1
|
Li J, Yang X, Tian B, Tian T, Meng Y, Liu F. Analysis of the MYB gene family in tartary buckwheat and functional investigation of FtPinG0005108900.01 in response to drought. BMC PLANT BIOLOGY 2025; 25:25. [PMID: 39773440 PMCID: PMC11706168 DOI: 10.1186/s12870-024-06019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important crop used for edible food and medicinal usage. Drought annually brings reduction in crop yield and quality, causing enormous economic losses. Transcription factors are often involved in the regulation of plant responses to environmental stresses. In this study, we identified 233 MYB transcription factors in tartary buckwheat and classified them into 13 groups, including 1R, R2R3, 3R, 4R types. Gene structure and conserved motifs of these 233 FtMYBs suggested the relative conservation of these FtMYBs within each group. There is strong collinearity within the genomes of F. tataricum, with identifying syntenic gene pairs of FtMYB. Further, the expansion of FtMYB genes was attributed to whole genome duplication. The enrichment analysis of cis-acting elements in the FtMYB genes indicated that FtMYBs may participate in abiotic stress responses. The transcriptional changes of FtMYB genes in tartary buckwheat were then investigated using public data and qPCR. A number of FtMYB genes exhibited apparent transcript levels in the detected tissues and most of them disturbed their expression after the treatment of PEG6000 or natural treatment of tartary buckwheat seedlings. Some of the FtMYB genes showed a similar expression trend with qPCR validation. FtMYB gene FtPinG0005108900.01 were shown to activated by PEG6000 and natural drought treatment, and its encoded protein localizes to nucleus, revealing it as a typical transcription factor. Overexpression of FtPinG0005108900.01 increase the drought tolerance, and transcriptome analysis indicated that lignin synthesis other than flavonoid biosynthesis pathway was activated in the overexpressing plants following drought treatment. Our results provided detailed evolution and comparative genomic information of FtMYBs in tartary buckwheat and dissected the function of a FtMYB gene FtPinG0005108900.01 in response to drought.
Collapse
Affiliation(s)
- Jinbo Li
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bianling Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Tian Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu Meng
- College of Landscape and Travel, Hebei Agricultural University, Baoding, 071001, China.
| | - Fei Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Sun B, Zhong Y, Tao Z, Zhu L, Miao X, Shi Z, Li H. OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae. PLANT CELL REPORTS 2024; 44:13. [PMID: 39724382 DOI: 10.1007/s00299-024-03411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors. Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that severely deteriorates rice yield and quality, and brown planthopper (BPH; Nilaparvata lugens) is a rice specific insect pest with the damage topping other pathogens. Although genes for respective resistance to BPH and Xoo have been widely reported, few studies pay attention to simultaneous resistance to both. In this study, we identified a MYB transcription factor, OsMYB1, which exhibited diverse transcriptional regulatory capabilities and a negative regulatory role in resistance to both BPH and Xoo. Biochemical and genetic analysis proved OsMYB1 to be a TF that could interact with OsSPL14, a positive regulator of rice resistance to Xoo. OsSPL14 mutants showed increased sensitivity to BPH, suggesting that OsSPL14 is contrary to OsMYB1 in regulating rice resistance to these two biotic stresses. Consistently, OsMYB1 and OsSPL14 displayed opposite functions in regulating defense-related genes. OsMYB1 can form transcription regulation complexes with repressor OsJAZs instead of co-repressor TOPLESS to possibly realize its transcriptional repression function. Taken together, we concluded that two interacting TFs in rice, OsMYB1 and OsSPL14, played antagonistic roles in regulating resistance to BPH and Xoo.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuan Zhong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihuan Tao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
He J, Hao Y, He Y, Li W, Shi Y, Khurshid M, Lai D, Ma C, Wang X, Li J, Cheng J, Fernie AR, Ruan J, Zhang K, Zhou M. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2398-2419. [PMID: 39488739 DOI: 10.1111/tpj.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Jiayue He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanrong Hao
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Muhammad Khurshid
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chongzhong Ma
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jinbo Li
- LuoYang Normal University, Luoyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
4
|
Huang X, He Y, Zhang K, Shi Y, Zhao H, Lai D, Lin H, Wang X, Yang Z, Xiao Y, Li W, Ouyang Y, Woo SH, Quinet M, Georgiev MI, Fernie AR, Liu X, Zhou M. Evolution and Domestication of a Novel Biosynthetic Gene Cluster Contributing to the Flavonoid Metabolism and High-Altitude Adaptability of Plants in the Fagopyrum Genus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403603. [PMID: 39312476 DOI: 10.1002/advs.202403603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The diversity of secondary metabolites is an important means for plants to cope with the complex and ever-changing terrestrial environment. Plant biosynthetic gene clusters (BGCs) are crucial for the biosynthesis of secondary metabolites. The domestication and evolution of BGCs and how they affect plant secondary metabolites biosynthesis and environmental adaptation are still not fully understood. Buckwheat exhibits strong resistance and abundant secondary metabolites, especially flavonoids, allowing it to thrive in harsh environments. A non-canonical BGC named UFGT3 cluster is identified, which comprises a phosphorylase kinase (PAK), two transcription factors (MADS1/2), and a glycosyltransferase (UFGT3), forming a complete molecular regulatory module involved in flavonoid biosynthesis. This cluster is selected during Tartary buckwheat domestication and is widely present in species of the Fagopyrum genus. In wild relatives of cultivated buckwheat, a gene encoding anthocyanin glycosyltransferase (AGT), which glycosylates pelargonidin into pelargonidin-3-O-glucoside, is found inserted into this cluster. The pelargonidin-3-O-glucoside can help plants resist UV stress, endowing wild relatives with stronger high-altitude adaptability. This study provides a new research paradigm for the evolutionary dynamics of plant BGCs, and offers new perspectives for exploring the mechanism of plant ecological adaptability driven by environmental stress through the synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Xu Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhimin Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yawen Xiao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinan Ouyang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Hee Woo
- Department of Agronomy, Chungbuk National University, Cheongju, 28644, South Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 45, boîte L7.07.13, Louvain-la-Neuve, B-1348, Belgium
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
6
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2024:1-26. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
7
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
8
|
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, Gao Y, Huang X, He J, Zhao H, Lu X, Xiao Y, Cheng J, Ruan J, Georgiev MI, Fernie AR, Zhou M. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1206-1223. [PMID: 38062934 PMCID: PMC11022807 DOI: 10.1111/pbi.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 04/18/2024]
Abstract
Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.
