1
|
Lin Y, Xie T, Li S, Li X, Liu W. Amplified photosynthetic responses to drought events offset the positive effects of warming on arid desert plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175899. [PMID: 39222813 DOI: 10.1016/j.scitotenv.2024.175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ongoing warming will influence plant photosynthesis via thermal effects and by enhancing water deficit. As the primary limiting factor for the growth and development of plants in arid deserts, water may alter the potential warming effects on plant photosynthesis and lead to increased uncertainty in plant dynamics. Here, we used open-top chambers (OTCs) to evaluate the impacts of in situ warming (+0.5 and +1.5 °C) on the photosynthesis and growth of two representative desert plants, Artemisia ordosica and Grubovia dasyphylla, from wet to dry spells. The plant traits associated with photosynthetic diffusive and biochemical processes were also measured to explore the underlying mechanisms involved. We found that warming significantly increased the net photosynthetic rate (Anet) during wet spells under 1.5 °C warming in both plants, while only increased that of A. ordosica under 0.5 °C warming. During dry spells, Anet decreased both in A. ordosica and G. dasyphylla, with the rates of declining being 48 % and 41 %, respectively, higher than control under warming. Consequently, warming significantly amplified photosynthetic responses to drought events, which offset the positive warming effects during wet spells and led to unchanged plant biomass in both species. Besides, alterations in plant traits tended to be associated with positive warming effects during wet spells, and the negative effects of drought were mainly due to stomatal limitation. Our results emphasised that the potential benefits of warming during wet spells may be reversed during drought events. Thus, the adverse effects of ongoing warming on desert productivity may increase during dry spells in growing seasons and during dry years.
Collapse
Affiliation(s)
- Yuwei Lin
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuanglang Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Wenjing Liu
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449245 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wankmüller FJP, Delval L, Lehmann P, Baur MJ, Cecere A, Wolf S, Or D, Javaux M, Carminati A. Global influence of soil texture on ecosystem water limitation. Nature 2024:10.1038/s41586-024-08089-2. [PMID: 39443806 DOI: 10.1038/s41586-024-08089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Low soil moisture and high vapour pressure deficit (VPD) cause plant water stress and lead to a variety of drought responses, including a reduction in transpiration and photosynthesis1,2. When soils dry below critical soil moisture thresholds, ecosystems transition from energy to water limitation as stomata close to alleviate water stress3,4. However, the mechanisms behind these thresholds remain poorly defined at the ecosystem scale. Here, by analysing observations of critical soil moisture thresholds globally, we show the prominent role of soil texture in modulating the onset of ecosystem water limitation through the soil hydraulic conductivity curve, whose steepness increases with sand fraction. This clarifies how ecosystem sensitivity to VPD versus soil moisture is shaped by soil texture, with ecosystems in sandy soils being relatively more sensitive to soil drying, whereas ecosystems in clayey soils are relatively more sensitive to VPD. For the same reason, plants in sandy soils have limited potential to adjust to water limitations, which has an impact on how climate change affects terrestrial ecosystems. In summary, although vegetation-atmosphere exchanges are driven by atmospheric conditions and mediated by plant adjustments, their fate is ultimately dependent on the soil.
Collapse
Affiliation(s)
- F J P Wankmüller
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - L Delval
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - P Lehmann
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - M J Baur
- Department of Geography, University of Cambridge, Cambridge, UK
- Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - A Cecere
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - S Wolf
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - D Or
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - M Javaux
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium.
- Agrosphere IBG-3, Forschungszentrum Jülich, Jülich, Germany.
| | - A Carminati
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Restrepo-Acevedo AM, Guo JS, Kannenberg SA, Benson MC, Beverly D, Diaz R, Anderegg WRL, Johnson DM, Koch G, Konings AG, Lowman LEL, Martínez-Vilalta J, Poyatos R, Schenk HJ, Matheny AM, McCulloh KA, Nippert JB, Oliveira RS, Novick K. PSInet: a new global water potential network. TREE PHYSIOLOGY 2024; 44:tpae110. [PMID: 39190893 PMCID: PMC11447379 DOI: 10.1093/treephys/tpae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are as follows. (i) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (ii) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (iii) Standardizing methodologies, processing and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices and early career training opportunities. (iv) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.
