1
|
Hu Y, Zhu L, Yuan C, Zhou W, Zeng Y, Ouyang S, Chen L, Wu H, Lei P, Deng X, Zhao Z, Fang X, Xiang W. Hydraulic traits exert greater limitations on tree-level maximum sap flux density than photosynthetic ability: Global evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177030. [PMID: 39442710 DOI: 10.1016/j.scitotenv.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Transpiration is a key process that couples the land-atmosphere exchange of water and carbon, and its maximum water transport ability affects plant productivity. Functional traits significantly influence the maximum transpiration rate; however, which factor plays the dominant role remains unknown. SAPFLUXNET dataset, which includes sap flux density of diverse species worldwide, provides fundamental data to test the importance of photosynthetic and hydraulic traits on maximum tree-level sap flux density (Js_max). Here, we investigated variations in Js_max of 2194 trees across 129 species using data from the SAPFLUXNET dataset, and analysed the relationship of Js_max with photosynthetic and hydraulic traits. Our results indicated that Js_max was positively correlated with photosynthetic traits at both leaf and tree level. Regarding hydraulic traits, Js_max was positively related to xylem hydraulic conductivity (Ks), leaf-specific hydraulic conductivity (Kl), xylem pressure inducing 50 % loss of hydraulic conductivity (P50), xylem vessel diameter (Vdia), and leaf-to-sapwood area ratio (AlAs). Random forest model showed that 87 % of the variability in Js_max can be explained by functional traits, and hydraulic traits (e.g., P50 and sapwood area, As) exerted larger effects on Js_max than photosynthetic traits. Moreover, trees with a lower sapwood area or depth could increase their sap flux density to compensate for the reduced whole-tree transpiration. Js_max of the angiosperms was significantly higher than that of the gymnosperms. Mean annual total precipitation (MAP) were positively related to Js_max with a weak correlation coefficient. Furthermore, Js_max showed a significant phylogenetic signal with Blomberg's K below 0.2. Overall, tree species with acquisitive resource economics or more efficient hydraulic systems show higher water transport capacity, and the efficiency of xylem hydraulic system rather than the demand for carbon uptake predominantly determines water transport capacity.
Collapse
Affiliation(s)
- Yanting Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Liwei Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chuan Yuan
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geography Sciences, Southwest University, Chongqing 400715, China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yelin Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Shuai Ouyang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Liang Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Huili Wu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Pifeng Lei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Xiangwen Deng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Zhonghui Zhao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Xi Fang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Wenhua Xiang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China.
| |
Collapse
|
2
|
Vaughan D, Williams CB, Nadkarni N, Dawson TE, Draguljic D, Næsborg RR, Gotsch SG. Drought response strategies of vascular epiphytes in isolated pasture trees in a Costa Rican tropical montane landscape. AMERICAN JOURNAL OF BOTANY 2024; 111:e16423. [PMID: 39394737 DOI: 10.1002/ajb2.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 10/14/2024]
Abstract
PREMISE Vascular epiphytes of tropical montane cloud forests are vulnerable to climate change, particularly as cloud bases elevate and reduce atmospheric inputs to the system. However, studies have generally focused on epiphytes in contiguous forests, with little research being done on epiphytes on isolated pasture trees. We investigated water relations of pasture-tree epiphytes at three sites located below and above the elevation of the average cloud base in Monteverde, Costa Rica. METHODS We measured sap velocity and four microclimate variables in both the dry and wet season of 2018. We also measured functional traits, including pressure volume (PV) curves, predawn/midday water potential, and various lab-based water relations traits. We used linear mixed models to assess the correlation between microclimate and sap velocity in both seasons and ANOVA to assess the variation in PV curve and water potential variables. RESULTS The turgor loss point generally increased from the wettest to driest site. However, this trend was driven primarily by the increasing prevalence of leaf succulence at drier sites. Microclimatic variables correlated strongly with sap velocity in the wet season, but low soil moisture availability caused this correlation to break down during the dry season. CONCLUSIONS Our results emphasize the vulnerability of cloud forest epiphytes to rising cloud bases. This vulnerability may be more severe in pasture trees that lack the potential buffer of surrounding forest, but additional research that directly compares the canopy microclimate conditions between forest and pasture trees is needed to confirm this possibility.
Collapse
Affiliation(s)
- Damon Vaughan
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, 40546, KY, USA
| | - Cameron B Williams
- Division of Natural Resources, Channel Islands National Park, Ventura, 93001, CA, USA
- Department of Conservation & Research, Santa Barbara Botanic Garden, Santa Barbara, 93105, CA, USA
| | - Nalini Nadkarni
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, UT, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Danel Draguljic
- Department of Mathematics, Franklin and Marshall College, P.O. Box 3003, Lancaster, 17603, PA, USA
| | - Rikke Reese Næsborg
- Department of Conservation & Research, Santa Barbara Botanic Garden, Santa Barbara, 93105, CA, USA
| | - Sybil G Gotsch
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, 40546, KY, USA
| |
Collapse
|
3
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
4
|
Guo JJ, Gong XW, Li XH, Zhang C, Duan CY, Lohbeck M, Sterck F, Hao GY. Coupled hydraulics and carbon economy underlie age-related growth decline and revitalisation of sand-fixing shrubs after crown removal. PLANT, CELL & ENVIRONMENT 2024; 47:2999-3014. [PMID: 38644635 DOI: 10.1111/pce.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.
Collapse
Affiliation(s)
- Jing-Jing Guo
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xue-Hua Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chi Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chun-Yang Duan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Madelon Lohbeck
- Forest Ecology and Management Group, Wageningen University & Research, AA Wageningen, the Netherlands
| | - Frank Sterck
- Forest Ecology and Management Group, Wageningen University & Research, AA Wageningen, the Netherlands
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
5
|
Sun Q, Gilgen AK, Wittwer R, von Arx G, van der Heijden MGA, Klaus VH, Buchmann N. Drought effects on trait space of winter wheat are independent of land management. THE NEW PHYTOLOGIST 2024; 243:591-606. [PMID: 38785184 DOI: 10.1111/nph.19851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.
Collapse
Affiliation(s)
- Qing Sun
- Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Climate and Environmental Physics, Physics Institute, University of Bern, 3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
| | - Anna K Gilgen
- Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Raphaël Wittwer
- Research Division Agroecology and Environment, Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Georg von Arx
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Marcel G A van der Heijden
- Research Division Agroecology and Environment, Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikersrasse 107, 8008, Zürich, Switzerland
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Research Division Animal Production Systems and Animal Health, Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
6
|
Zhang X, Ma S, Hu H, Li F, Bao W, Huang L. A trade-off between leaf hydraulic efficiency and safety across three xerophytic species in response to increased rock fragment content. TREE PHYSIOLOGY 2024; 44:tpae010. [PMID: 38245807 PMCID: PMC10918055 DOI: 10.1093/treephys/tpae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Limited information is available on the variation of plant leaf hydraulic traits in relation to soil rock fragment content (RFC), particularly for xerophytes native to rocky mountain areas. In this study, we conducted a field experiment with four gradients of RFC (0, 25, 50 and 75% ν ν-1) on three different xerophytic species (Sophora davidii, Cotinus szechuanensis and Bauhinia brachycarpa). We measured predawn and midday leaf water potential (Ψleaf), leaf hydraulic conductance (Kleaf), Ψleaf induced 50% loss of Kleaf (P50), pressure-volume curve traits and leaf structure. A consistent response of hydraulic traits to increased RFC was observed in three species. Kleaf showed a decrease, whereas P50 and turgor loss point (Ψtlp) became increasingly negative with increasing RFC. Thus, a clear trade-off between hydraulic efficiency and safety was observed in the xerophytic species. In all three species, the reduction in Kleaf was associated with an increase in leaf mass per area. In S. davidii, alterations in Kleaf and P50 were driven by leaf vein density (VLA) and Ψtlp. In C. szechuanensis, Ψtlp and VLA drove the changes in Kleaf and P50, respectively. In B. brachycarpa, changes in P50 were driven by VLA, whereas changes in both Kleaf and P50 were simultaneously influenced by Ψtlp. Our findings suggest that adaptation to increased rockiness necessarily implies a trade-off between leaf hydraulic efficiency and safety in xerophytic species. Additionally, the trade-off between leaf hydraulic efficiency and safety among xerophytic species is likely to result from processes occurring in the xylem and the outside-xylem hydraulic pathways. These findings contribute to a better understanding of the survival strategies and mechanisms of xerophytes in rocky soils, and provide a theoretical basis for the persistence of xerophytic species in areas with stony substrates.