Collapse
Affiliation(s)
- Dili Lai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfen Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jiayue He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yawen Xiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Jingjun Ruan
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
10
|
Wang L, Zhao J, Mao Y, Liu L, Li C, Wu H, Zhao H, Wu Q. Tartary buckwheat rutin: Accumulation, metabolic pathways, regulation mechanisms, and biofortification strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108503. [PMID: 38484679 DOI: 10.1016/j.plaphy.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China.
| |
Collapse
|
11
|
Wang A, Liu Y, Li Q, Li X, Zhang X, Kong J, Liu Z, Yang Y, Wang J. FlbZIP12 gene enhances drought tolerance via modulating flavonoid biosynthesis in Fagopyrum leptopodum. FRONTIERS IN PLANT SCIENCE 2023; 14:1279468. [PMID: 37885669 PMCID: PMC10598875 DOI: 10.3389/fpls.2023.1279468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Karst lands provide a poor substrate to support plant growth, as they are low in nutrients and water content. Common buckwheat (Fagopyrum esculentum) is becoming a popular crop for its gluten-free grains and their high levels of phenolic compounds, but buckwheat yields are affected by high water requirements during grain filling. Here, we describe a wild population of drought-tolerant Fagopyrum leptopodum and its potential for enhancing drought tolerance in cultivated buckwheat. We determined that the expression of a gene encoding a Basic leucine zipper (bZIP) transcription factor, FlbZIP12, from F. leptopodum is induced by abiotic stresses, including treatment with the phytohormone abscisic acid, salt, and polyethylene glycol. In addition, we show that overexpressing FlbZIP12 in Tartary buckwheat (Fagopyrum tataricum) root hairs promoted drought tolerance by increasing the activities of the enzymes superoxide dismutase and catalase, decreasing malondialdehyde content, and upregulating the expression of stress-related genes. Notably, FlbZIP12 overexpression induced the expression of key genes involved in flavonoid biosynthesis. We also determined that FlbZIP12 interacts with protein kinases from the FlSnRK2 family in vitro and in vivo. Taken together, our results provide a theoretical basis for improving drought tolerance in buckwheat via modulating the expression of FlbZIP12 and flavonoid contents.
Collapse
Affiliation(s)
- Anhu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Yu Liu
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiujie Li
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinrong Zhang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Kong
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhibing Liu
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
He Y, Zhang K, Li S, Lu X, Zhao H, Guan C, Huang X, Shi Y, Kang Z, Fan Y, Li W, Chen C, Li G, Long O, Chen Y, Hu M, Cheng J, Xu B, Chapman MA, Georgiev MI, Fernie AR, Zhou M. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). THE PLANT CELL 2023; 35:2773-2798. [PMID: 37119263 PMCID: PMC10396374 DOI: 10.1093/plcell/koad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.
Collapse
Affiliation(s)
- Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Chaonan Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xu Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Zhen Kang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Guangsheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yuanyuan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Mang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
13
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
14
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
15
|
Sun B, Shen Y, Chen S, Shi Z, Li H, Miao X. A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3'H expression. THE NEW PHYTOLOGIST 2023; 239:720-738. [PMID: 37149887 DOI: 10.1111/nph.18958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction. Genetic analyses revealed that MYB22 regulates rice resistance to BPH via its EAR motif. Several biochemical experiments (e.g. transient transcription assay, Y2H, LCA, and BiFC) indicated that MYB22 is a transcriptional repressor that interacts with the corepressor TOPLESS via its EAR motif and recruits HDAC1 to form a tripartite complex. Flavonoid-3'-hydroxylase (F3'H) is a flavonoid biosynthesis pathway-related gene that negatively regulates rice resistance to BPH. Based on a bioinformatics analysis and the results of EMSA and transient transcription assays, MYB22 can bind directly to the F3'H promoter and repress gene expression along with TOPLESS and HDAC1. We revealed a transcriptional regulatory mechanism influencing the rice-BPH interaction that differs from previously reported mechanisms. Specifically, MYB22-TOPLESS-HDAC1 is a novel transcriptional repressor complex with components that synergistically and positively regulate rice resistance to BPH through the transcriptional repression of F3'H.
Collapse
Affiliation(s)
- Bo Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenying Shi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
16
|
Liu S, Gao X, Shi M, Sun M, Li K, Cai Y, Chen C, Wang C, Maoz I, Guo X, Kai G. Jasmonic acid regulates the biosynthesis of medicinal metabolites via the JAZ9-MYB76 complex in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2023; 10:uhad004. [PMID: 36938574 PMCID: PMC10022484 DOI: 10.1093/hr/uhad004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Jasmonic acid (JA) signaling pathway plays an important role in tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza. However, the specific regulatory mechanism remains largely unclear. Previous work showed that a JASMONATE ZIM-domain (JAZ) protein, SmJAZ9, acted as a repressor of tanshinone production in S. miltiorrhiza. In this study, we revealed that SmJAZ9 reduced both phenolic acid accumulation and related biosynthetic gene expression, confirming that SmJAZ9 also negatively affected phenolic acid biosynthesis. Then, we identified a novel MYB transcription factor, SmMYB76, which interacted with SmJAZ9. SmMYB76 repressed phenolic acid biosynthesis by directly downregulating SmPAL1, Sm4CL2, and SmRAS1. Further investigation demonstrated that JA mediated phenolic acids biosynthesis via SmJAZ9-SmMYB76 complex. Taken together, these findings state the molecular mechanism that SmJAZ9-SmMYB76 regulated phenolic acid biosynthesis at the transcriptional and protein levels, which provided new insights into JA signaling pathway regulating plant metabolism.