Collapse
Affiliation(s)
- Ana Maria Restrepo-Acevedo
- O'Neill School of Public & Environmental Affairs, Indiana University Bloomington, 702 N Walnut Grove St, Bloomington, IN 47405, USA
- Department of Biology, West Virginia University, Morgantown, VA 26506, USA
| | - Jessica S Guo
- Arizona Experiment Station, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA
| | | | - Michael C Benson
- O'Neill School of Public & Environmental Affairs, Indiana University Bloomington, 702 N Walnut Grove St, Bloomington, IN 47405, USA
| | - Daniel Beverly
- O'Neill School of Public & Environmental Affairs, Indiana University Bloomington, 702 N Walnut Grove St, Bloomington, IN 47405, USA
| | - Renata Diaz
- Arizona Experiment Station, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA
| | - William R L Anderegg
- School of Biological Sciences and Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - George Koch
- Center for Ecosystem Science and Society & Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - H Jochen Schenk
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | - Ashley M Matheny
- Department of Earth and Planetary Sciences, Jackson School of Geological Sciences, University of Texas at Austin, Austin, TX 98705, USA
| | | | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KA 66506, USA
| | - Rafael S Oliveira
- Department of Plant Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Kimberly Novick
- O'Neill School of Public & Environmental Affairs, Indiana University Bloomington, 702 N Walnut Grove St, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Matthews A, Katul G, Porporato A. Multiple time scale optimization explains functional trait responses to leaf water potential. THE NEW PHYTOLOGIST 2024; 244:426-435. [PMID: 39160672 DOI: 10.1111/nph.20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short- and long-term adjustments are interdependent, as 'optimal' in the short term depends on traits set in the longer term. An economics framework is used to optimize long-term traits that impact short-term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low-water potentials. Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification. The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.
Collapse
Affiliation(s)
- Aidan Matthews
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Gabriel Katul
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
6
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Flo V, Joshi J, Sabot M, Sandoval D, Prentice IC. Incorporating photosynthetic acclimation improves stomatal optimisation models. PLANT, CELL & ENVIRONMENT 2024; 47:3478-3493. [PMID: 38589983 DOI: 10.1111/pce.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.
Collapse
Affiliation(s)
- Victor Flo
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Univ Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jaideep Joshi
- Department of Geosciences, Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, Faculty of Science, University of Bern, Bern, Switzerland
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - David Sandoval
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Iain Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
8
|
Wilkening JV, Feng X, Dawson TE, Thompson SE. Different roads, same destination: The shared future of plant ecophysiology and ecohydrology. PLANT, CELL & ENVIRONMENT 2024; 47:3447-3465. [PMID: 38725360 DOI: 10.1111/pce.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 08/16/2024]
Abstract
Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.
Collapse
Affiliation(s)
- Jean V Wilkening
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xue Feng
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd E Dawson
- Integrative Biology, University of California, Berkeley, California, USA
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Sally E Thompson
- Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Jacobsen AL, Venturas MD, Hacke UG, Pratt RB. Sap flow through partially embolized xylem vessel networks. PLANT, CELL & ENVIRONMENT 2024; 47:3375-3392. [PMID: 38826042 DOI: 10.1111/pce.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Sap is transported through numerous conduits in the xylem of woody plants along the path from the soil to the leaves. When all conduits are functional, vessel lumen diameter is a strong predictor of hydraulic conductivity. As vessels become embolized, sap movement becomes increasingly affected by factors operating at scales beyond individual conduits, creating resistances that result in hydraulic conductivity diverging from diameter-based estimates. These effects include pit resistances, connectivity, path length, network topology, and vessel or sector isolation. The impact of these factors varies with the level and distribution of emboli within the network, and manifest as alterations in the relationship between the number and diameter of embolized vessels with measured declines in hydraulic conductivity across vulnerability to embolism curves. Divergences between measured conductivity and diameter-based estimates reveal functional differences that arise because of species- and tissue-specific vessel network structures. Such divergences are not uniform, and xylem tissues may diverge in different ways and to differing degrees. Plants regularly operate under nonoptimal conditions and contain numerous embolized conduits. Understanding the hydraulic implications of emboli within a network and the function of partially embolized networks are critical gaps in our understanding of plants occurring within natural environments.
Collapse
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California, USA
| | - Martin D Venturas
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Brandon Pratt
- Department of Biology, California State University, Bakersfield, California, USA
| |
Collapse
|
10
|
Panyushkina IP, Jull AJT, Molnár M, Varga T, Kontul’ I, Hantemirov R, Kukarskih V, Sljusarenko I, Myglan V, Livina V. The timing of the ca-660 BCE Miyake solar-proton event constrained to between 664 and 663 BCE. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:454. [PMID: 39185327 PMCID: PMC11343717 DOI: 10.1038/s43247-024-01618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Extreme solar energetic particle events, known as Miyake events, are rare phenomena observed by cosmogenic isotopes, with only six documented. The timing of the ca. 660 BCE Miyake event remains undefined until now. Here, we assign its occurrence to 664-663 BCE through new radiocarbon measurements in gymnosperm larch tree rings from arctic-alpine biomes (Yamal and Altai). Using a 22-box carbon cycle model and Bayesian statistics, we calculate the radiocarbon production rate during the event that is 3.2-4.8 times higher than the average solar modulation, and comparable to the 774-775 CE solar-proton event. The prolonged radiocarbon signature manifests a 12‰ rise over two years. The non-uniform signal in the tree rings is likely driven by the low rate of CO2 gas exchange between the trees and the ambient atmosphere, and the high residence time of radiocarbon in the post-event stratosphere. We caution about using the event's pronounced signature for precise single-year-dating.