Collapse
Affiliation(s)
- Xiulong Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Shaowei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hui Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fanglan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Weikai Bao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Long Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
7
|
González-Melo A, Posada JM, Beauchêne J, Lehnebach R, Levionnois S, Derroire G, Clair B. The links between wood traits and species demography change during tree development in a lowland tropical rainforest. AOB PLANTS 2024; 16:plad090. [PMID: 38249523 PMCID: PMC10799319 DOI: 10.1093/aobpla/plad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured 11 wood traits (i.e. structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates (MR) at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while MR decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and MR than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
Collapse
Affiliation(s)
- Andrés González-Melo
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Juan Manuel Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Romain Lehnebach
- CNRS, Laboratory of Botany and Modeling of Plant Architecture and Vegetation (UMR AMAP), 34398 Montpellier, France
| | - Sébastian Levionnois
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
| | - Géraldine Derroire
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
- Laboratoire de Mécanique de Génie Civil (LMGC), CNRS, Université de Montpellier, 34000, France
| |
Collapse
|
8
|
Liu S, Xu G, Chen T, Wu X, Li Y. Quantifying the effects of precipitation exclusion and groundwater drawdown on functional traits of Haloxylon ammodendron - How does this xeric shrub survive the drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166945. [PMID: 37699482 DOI: 10.1016/j.scitotenv.2023.166945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The increasing frequency of drought and decline in groundwater levels are causing ecophysiological changes in woody plants, particularly in desert ecosystems in arid regions. However, the combined effects of meteorological and hydrological droughts on perennial desert plants, especially phreatophytes, remain poorly understood. To address this knowledge gap, we conducted a 5-year precipitation exclusion experiment at two sites with contrasting groundwater depths in the Gurbantunggut Desert located in northwest China. Our study aimed to investigate the impacts of precipitation exclusion and groundwater depth decline on multiple traits of H. ammodendron. We found that long-term precipitation exclusion enhanced midday leaf water potential, stomatal conductance, chlorophyll content, root nonstructural carbohydrates concentration, leaf starch concentration, but decreased water use efficiency. Groundwater drawdown decreased predawn and midday leaf water potentials, maximum net photosynthetic rate, stomatal conductance, Huber value, stem water δ18O, but enhanced water use efficiency and branch nonstructural carbohydrates concentration. A combination of precipitation exclusion and groundwater depth decline reduced Huber value, but did not show exacerbated effects. The findings demonstrate that hydrological drought induced by groundwater depth decline poses a greater threat to the survival of H. ammodendron than future changes in precipitation.
Collapse
Affiliation(s)
- Shensi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuqiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yan Li
- Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wei Y, Chen YJ, Siddiq Z, Zhang JL, Zhang SB, Jansen S, Cao KF. Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species. TREE PHYSIOLOGY 2023; 43:2109-2120. [PMID: 37672225 DOI: 10.1093/treephys/tpad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Collapse
Affiliation(s)
- Yang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, Yunnan, China
| | - Zafar Siddiq
- Department of Botany, Government College University, Katchery Road, Lahore 54000, Punjab, Pakistan
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Baden-Wurttemberg, Germany
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| |
Collapse
|
10
|
Castillo-Figueroa D, González-Melo A, Posada JM. Wood density is related to aboveground biomass and productivity along a successional gradient in upper Andean tropical forests. FRONTIERS IN PLANT SCIENCE 2023; 14:1276424. [PMID: 38023915 PMCID: PMC10665531 DOI: 10.3389/fpls.2023.1276424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Wood density (WD) is a key functional trait related to ecological strategies and ecosystem carbon dynamics. Despite its importance, there is a considerable lack of information on WD in tropical Andean forests, particularly regarding its relationship with forest succession and ecosystem carbon cycling. Here, we quantified WD in 86 upper Andean tree and shrub species in central Colombia, with the aim of determining how WD changes with forest succession and how it is related to productivity. We hypothesized that WD will increase with succession because early successional forests will be colonized by acquisitive species, which typically have low WD, while the shaded understory of older forests should favor higher WD. We measured WD in 481 individuals from 27 shrub and 59 tree species, and quantified aboveground biomass (AGB), canopy height, net primary production (NPP) and species composition and abundance in 14, 400-m2, permanent plots. Mean WD was 0.513 ± 0.114 (g/cm3), with a range between 0.068 and 0.718 (g/cm3). Shrubs had, on average, higher WD (0.552 ± 0.095 g/cm3) than trees (0.488 ± 0.104 g/cm3). Community weighted mean WD (CWMwd) decreased with succession (measured as mean canopy height, AGB, and basal area); CWMwd also decreased with aboveground NPP and stem growth. In contrast, the percentage of NPP attributed to litter and the percent of shrubs in plots increased with CWMwd. Thus, our hypothesis was not supported because early successional forests had higher CWMwd than late successional forests. This was related to a high proportion of shrubs (with high WD) early in succession, which could be a consequence of: 1) a low seed availability of trees due to intense land use in the landscape and/or 2) harsh abiotic conditions early in succession that filter out trees. Forest with high CWMwd had a high %NPP attributed to litter because they were dominated by shrubs, which gain little biomass in their trunks. Our findings highlight the links between WD, succession and carbon cycling (biomass and productivity) in this biodiversity hotspot. Thus, WD is an important trait that can be used to understand upper Andean forest recovery and improve forest restoration and management practices.
Collapse
Affiliation(s)
| | | | - Juan M. Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
11
|
Smith-Martin CM, Muscarella R, Hammond WM, Jansen S, Brodribb TJ, Choat B, Johnson DM, Vargas-G G, Uriarte M. Hydraulic variability of tropical forests is largely independent of water availability. Ecol Lett 2023; 26:1829-1839. [PMID: 37807917 DOI: 10.1111/ele.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - William M Hammond
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - German Vargas-G
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| |
Collapse
|
12
|
Umaña MN. The interplay of drought and hurricanes on tree recovery: insights from dynamic and weak functional responses. Proc Biol Sci 2023; 290:20231732. [PMID: 37727090 PMCID: PMC10509583 DOI: 10.1098/rspb.2023.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Bravo-Avila CH, Feeley KJ. Variation in the Drought Tolerance of Tropical Understory Plant Communities across an Extreme Elevation and Precipitation Gradient. PLANTS (BASEL, SWITZERLAND) 2023; 12:2957. [PMID: 37631168 PMCID: PMC10459884 DOI: 10.3390/plants12162957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Little is known about how differences in water availability within the "super humid" tropics can influence the physiology of understory plant species and the composition of understory plant communities. We investigated the variation in the physiological drought tolerances of hundreds of understory plants in dozens of plant communities across an extreme elevation and precipitation gradient. Specifically, we established 58 understory plots along a gradient of 400-3600 m asl elevation and 1000-6000 mm yr-1 rainfall in and around Manu National Park in southeastern Peru. Within the plots, we sampled all understory woody plants and measured three metrics of physiological leaf drought tolerance-turgor loss point (TLP), cuticular conductance (Gmin), and solute leakage (SL)-and assessed how the community-level means of these three traits related to the mean annual precipitation (MAP) and elevation (along the study gradient, the temperature decreases linearly, and the vapor pressure deficit increases monotonically with elevation). We did not find any correlations between the three metrics of leaf drought tolerance, suggesting that they represent independent strategies for coping with a low water availability. Despite being widely used metrics of leaf drought tolerance, neither the TLP nor Gmin showed any significant relationships with elevation or the MAP. In contrast, SL, which has only recently been developed for use in ecological field studies, increased significantly at higher precipitations and at lower elevations (i.e., plants in colder and drier habitats have a lower average SL, indicating greater drought tolerances). Our results illustrate that differences in water availability may affect the physiology of tropical montane plants and thus play a strong role in structuring plant communities even in the super humid tropics. Our results also highlight the potential for SL assays to be efficient and effective tools for measuring drought tolerances in the field.