Collapse
Affiliation(s)
| | | | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Cai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chengan Chen
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | | | | |
Collapse
|
17
|
Chen Q, Peng L, Wang A, Yu L, Liu Y, Zhang X, Wang R, Li X, Yang Y, Li X, Wang J. An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153842. [PMID: 36434991 DOI: 10.1016/j.jplph.2022.153842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
R2R3-MYB transcription factors play important roles in response to abiotic stresses in planta, such as salt, drought, and osmotic stress. However, the role of FtMYB11 in Tartary buckwheat (Fagopyrum tataricum) in drought and osmotic tolerance has not yet been elucidated. In this study, we found that FtMYB11 was markedly induced by exogenous abscisic acid (ABA), salinity, and mannitol. Further, FtMYB11-overexpressing Arabidopsis showed hypersensitivity to ABA-mediated seed germination and seedling establishment through regulating transcripts of AtCBF1, AtDREB2A, and AtRD20, compared with wild type, indicating that FtMYB11 plays a positive role in ABA signaling. In contrast, transgenic lines overexpressing FtMYB11 were sensitive to mannitol and NaCl treatments, suggesting that FtMYB11 plays a negative role in osmotic tolerance. Intriguingly, the transcripts of ABA biosynthetic enzyme genes were significantly elevated in plants overexpressing FtMYB11 after exposure to osmotic stresses, such as AtABA3 and AtNCED3. In addition, flavonoid biosynthesis genes were also upregulated in transgenic Arabidopsis under ABA, salt, and drought treatments, including AtC4H, AtF3H, AtANS, AtFLS, and At4CL. The drought tolerance assay showed that plants overexpressing FtMYB11 displayed greater tolerance to water deficit through regulating MDA and proline content. Taken together, FtMYB11 has opposite roles in response to abiotic stresses, but it may mediate flavonoid biosynthesis through regulation of related enzyme genes.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Anhu Wang
- Xichang University, Xichang, 615013, Sichuan, China
| | - Lingzhi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xinrong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ruolin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Mi Y, Li Y, Qian G, Vanhaelewyn L, Meng X, Liu T, Yang W, Shi Y, Ma P, Tul-Wahab A, Viczián A, Chen S, Sun W, Zhang D. A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:696-707. [PMID: 36565614 DOI: 10.1016/j.plaphy.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
Collapse
Affiliation(s)
- Yaolei Mi
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Industrial Crop Research Insitute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Guangtao Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucas Vanhaelewyn
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Deroose Plants NV., Weststraat 129 A, 9940, Sleidinge, Belgium
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengda Ma
- Northwest A&F University, Yangling, 712100, China
| | - Atia Tul-Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
20
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda MN, Tang Y, Wang J, Yang W, Yan M, Cheng J, Ruan J, Dulloo E, Zhang Z, Georgiev MI, Chapman MA, Zhou M. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. THE NEW PHYTOLOGIST 2022; 235:1927-1943. [PMID: 35701896 DOI: 10.1111/nph.18306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/22/2022] [Indexed: 05/09/2023]
Abstract
Golden buckwheat (Fagopyrum dibotrys or Fagopyrum cymosum) and Tartary buckwheat (Fagopyrum tataricum) belong to the Polygonaceae and the Fagopyrum genus is rich in flavonoids. Golden buckwheat is a wild relative of Tartary buckwheat, yet golden buckwheat is a traditional Chinese herbal medicine and Tartary buckwheat is a food crop. The genetic basis of adaptive divergence between these two buckwheats is poorly understood. Here, we assembled a high-quality chromosome-level genome of golden buckwheat and found a one-to-one syntenic relationship with the chromosomes of Tartary buckwheat. Two large inversions were identified that differentiate golden buckwheat and Tartary buckwheat. Metabolomic and genetic comparisons of golden buckwheat and Tartary buckwheat indicate an amplified copy number of FdCHI, FdF3H, FdDFR, and FdLAR gene families in golden buckwheat, and a parallel increase in medicinal flavonoid content. Resequencing of 34 wild golden buckwheat accessions across the two morphologically distinct ecotypes identified candidate genes, including FdMYB44 and FdCRF4, putatively involved in flavonoid accumulation and differentiation of plant architecture, respectively. Our comparative genomic study provides abundant genomic resources of genomic divergent variation to improve buckwheat with excellent nutritional and medicinal value.
Collapse
Affiliation(s)
- Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Md Nurul Huda
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Junzhen Wang
- Research Station of Alpine Crop, Xichang Institute of Agricultural Sciences, Liangshan, 616150, Sichuan, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ehsan Dulloo
- The Alliance of Bioversity International and CIAT, Via di San Domenico, 100153, Rome, Italy
| | - Zongwen Zhang
- The Alliance of Bioversity International and CIAT, Via di San Domenico, 100153, Rome, Italy
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4002, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4002, Plovdiv, Bulgaria
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| |
Collapse
|
22
|
Kreft I, Vollmannová A, Lidiková J, Musilová J, Germ M, Golob A, Vombergar B, Kocjan Ačko D, Luthar Z. Molecular Shield for Protection of Buckwheat Plants from UV-B Radiation. Molecules 2022; 27:molecules27175577. [PMID: 36080352 PMCID: PMC9457819 DOI: 10.3390/molecules27175577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances are synthesized in plants. The synthesis of UV-B defense metabolites is genetically conditioned, and their quantity depends on the intensity of the ultraviolet radiation to which the plants and plant parts are exposed. These substances include flavonoids, and especially rutin. Other substances with aromatic rings of six carbon atoms have a similar function, including fagopyrin, the metabolite specific for buckwheat. Defensive substances are formed in the leaves and flowers of common and Tartary buckwheat, up to about the same concentration in both species. In comparison, the concentration of rutin in the grain of Tartary buckwheat is much higher than in common buckwheat. Flavonoids also have other functions in plants so that they can protect them from pests and diseases. After crushing the grains, rutin is exposed to contact with the molecules of rutin-degrading enzymes. In an environment with the necessary humidity, rutin is turned into bitter quercetin under the action of rutin-degrading enzymes. This bitterness has a deterrent effect against pests. Moreover, flavonoids have important functions in human nutrition to prevent several chronic diseases, including obesity, cardiovascular diseases, gallstone formation, and hypertension.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Judita Lidiková
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Janette Musilová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Darja Kocjan Ačko
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
23
|
Ding M, He Y, Zhang K, Li J, Shi Y, Zhao M, Meng Y, Georgiev MI, Zhou M. JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation and rutin biosynthesis in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:323-334. [PMID: 35524968 DOI: 10.1111/tpj.15800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Buckwheat accumulates abundant flavonoids, which exhibit excellent health-promoting value. Flavonoids biosynthesis is mediated by a variety of phytohormones, among which jasmonates (JAs) induce numerous transcription factors, taking part in regulation of flavonoids biosynthesis genes. However, some transcriptional repressors appeared also induced by JAs. How these transcriptional repressors coordinately participate in JA signaling remains unclear. Here, we found that the disruption of the GCC-box in FtF3H promoter was associated with flavonoids accumulation in Tartary buckwheat. Further, our study illustrated that the nucleus-localized FtERF-EAR3 could inhibit FtF3H expression and flavonoids biosynthesis through binding the GCC-box in the promoter of FtF3H. The JA induced FtERF-EAR3 gene expression while facilitating FtERF-EAR3 protein degradation via the FtBPM3-dependent 26S proteasome pathway. Overall, these results illustrate a precise modulation mechanism of JA-responsive transcription suppressor participating in flavonoid biosynthesis, and will further help to improve the efficiency of flavonoids biosynthesis in Tartary buckwheat.