Collapse
Affiliation(s)
| | - A. J. Timothy Jull
- Department of Geosciences, University of Arizona, Tucson, AZ USA
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - Mihaly Molnár
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - Tamás Varga
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - Ivan Kontul’
- Department of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Rashit Hantemirov
- Institute of Plant and Animal Ecology UB RAS, Yekaterinburg, Russia
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | - Vladymir Kukarskih
- Institute of Plant and Animal Ecology UB RAS, Yekaterinburg, Russia
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | - Igor Sljusarenko
- Institute of Archaeology and Ethnography SB RAS, Novosibirsk, Russia
| | - Vladymir Myglan
- School for the Humanities, Siberian Federal University, Krasnoyarsk, Russia
| | - Valerie Livina
- Data Science Department, National Physical Laboratory, Teddington, UK
| |
Collapse
|
11
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 ${\text{CO}}_{2}$ , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 ${\text{CO}}_{2}$ and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Chhajed SS, Wright IJ, Perez-Priego O. Theory and tests for coordination among hydraulic and photosynthetic traits in co-occurring woody species. THE NEW PHYTOLOGIST 2024. [PMID: 39044658 DOI: 10.1111/nph.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/30/2024] [Indexed: 07/25/2024]
Abstract
Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.
Collapse
Affiliation(s)
- Shubham S Chhajed
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Oscar Perez-Priego
- Department of Forest Engineering, University of Córdoba, Campus de Rabanales, Crta. N-IV km. 396, C.P. 14071, Córdoba, Spain
| |
Collapse
|
13
|
Niemczyk M, Wrzesiński P, Szyp-Borowska I, Krajewski S, Żytkowiak R, Jagodziński AM. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174912. [PMID: 39038682 DOI: 10.1016/j.scitotenv.2024.174912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.
Collapse
Affiliation(s)
- Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland.
| | - Piotr Wrzesiński
- Dendrolab IBL, Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Iwona Szyp-Borowska
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Szymon Krajewski
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
14
|
Song C, Fu Y, Zhu S, Xu W, Ye Q, Yuan W. Linkages between stem vulnerability curves and tree demography and their implications for plant physiological modeling. TREE PHYSIOLOGY 2024; 44:tpae078. [PMID: 38959856 DOI: 10.1093/treephys/tpae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Vulnerability curves (VCs) have been measured extensively to describe the differences in plant vulnerability to cavitation. Although the roles of hydraulic conductivity (Ks,max) and hydraulic safety (P50, embolism resistance), both of which are parameters of VCs ('sigmoidal' type), in tree demography have been evaluated across different forests, the direct linkages between VCs and tree demography are rarely explored. In this study, we combined measured VCs and plot data of 16 tree species in Panamanian seasonal tropical forests to investigate the connections between VCs and tree mortality, recruitment and growth. We found that the mortality and recruitment rates of evergreen species were most significantly positively correlated with P50. However, the mortality and recruitment rates of deciduous species only exhibited significant positive correlations with parameter a, which describes the steepness of VCs and indicates the sensitivity of conductivity loss with water potential decline, but is often neglected. These differences among evergreen and deciduous species may contribute to the poor performance of existing quantitative relationships (such as the fitting relationships for all 16 species) in capturing tree mortality and recruitment dynamics. Additionally, evergreen species presented a significant positive relationship between relative growth rate (RGR) and Ks,max, while deciduous species did not display such relationship. The RGR of both evergreen and deciduous species also displayed no significant correlations with P50 and a. Further analysis demonstrated that species with steeper VCs tended to have high mortality and recruitment rates, while species with flatter VCs were usually those with low mortality and recruitment rates. Our results highlight the important role of parameter a in tree demography, especially for deciduous species. Given that VC is a key component of plant hydraulic models, integrating measured VC rather than optimizing its parameters will help improve the ability to simulate and predict forest response to water availability.