Collapse
Affiliation(s)
| | - Kenneth J. Feeley
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Fairchild Tropical Botanical Garden, Coral Gables, FL 33156, USA
| |
Collapse
|
14
|
Simioni PF, Emilio T, Giles AL, Viana de Freitas G, Silva Oliveira R, Setime L, Pierre Vitoria A, Pireda S, Vieira da Silva I, Da Cunha M. Anatomical traits related to leaf and branch hydraulic functioning on Amazonian savanna plants. AOB PLANTS 2023; 15:plad018. [PMID: 37214224 PMCID: PMC10198777 DOI: 10.1093/aobpla/plad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
Collapse
Affiliation(s)
| | - Thaise Emilio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Instituto de Biologia, UNICAMP, Campinas, Brasil
| | - André L Giles
- Instituo Nacional de Pesquisa da Amazonia (INPA), Manaus, Amazonas, Brasil
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Gustavo Viana de Freitas
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | | | - Lara Setime
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Angela Pierre Vitoria
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Saulo Pireda
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Ivone Vieira da Silva
- Laboratório de Biologia Vegetal, Universidade do Estado do Mato Grosso, Alta Floresta, MT, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
15
|
Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Pérez Mullisaca FM, Barros FDV, Bittencourt P, Jancoski H, Scalon MC, Marimon BS, Oliveras Menor I, Marimon BH, Fancourt M, Chambers-Ostler A, Esquivel-Muelbert A, Rowland L, Meir P, Lola da Costa AC, Nina A, Sanchez JMB, Tintaya JS, Chino RSC, Baca J, Fernandes L, Cumapa ERM, Santos JAR, Teixeira R, Tello L, Ugarteche MTM, Cuellar GA, Martinez F, Araujo-Murakami A, Almeida E, da Cruz WJA, Del Aguila Pasquel J, Aragāo L, Baker TR, de Camargo PB, Brienen R, Castro W, Ribeiro SC, Coelho de Souza F, Cosio EG, Davila Cardozo N, da Costa Silva R, Disney M, Espejo JS, Feldpausch TR, Ferreira L, Giacomin L, Higuchi N, Hirota M, Honorio E, Huaraca Huasco W, Lewis S, Flores Llampazo G, Malhi Y, Monteagudo Mendoza A, Morandi P, Chama Moscoso V, Muscarella R, Penha D, Rocha MC, Rodrigues G, Ruschel AR, Salinas N, Schlickmann M, Silveira M, Talbot J, Vásquez R, Vedovato L, Vieira SA, Phillips OL, Gloor E, Galbraith DR. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 2023; 617:111-117. [PMID: 37100901 PMCID: PMC10156596 DOI: 10.1038/s41586-023-05971-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Collapse
Affiliation(s)
- Julia Valentim Tavares
- School of Geography, University of Leeds, Leeds, UK.
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Signori-Müller
- School of Geography, University of Leeds, Leeds, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | | | | | | | - Martin Acosta
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
| | | | - Fernanda de V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Ecologia, University of Campinas, Campinas, Brazil
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Halina Jancoski
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Marina Corrêa Scalon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Beatriz S Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | - Ben Hur Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Max Fancourt
- School of Geography, University of Leeds, Leeds, UK
| | | | - Adriane Esquivel-Muelbert
- School of Geography, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research (BIFoR), Birmingham, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Alex Nina
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Jose S Tintaya
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jean Baca
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Edwin R M Cumapa
- Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém, Brazil
| | | | - Renata Teixeira
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ligia Tello
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Maira T M Ugarteche
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Gina A Cuellar
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Franklin Martinez
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Everton Almeida
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Jhon Del Aguila Pasquel
- Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Luís Aragāo
- National Institute for Space Research (INPE), São José dos Campos-SP, Brazil
| | | | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Wendeson Castro
- Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, Brazil
- SOS Amazônia, Programa Governança e Proteção da Paisagem Verde na Amazônia, Rio Branco-AC, Brazil
| | | | | | - Eric G Cosio
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Richarlly da Costa Silva
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Acre, Campus Baixada do Sol, Rio Branco, Brazil
| | - Mathias Disney
- Department of Geography, University College London, London, UK
| | - Javier Silva Espejo
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Ted R Feldpausch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Leandro Giacomin
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Niro Higuchi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marina Hirota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Physics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euridice Honorio
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Gerardo Flores Llampazo
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional Jorge Basadre de Grohmann (UNJBG), Tacna, Peru
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Paulo Morandi
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Victor Chama Moscoso
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Robert Muscarella
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Deliane Penha
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Mayda Cecília Rocha
- Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Gleicy Rodrigues
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Monique Schlickmann
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Marcos Silveira
- Museu Universitário, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - Joey Talbot
- Institute for Transport Studies, University of Leeds, Leeds, UK
| | | | - Laura Vedovato
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Simone Aparecida Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
16
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
17
|
McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, Basri MHA, Hill T. Oil palm (Elaeis guineensis) plantation on tropical peatland in South East Asia: Photosynthetic response to soil drainage level for mitigation of soil carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159356. [PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
Collapse
Affiliation(s)
- Jon McCalmont
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK; School of Biological Sciences, University of Aberdeen, King's College, Aberdeen AB24 3FX, UK.
| | - Lip Khoon Kho
- Peat Ecosystem and Biodiversity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Economic Planning Unit, Sarawak Chief Minister's Dept., 93502 Kuching, Sarawak, Malaysia
| | - Yit Arn Teh
- School of Natural and Environmental Science, Newcastle University, Drummond Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Melanie Chocholek
- Dept. Earth and Environmental Science, University of St. Andrews, Irvine Building, North Street, St. Andrews KY16 9AL, UK
| | - Elisa Rumpang
- Peat Ecosystem and Biodiversity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Lucy Rowland
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK
| | - Mohd Hadi Akbar Basri
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK; Dept. of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Tim Hill
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK
| |
Collapse
|
18
|
Yang K, Chen G, Xian J, Chang H. Divergent adaptations of leaf functional traits to light intensity across common urban plant species in Lanzhou, northwestern China. FRONTIERS IN PLANT SCIENCE 2023; 14:1000647. [PMID: 36760651 PMCID: PMC9905681 DOI: 10.3389/fpls.2023.1000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Leaves are the most important photosynthetic organs in plants. Understanding the growth strategy of leaves in different habitats is crucial for elucidating the mechanisms underlying plant response and adaptation to the environment change. This study investigated the scaling relationships of the laminar area (LA), leaf fresh mass (LFM), leaf dry mass (LDM), and explored leaf nitrogen (N) and phosphorus (P) content in leaves, and the relative benefits of these pairwise traits in three common urban plants (Yulania denudata, Parthenocissus quinquefolia, and Wisteria sinensis) under different light conditions, including (full-sun and canopy-shade). The results showed that: the scaling exponent of LDM vs LA (> 1, p < 0.05) meant that the LDM increased faster than LA, and supported the hypothesis of diminishing returns. The LFM and LDM had isometric relationships in all the three species, suggesting that the leaf water content of the leaves was nearly unaltered during laminar growth. Y. denudata and W. sinensis had higher relative benefit in full-sun habitats, while the reverse was observed in P. quinquefolia. The N and P content and the N:P ratio in full-sun leaves were generally higher than those of canopy-shade leaves. The leaves of the three urban plants exhibited a shift in strategy during transfer from the canopy shaded to the sunny habitat for adapting to the lower light conditions. The response of plant leaves to the environment shapes the rich variations at the leaf level, and quantification of the relative benefits of plants in different habitats provides novel insights into the response and adaptation strategies of plants.
Collapse
Affiliation(s)
- Ketong Yang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guopeng Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chendu, China
| | - Hailong Chang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Zhang C, Khan A, Duan CY, Cao Y, Wu DD, Hao GY. Xylem hydraulics strongly influence the niche differentiation of tree species along the slope of a river valley in a water-limited area. PLANT, CELL & ENVIRONMENT 2023; 46:106-118. [PMID: 36253806 DOI: 10.1111/pce.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.
Collapse
Affiliation(s)
- Chi Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Attaullah Khan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
20
|
Feng X, Zhong L, Zhou H, Bi J, Batool H, Zhang X, Zhao W. The limiting effect of genome size on xylem vessel diameter is shifted by environmental pressures in seed plants. PLANT DIRECT 2022; 6:e471. [PMID: 36530591 PMCID: PMC9751660 DOI: 10.1002/pld3.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Current and previous studies have extensively studied the physiological and ecological consequences of genome size (GS) on plants because of the limiting effect of GS on cell size. However, it is still obscure whether such limiting effect could be shifted by environmental pressures, or not. Here, we compiled a global dataset comprised of GS, xylem vessel diameter (V dia), xylem hydraulic conductivity (K S), P 50 (xylem water potential at the loss of 50% maximum K S), and climate factors of 251 phylogeny and habitat divergent species from 59 families. The results showed that GS could limit the V dia of the species from the same family sampled in the similar climate conditions. But the expected positive relationship between GS and V dia became uncertain and even negative across different environmental conditions. V dia was strongly positively coordinated with mean annual temperature (MAT), mean annual precipitation (MAP), and potential evapotranspiration (PET). Furthermore, V dia as the anatomic foundation of plant hydraulic performance was strongly positively coordinated with K S and negatively coordinated with -P 50. The strong environmental selection on K S and P 50 explained the concerted regulation of V dia by environmental factors. The findings revealed the combined regulation of GS and environmental pressures on xylem cell size and thus affected plant eco-physiological performance. The shifted cell size limiting effect of GS by environmental factors manifests plants great plasticity under changed environmental conditions.