Collapse
Affiliation(s)
- Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 305-754, Republic of Korea
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Mengyu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, China
| | - Yu Meng
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| |
Collapse
|
24
|
Wen D, Wu L, Wang M, Yang W, Wang X, Ma W, Sun W, Chen S, Xiang L, Shi Y. CRISPR/Cas9-Mediated Targeted Mutagenesis of FtMYB45 Promotes Flavonoid Biosynthesis in Tartary Buckwheat ( Fagopyrum tataricum). FRONTIERS IN PLANT SCIENCE 2022; 13:879390. [PMID: 35646007 PMCID: PMC9133938 DOI: 10.3389/fpls.2022.879390] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 06/01/2023]
Abstract
The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology is an efficient genome editing tool used in multiple plant species. However, it has not been applied to Tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop rich in rutin and other flavonoids. FtMYB45 is an R2R3-type MYB transcription factor that negatively regulates flavonoid biosynthesis in Tartary buckwheat. Here, the CRISPR/Cas9 system polycistronic tRNA-sgRNA (PTG)/Cas9 was employed to knock out the FtMYB45 gene in Tartary buckwheat. Two single-guide RNAs (sgRNAs) were designed to target the second exon of the FtMYB45 gene. Twelve transgenic hairy roots were obtained using Agrobacterium rhizogenes-mediated transformation. Sequencing data revealed that six lines containing six types of mutations at the predicted double-stranded break site were generated using sgRNA1. The mutation frequency reached 50%. A liquid chromatography coupled with triple quadrupole mass spectrometry (LC-QqQ-MS) based metabolomic analysis revealed that the content of rutin, catechin, and other flavonoids was increased in hairy root mutants compared with that of lines transformed with the empty vector. Thus, CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 effectively increased the flavonoids content of Tartary buckwheat. This finding demonstrated that the CRISPR/Cas9 system is an efficient tool for precise genome editing in Tartary buckwheat and lays the foundation for gene function research and quality improvement in Tartary buckwheat.
Collapse
Affiliation(s)
- Dong Wen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Tomasiak A, Zhou M, Betekhtin A. Buckwheat in Tissue Culture Research: Current Status and Future Perspectives. Int J Mol Sci 2022; 23:2298. [PMID: 35216414 PMCID: PMC8876565 DOI: 10.3390/ijms23042298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 405, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China;
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| |
Collapse
|
26
|
Kućko A, Florkiewicz AB, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-Dependent Response of the Flower Abscission Zone Cells to Drought in Yellow Lupine. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040527. [PMID: 35214860 PMCID: PMC8877524 DOI: 10.3390/plants11040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/31/2023]
Abstract
Lipid membranes, as primary places of the perception of environmental stimuli, are a source of various oxygenated polyunsaturated fatty acids-oxylipins-functioning as modulators of many signal transduction pathways, e.g., phytohormonal. Among exogenous factors acting on plant cells, special attention is given to drought, especially in highly sensitive crop species, such as yellow lupine. Here, we used this species to analyze the contribution of lipid-related enzymes and lipid-derived plant hormones in drought-evoked events taking place in a specialized group of cells-the flower abscission zone (AZ)-which is responsible for organ detachment from the plant body. We revealed that water deficits in the soil causes lipid peroxidation in these cells and the upregulation of phospholipase D, lipoxygenase, and, concomitantly, jasmonic acid (JA) strongly accumulates in AZ tissue. Furthermore, we followed key steps in JA conjugation and signaling under stressful conditions by monitoring the level and tissue localization of enzyme providing JA derivatives (JASMONATE RESISTANT1) and the JA receptor (CORONATINE INSENSITIVE1). Collectively, drought-triggered AZ activation during the process of flower abscission is closely associated with the lipid modifications, leading to the formation of JA, its conjugation, and induction of signaling pathways.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Aleksandra Bogumiła Florkiewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Jakub Miętki
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Krzysztof Domagalski
- Department of Immunology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland;
| | - Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| |
Collapse
|
27
|
Liu M, Sun W, Ma Z, Hu Y, Chen H. Tartary buckwheat database (TBD): an integrative platform for gene analysis of and biological information on Tartary buckwheat. J Zhejiang Univ Sci B 2021; 22:954-958. [PMID: 34783225 DOI: 10.1631/jzus.b2100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rice, wheat, corn, and potatoes are four crops that provide a daily source of nutrition for humans, but there are many problems that have been found with these crops. First, they lack amino acids and minerals which are necessary for balanced nutrition, and they also are grown very widely and as monocultures, which increases the risk of the human food system being destroyed by climate change. Thus, by introducing coarse cereals with good characteristics, we can enrich human food resources, realize agricultural diversification, improve dietary structure, and mitigate risks. Tartary buckwheat (Fagopyrum tataricum) is a widely cultivated edible and medicinal crop with unique nutritional and excellent economic value. It contains flavonoids, such as rutin and quercetin, which are not found in cereal crops. Rutin is a major flavonoid that can enhance blood flow and aid in the use of vitamin C and the production of collagen. In addition, such antioxidants have been shown to effectively reduce cholesterol levels, blood clots, and hypertension, particularly for the prevention of inflammatory liver injury (Middleton et al., 2000; Lee et al., 2013; Suzuki et al., 2014; Huang et al., 2016; Nishimura et al., 2016). Meanwhile, Tartary buckwheat can tolerate poor climate and acidic soils containing high amounts of aluminum, which is toxic to other crops (Wang et al., 2015). The self-pollination of Tartary buckwheat has resulted in a decrease in genomic heterozygosity, which is valuable for breeding and a stable production trait (Wang and Campbell, 2007). Therefore, Tartary buckwheat is an important minor crop, which is expected to become the target of many breeding efforts in the future.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.,Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Hu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
28
|
Wang X, Li Y, Liu Y, Zhang D, Ni M, Jia B, Heng W, Fang Z, Zhu LW, Liu P. Transcriptomic and Proteomic Profiling Reveal the Key Role of AcMYB16 in the Response of Pseudomonas syringae pv. actinidiae in Kiwifruit. FRONTIERS IN PLANT SCIENCE 2021; 12:756330. [PMID: 34868148 PMCID: PMC8632638 DOI: 10.3389/fpls.2021.756330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 06/01/2023]
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa), is an important disease of kiwifruit (Actinidia Lind.). Plant hormones may induce various secondary metabolites to resist pathogens via modulation of hormone-responsive transcription factors (TFs), as reported in past studies. In this study, we showed that JA accumulated in the susceptible cultivar Actinidia chinensis 'Hongyang' but decreased in the resistant cultivar of A. chinensis var. deliciosa 'Jinkui' in response to Psa. Integrated transcriptomic and proteomic analyses were carried out using the resistant cultivar 'Jinkui'. A total of 5,045 differentially expressed genes (DEGs) and 1,681 differentially expressed proteins (DEPs) were identified after Psa infection. Two pathways, 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis,' were activated at the protein and transcript levels. In addition, a total of 27 R2R3-MYB transcription factors (TFs) were involved in the response to Psa of 'Jinkui,' including the R2R3-MYB TF subgroup 4 gene AcMYB16, which was downregulated in 'Jinkui' but upregulated in 'Hongyang.' The promoter region of AcMYB16 has a MeJA responsiveness cis-acting regulatory element (CRE). Transient expression of the AcMYB16 gene in the leaves of 'Jinkui' induced Psa infection. Together, these data suggest that AcMYB16 acts as a repressor to regulate the response of kiwifruit to Psa infection. Our work will help to unravel the processes of kiwifruit resistance to pathogens and will facilitate the development of varieties with resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Yawei Li
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Dongle Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Min Ni
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-wu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
29
|
Wen W, Li Z, Shao J, Tang Y, Zhao Z, Yang J, Ding M, Zhu X, Zhou M. The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China. PLANTS 2021; 10:plants10102081. [PMID: 34685889 PMCID: PMC8538749 DOI: 10.3390/plants10102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Buckwheat is a promising pseudo cereal and its cultivation history can be traced back to thousands of years ago in China. Nowadays, buckwheat is not only an ordinary crop but also a symbol of healthy life because of its rich nutritional and pharmacological properties. In this research, the current suitable areas of 19 wild buckwheat species were analyzed by the MaxEnt model, which proved that southwestern China was the diversity center of buckwheat. Their morphological characteristics and geographical distribution were analyzed for the first time. In addition, it was found that the change of buckwheat cultivation in three periods might be related to the green revolution of main crops and national policies. Meanwhile, the Sustainable Yield Index (SYI) value of buckwheat in China was the lowest from 1959 to 2016. Through the MaxEnt model, the potentially suitable areas of wild buckwheat would contract while cultivated buckwheat would expand under climate change. Accordingly, the diversity of wild buckwheat will decrease. Therefore, it is necessary to protect buckwheat resources as much as possible to strengthen the development and utilization of buckwheat resources. Moreover, the promotion of buckwheat diversity will be an important trade-off between food security, population growth, and land use under climate change.