Collapse
Affiliation(s)
- Chaoqing Song
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-Sen University, Daxue Road, Gaoxin District, Zhuhai, 519082, Guangdong, China
| | - Yangyang Fu
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-Sen University, Daxue Road, Gaoxin District, Zhuhai, 519082, Guangdong, China
| | - Shidan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Daxuedong Road 100, Xixiangtang District, Nanning, 530004, Guangxi, China
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, Guangdong, China
| | - Wenping Yuan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Zhongguancun North Street 100, Haidian District, Beijing, 100871, China
| |
Collapse
|
15
|
Paul M, Dalal A, Jääskeläinen M, Moshelion M, Schulman AH. Precision phenotyping of a barley diversity set reveals distinct drought response strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1393991. [PMID: 38984164 PMCID: PMC11231632 DOI: 10.3389/fpls.2024.1393991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024]
Abstract
Plants exhibit an array of drought responses and adaptations, where the trade-off between water loss and CO2 uptake for growth is mediated by regulation of stomatal aperture in response to soil water content (SWC), among other factors. For crop yield stability, the question is how drought timing and response patterns relate to post-drought growth resilience and vigor. We earlier identified, in a few reference varieties of barley that differed by the SWC at which transpiration was curtailed, two divergent water use strategies: water-saving ("isohydric") and water-spending ("anisohydric"). We proposed that an isohydric strategy may reduce risk from spring droughts in climates where the probability of precipitation increases during the growing season, whereas the anisohydric is consistent with environments having terminal droughts, or with those where dry periods are short and not seasonally progressive. Here, we have examined drought response physiology in an 81-line barley (Hordeum vulgare L.) diversity set that spans 20th century European breeding and identified several lines with a third, dynamic strategy. We found a strong positive correlation between vigor and transpiration, the dynamic group being highest for both. However, these lines curtailed daily transpiration at a higher SWC than the isohydric group. While the dynamic lines, particularly cv Hydrogen and Baronesse, were not the most resilient in terms of restoring initial growth rates, their strong initial vigor and high return to initial transpiration rates meant that their growth nevertheless surpassed more resilient lines during recovery from drought. The results will be of use for defining barley physiological ideotypes suited to future climate scenarios.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
16
|
Waite PA, Kumar M, Link RM, Schuldt B. Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency. TREE PHYSIOLOGY 2024; 44:tpae038. [PMID: 38606678 DOI: 10.1093/treephys/tpae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Worldwide, forests are increasingly exposed to extreme droughts causing tree mortality. Because of the complex nature of the mechanisms involved, various traits have been linked to tree drought responses with contrasting results. This may be due to species-specific strategies in regulating water potential, a process that unfolds in two distinct phases: a first phase until stomatal closure, and a second phase until reaching lethal xylem hydraulic thresholds. We conducted dry-down experiments with five broadleaved temperate tree species differing in their degree of isohydry to estimate the time to stomatal closure (tsc) and subsequent time to critical hydraulic failure (tcrit). We measured various traits linked to tree drought responses, such as the water potentials at turgor loss point (Ptlp), stomatal closure (Pgs90), and 12%, 50% and 88% loss of xylem hydraulic conductance (P12, P50, P88), hydraulic capacitance (C), minimum leaf conductance (gmin), hydroscape area (HSA) and hydraulic safety margins (HSM). We found that Pgs90 followed previously recorded patterns of isohydry and was associated with HSA. Species ranked from more to less isohydric in the sequence Acer pseudoplatanus < Betula pendula < Tilia cordata < Sorbus aucuparia < Fagus sylvatica. Their degree of isohydry was associated with leaf safety (Ptlp and gmin), drought avoidance (C) and tsc, but decoupled from xylem safety (HSM and P88) and tcrit. Regardless of their stomatal stringency, species with wider HSM and lower P88 reached critical hydraulic failure later. We conclude that the duration of the first phase is determined by stomatal regulation, while the duration of the second phase is associated with xylem safety. Isohydry is thus linked to water use rather than to drought survival strategies, confirming the proposed use of HSA as a complement to HSM for describing plant drought responses before and after stomatal closure.
Collapse
Affiliation(s)
- Pierre-André Waite
- Julius-von-Sachs-Institute of Biological Sciences, Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- Forest Botany, TUD Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
- CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Manish Kumar
- Julius-von-Sachs-Institute of Biological Sciences, Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- ICAR - Central Soil Salinity Research Institute (CSSRI), Karnal, 132001, India
| | - Roman M Link
- Julius-von-Sachs-Institute of Biological Sciences, Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- Forest Botany, TUD Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| | - Bernhard Schuldt
- Julius-von-Sachs-Institute of Biological Sciences, Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
- Forest Botany, TUD Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| |
Collapse
|
17
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
Wang Y, Braghiere RK, Yin Y, Yao Y, Hao D, Frankenberg C. Beyond the visible: Accounting for ultraviolet and far-red radiation in vegetation productivity and surface energy budgets. GLOBAL CHANGE BIOLOGY 2024; 30:e17346. [PMID: 38798167 DOI: 10.1111/gcb.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year-1 (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.
Collapse
Affiliation(s)
- Yujie Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Renato K Braghiere
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Yi Yin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Environmental Studies, New York University, New York, New York, USA
| | - Yitong Yao
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dalei Hao
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
19
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Kim D, Guadagno CR, Ewers BE, Mackay DS. Combining PSII photochemistry and hydraulics improves predictions of photosynthesis and water use from mild to lethal drought. PLANT, CELL & ENVIRONMENT 2024; 47:1255-1268. [PMID: 38178610 DOI: 10.1111/pce.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.