Collapse
Affiliation(s)
- Xiangyan Feng
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Linfei Zhong
- College of Geography and Environment ScienceNorthwest Normal UniversityLanzhouChina
| | - Hai Zhou
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Jingwen Bi
- School of Life SciencesFudan UniversityShanghaiChina
| | - Huma Batool
- Sardar Bahadur Khan Women's UniversityQuettaPakistan
| | - Xintan Zhang
- College of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wenzhi Zhao
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| |
Collapse
|
21
|
Huo J, Shi Y, Chen J, Zhang H, Feng L, Zhao Y, Zhang Z. Hydraulic trade-off and coordination strategies mediated by leaf functional traits of desert shrubs. FRONTIERS IN PLANT SCIENCE 2022; 13:938758. [PMID: 36388496 PMCID: PMC9662791 DOI: 10.3389/fpls.2022.938758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Desert shrubs play important roles in desertification control and vegetation restoration, which are particularly affected by droughts caused by climate change. However, the hydraulic strategies associated with hydraulic functional traits of desert shrubs remain unclear. Here, eight desert shrub species with different life forms and morphologies were selected for a common garden experiment at the southeast edge of the Tengger Desert in northern China to study the hydraulic strategies mediated by leaf hydraulic functional traits. Diurnal leaf water potential change, leaf hydraulic efficiency and safety, hydraulic safety margin, hydraulic capacitance, and water potential and relative water content at the turgor loss point were observed to significantly differ among species, suggesting that leaf hydraulic functional traits were strongly associated with species even when living in the same environment. Additionally, shrubs with greater leaf hydraulic efficiency had lower midday leaf water potential and leaf hydraulic safety, suggesting that leaf hydraulic efficiency had a strong trade-off with hydraulic safety and minimum leaf water potential, whereas there was also a coordination between leaf hydraulic safety and the leaf minimal water potential. Moreover, shrubs with higher leaf hydraulic capacitance had greater hydraulic safety margins, indicating coordination between leaf hydraulic capacitance and hydraulic safety margin. Overall, this study indicated that minimal daily leaf water potential, as an easily measured parameter, may be used preliminarily to predict leaf hydraulic conductivity and the resistance to embolism of desert shrubs, providing critical insights into hydraulic trade-off and coordination strategies for native shrubs as priority species in desert vegetation restoration and reconstruction.
Collapse
Affiliation(s)
- Jianqiang Huo
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Shi
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiajia Chen
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Li Feng
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Zhishan Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
22
|
Smith-Martin CM, Muscarella R, Ankori-Karlinsky R, Delzon S, Farrar SL, Salva-Sauri M, Thompson J, Zimmerman JK, Uriarte M. Hurricanes increase tropical forest vulnerability to drought. THE NEW PHYTOLOGIST 2022; 235:1005-1017. [PMID: 35608089 DOI: 10.1111/nph.18175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate. We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes. Species with high resistance to embolisms (low P50 values) and higher safety margins ( SMP50 ) were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post-hurricane growth) had high capacitance and P50 values and low SMP50 . During 26 yr of post-hurricane recovery, we found a decrease in community-weighted mean values for traits associated with greater drought resistance (leaf turgor loss point, P50 , SMP50 ) and an increase in capacitance, which has been linked with lower drought resistance. Hurricane damage favors slow-growing, drought-tolerant species, whereas post-hurricane high resource conditions favor acquisitive, fast-growing but drought-vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| | - Roi Ankori-Karlinsky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Sylvain Delzon
- INRA, BIOGECO, Université Bordeaux, Pessac, 33615, France
| | - Samuel L Farrar
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| | - Melissa Salva-Sauri
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, 00925, USA
| | - Jill Thompson
- UK Centre for Ecology & Hydrology Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, 00925, USA
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| |
Collapse
|
23
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
24
|
Sanaphre-Villanueva L, Pineda-García F, Dáttilo W, Pinzón-Pérez LF, Ricaño-Rocha A, Paz H. Above- and below-ground trait coordination in tree seedlings depend on the most limiting resource: a test comparing a wet and a dry tropical forest in Mexico. PeerJ 2022; 10:e13458. [PMID: 35722267 PMCID: PMC9205306 DOI: 10.7717/peerj.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
The study of above- and below-ground organ plant coordination is crucial for understanding the biophysical constraints and trade-offs involved in species' performance under different environmental conditions. Environmental stress is expected to increase constraints on species trait combinations, resulting in stronger coordination among the organs involved in the acquisition and processing of the most limiting resource. To test this hypothesis, we compared the coordination of trait combinations in 94 tree seedling species from two tropical forest systems in Mexico: dry and moist. In general, we expected that the water limitation experienced by dry forest species would result in stronger leaf-stem-root coordination than light limitation experienced by moist forest species. Using multiple correlations analyses and tools derived from network theory, we found similar functional trait coordination between forests. However, the most important traits differed between the forest types. While in the dry forest the most central traits were all related to water storage (leaf and stem water content and root thickness), in the moist forest they were related to the capacity to store water in leaves (leaf water content), root efficiency to capture resources (specific root length), and stem toughness (wood density). Our findings indicate that there is a shift in the relative importance of mechanisms to face the most limiting resource in contrasting tropical forests.
Collapse
Affiliation(s)
- Lucía Sanaphre-Villanueva
- Centro del Cambio Global y la Sustentabilidad A.C., Consejo Nacional de Ciencia y Tecnología, Villahermosa, Tabasco, México,Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Fernando Pineda-García
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luisa Fernanda Pinzón-Pérez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Arlett Ricaño-Rocha
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México,Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
25
|
Han H, Xi B, Wang Y, Feng J, Li X, Tissue DT. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China. TREE PHYSIOLOGY 2022; 42:1203-1215. [PMID: 35038332 DOI: 10.1093/treephys/tpac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The survival and performance of urban forests are increasingly challenged by urban drought, consequently compromising the sustainability and functionality of urban vegetation. Plant-water relations largely determine species drought tolerance, yet little is known about the hydraulics of urban forest species. Here, we report the leaf hydraulic and carbon traits that govern plant growth and drought resistance, including vulnerability to embolism, hydraulic conductivity and leaf gas exchange characteristics, as well as morphological traits that are potentially linked with these physiological attributes, with the aim of guiding species selection and management in urban forests. Plant materials were collected from mature shrubs and trees on our university campus in Beijing, representing 10 woody species common to urban forests in north China. We found that the leaf embolism resistance, represented by the water potential inducing 50% loss of hydraulic conductivity (P50), as well as the hydraulic safety margin (HSM) defined by P50 and the water potential threshold at the inception of embolism (P12), varied remarkably across species, but was unrelated to growth form. Likewise, stem and leaf-specific hydraulic conductivity (Kstem and kl) was also highly species-specific. Leaf P50 was positively correlated with hydraulic conductivity. However, neither P50 nor hydraulic conductivity was correlated with leaf gas exchange traits, including maximum photosynthetic rate (Amax) and stomatal conductance (gs). Plant morphological and physiological traits were not related, except for specific leaf area, which showed a negative relationship with HSM. Traits influencing plant-water transport were primarily correlated with the mean annual precipitation of species climatic niche. Overall, current common woody species in urban forest environments differed widely in their drought resistance and did not have the capacity to modify these characteristics in response to a changing climate. Species morphology provides limited information regarding physiological drought resistance. Thus, screening urban forest species based on plant physiology is essential to sustain the ecological services of urban forests.
Collapse
Affiliation(s)
- Hang Han
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
| | - Ye Wang
- Beijing Academy of Forestry and Pomology Sciences, 12 A Rui Wang Fen, Fragrance Hills, Haidian District, Beijing 100093, People's Republic of China
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
26
|
Duan CY, Li MY, Fang LD, Cao Y, Wu DD, Liu H, Ye Q, Hao GY. Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. TREE PHYSIOLOGY 2022; 42:727-739. [PMID: 34718811 DOI: 10.1093/treephys/tpab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.
Collapse
Affiliation(s)
- Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yong Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Li-Dong Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - Hui Liu
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qing Ye
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| |
Collapse
|
27
|
Li X, Xi B, Wu X, Choat B, Feng J, Jiang M, Tissue D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:835921. [PMID: 35444681 PMCID: PMC9015645 DOI: 10.3389/fpls.2022.835921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
Collapse
Affiliation(s)
- Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
28
|
Guillemot J, Martin-StPaul NK, Bulascoschi L, Poorter L, Morin X, Pinho BX, le Maire G, R L Bittencourt P, Oliveira RS, Bongers F, Brouwer R, Pereira L, Gonzalez Melo GA, Boonman CCF, Brown KA, Cerabolini BEL, Niinemets Ü, Onoda Y, Schneider JV, Sheremetiev S, Brancalion PHS. Small and slow is safe: On the drought tolerance of tropical tree species. GLOBAL CHANGE BIOLOGY 2022; 28:2622-2638. [PMID: 35007364 DOI: 10.1111/gcb.16082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.