Collapse
Affiliation(s)
- Wen Wen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Institute of Environmental Sciences (CML), Leiden University, Box 9518, 2300 RA Leiden, The Netherlands
| | - Zhiqiang Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
| | - Jirong Shao
- Xichen Intelligent Agricultural Technology Co., Ltd., Chengdu 611130, China;
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China
| | - Yu Tang
- Department of Tourism, Sichuan Tourism University, Chengdu 610100, China;
| | - Zhijun Zhao
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100010, China; (Z.Z.); (J.Y.)
| | - Jingang Yang
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100010, China; (Z.Z.); (J.Y.)
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Korea
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
- Correspondence: (X.Z.); (M.Z.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (X.Z.); (M.Z.)
| |
Collapse
|
30
|
Yan W, Ye Z, Cao S, Yao G, Yu J, Yang D, Chen P, Zhang J, Wu Y. Transcriptome analysis of two Pogostemon cablin chemotypes reveals genes related to patchouli alcohol biosynthesis. PeerJ 2021; 9:e12025. [PMID: 34527441 PMCID: PMC8403477 DOI: 10.7717/peerj.12025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/25/2023] Open
Abstract
Pogostemon cablin, a medicinally and economically important perennial herb, is cultivated around the world due to its medicinal and aromatic properties. Different P. cablin cultivars exhibit different morphological traits and patchouli oil components and contents (especially patchouli alcohol (PA) and pogostone (PO)). According to the signature constituent of the leaf, P. cablin was classified into two different chemotypes, including PA-type and PO-type. To better understand the molecular mechanisms of PA biosynthesis, the transcriptomes of Chinese-cultivated P. cablin cv. PA-type “Nanxiang” (NX) and PO-type “Paixiang” (PX) were analyzed and compared with ribonucleic acid sequencing (RNA-Seq) technology. We obtained a total of 36.83 G clean bases from the two chemotypes, compared them with seven databases and revealed 45,394 annotated unigenes. Thirty-six candidate unigenes participating in the biosynthesis of PA were found in the P. cablin transcriptomes. Overall, 8,390 differentially expressed unigenes were identified between the chemotypes, including 2,467 upregulated and 5,923 downregulated unigenes. Furthermore, six and nine differentially expressed genes (DEGs) were mapped to the terpenoid backbone biosynthetic and sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. One key sesquiterpene synthase gene involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, encoding patchoulol synthase variant 1, was significantly upregulated in NX. Additionally, GC-MS analysis of the two chemotypes in this study showed that the content of PA in NX was significantly higher than that of PX, while the content of PO showed the opposite phenotype. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the DEG expression tendency was consistent with the transcriptome sequencing results. Overall, 23 AP2/ERF, 13 bHLH, 11 MYB, 11 NAC, three Trihelix, 10 WRKY and three bZIP genes that were differentially expressed may act as regulators of terpenoid biosynthesis. Altogether, 8,314 SSRs were recognized within 6,825 unigenes, with a distribution frequency of 18.32%, among which 1,202 unigenes contained more than one SSR. The transcriptomic characteristics of the two P. cablin chemotypes are comprehensively reported in this study, and these results will contribute to a better understanding of the molecular mechanism of PA biosynthesis. Our transcriptome data also provide a valuable genetic resource for further studies on P. cablin.
Collapse
Affiliation(s)
- Wuping Yan
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Shijia Cao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Ping Chen
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
31
|
Luthar Z, Fabjan P, Mlinarič K. Biotechnological Methods for Buckwheat Breeding. PLANTS (BASEL, SWITZERLAND) 2021; 10:1547. [PMID: 34451594 PMCID: PMC8399956 DOI: 10.3390/plants10081547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 02/03/2023]
Abstract
The Fagopyrum genus includes two cultivated species, namely common buckwheat (F. esculentum Moench) and Tartary buckwheat (F. tataricum Gaertn.), and more than 25 wild buckwheat species. The goal of breeders is to improve the properties of cultivated buckwheat with methods of classical breeding, with the support of biotechnological methods or a combination of both. In this paper, we reviewed the possibility to use transcriptomics, genomics, interspecific hybridization, tissue cultures and plant regeneration, molecular markers, genetic transformation, and genome editing to aid in both the breeding of buckwheat and in the identification and production of metabolites important for preserving human health. The key problems in buckwheat breeding are the unknown mode of inheritance of most traits, associated with crop yield and the synthesis of medicinal compounds, low seed yield, shedding of seeds, differential flowering and seed set on branches, and unknown action of genes responsible for the synthesis of buckwheat metabolites of pharmaceutical and medicinal interest.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Primož Fabjan
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
32
|
Ding M, Zhang K, He Y, Zuo Q, Zhao H, He M, Georgiev MI, Park SU, Zhou M. FtBPM3 modulates the orchestration of FtMYB11-mediated flavonoids biosynthesis in Tartary buckwheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1285-1287. [PMID: 33768635 PMCID: PMC8313129 DOI: 10.1111/pbi.13587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Affiliation(s)
- Mengqi Ding
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Department of Crop ScienceCollege of Agriculture & Life SciencesChungnam National UniversityDaejeonKorea
| | - Kaixuan Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qian Zuo
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- School of Life SciencesHunan University of Science and TechnologyXiangtanHunanChina
| | - Hui Zhao
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ming He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Milen I. Georgiev
- Laboratory of MetabolomicsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Sang Un Park
- Department of Crop ScienceCollege of Agriculture & Life SciencesChungnam National UniversityDaejeonKorea
- Department of Smart Agriculture SystemsChungnam National UniversityDaejeonKorea
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
33
|
Hou S, Du W, Hao Y, Han Y, Li H, Liu L, Zhang K, Zhou M, Sun Z. Elucidation of the Regulatory Network of Flavonoid Biosynthesis by Profiling the Metabolome and Transcriptome in Tartary Buckwheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7218-7229. [PMID: 34151566 DOI: 10.1021/acs.jafc.1c00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The characteristics of flavonoid metabolism in different Tartary buckwheat (TB) tissues and the related gene regulation network are still unclear at present. One hundred forty-seven flavonoids were identified from six TB tissues using the ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The roadmap of the rutin synthesis pathway was revealed. Through transcriptomic analysis it was revealed that the differentially expressed genes (DEGs) are mainly enriched in the "Phenylpropanoid biosynthesis" pathway. Fifty-two DEGs involved in the "flavonol synthesis" pathway were identified. The weighted gene correlation network analysis revealed four co-expression network modules correlated with six flavonol metabolites. Eventually, 74 genes revealed from MEblue and MElightsteelblue modules were potentially related to flavonol synthesis. Of them, 7 MYB transcript factors had been verified to regulate flavonoid synthesis. Furthermore, overexpressed FtMYB31 enhanced the rutin content in vivo. The present findings provide a dynamic flavonoid metabolism profile and co-expression network related to rutin synthesis and are thus valuable in understanding the molecular mechanisms of rutin synthesis in TB.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yanrong Hao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Longlong Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, 030031 Taiyuan, Shanxi, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| |