Collapse
Affiliation(s)
- Dohyoung Kim
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| | | | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
21
|
Williams E, Funk C, Peterson P, Tuholske C. High resolution climate change observations and projections for the evaluation of heat-related extremes. Sci Data 2024; 11:261. [PMID: 38429277 PMCID: PMC11422495 DOI: 10.1038/s41597-024-03074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
The Climate Hazards Center Coupled Model Intercomparison Project Phase 6 climate projection dataset (CHC-CMIP6) was developed to support the analysis of climate-related hazards, including extreme humid heat and drought conditions, over the recent past and in the near-future. Global daily high resolution (0.05°) grids of the Climate Hazards InfraRed Temperature with Stations temperature product, the Climate Hazards InfraRed Precipitation with Stations precipitation product, and ERA5-derived relative humidity form the basis of the 1983-2016 historical record, from which daily Vapor Pressure Deficits (VPD) and maximum Wet Bulb Globe Temperatures (WBGTmax) were derived. Large CMIP6 ensembles from the Shared Socioeconomic Pathway 2-4.5 and SSP 5-8.5 scenarios were then used to develop high resolution daily 2030 and 2050 'delta' fields. These deltas were used to perturb the historical observations, thereby generating 0.05° 2030 and 2050 projections of daily precipitation, temperature, relative humidity, and derived VPD and WBGTmax. Finally, monthly counts of frequency of extremes for each variable were derived for each time period.
Collapse
Affiliation(s)
- Emily Williams
- Climate Hazards Center, University of California, Santa Barbara, CA, 93106, USA.
- Sierra Nevada Research Institute, University of California, Merced, CA, 95343, USA.
| | - Chris Funk
- Climate Hazards Center, University of California, Santa Barbara, CA, 93106, USA.
| | - Pete Peterson
- Climate Hazards Center, University of California, Santa Barbara, CA, 93106, USA
| | - Cascade Tuholske
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59717, USA
- Geospatial Core Facility, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
22
|
Mencuccini M, Anderegg WRL, Binks O, Knipfer T, Konings AG, Novick K, Poyatos R, Martínez-Vilalta J. A new empirical framework to quantify the hydraulic effects of soil and atmospheric drivers on plant water status. GLOBAL CHANGE BIOLOGY 2024; 30:e17222. [PMID: 38450813 DOI: 10.1111/gcb.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought. We test our theory using datasets from two experiments where air temperature and VPD were experimentally manipulated. In contrast to existing metrics based on soil drought that can only be applied at the seasonal scale, our metric successfully detects the impact of atmospheric warming on the regulation of plant water status. We show that the thermodynamic effect of VPD on plant water status can be isolated and compared against that exerted by soil drought and the covariation between VPD and soil drought. Furthermore, in three of three cases, VPD accounted for more than 5 MPa of potential effect on leaf water potential. We explore the significance of our findings in the context of potential future applications of this metric from plant to ecosystem scale.
Collapse
Affiliation(s)
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Thorsten Knipfer
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kim Novick
- University of Indiana, Bloomington, Indiana, USA
| | | | | |
Collapse
|
23
|
Egipto RJL, Aquino A, Andújar JM. Predicting the canopy conductance to water vapor of grapevines using a biophysical model in a hot and arid climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1334215. [PMID: 38405587 PMCID: PMC10885811 DOI: 10.3389/fpls.2024.1334215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Canopy conductance is a crucial factor in modelling plant transpiration and is highly responsive to water stress. The objective of this study is to develop a straightforward method for estimating canopy conductance (gc) in grapevines. To predict gc, this study combines stomatal conductance to water vapor (gsw) measurements from grapevine leaves, scaled to represent the canopy size by the leaf area index (LAI), with atmospheric variables, such as net solar radiation (Rn) and air vapor pressure deficit (VPD). The developed model was then validated by comparing its predictions with gc values calculated using the inverse of the Penman Monteith equation. The proposed model demonstrates its effectiveness in estimating the gc, with the highest root-mean-squared-error (RMSE=1.45x10-4 m.s-1) being lower than the minimum gc measured in the field (gc obs=0.0005 m.s-1). The results of this study reveal the significant influence of both VPD and gsw on grapevine canopy conductance.