Collapse
Affiliation(s)
- Joannès Guillemot
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Leticia Bulascoschi
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Xavier Morin
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno X Pinho
- AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
| | | | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Rens Brouwer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | - Coline C F Boonman
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Kerry A Brown
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, UK
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
29
|
Spanner GC, Gimenez BO, Wright CL, Menezes VS, Newman BD, Collins AD, Jardine KJ, Negrón-Juárez RI, Lima AJN, Rodrigues JR, Chambers JQ, Higuchi N, Warren JM. Dry Season Transpiration and Soil Water Dynamics in the Central Amazon. FRONTIERS IN PLANT SCIENCE 2022; 13:825097. [PMID: 35401584 PMCID: PMC8987125 DOI: 10.3389/fpls.2022.825097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.
Collapse
Affiliation(s)
| | - Bruno O. Gimenez
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Smithsonian Tropical Research Institute (STRI), Panama City, Panama
| | - Cynthia L. Wright
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, United States
| | | | - Brent D. Newman
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Adam D. Collins
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Kolby J. Jardine
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Jeffrey Q. Chambers
- National Institute of Amazonian Research (INPA), Manaus, Brazil
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Geography, University of California, Berkeley, Berkeley, CA, United States
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Jeffrey M. Warren
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, United States
| |
Collapse
|
30
|
Garcia MN, Hu J, Domingues TF, Groenendijk P, Oliveira RS, Costa FRC. Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:939-952. [PMID: 34545938 DOI: 10.1093/jxb/erab432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Addressing the intraspecific variability of functional traits helps understand how climate change might influence the distribution of organismal traits across environments, but this is notably understudied in the Amazon, especially for plant hydraulic traits commonly used to project drought responses. We quantified the intraspecific trait variability of leaf mass per area, wood density, and xylem embolism resistance for two dominant central Amazonian tree species, along gradients of water and light availability, while accounting for tree age and height. Intraspecific variability in hydraulic traits was high, with within-species variability comparable to the whole-community variation. Hydraulic trait variation was modulated mostly by the hydrological environment, with higher embolism resistance of trees growing on deep-water-table plateaus compared with shallow-water-table valleys. Intraspecific variability of leaf mass per area and wood density was mostly modulated by intrinsic factors and light. The different environmental and intrinsic drivers of variation among and within individuals lead to an uncoupled coordination among carbon acquisition/conservation and water-use traits. Our findings suggest multivariate ecological strategies driving tropical tree distributions even within species, and reflect differential within-population sensitivities along environmental gradients. Therefore, intraspecific trait variability must be considered for accurate predictions of the responses of tropical forests to climate change.
Collapse
Affiliation(s)
- Maquelle N Garcia
- Tropical Forest Science Program, National Institute of Amazon Researches, Manaus, AM, Brazil
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Tomas F Domingues
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Peter Groenendijk
- Department of Plant Biology, Institute of Biology, P.O. Box: 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, P.O. Box: 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Flávia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Caixa Postal 2223, CEP 69008-971, Manaus, AM, Brazil
| |
Collapse
|
31
|
Zhang Y, Zhao J, Xu J, Chai Y, Liu P, Quan J, Wu X, Li C, Yue M. Effects of Water Availability on the Relationships Between Hydraulic and Economic Traits in the Quercus wutaishanica Forests. FRONTIERS IN PLANT SCIENCE 2022; 13:902509. [PMID: 35720582 PMCID: PMC9199496 DOI: 10.3389/fpls.2022.902509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 05/02/2023]
Abstract
Water availability is a key environmental factor affecting plant species distribution, and the relationships between hydraulic and economic traits are important for understanding the species' distribution patterns. However, in the same community type but within different soil water availabilities, the relationships in congeneric species remain ambiguous. In northwest China, Quercus wutaishanica forests in the Qinling Mountains (QM, humid region) and Loess Plateau (LP, drought region) have different species composition owing to contrasting soil water availability, but with common species occurring in two regions. We analyzed eight hydraulic traits [stomatal density (SD), vein density (VD), wood specific gravity (WSGbranch), lower leaf area: sapwood area (Al: As), stomatal length (SL), turgor loss point (ΨTlp), maximum vessel diameter (Vdmax) and height (Height)] and five economic traits [leaf dry matter content (LDMC), leaf tissue density (TD), leaf dry mass per area (LMA), Leaf thickness (LT) and maximum net photosynthetic rate (Pmax)] of congeneric species (including common species and endemic species) in Q. wutaishanica forests of QM and LP. We explored whether the congeneric species have different economic and hydraulic traits across regions. And whether the relationship between hydraulic and economic traits was determined by soil water availability, and whether it was related to species distribution and congeneric endemic species composition of the same community. We found that LP species tended to have higher SD, VD, WSGbranch, Al: As, SL, ΨTlp and Vdmax than QM species. There was a significant trade-off between hydraulic efficiency and safety across congeneric species. Also, the relationships between hydraulic and economic traits were closer in LP than in QM. These results suggested that relationships between hydraulic and economic traits, hydraulic efficiency and safety played the role in constraining species distribution across regions. Interestingly, some relationships between traits changed (from significant correlation to non-correlation) in common species across two regions (from LP to QM), but not in endemic species. The change of these seven pairs of relationships might be a reason for common species' wide occurrence in the two Q. wutaishanica forests with different soil water availability. In drought or humid conditions, congeneric species developed different types of adaptation mechanisms. The study helps to understand the environmental adaptive strategies of plant species, and the results improve our understanding of the role of both hydraulic and economic traits during community assembly.
Collapse
Affiliation(s)
- Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiale Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Xipin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- *Correspondence: Ming Yue,
| |
Collapse
|
32
|
Santiago LS. Stem functional traits, not just morphology, explain differentiation along the liana-tree continuum. TREE PHYSIOLOGY 2021; 41:1989-1991. [PMID: 34505149 DOI: 10.1093/treephys/tpab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| |
Collapse
|
33
|
Peters JMR, López R, Nolf M, Hutley LB, Wardlaw T, Cernusak LA, Choat B. Living on the edge: A continental-scale assessment of forest vulnerability to drought. GLOBAL CHANGE BIOLOGY 2021; 27:3620-3641. [PMID: 33852767 DOI: 10.1111/gcb.15641] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Globally, forests are facing an increasing risk of mass tree mortality events associated with extreme droughts and higher temperatures. Hydraulic dysfunction is considered a key mechanism of drought-triggered dieback. By leveraging the climate breadth of the Australian landscape and a national network of research sites (Terrestrial Ecosystem Research Network), we conducted a continental-scale study of physiological and hydraulic traits of 33 native tree species from contrasting environments to disentangle the complexities of plant response to drought across communities. We found strong relationships between key plant hydraulic traits and site aridity. Leaf turgor loss point and xylem embolism resistance were correlated with minimum water potential experienced by each species. Across the data set, there was a strong coordination between hydraulic traits, including those linked to hydraulic safety, stomatal regulation and the cost of carbon investment into woody tissue. These results illustrate that aridity has acted as a strong selective pressure, shaping hydraulic traits of tree species across the Australian landscape. Hydraulic safety margins were constrained across sites, with species from wetter sites tending to have smaller safety margin compared with species at drier sites, suggesting trees are operating close to their hydraulic thresholds and forest biomes across the spectrum may be susceptible to shifts in climate that result in the intensification of drought.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Markus Nolf
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Tim Wardlaw
- ARC Centre for Forest Value, University of Tasmania, Hobart, Tas, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
34
|
Pivovaroff AL, Wolfe BT, McDowell N, Christoffersen B, Davies S, Dickman LT, Grossiord C, Leff RT, Rogers A, Serbin SP, Wright SJ, Wu J, Xu C, Chambers JQ. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica 2021. [DOI: 10.1111/btp.12964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandria L. Pivovaroff
- Atmospheric Science and Global Change Division Pacific Northwest National Laboratory Richland WA USA
| | - Brett T. Wolfe
- Smithsonian Tropical Research Institute Balboa Republic of Panama
- School of Renewable Natural Resources Louisiana State University Baton Rouge LA USA
| | - Nate McDowell
- Atmospheric Science and Global Change Division Pacific Northwest National Laboratory Richland WA USA
| | | | - Stuart Davies
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - L. Turin Dickman
- Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA
| | - Charlotte Grossiord
- Functional Plant Ecology Community Ecology Unit Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Lausanne Switzerland
- School of Architecture Civil and Environmental Engineering ENAC Plant Ecology Research Laboratory – PERL EPFL Lausanne Switzerland
| | - Riley T. Leff
- Atmospheric Science and Global Change Division Pacific Northwest National Laboratory Richland WA USA
| | - Alistair Rogers
- Brookhaven National Laboratory, Environmental and Climate Sciences Upton NY USA
| | - Shawn P. Serbin
- Brookhaven National Laboratory, Environmental and Climate Sciences Upton NY USA
| | - S. Joseph Wright
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Jin Wu
- Brookhaven National Laboratory, Environmental and Climate Sciences Upton NY USA
- School of Biological Sciences The University of Hong Kong Hong Kong Hong Kong
| | - Chonggang Xu
- Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA
| | - Jeffrey Q. Chambers
- Lawrence Berkeley National Laboratory Earth and Environmental Science Area Berkeley CA USA
| |
Collapse
|
35
|
Palomo-Kumul J, Valdez-Hernández M, Islebe GA, Cach-Pérez MJ, Andrade JL. El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico. Sci Rep 2021; 11:10451. [PMID: 34001943 PMCID: PMC8129073 DOI: 10.1038/s41598-021-89835-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
We evaluated the effect of ENSO 2015/16 on the water relations of eight tree species in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. The functional traits: wood density, relative water content in wood, xylem water potential and specific leaf area were recorded during the rainy season and compared in three consecutive years: 2015 (pre-ENSO conditions), 2016 (ENSO conditions) and 2017 (post-ENSO conditions). We analyzed tree size on the capacity to respond to water deficit, considering young and mature trees, and if this response is distinctive in species with different leaf patterns in seasonally dry tropical forests distributed along a precipitation gradient (700–1200 mm year−1). These traits showed a strong decrease in all species in response to water stress in 2016, mainly in the driest site. Deciduous species had lower wood density, higher predawn water potential and higher specific leaf area than evergreen species. In all cases, mature trees were more tolerant to drought. In the driest site, there was a significant reduction in water status, regardless of their leaf phenology, indicating that seasonally dry tropical forests are highly vulnerable to ENSO. Vulnerability of deciduous species is intensified in the driest areas and in the youngest trees.