Collapse
|
34
|
Li J, Meng Y, Zhang K, Li Q, Li S, Xu B, Georgiev MI, Zhou M. Jasmonic acid-responsive RRTF1 transcription factor controls DTX18 gene expression in hydroxycinnamic acid amide secretion. PLANT PHYSIOLOGY 2021; 185:369-384. [PMID: 33721896 PMCID: PMC8133619 DOI: 10.1093/plphys/kiaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) are plant hormones that regulate the biosynthesis of many secondary metabolites, such as hydroxycinnamic acid amides (HCAAs), through jasmonic acid (JA)-responsive transcription factors (TFs). HCAAs are renowned for their role in plant defense against pathogens. The multidrug and toxic compound extrusion transporter DETOXIFICATION18 (DTX18) has been shown to mediate the extracellular accumulation of HCAAs p-coumaroylagmatine (CouAgm) at the plant surface for defense response. However, little is known about the regulatory mechanism of DTX18 gene expression by TFs. Yeast one-hybrid screening using the DTX18 promoter as bait isolated the key positive regulator redox-responsive TF 1 (RRTF1), which is a member of the AP2/ethylene-response factor family of proteins. RRTF1 is a JA-responsive factor that is required for the transcription of the DTX18 gene, and it thus promotes CouAgm secretion at the plant surface. As a result, overexpression of RRTF1 caused increased resistance against the fungus Botrytis cinerea, whereas rrtf1 mutant plants were more susceptible. Using yeast two-hybrid screening, we identified the BTB/POZ-MATH (BPM) protein BPM1 as an interacting partner of RRTF1. The BPM family of proteins acts as substrate adaptors of CUL3-based E3 ubiquitin ligases, and we found that only BPM1 and BPM3 were able to interact with RRTF1. In addition, we demonstrated that RRTF1 was subjected to degradation through the 26S proteasome pathway and that JA stabilized RRTF1. Knockout of BPM1 and BPM3 in bpm1/3 double mutants enhanced RRTF1 accumulation and DTX18 gene expression, thus increasing resistance to the fungus B. cinerea. Our results provide a better understanding of the fine-tuned regulation of JA-induced TFs in HCAA accumulation.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Life Science College, Luoyang Normal University, Luoyang 471934, China
| | - Yu Meng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Landscape and Travel, Hebei Agricultural University, Baoding 071001, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiong Li
- School of Nursing, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Pathology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Pathology, Gansu Agricultural University, Lanzhou 730070, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication: (M.Z.)
| |
Collapse
|
35
|
Zhang K, He M, Fan Y, Zhao H, Gao B, Yang K, Li F, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo SH, Georgiev MI, Zhou M. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol 2021; 22:23. [PMID: 33430931 PMCID: PMC7802136 DOI: 10.1186/s13059-020-02217-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. RESULTS Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. CONCLUSIONS We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Keli Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Faliang Li
- Research Station of Alpine Crop, Xichang Institute of Agricultural Sciences, Liangshan, 616150 Sichuan China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 58083 Guangdong China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, 100083 China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Jacek Kwiatkowski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
| | - Olga Romanova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bol’shaya Morskaya, 42-44, St. Petersburg, Russia 190000
| | - Nikhil Chrungoo
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Tatsuro Suzuki
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya 2421, Koshi, Kumamoto 861-1192 Japan
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I. Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| |
Collapse
|
36
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
37
|
Song Y, Jia Z, Hou Y, Ma X, Li L, Jin X, An L. Roles of DNA Methylation in Cold Priming in Tartary Buckwheat. FRONTIERS IN PLANT SCIENCE 2020; 11:608540. [PMID: 33365044 PMCID: PMC7750358 DOI: 10.3389/fpls.2020.608540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (Fagopyrum tataricum). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1. Tartary buckwheat cv. Dingku1 exhibited low-temperature resistance. Single-base resolution maps of the DNA methylome were generated, and a global loss of DNA methylation was observed during cold responding in Dingku1. These sites with differential methylation levels were predominant in the intergenic regions. Several hundred genes had different DNA methylation patterns and expressions in different cold treatments (cold memory and cold shock), such as CuAO, RPB1, and DHE1. The application of a DNA methylation inhibitor caused a change of the free lysine content, suggesting that DNA methylation can affect metabolite accumulation for Tartary buckwheat cold responses. The results of the present study suggest important roles of DNA methylation in regulating cold response and forming agronomic traits in Tartary buckwheat.
Collapse
Affiliation(s)
- Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhifeng Jia
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xing Jin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Yao P, Huang Y, Dong Q, Wan M, Wang A, Chen Y, Li C, Wu Q, Chen H, Zhao H. FtMYB6, a Light-Induced SG7 R2R3-MYB Transcription Factor, Promotes Flavonol Biosynthesis in Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13685-13696. [PMID: 33171044 DOI: 10.1021/acs.jafc.0c03037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is rich in flavonols, which are thought to be highly beneficial for human health. However, little is known about the regulatory mechanism of flavonol biosynthesis in Tartary buckwheat. In this study, we identified and characterized a novel SG7 R2R3-MYB transcription factor in Tartary buckwheat, FtMYB6. We showed that FtMYB6 is located in the nucleus and acts as a transcriptional activator. The FtMYB6 promoter showed strong spatiotemporal specificity and was induced by light. The expression of FtMYB6 showed a significant correlation with rutin accumulation in the roots, stems, leaves, and flowers. Overexpression of FtMYB6 in transgenic Tartary buckwheat hairy roots and tobacco (Nicotiana tabacum) plants significantly increased the accumulation of flavonols. In transient luciferase (LUC) activity assay, FtMYB6 promoted the activity of FtF3H and FtFLS1 promoters and inhibited the activity of the Ft4CL promoter. Collectively, our results suggest that FtMYB6 promotes flavonol biosynthesis by activating FtF3H and FtFLS1 expression.
