huang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuzhen Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Wenli Huang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Hailin Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Numminen E, Laine AL. The spread of a wild plant pathogen is driven by the road network. PLoS Comput Biol 2020; 16:e1007703. [PMID: 32231370 PMCID: PMC7108725 DOI: 10.1371/journal.pcbi.1007703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Spatial analyses of pathogen occurrence in their natural surroundings entail unique opportunities for assessing in vivo drivers of disease epidemiology. Such studies are however confronted by the complexity of the landscape driving epidemic spread and disease persistence. Since relevant information on how the landscape influences epidemiological dynamics is rarely available, simple spatial models of spread are often used. In the current study we demonstrate both how more complex transmission pathways could be incorpoted to epidemiological analyses and how this can offer novel insights into understanding disease spread across the landscape. Our study is focused on Podosphaera plantaginis, a powdery mildew pathogen that transmits from one host plant to another by wind-dispersed spores. Its host populations often reside next to roads and thus we hypothesize that the road network influences the epidemiology of P. plantaginis. To analyse the impact of roads on the transmission dynamics, we consider a spatial dataset on the presence-absence records on the pathogen collected from a fragmented landscape of host populations. Using both mechanistic transmission modeling and statistical modeling with road-network summary statistics as predictors, we conclude the evident role of the road network in the progression of the epidemics: a phenomena which is manifested both in the enhanced transmission along the roads and in infections typically occurring at the central hub locations of the road network. We also demonstrate how the road network affects the spread of the pathogen using simulations. Jointly our results highlight how human alteration of natural landscapes may increase disease spread.
Collapse
Affiliation(s)
- Elina Numminen
- Research Centre for Ecological Change, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Brunker K, Jaswant G, Thumbi S, Lushasi K, Lugelo A, Czupryna AM, Ade F, Wambura G, Chuchu V, Steenson R, Ngeleja C, Bautista C, Manalo DL, Gomez MRR, Chu MYJV, Miranda ME, Kamat M, Rysava K, Espineda J, Silo EAV, Aringo AM, Bernales RP, Adonay FF, Tildesley MJ, Marston DA, Jennings DL, Fooks AR, Zhu W, Meredith LW, Hill SC, Poplawski R, Gifford RJ, Singer JB, Maturi M, Mwatondo A, Biek R, Hampson K. Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Res 2020; 5:3. [PMID: 32090172 PMCID: PMC7001756 DOI: 10.12688/wellcomeopenres.15518.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 08/27/2023] Open
Abstract
Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gurdeep Jaswant
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
| | - S.M. Thumbi
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anna M. Czupryna
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Ade
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gati Wambura
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Veronicah Chuchu
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rachel Steenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory Agency, Ministry of Livestock and Fisheries Development, Dar es Salaam, Tanzania
| | - Criselda Bautista
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | - Daria L. Manalo
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | | | | | - Mary Elizabeth Miranda
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
- Field Epidemiology Training Program Alumni Foundation (FETPAFI), Manilla, Philippines
| | - Maya Kamat
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kristyna Rysava
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Jason Espineda
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Eva Angelica V. Silo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Ariane Mae Aringo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Rona P. Bernales
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Florencio F. Adonay
- Albay Veterinary Office, Provincial Government of Albay, Albay Farmers' Bounty Village, Cabangan, Camalig, Albay, Philippines
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Denise A. Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Daisy L. Jennings
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
- Institute of Infection and Global Health,, University of Liverpool, Liverpool, UK
| | - Wenlong Zhu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Radoslaw Poplawski
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Advanced Research Computing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Mathew Maturi
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
35
|
Dellicour S, Troupin C, Jahanbakhsh F, Salama A, Massoudi S, Moghaddam MK, Baele G, Lemey P, Gholami A, Bourhy H. Using phylogeographic approaches to analyse the dispersal history, velocity and direction of viral lineages - Application to rabies virus spread in Iran. Mol Ecol 2019; 28:4335-4350. [PMID: 31535448 DOI: 10.1111/mec.15222] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
Abstract
Recent years have seen the extensive use of phylogeographic approaches to unveil the dispersal history of virus epidemics. Spatially explicit reconstructions of viral spread represent valuable sources of lineage movement data that can be exploited to investigate the impact of underlying environmental layers on the dispersal of pathogens. Here, we performed phylogeographic inference and applied different post hoc approaches to analyse a new and comprehensive data set of viral genomes to elucidate the dispersal history and dynamics of rabies virus (RABV) in Iran, which have remained largely unknown. We first analysed the association between environmental factors and variations in dispersal velocity among lineages. Second, we present, test and apply a new approach to study the link between environmental conditions and the dispersal direction of lineages. The statistical performance (power of detection, false-positive rate) of this new method was assessed using simulations. We performed phylogeographic analyses of RABV genomes, allowing us to describe the large diversity of RABV in Iran and to confirm the cocirculation of several clades in the country. Overall, we estimate a relatively high lineage dispersal velocity, similar to previous estimates for dog rabies virus spread in northern Africa. Finally, we highlight a tendency for RABV lineages to spread in accessible areas associated with high human population density. Our analytical workflow illustrates how phylogeographic approaches can be used to investigate the impact of environmental factors on several aspects of viral dispersal dynamics.