Collapse
Affiliation(s)
- Jorge Palomo-Kumul
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México
| | - Mirna Valdez-Hernández
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México.
| | - Gerald A Islebe
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México
| | - Manuel J Cach-Pérez
- Departamento de Agricultura, Sociedad y Ambiente, CONACYT-El Colegio de la Frontera Sur Unidad Villahermosa, 86280, Villahermosa, TAB, México
| | - José Luis Andrade
- Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales A.C., 97205, Mérida, YUC, México
| |
Collapse
|
36
|
Vleminckx J, Fortunel C, Valverde‐Barrantes O, Timothy Paine CE, Engel J, Petronelli P, Dourdain AK, Guevara J, Béroujon S, Baraloto C. Resolving whole‐plant economics from leaf, stem and root traits of 1467 Amazonian tree species. OIKOS 2021. [DOI: 10.1111/oik.08284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jason Vleminckx
- Dept of Biological Sciences, Florida International Univ. FL USA
- Yale Inst. for Biospheric Studies New Haven CT USA
| | - Claire Fortunel
- AMAP (botAnique et Modélisation de l'Architecture des Plantes et des Végétations), Univ. de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier Cedex 5 France
| | | | - C. E. Timothy Paine
- Environmental and Rural Science, Univ. of New England Armidale New South Wales Australia
| | - Julien Engel
- AMAP (botAnique et Modélisation de l'Architecture des Plantes et des Végétations), Univ. de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier Cedex 5 France
- International Center for Tropical Botany, Dept of Biological Sciences, Florida International Univ. Miami FL USA
| | - Pascal Petronelli
- CIRAD, UMR Ecologie des Forêts de Guyane, AgroParisTech, Univ. de Guyane, Univ. des Antilles Kourou Cedex France
| | - Aurélie K. Dourdain
- CIRAD, UMR Ecologie des Forêts de Guyane, AgroParisTech, Univ. de Guyane, Univ. des Antilles Kourou Cedex France
| | | | - Solène Béroujon
- UMR Ecologie des Forêts de Guyane, AgroParisTech, Univ. de Guyane, Univ. des Antilles Kourou Cedex France
| | - Christopher Baraloto
- Dept of Biological Sciences, Florida International Univ. FL USA
- INRAe, UMR Ecologie de Forêts de Guyane, AgroParisTech, CIRAD, INRA, Univ. de Guyane, Univ. des Antilles Kourou Cedex France
| |
Collapse
|
37
|
Ávila-Lovera E, Blanco H, Móvil O, Santiago LS, Tezara W. Shade tree species affect gas exchange and hydraulic conductivity of cacao cultivars in an agroforestry system. TREE PHYSIOLOGY 2021; 41:240-253. [PMID: 33313911 DOI: 10.1093/treephys/tpaa119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Shade tolerance is a widespread strategy of rainforest understory plants. Many understory species have green young stems that may assimilate CO2 and contribute to whole-plant carbon balance. Cacao commonly grows in the shaded understory and recent emphasis has been placed on diversifying the types of trees used to shade cacao plants to achieve additional ecosystem services. We studied three agricultural cacao cultivars growing in the shade of four timber species (Cedrela odorata L., Cordia thaisiana Agostini, Swietenia macrophylla King and Tabebuia rosea (Bertol) A.D.C.) in an agroforestry system to (i) evaluate the timber species for their effect on the physiological performance of three cacao cultivars; (ii) assess the role of green stems on the carbon economy of cacao; and (iii) examine coordination between stem hydraulic conductivity and stem photosynthesis in cacao. Green young stem photosynthetic CO2 assimilation rate was positive and double leaf CO2 assimilation rate, indicating a positive contribution of green stems to the carbon economy of cacao; however, green stem area is smaller than leaf area and its relative contribution is low. Timber species showed a significant effect on leaf gas exchange traits and on stomatal conductance of cacao, and stem water-use efficiency varied among cultivars. There were no significant differences in leaf-specific hydraulic conductivity among cacao cultivars, but sapwood-specific hydraulic conductivity varied significantly among cultivars and there was an interactive effect of cacao cultivar × timber species. Hydraulic efficiency was coordinated with stem-stomatal conductance, but not with leaf-stomatal conductance or any measure of photosynthesis. We conclude that different shade regimes determined by timber species and the interaction with cacao cultivar had an important effect on most of the physiological traits and growth variables of three cacao cultivars growing in an agroforestry system. Results suggested that C. odorata is the best timber species to provide partial shade for cacao cultivars in the Barlovento region in Venezuela, regardless of cultivar origin.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Héctor Blanco
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
| | - Olga Móvil
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Wilmer Tezara
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
- Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Código postal 080150, Esmeraldas, Ecuador
| |
Collapse
|
38
|
Liu H, Ye Q, Gleason SM, He P, Yin D. Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. THE NEW PHYTOLOGIST 2021; 229:1440-1452. [PMID: 33058227 DOI: 10.1111/nph.16940] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/04/2020] [Indexed: 05/18/2023]
Abstract
A classic theory proposes that plant xylem cannot be both highly efficient in water transport and resistant to embolism, and therefore a hydraulic efficiency-safety trade-off should exist. However, the trade-off is weak, and many species exhibit both low efficiency and low safety, falling outside of the expected trade-off space. It remains unclear under what climatic conditions these species could maintain competitive fitness. We compiled hydraulic efficiency and safety traits for 682 observations of 499 woody species from 178 sites world-wide and measured the position of each observation within the proposed trade-off space. For both angiosperms and gymnosperms, observations from sites with high climatic seasonality, especially precipitation seasonality, tended to have higher hydraulic safety and efficiency than observations from sites with low seasonality. Specifically, high vapour pressure deficit, high solar radiation, and low precipitation during the wet season were driving factors. Strong climatic seasonality and drought in both dry and wet seasons appear to be ecological filters that select for species with co-optimized safety and efficiency, whereas the opposite environmental conditions may allow the existence of plants with low efficiency and safety.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Haibin Road 1119, Nansha, Guangzhou, 511458, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyi Yin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| |
Collapse
|
39
|
Levionnois S, Jansen S, Wandji RT, Beauchêne J, Ziegler C, Coste S, Stahl C, Delzon S, Authier L, Heuret P. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. THE NEW PHYTOLOGIST 2021; 229:1453-1466. [PMID: 32964439 DOI: 10.1111/nph.16942] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/04/2020] [Indexed: 05/27/2023]
Abstract
Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure-functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, D-89081, Germany
| | - Ruth Tchana Wandji
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Jacques Beauchêne
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AgroParisTech, UMR Silva, INRAE, Université de Lorraine, Nancy, F-54000, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Sylvain Delzon
- UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France
| | - Louise Authier
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| |
Collapse
|
40
|
De Guzman ME, Acosta-Rangel A, Winter K, Meinzer FC, Bonal D, Santiago LS. Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models. TREE PHYSIOLOGY 2021; 41:24-34. [PMID: 32803244 DOI: 10.1093/treephys/tpaa106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Wood density (WD) is often used as a proxy for hydraulic traits such as vulnerability to drought-induced xylem cavitation and maximum water transport capacity, with dense-wooded species generally being more resistant to drought-induced xylem cavitation, having lower rates of maximum water transport and lower sapwood capacitance than light-wooded species. However, relationships between WD and the hydraulic traits that they aim to predict have not been well established in tropical forests, where modeling is necessary to predict drought responses for a high diversity of unmeasured species. We evaluated WD and relationships with stem xylem vulnerability by measuring cavitation curves, sapwood water release curves and minimum seasonal water potential (Ψmin) on upper canopy branches of six tree species and three liana species from a single wet tropical forest site in Panama. The objective was to better understand coordination and trade-offs among hydraulic traits and the potential utility of these relationships for modeling purposes. We found that parameters from sapwood water release curves such as capacitance, saturated water content and sapwood turgor loss point (Ψtlp,x) were related to WD, whereas stem vulnerability curve parameters were not. However, the water potential corresponding to 50% loss of hydraulic conductivity (P50) was related to Ψtlp,x and sapwood osmotic potential at full turgor (πo,x). Furthermore, species with lower Ψmin showed lower P50, Ψtlp,x and πo,x suggesting greater drought resistance. Our results indicate that WD is a good easy-to-measure proxy for some traits related to drought resistance, but not others. The ability of hydraulic traits such as P50 and Ψtlp,x to predict mortality must be carefully examined if WD values are to be used to predict drought responses in species without detailed physiological measurements.