Collapse
Affiliation(s)
- Panfeng Yao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Qixin Dong
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Min Wan
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Anhu Wang
- Xichang College, Xichang, Sichuan 615000, China
| | - Yuwei Chen
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| |
Collapse
|
39
|
Liu J, Chen T, Zhang J, Li C, Xu Y, Zheng H, Zhou J, Zha L, Jiang C, Jin Y, Nan T, Yi J, Sun P, Yuan Y, Huang L. Ginsenosides regulate adventitious root formation in Panax ginseng via a CLE45-WOX11 regulatory module. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6396-6407. [PMID: 32794554 DOI: 10.1093/jxb/eraa375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, PR China
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Liangping Zha
- Anhui University of Chinese Medicine, Hefei, PR China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yan Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tiegui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jinhao Yi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Peiwen Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
40
|
Dong Q, Zhao H, Huang Y, Chen Y, Wan M, Zeng Z, Yao P, Li C, Wang X, Chen H, Wu Q. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. PLANT MOLECULAR BIOLOGY 2020; 104:309-325. [PMID: 32833148 DOI: 10.1007/s11103-020-01044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.
Collapse
Affiliation(s)
- Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
41
|
Huda MN, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev MI, Park SU, Zhou M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem 2020; 335:127653. [PMID: 32739818 PMCID: PMC7378508 DOI: 10.1016/j.foodchem.2020.127653] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 07/19/2020] [Indexed: 01/07/2023]
Abstract
An extensive review on diverse bioactive components of buckwheat. Versatile beneficial phytochemicals are abundant in buckwheat. Buckwheat has a wide range of pharmacological and beneficial health effects. Huge research scope on Fagopyrum cymosum to identify the beneficial phytochemicals.
Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.
Collapse
Affiliation(s)
- Md Nurul Huda
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanzim Jahan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 80208, Saudi Arabia
| | - Mengqi Ding
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Republic of Korea
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| | - Sang Un Park
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Republic of Korea.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
42
|
Luo Q, Li J, Wang C, Cheng C, Shao J, Hui J, Zeng Y, Wang J, Zhu X, Xu Y. TrMYB4 transcription factor regulates the rutin biosynthesis in hairy roots of F. cymosum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110440. [PMID: 32234223 DOI: 10.1016/j.plantsci.2020.110440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Fagopyrum cymosum has been considered as a traditional medicinal plant that belongs to Fagopyrum, which has exhibited great pharmaceutical potential due to its abundant flavonoid accumulation. The hairy roots induced by Agrobacterium rhizogenes has been utilized to produce valuable specialized metabolites or reveals plant metabolic processes, whereas the underlying regulatory networks of flavonoid biosynthesis in hairy roots of F. cymosum remained unexplored. Here, the regulatory transcription factor TrMYB4 cloned from Trifolium repens with purple striped leaves was considered to investigate the mechanism of flavonoids biosynthesis in hairy roots of F. cymosum. Results showed that the expression of key genes involved in rutin biosynthesis pathway from TrMYB4 hairy roots were significantly up-regulated compared with non-transgenic hairy roots, while the content of total flavonoids and rutin in TrMYB4 hairy roots also increased consistently. It revealed the TrMYB4 transcription factor could regulate the rutin biosynthesis in F. cymosum. Meanwhile, our research provided a theoretical reference for the industrial production of rutin using F. cymosum hairy roots.
Collapse
Affiliation(s)
- Qinglin Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, China; Institute of Corp Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jintong Li
- China Traditional Chinese Medicine Seed & Seedling Co., Ltd., 100035, Beijing, China
| | - Chenglong Wang
- Institute of Corp Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China; Plateau Biological Resources R & D Platform of Xichen Co. Ltd, National Agricultural High-Tech Innovation Center, 611130, Chengdu, China
| | - Cheng Cheng
- Institute of Corp Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jirong Shao
- College of Life Sciences, Sichuan Agricultural University, 625014, Yaan, China
| | - Jianchun Hui
- Plateau Biological Resources R & D Platform of Xichen Co. Ltd, National Agricultural High-Tech Innovation Center, 611130, Chengdu, China
| | - Yan Zeng
- China National Traditional Chinese Medicine Co., Ltd., 100035, Beijing, China
| | - Jiyong Wang
- China Traditional Chinese Medicine Seed & Seedling Co., Ltd., 100035, Beijing, China; China National Traditional Chinese Medicine Co., Ltd., 100035, Beijing, China.
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Yi Xu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, China.
| |
Collapse
|
43
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2172-2185. [PMID: 31900491 PMCID: PMC7242085 DOI: 10.1093/jxb/erz570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/31/2019] [Indexed: 05/02/2023]
Abstract
Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation. Here, the effect of dual stresses (wounding and low temperature) on volatile compounds in tea (Camellia sinensis) plants and the underlying signalling mechanisms were investigated. Indole, an insect resistance volatile, was maintained at a higher content and for a longer time under dual stresses compared with wounding alone. CsMYC2a, a jasmonate (JA)-responsive transcription factor, was the major regulator of CsTSB2, a gene encoding a tryptophan synthase β-subunit essential for indole synthesis. During the recovery phase after tea wounding, low temperature helped to maintain a higher JA level. Further study showed that CsICE2 interacted directly with CsJAZ2 to relieve inhibition of CsMYC2a, thereby promoting JA biosynthesis and downstream expression of the responsive gene CsTSB2 ultimately enhancing indole biosynthesis. These findings shed light on the role of low temperature in promoting plant damage responses and advance knowledge of the molecular mechanisms by which multiple stresses coordinately regulate plant responses to the biotic and abiotic environment.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Correspondence:
| |
Collapse
|
44
|
Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. BIOLOGY 2020; 9:biology9030061. [PMID: 32213912 PMCID: PMC7150910 DOI: 10.3390/biology9030061] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
MYB transcription factors (TFs), as one of the largest gene families in plants, play important roles in multiple biological processes, such as plant growth and development, cell morphology and pattern building, physiological activity metabolism, primary and secondary metabolic reactions, and responses to environmental stresses. The function of MYB TFs in crops has been widely studied, but few studies have been done on medicinal plants. In this review, we summarized the MYB TFs that play important roles in secondary metabolism and emphasized the possible mechanisms underlying how MYB TFs are regulated at the protein, posttranscriptional, and transcriptional levels, as well as how they regulate the downstream target gene networks related to secondary metabolism in plants, especially in medicinal plants.