Collapse
Affiliation(s)
- Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Cécile Troupin
- Unit Lyssavirus Epidemiology and Neuropathology, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Fatemeh Jahanbakhsh
- WHO Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Siamak Massoudi
- Department of Environment, Wildlife Diseases Group, Wildlife Bureau, Tehran, Iran
| | - Madjid K Moghaddam
- Department of Environment, Wildlife Diseases Group, Wildlife Bureau, Tehran, Iran
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Alireza Gholami
- WHO Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Hervé Bourhy
- Unit Lyssavirus Epidemiology and Neuropathology, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Müller NF, Dudas G, Stadler T. Inferring time-dependent migration and coalescence patterns from genetic sequence and predictor data in structured populations. Virus Evol 2019; 5:vez030. [PMID: 31428459 PMCID: PMC6693038 DOI: 10.1093/ve/vez030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Population dynamics can be inferred from genetic sequence data by using phylodynamic methods. These methods typically quantify the dynamics in unstructured populations or assume migration rates and effective population sizes to be constant through time in structured populations. When considering rates to vary through time in structured populations, the number of parameters to infer increases rapidly and the available data might not be sufficient to inform these. Additionally, it is often of interest to know what predicts these parameters rather than knowing the parameters themselves. Here, we introduce a method to infer the predictors for time-varying migration rates and effective population sizes by using a generalized linear model (GLM) approach under the marginal approximation of the structured coalescent. Using simulations, we show that our approach is able to reliably infer the model parameters and its predictors from phylogenetic trees. Furthermore, when simulating trees under the structured coalescent, we show that our new approach outperforms the discrete trait GLM model. We then apply our framework to a previously described Ebola virus dataset, where we infer the parameters and its predictors from genome sequences while accounting for phylogenetic uncertainty. We infer weekly cases to be the strongest predictor for effective population size and geographic distance the strongest predictor for migration. This approach is implemented as part of the BEAST2 package MASCOT, which allows us to jointly infer population dynamics, i.e. the parameters and predictors, within structured populations, the phylogenetic tree, and evolutionary parameters.
Collapse
Affiliation(s)
- Nicola F Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gytis Dudas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
37
|
Picard C, Soubeyrand S, Jacquot E, Thébaud G. Analyzing the Influence of Landscape Aggregation on Disease Spread to Improve Management Strategies. PHYTOPATHOLOGY 2019; 109:1198-1207. [PMID: 31166155 DOI: 10.1094/phyto-05-18-0165-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies. We apply this approach to sharka, one of the most damaging diseases of Prunus trees, for which a management strategy is already applied in France. Epidemic simulations were carried out with a spatiotemporal stochastic model under various management strategies in landscapes differing in patch aggregation. Using sensitivity analyses, we highlight the impact of management parameters on the economic output of the model. We also show that the sensitivity analysis can be exploited to identify several strategies that are, according to the model, more profitable than the current French strategy. Some of these strategies are specific to a given aggregation level, which shows that management strategies should generally be tailored to each specific landscape. However, we also identified a strategy that is efficient for all levels of landscape aggregation. This one-size-fits-all strategy has important practical implications because of its simple applicability at a large scale.