Collapse
Affiliation(s)
- Ricardo Jorge Lopes Egipto
- INIAV, I.P.—Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Inovação de Dois Portos, Dois Portos, Portugal
| | - Arturo Aquino
- CITES, Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, Huelva, Spain
| | - José Manuel Andújar
- CITES, Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, Huelva, Spain
| |
Collapse
|
24
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
25
|
Paschalis A, De Kauwe MG, Sabot M, Fatichi S. When do plant hydraulics matter in terrestrial biosphere modelling? GLOBAL CHANGE BIOLOGY 2024; 30:e17022. [PMID: 37962234 PMCID: PMC10952296 DOI: 10.1111/gcb.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The ascent of water from the soil to the leaves of vascular plants, described by the study of plant hydraulics, regulates ecosystem responses to environmental forcing and recovery from stress periods. Several approaches to model plant hydraulics have been proposed. In this study, we introduce four different versions of plant hydraulics representations in the terrestrial biosphere model T&C to understand the significance of plant hydraulics to ecosystem functioning. We tested representations of plant hydraulics, investigating plant water capacitance, and long-term xylem damages following drought. The four models we tested were a combination of representations including or neglecting capacitance and including or neglecting xylem damage legacies. Using the models at six case studies spanning semiarid to tropical ecosystems, we quantify how plant xylem flow, plant water storage and long-term xylem damage can modulate overall water and carbon dynamics across multiple time scales. We show that as drought develops, models with plant hydraulics predict a slower onset of plant water stress, and a diurnal variability of water and carbon fluxes closer to observations. Plant water storage was found to be particularly important for the diurnal dynamics of water and carbon fluxes, with models that include plant water capacitance yielding better results. Models including permanent damage to conducting plant tissues show an additional significant drought legacy effect, limiting plant productivity during the recovery phase following major droughts. However, when considering ecosystem responses to the observed climate variability, plant hydraulic modules alone cannot significantly improve the overall model performance, even though they reproduce more realistic water and carbon dynamics. This opens new avenues for model development, explicitly linking plant hydraulics with additional ecosystem processes, such as plant phenology and improved carbon allocation algorithms.
Collapse
Affiliation(s)
- Athanasios Paschalis
- Department of Civil and Environmental EngineeringImperial College LondonLondonUK
| | | | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes and Climate Change Research CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Simone Fatichi
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
26
|
Yule TS, de Oliveira Arruda RDC, Santos MG. Drought-adapted leaves are produced even when more water is available in dry tropical forest. JOURNAL OF PLANT RESEARCH 2024; 137:49-64. [PMID: 37962735 DOI: 10.1007/s10265-023-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.
Collapse
Affiliation(s)
- Tamires Soares Yule
- Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
- Instituto de Biociências, Laboratório de Botânica, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva, s/n, Cidade Universitária, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| | - Rosani do Carmo de Oliveira Arruda
- Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mauro Guida Santos
- Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
27
|
Lerdau MT, Monson RK, Ehleringer JR. The carbon balance of plants: economics, optimization, and trait spectra in a historical perspective. Oecologia 2023; 203:297-310. [PMID: 37874360 DOI: 10.1007/s00442-023-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Over fifty years have passed since the publication of Harold Mooney's formative paper, "The Carbon Balance of Plants" on pages 315-346 of Volume 3 (1972) of Annual Review of Ecology and Systematics. Arguably, the conceptual framework presented in that paper, and the work by Mooney and his students leading up to the paper, provided the foundational principles from which core disciplines emerged in plant economic theory, functional trait theory and, more generally, plant physiological ecology. Here, we revisit the primary impacts of those early discoveries to understand how researchers constructed major concepts in our understanding of plant adaptations, and where those concepts are likely to take us in the near future. The discipline of functional trait ecology, which is rooted in the principles of evolutionary and economic optimization, has captured the imagination of the plant physiological ecology research community, though its emphasis has shifted toward predicting species distributions and ecological roles across resource gradients. In the face of 'big-data' research pursuits that are revealing trait expression patterns at the cellular level and mass and energy exchange patterns at the planetary scale, an opportunity exists to reconnect the principles of plant carbon balance and evolutionary optimization with trait origins at the genetic and cellular scales and trait impacts at the global scale.
Collapse
Affiliation(s)
- Manuel T Lerdau
- Departments of Environmental Sciences and of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - James R Ehleringer
- Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
28
|
Smith DD, Adams MA, Salvi AM, Krieg CP, Ané C, McCulloh KA, Givnish TJ. Ecophysiological adaptations shape distributions of closely related trees along a climatic moisture gradient. Nat Commun 2023; 14:7173. [PMID: 37935674 PMCID: PMC10630429 DOI: 10.1038/s41467-023-42352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Tradeoffs between the energetic benefits and costs of traits can shape species and trait distributions along environmental gradients. Here we test predictions based on such tradeoffs using survival, growth, and 50 photosynthetic, hydraulic, and allocational traits of ten Eucalyptus species grown in four common gardens along an 8-fold gradient in precipitation/pan evaporation (P/Ep) in Victoria, Australia. Phylogenetically structured tests show that most trait-environment relationships accord qualitatively with theory. Most traits appear adaptive across species within gardens (indicating fixed genetic differences) and within species across gardens (indicating plasticity). However, species from moister climates have lower stomatal conductance than others grown under the same conditions. Responses in stomatal conductance and five related traits appear to reflect greater mesophyll photosynthetic sensitivity of mesic species to lower leaf water potential. Our data support adaptive cross-over, with realized height growth of most species exceeding that of others in climates they dominate. Our findings show that pervasive physiological, hydraulic, and allocational adaptations shape the distributions of dominant Eucalyptus species along a subcontinental climatic moisture gradient, driven by rapid divergence in species P/Ep and associated adaptations.