Collapse
Affiliation(s)
- Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kui Li
- Science and Technology Promotion Center, Huaihua Forestry Research Institute, Huaihua 418000, China;
| | - Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopei Zhao
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Correspondence:
| |
Collapse
|
45
|
Joshi DC, Zhang K, Wang C, Chandora R, Khurshid M, Li J, He M, Georgiev MI, Zhou M. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnol Adv 2019; 39:107479. [PMID: 31707074 DOI: 10.1016/j.biotechadv.2019.107479] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
Abstract
Buckwheat (Fagopyrum spp.) under the family Polygonaceae is an ancient pseudocereal with stupendous but less studied nutraceutical properties. The gluten free nature of protein, balanced amino acid profile and health promoting bioactive flavonoids make it a golden crop of future. Besides a scanty basic research, not much attention has been paid to the improvement of plant type and breeding of nutraceutical traits. Scanning of scientific literature indicates that adequate genetic variation exists for agronomic and nutritional traits in mainstream and wild gene pool of buckwheat. However, the currently employed conventional approaches together with poorly understood genetic mechanisms restrict effective utilization of the existing genetic variation in nutraceutical breeding of buckwheat. The latest trends in buckwheat genomics, particularly avalilabity of draft genome sequences for both the cultivated species (F. esculentum and F.tataricum) hold immense potential to overcome these limitations. Utilizing the transgenic hairy rot cultures, role of various transcription factors and gene families have been deduced in production and biosynthesis of bioactive flavonoids. Further, the acquisition of high-density genomics data coupled with the next-generation phenotyping will certainly improve our understanding of underlying genetic regulation of nutraceutical traits. The present paper highlights the application of multilayered omics interventions for tailoring a nutrient rich buckwheat cultivar and nutraceutical product development.
Collapse
Affiliation(s)
- Dinesh C Joshi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenglong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rahul Chandora
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, Regional Station, Shimla, HP, India
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
46
|
Behr M, Guerriero G, Grima-Pettenati J, Baucher M. A Molecular Blueprint of Lignin Repression. TRENDS IN PLANT SCIENCE 2019; 24:1052-1064. [PMID: 31371222 DOI: 10.1016/j.tplants.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique (CNRS) Université Paul Sabatier Toulouse III (UPS), 31326 Castanet-Tolosan, France
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
47
|
Li H, Lv Q, Ma C, Qu J, Cai F, Deng J, Huang J, Ran P, Shi T, Chen Q. Metabolite Profiling and Transcriptome Analyses Provide Insights into the Flavonoid Biosynthesis in the Developing Seed of Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11262-11276. [PMID: 31509416 DOI: 10.1021/acs.jafc.9b03135] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Qiuyu Lv
- School of Big Data and Computer Science , Guizhou Normal University , Guiyang 550025 , China
| | - Chao Ma
- College of Agriculture , Henan University of Science and Technology , Luoyang 471023 , China
| | - Jingtao Qu
- Maize Research Institute , Sichuan Agricultural University , Chengdu 611130 , China
| | - Fang Cai
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Pan Ran
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology , Guizhou Normal University , Guiyang 550001 , China
| |
Collapse
|
48
|
Metabolic Variations of Flavonoids in Leaves of T. media and T. mairei Obtained by UPLC-ESI-MS/MS. Molecules 2019; 24:molecules24183323. [PMID: 31547329 PMCID: PMC6767174 DOI: 10.3390/molecules24183323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The needles of Taxus species contain a large number of bioactive compounds, such as flavonoids. In the present study, the total flavonoid content in leaves of Taxus media and Taxus mairei was 19.953 and 14.464 mg/g, respectively. A total of 197 flavonoid metabolites (70 flavones, 42 flavonols, 26 flavone C-glycosides, 20 flavanones, 15 anthocyanins, 13 isoflavones, 6 flavonolignans, and 5 proanthocyanidins) were identified for the first time by a widely targeted Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method within the two Taxus species, containing 160 common metabolites, with 37 unique metabolites merely determined in T. mairei or T. media. Moreover, 42 differential flavonoid metabolites were screened in the two Taxus species, which showed specific metabolic patterns in isoflavonoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis pathways. Compared to T. mairei, a more activated phenylpropanoid pathway was found in T. media, which could be responsible for the higher content of total flavonoids in T. media. Our results provide new insights into the diversity of flavonoid metabolites between T. mairei and T. media, and provide a theoretical basis for the sufficient utilization of Taxus species and the development of novel drugs.
Collapse
|
49
|
Li J, Zhang K, Meng Y, Li Q, Ding M, Zhou M. FtMYB16 interacts with Ftimportin-α1 to regulate rutin biosynthesis in tartary buckwheat. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1479-1481. [PMID: 30963665 PMCID: PMC6662100 DOI: 10.1111/pbi.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Affiliation(s)
- Jinbo Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Life Science CollegeLuoyang Normal UniversityLuoyangChina
| | - Kaixuan Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Meng
- College of Landscape and TravelAgricultural University of HebeiBaodingChina
| | - Qiong Li
- School of NursingHunan University of Chinese MedicineChangshaChina
| | - Mengqi Ding
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
50
|
Chen X, Li J, Wang X, Zhong L, Tang Y, Zhou X, Liu Y, Zhan R, Zheng H, Chen W, Chen L. Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynthesis and regulation in Pogostemon cablin. BMC PLANT BIOLOGY 2019; 19:266. [PMID: 31221095 PMCID: PMC6585090 DOI: 10.1186/s12870-019-1884-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete to date. RESULTS In this study, we analyzed the morphological character and volatile chemical compounds of P. cablin cv. 'Zhanxiang', and 39 volatile chemical components were detected in the patchouli leaf using GC-MS, most of which were sesquiterpenes. Furthermore, high-quality RNA isolated from leaves and stems of P. cablin were used to generate the first full-length transcriptome of P. cablin using PacBio isoform sequencing (Iso-Seq). In total, 9.7 Gb clean data and 82,335 full-length UniTransModels were captured. 102 transcripts were annotated as 16 encoding enzymes involved in patchouli alcohol biosynthesis. Accorded with the uptrend of patchoulol content, the vast majority of genes related to the patchoulol biosynthesis were up-regulated after MeJA treatment, indicating that MeJA led to an increasing synthesis of patchoulol through activating the expression level of genes involved in biosynthesis pathway of patchoulol. Moreover, expression pattern analysis also revealed that transcription factors participated in JA regulation of patchoulol biosynthesis were differentially expressed. CONCLUSIONS The current study comprehensively reported the morphological specificity, volatile chemical compositions and transcriptome characterization of the Chinese-cultivated P. cablin cv. 'Zhanxiang', these results contribute to our better understanding of the physiological and molecular features of patchouli, especially the molecular mechanism of biosynthesis of patchoulol. Our full-length transcriptome data also provides a valuable genetic resource for further studies in patchouli.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Yun Tang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Xuanxuan Zhou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Yanting Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Hai Zheng
- Guangdong Institute of Traditional Chinese Medicine, Guangzhou, 510520 People’s Republic of China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|