Collapse
Affiliation(s)
- Mark E De Guzman
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| | - Frederick C Meinzer
- Pacific Northwest Station, USDA Forest Service, Corvallis, 3200 SW Jefferson Way, OR 97331, USA
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 14 Rue Girardet, 54000 Nancy, France
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| |
Collapse
|
41
|
Liu X, Wang N, Cui R, Song H, Wang F, Sun X, Du N, Wang H, Wang R. Quantifying Key Points of Hydraulic Vulnerability Curves From Drought-Rewatering Experiment Using Differential Method. FRONTIERS IN PLANT SCIENCE 2021; 12:627403. [PMID: 33603765 PMCID: PMC7884474 DOI: 10.3389/fpls.2021.627403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Abstract
Precise and accurate estimation of key hydraulic points of plants is conducive to mastering the hydraulic status of plants under drought stress. This is crucial to grasping the hydraulic status before the dieback period to predict and prevent forest mortality. We tested three key points and compared the experimental results to the calculated results by applying two methods. Saplings (n = 180) of Robinia pseudoacacia L. were separated into nine treatments according to the duration of the drought and rewatering. We established the hydraulic vulnerability curve and measured the stem water potential and loss of conductivity to determine the key points. We then compared the differences between the calculated [differential method (DM) and traditional method (TM)] and experimental results to identify the validity of the calculation method. From the drought-rewatering experiment, the calculated results from the DM can be an accurate estimation of the experimental results, whereas the TM overestimated them. Our results defined the hydraulic status of each period of plants. By combining the experimental and calculated results, we divided the hydraulic vulnerability curve into four parts. This will generate more comprehensive and accurate methods for future research.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Feng Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Ning Du
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Hui Wang
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
42
|
Ziemińska K, Rosa E, Gleason SM, Holbrook NM. Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species. PLANT, CELL & ENVIRONMENT 2020; 43:3048-3067. [PMID: 32935340 DOI: 10.1111/pce.13891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Water released from wood during transpiration (capacitance) can meaningfully affect daily water use and drought response. To provide context for better understanding of capacitance mechanisms, we investigated links between capacitance and wood anatomy. On twigs of 30 temperate angiosperm tree species, we measured day capacitance (between predawn and midday), water content, wood density, and anatomical traits, that is, vessel dimensions, tissue fractions, and vessel-tissue contact fractions (fraction of vessel circumference in contact with other tissues). Across all species, wood density (WD) and predawn lumen volumetric water content (VWCL-pd ) together were the strongest predictors of day capacitance (r2adj = .44). Vessel-tissue contact fractions explained an additional ~10% of the variation in day capacitance. Regression models were not improved by including tissue lumen fractions. Among diffuse-porous species, VWCL-pd and vessel-ray contact fraction together were the best predictors of day capacitance, whereas among semi/ring-porous species, VWCL-pd , WD and vessel-fibre contact fraction were the best predictors. At predawn, wood was less than fully saturated for all species (lumen relative water content = 0.52 ± 0.17). Our findings imply that day capacitance depends on the amount of stored water, tissue connectivity and the bulk wood properties arising from WD (e.g., elasticity), rather than the fraction of any particular tissue.
Collapse
Affiliation(s)
- Kasia Ziemińska
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Emily Rosa
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Sean M Gleason
- United States Department of Agriculture - Agricultural Research Service, Water Management and Systems Research Unit, Fort Collins, Colorado, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Levionnois S, Ziegler C, Jansen S, Calvet E, Coste S, Stahl C, Salmon C, Delzon S, Guichard C, Heuret P. Vulnerability and hydraulic segmentations at the stem-leaf transition: coordination across Neotropical trees. THE NEW PHYTOLOGIST 2020; 228:512-524. [PMID: 32496575 DOI: 10.1111/nph.16723] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR SILVA, INRAE , Université de Lorraine, Nancy, 54000, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, D-89081, Germany
| | - Emma Calvet
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Camille Salmon
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Sylvain Delzon
- Univ. Bordeaux , INRAE, BIOGECO, Pessac, F-33615, France
| | - Charlotte Guichard
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
44
|
Fontes CG, Fine PVA, Wittmann F, Bittencourt PRL, Piedade MTF, Higuchi N, Chambers JQ, Dawson TE. Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. THE NEW PHYTOLOGIST 2020; 228:106-120. [PMID: 32452033 DOI: 10.1111/nph.16675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/10/2020] [Indexed: 05/12/2023]
Abstract
Amazonian droughts are increasing in frequency and severity. However, little is known about how this may influence species-specific vulnerability to drought across different ecosystem types. We measured 16 functional traits for 16 congeneric species from six families and eight genera restricted to floodplain, swamp, white-sand or plateau forests of Central Amazonia. We investigated whether habitat distributions can be explained by species hydraulic strategies, and if habitat specialists differ in their vulnerability to embolism that would make water transport difficult during drought periods. We found strong functional differences among species. Nonflooded species had higher wood specific gravity and lower stomatal density, whereas flooded species had wider vessels, and higher leaf and xylem hydraulic conductivity. The P50 values (water potential at 50% loss of hydraulic conductivity) of nonflooded species were significantly more negative than flooded species. However, we found no differences in hydraulic safety margin among species, suggesting that all trees may be equally likely to experience hydraulic failure during severe droughts. Water availability imposes a strong selection leading to differentiation of plant hydraulic strategies among species and may underlie patterns of adaptive radiation in many tropical tree genera. Our results have important implications for modeling species distribution and resilience under future climate scenarios.