Collapse
Affiliation(s)
- Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, VIC, 3363, Australia.
| | - Mark A Adams
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher P Krieg
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
29
|
Blackman CJ, Billon LM, Cartailler J, Torres-Ruiz JM, Cochard H. Key hydraulic traits control the dynamics of plant dehydration in four contrasting tree species during drought. TREE PHYSIOLOGY 2023; 43:1772-1783. [PMID: 37318310 PMCID: PMC10652334 DOI: 10.1093/treephys/tpad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Lise-Marie Billon
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Julien Cartailler
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| |
Collapse
|
30
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
31
|
Yaaran A, Erez E, Procko C, Moshelion M. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. PLANT PHYSIOLOGY 2023; 193:1349-1364. [PMID: 37390615 PMCID: PMC10517257 DOI: 10.1093/plphys/kiad372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Leaf hydraulic conductance (Kleaf) facilitates the supply of water, enabling continual CO2 uptake while maintaining plant water status. We hypothesized that bundle sheath and mesophyll cells play key roles in regulating the radial flow of water out of the xylem by responding to abscisic acid (ABA). Thus, we generated transgenic Arabidopsis thaliana plants that are insensitive to ABA in their bundle sheath (BSabi) and mesophyll (MCabi) cells. We also introduced tissue-specific fluorescent markers to distinguish between cells of the palisade mesophyll, spongy mesophyll, and bundle sheath. Both BSabi and MCabi plants showed greater Kleaf and transpiration under optimal conditions. MCabi plants had larger stomatal apertures, higher stomatal index, and greater vascular diameter and biomass relative to the wild-type (WT) and BSabi plants. In response to xylem-fed ABA, both transgenic and WT plants reduced their Kleaf and transpiration. The membrane osmotic water permeability (Pf) of the WT's spongy mesophyll was higher than that of the WT's palisade mesophyll. While the palisade mesophyll maintained a low Pf in response to high ABA, the spongy mesophyll Pf was reduced. Compared to the WT, BSabi bundle sheath cells had a higher Pf, but MCabi spongy mesophyll had an unexpected lower Pf. These results suggest that tissue-specific regulation of Pf by ABA may be confounded by whole-leaf hydraulics and transpiration. ABA increased the symplastic permeability, but its contribution to Kleaf was negligible. We suggest that the bundle sheath spongy mesophyll pathway dynamically responds to the fluctuations in water availability, while the palisade mesophyll serves as a hydraulic buffer.
Collapse
Affiliation(s)
- Adi Yaaran
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Erez
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Carl Procko
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
32
|
Quetin GR, Anderegg LDL, Boving I, Anderegg WRL, Trugman AT. Observed forest trait velocities have not kept pace with hydraulic stress from climate change. GLOBAL CHANGE BIOLOGY 2023; 29:5415-5428. [PMID: 37421154 DOI: 10.1111/gcb.16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/09/2023]
Abstract
The extent to which future climate change will increase forest stress and the amount to which species and forest ecosystems can acclimate or adapt to increased stress is a major unknown. We used high-resolution maps of hydraulic traits representing the diversity in tree drought tolerance across the United States, a hydraulically enabled tree model, and forest inventory observations of demographic shifts to quantify the ability for within-species acclimation and between-species range shifts to mediate climate stress. We found that forests are likely to experience increases in both acute and chronic hydraulic stress with climate change. Based on current species distributions, regional hydraulic trait diversity was sufficient to buffer against increased stress in 88% of forested areas. However, observed trait velocities in 81% of forested areas are not keeping up with the rate required to ameliorate projected future stress without leaf area acclimation.
Collapse
Affiliation(s)
- G R Quetin
- Department of Geography, University of California, Santa Barbara, California, USA
| | - L D L Anderegg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - I Boving
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - W R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - A T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| |
Collapse
|
33
|
Belovitch MW, NeSmith JE, Nippert JB, Holdo RM. African savanna grasses outperform trees across the full spectrum of soil moisture availability. THE NEW PHYTOLOGIST 2023; 239:66-74. [PMID: 36967595 DOI: 10.1111/nph.18909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
Models of tree-grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade-off between water use under wet conditions and drought tolerance. We measured whole-plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm ). We also quantified whole-plant water-use efficiency (WUE) and relative growth rate (RGR) under well-watered conditions. Grasses transpired twice as much as trees on a leaf-mass basis across all soil water potentials. Grasses also had a lower Ψosm than trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses. Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade-off in water-use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much-needed whole-plant parameter estimates for African species.