Collapse
Affiliation(s)
- Coralie Picard
- 1 BGPI, INRA, Montpellier SupAgro, Univ Montpellier, Cirad, TA A-54/K, 34398, Montpellier Cedex 5, France
| | | | - Emmanuel Jacquot
- 1 BGPI, INRA, Montpellier SupAgro, Univ Montpellier, Cirad, TA A-54/K, 34398, Montpellier Cedex 5, France
| | - Gaël Thébaud
- 1 BGPI, INRA, Montpellier SupAgro, Univ Montpellier, Cirad, TA A-54/K, 34398, Montpellier Cedex 5, France
| |
Collapse
|
38
|
Newton EJ, Pond BA, Tinline RR, Middel K, Bélanger D, Rees EE. Differential impacts of vaccination on wildlife disease spread during epizootic and enzootic phases. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erica J. Newton
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent University Peterborough ON Canada
| | - Bruce A. Pond
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent University Peterborough ON Canada
| | | | - Kevin Middel
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent University Peterborough ON Canada
| | - Denise Bélanger
- Département de pathologie et microbiologieGroupe de recherche en épidémiologie des zoonoses et santé publiqueUniversité de Montréal Saint‐Hyacinthe QC Canada
| | - Erin E. Rees
- Département de pathologie et microbiologieGroupe de recherche en épidémiologie des zoonoses et santé publiqueUniversité de Montréal Saint‐Hyacinthe QC Canada
- Public Health Risk Sciences DivisionNational Microbiology LaboratoryPublic Health Agency of Canada Saint‐Hyacinthe Québec Canada
- Land and Sea Systems Analysis Inc. Granby QC Canada
| |
Collapse
|
39
|
Kozakiewicz CP, Burridge CP, Funk WC, VandeWoude S, Craft ME, Crooks KR, Ernest HB, Fountain‐Jones NM, Carver S. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 2018; 11:1763-1778. [PMID: 30459828 PMCID: PMC6231466 DOI: 10.1111/eva.12678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Landscape genetics has provided many insights into how heterogeneous landscape features drive processes influencing spatial genetic variation in free-living organisms. This rapidly developing field has focused heavily on vertebrates, and expansion of this scope to the study of infectious diseases holds great potential for landscape geneticists and disease ecologists alike. The potential application of landscape genetics to infectious agents has garnered attention at formative stages in the development of landscape genetics, but systematic examination is lacking. We comprehensively review how landscape genetics is being used to better understand pathogen dynamics. We characterize the field and evaluate the types of questions addressed, approaches used and systems studied. We also review the now established landscape genetic methods and their realized and potential applications to disease ecology. Lastly, we identify emerging frontiers in the landscape genetic study of infectious agents, including recent phylogeographic approaches and frameworks for studying complex multihost and host-vector systems. Our review emphasizes the expanding utility of landscape genetic methods available for elucidating key pathogen dynamics (particularly transmission and spread) and also how landscape genetic studies of pathogens can provide insight into host population dynamics. Through this review, we convey how increasing awareness of the complementarity of landscape genetics and disease ecology among practitioners of each field promises to drive important cross-disciplinary advances.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyGraduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt. PaulMinnesota
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | | | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
40
|
Brunker K, Lemey P, Marston DA, Fooks AR, Lugelo A, Ngeleja C, Hampson K, Biek R. Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Mol Ecol 2018; 27:773-788. [PMID: 29274171 PMCID: PMC5900915 DOI: 10.1111/mec.14470] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Landscape heterogeneity plays an important role in disease spread and persistence, but quantifying landscape influences and their scale dependence is challenging. Studies have focused on how environmental features or global transport networks influence pathogen invasion and spread, but their influence on local transmission dynamics that underpin the persistence of endemic diseases remains unexplored. Bayesian phylogeographic frameworks that incorporate spatial heterogeneities are promising tools for analysing linked epidemiological, environmental and genetic data. Here, we extend these methodological approaches to decipher the relative contribution and scale-dependent effects of landscape influences on the transmission of endemic rabies virus in Serengeti district, Tanzania (area ~4,900 km2 ). Utilizing detailed epidemiological data and 152 complete viral genomes collected between 2004 and 2013, we show that the localized presence of dogs but not their density is the most important determinant of diffusion, implying that culling will be ineffective for rabies control. Rivers and roads acted as barriers and facilitators to viral spread, respectively, and vaccination impeded diffusion despite variable annual coverage. Notably, we found that landscape effects were scale-dependent: rivers were barriers and roads facilitators on larger scales, whereas the distribution of dogs was important for rabies dispersal across multiple scales. This nuanced understanding of the spatial processes that underpin rabies transmission can be exploited for targeted control at the scale where it will have the greatest impact. Moreover, this research demonstrates how current phylogeographic frameworks can be adapted to improve our understanding of endemic disease dynamics at different spatial scales.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
- Animal and Plant Health AgencyAddlestoneUK
| | - Philippe Lemey
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | | | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public HealthSokoine University of AgricultureMorogoroUnited Republic of Tanzania
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory AgencyDar es SalaamUnited Republic of Tanzania
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| |
Collapse
|