Collapse
Affiliation(s)
- Clarissa G Fontes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Paul V A Fine
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Florian Wittmann
- Department of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology - KIT, Josefstr.1, Rastatt, D-76437, Germany
- Biogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz, 55128, Germany
| | - Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maria Teresa Fernandez Piedade
- Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, Petrópolis, Manaus, AM, 2936, 69067-375, Brazil
| | - Niro Higuchi
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, 69067-375, Brazil
| | - Jeffrey Q Chambers
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA, 94720, USA
- Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
45
|
Li Q, Zhao M, Wang N, Liu S, Wang J, Zhang W, Yang N, Fan P, Wang R, Wang H, Du N. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:106-118. [PMID: 32485615 DOI: 10.1016/j.plaphy.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and subjected to intense drought by withholding water and mild drought by adding half of the amount of daily water lost. Patterns of leaf and root gas exchange, leaf surface areas, growth, leaf and stem hydraulics, and carbohydrate dynamics were determined in drought-stressed and control seedlings. We detected a complete loss of hydraulic conductivity and partial depletion of total nonstructural carbohydrates contents (TNC) in the dead seedlings. We also found that intense drought triggered a more rapid decrease in plant water potential and a faster drop in net photosynthesis below zero, and a greater TNC loss in dead seedlings than mild drought. Additionally, anisohydric R. pseudoacacia suffered a rapider death than the isohydric Q. acutissima. Based on these findings, we propose that hydraulic conductivity loss and carbon limitation jointly contributed to drought-induced death, while the relative contributions could be altered by drought intensity. We thus believe that it is important to illustrate the mechanistic relationships between stress intensity and carbon-hydraulics coupling in the context of isohydric vs. anisohydric hydraulic strategies.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Mingming Zhao
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Shuna Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Jingwen Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Wenxin Zhang
- Shandong Academy of Forestry, 42 Wenhuadong Road, Jinan, 250014, China
| | - Ning Yang
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Peixian Fan
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
46
|
Chen Z, Zhu S, Zhang Y, Luan J, Li S, Sun P, Wan X, Liu S. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. TREE PHYSIOLOGY 2020; 40:1029-1042. [PMID: 32310276 DOI: 10.1093/treephys/tpaa046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Xylem traits are critical plant functional traits associated with water transport, mechanical support, and carbohydrate and water storage. Studies on the xylem hydraulic efficiency-safety tradeoff are numerous; however, the storage function of xylem parenchyma is rarely considered. The effects of a substantial number of xylem traits on water transport, embolism resistance, mechanical support, storage capacity and nonstructural carbohydrate (NSC) content were investigated in 19 temperate broadleaf species planted in an arid limestone habitat in northern China. There was no xylem hydraulic efficiency-safety tradeoff in the 19 broadleaf species. The total parenchyma fraction was negatively correlated with the fiber fraction. Embolism resistance was positively correlated with indicators of xylem mechanical strength such as vessel wall reinforcement, vessel wall thickness and fiber wall thickness, and was negatively related to the axial parenchyma fraction, especially the paratracheal parenchyma fraction. The paratracheal parenchyma fraction was positively correlated with the ratio of the paratracheal parenchyma fraction to the vessel fraction. In addition, the xylem NSC concentration was positively related to the total parenchyma fraction and axial parenchyma fraction. There was a storage capacity-embolism resistance tradeoff in the xylem of 19 broadleaf species in arid limestone habitats. We speculate that the temperate broadleaf species may show a spectrum of xylem hydraulic strategies, from the embolism resistance strategy related to a more negative P50 (the water potential corresponding to 50% loss of xylem conductivity) to the embolization repair strategy based on more paratracheal parenchyma.
Collapse
Affiliation(s)
- Zhicheng Chen
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yongtao Zhang
- Mountain Tai Forest Ecosystem Research Station of National Forestry and Grassland Administration, Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Junwei Luan
- Key Laboratory of Bamboo and Rattan Science and Technology, Institute for Resources and Environment, International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing 100102, China
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Pengsen Sun
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Xianchong Wan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
47
|
Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. PLANT, CELL & ENVIRONMENT 2020; 43:965-980. [PMID: 31760666 PMCID: PMC7155043 DOI: 10.1111/pce.13687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.
Collapse
Affiliation(s)
- Thomas A. J. Janssen
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| | - Katrin Fleischer
- Land Surface‐Atmosphere InteractionsTechnical University of MunichFreisingGermany
| | - Kim Naudts
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Han Dolman
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
48
|
Fortunel C, Stahl C, Heuret P, Nicolini E, Baraloto C. Disentangling the effects of environment and ontogeny on tree functional dimensions for congeneric species in tropical forests. THE NEW PHYTOLOGIST 2020; 226:385-395. [PMID: 31872884 DOI: 10.1111/nph.16393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Soil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia. Specifically, we evaluate how environment, developmental stage, and taxonomy contribute to single-trait variation and multidimensional functional strategies. We find that environment, developmental stage, and taxonomy differentially contribute to functional dimensions. Habitats and seasons shape physiological and chemical traits related to water and nutrient use, whereas developmental stage and taxonomic identity impact morphological traits -especially those related to the leaf economics spectrum. Our findings suggest that combining environment, ontogeny, and taxonomy allows for a better understanding of important functional dimensions in tropical trees and highlights the need for integrating tree physiological and chemical traits with classically used morphological traits to improve predictions of tropical forests' responses to environmental change.
Collapse
Affiliation(s)
- Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | - Clément Stahl
- UMR EcoFoG (Ecology of Guiana Forests), INRA, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, 97379, Kourou, France
| | - Patrick Heuret
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | - Eric Nicolini
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | - Christopher Baraloto
- UMR EcoFoG (Ecology of Guiana Forests), INRA, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, 97379, Kourou, France
- Department of Biological Sciences, Florida International University, Miami, FL, 33133, USA
| |
Collapse
|
49
|
França FM, Benkwitt CE, Peralta G, Robinson JPW, Graham NAJ, Tylianakis JM, Berenguer E, Lees AC, Ferreira J, Louzada J, Barlow J. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190116. [PMID: 31983328 PMCID: PMC7017775 DOI: 10.1098/rstb.2019.0116] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Filipe M. França
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Guadalupe Peralta
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | - Jason M. Tylianakis
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
| | - Alexander C. Lees
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil
- Instituto de Geociências, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Júlio Louzada
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-000, MG, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-000, MG, Brazil
| |
Collapse
|
50
|
Momo ST, Ploton P, Martin-Ducup O, Lehnebach R, Fortunel C, Sagang LBT, Boyemba F, Couteron P, Fayolle A, Libalah M, Loumeto J, Medjibe V, Ngomanda A, Obiang D, Pélissier R, Rossi V, Yongo O, Sonké B, Barbier N. Leveraging Signatures of Plant Functional Strategies in Wood Density Profiles of African Trees to Correct Mass Estimations From Terrestrial Laser Data. Sci Rep 2020; 10:2001. [PMID: 32029780 PMCID: PMC7005061 DOI: 10.1038/s41598-020-58733-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022] Open
Abstract
Wood density (WD) relates to important tree functions such as stem mechanics and resistance against pathogens. This functional trait can exhibit high intraindividual variability both radially and vertically. With the rise of LiDAR-based methodologies allowing nondestructive tree volume estimations, failing to account for WD variations related to tree function and biomass investment strategies may lead to large systematic bias in AGB estimations. Here, we use a unique destructive dataset from 822 trees belonging to 51 phylogenetically dispersed tree species harvested across forest types in Central Africa to determine vertical gradients in WD from the stump to the branch tips, how these gradients relate to regeneration guilds and their implications for AGB estimations. We find that decreasing WD from the tree base to the branch tips is characteristic of shade-tolerant species, while light-demanding and pioneer species exhibit stationary or increasing vertical trends. Across all species, the WD range is narrower in tree crowns than at the tree base, reflecting more similar physiological and mechanical constraints in the canopy. Vertical gradients in WD induce significant bias (10%) in AGB estimates when using database-derived species-average WD data. However, the correlation between the vertical gradients and basal WD allows the derivation of general correction models. With the ongoing development of remote sensing products providing 3D information for entire trees and forest stands, our findings indicate promising ways to improve greenhouse gas accounting in tropical countries and advance our understanding of adaptive strategies allowing trees to grow and survive in dense rainforests.
Collapse
Affiliation(s)
- Stéphane Takoudjou Momo
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon.,AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Pierre Ploton
- AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | | | - Romain Lehnebach
- UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Ghent University, Coupure Links 653, B-, 9000, Gent, Belgium
| | - Claire Fortunel
- AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Le Bienfaiteur Takougoum Sagang
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon.,AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Faustin Boyemba
- University of Kisangani, Democratic Republic of Congo, Kisangani, Republic of Congo
| | - Pierre Couteron
- AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Adeline Fayolle
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Moses Libalah
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
| | - Joel Loumeto
- University of Marien Ngouabi, Brazzaville, Republic of Congo
| | - Vincent Medjibe
- Commission des Forêts d'Afrique Centrale (COMIFAC), Yaoundé, BP, 20818, Cameroon
| | - Alfred Ngomanda
- Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), BP, 13354, Libreville, Gabon
| | | | - Raphaël Pélissier
- AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - Vivien Rossi
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon.,Commission des Forêts d'Afrique Centrale (COMIFAC), Yaoundé, BP, 20818, Cameroon.,RU Forests and Societies, CIRAD, Yaoundé, Cameroon
| | - Olga Yongo
- University of Bangui, Bangui, Central African Republic
| | | | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
| | - Nicolas Barbier
- AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France.
| |
Collapse
|