Collapse
Affiliation(s)
| | | | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA, 30601, USA
- School of Animal Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
34
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
35
|
Peters RL, Steppe K, Pappas C, Zweifel R, Babst F, Dietrich L, von Arx G, Poyatos R, Fonti M, Fonti P, Grossiord C, Gharun M, Buchmann N, Steger DN, Kahmen A. Daytime stomatal regulation in mature temperate trees prioritizes stem rehydration at night. THE NEW PHYTOLOGIST 2023. [PMID: 37235688 DOI: 10.1111/nph.18964] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.
Collapse
Affiliation(s)
- Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras, 26504, Greece
| | - Roman Zweifel
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, East Lowell Street 1064, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, East Lowell Street 1215, Tucson, AZ, 857121, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marina Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School for Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanna, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Mana Gharun
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
- Department of Geosciences, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
| | - David N Steger
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
36
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
37
|
Krieg CP, Seeger K, Campany C, Watkins JE, McClearn D, McCulloh KA, Sessa EB. Functional traits and trait coordination change over the life of a leaf in a tropical fern species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16151. [PMID: 36879521 DOI: 10.1002/ajb2.16151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Plant ecological strategies are often defined by the integration of underlying traits related to resource acquisition, allocation, and growth. Correlations between key traits across diverse plants suggest that variation in plant ecological strategies is largely driven by a fast-slow continuum of plant economics. However, trait correlations may not be constant through the life of a leaf, and it is still poorly understood how trait function varies over time in long-lived leaves. METHODS Here, we compared trait correlations related to resource acquisition and allocation across three different mature frond age cohorts in a tropical fern species, Saccoloma inaequale. RESULTS Fronds exhibited high initial investments of nitrogen and carbon, but with declining return in photosynthetic capacity after the first year. In the youngest fronds, we found water-use efficiency to be significantly lower than in the oldest mature fronds due to increased transpiration rates. Our data suggest that middle-aged fronds are more efficient relative to younger, less water-use efficient fronds and that older fronds exhibit greater nitrogen investments without higher photosynthetic return. In addition, several trait correlations expected under the leaf economics spectrum (LES) do not hold within this species, and some trait correlations only appear in fronds of a specific developmental age. CONCLUSIONS These findings contextualize the relationship between traits and leaf developmental age with those predicted to underlie plant ecological strategy and the LES and are among the first pieces of evidence for when relative physiological trait efficiency is maximized in a tropical fern species.
Collapse
Affiliation(s)
| | - Kate Seeger
- Department of Biology, Macalester College, Saint Paul, MN, 55105, USA
| | - Courtney Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - James E Watkins
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
| | | | | | | |
Collapse
|
38
|
Potkay A, Feng X. Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance. THE NEW PHYTOLOGIST 2023; 238:506-528. [PMID: 36377138 DOI: 10.1111/nph.18620] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy for plant evolutionary fitness. However, assimilation and growth are often decoupled, making assimilation less ideal for representing fitness when optimizing stomatal conductance to water vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness. We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assimilation, over entire plants' lifetimes, improving their abilities to compete and reproduce. We develop a stomata model that dynamically maximizes whole-stem growth following principles from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply growth and osmotically generate turgor, while stomata close to prevent losses of turgor and growth due to negative water potentials. In steady state, the growth optimization model captures realistic stomatal, growth, and carbohydrate responses to environmental cues, reconciles conflicting interpretations within existing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem conductance observed during and after drought. Our growth optimization hypothesis introduces a new paradigm for stomatal optimization models, elevates the role of whole-plant carbon use and carbon storage in stomatal functioning, and has the potential to simultaneously predict gross productivity, net productivity, and plant mortality through a single, consistent modeling framework.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
39
|
Buckley TN, Frehner EH, Bailey BN. Kinetic factors of physiology and the dynamic light environment influence the economic landscape of short-term hydraulic risk. THE NEW PHYTOLOGIST 2023; 238:529-548. [PMID: 36650668 DOI: 10.1111/nph.18739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Optimality-based models of stomatal conductance unify biophysical and evolutionary constraints and can improve predictions of land-atmosphere carbon and water exchange. Recent models incorporate hydraulic constraints by penalizing excessive stomatal opening in relation to hydraulic damage caused by low water potentials. We used simulation models to test whether penalties based solely on vulnerability curves adequately represent the optimality hypothesis, given that they exclude the effects of kinetic factors on stomatal behavior and integrated carbon balance. To quantify the effects of nonsteady-state phenomena on the landscape of short-term hydraulic risk, we simulated diurnal dynamics of leaf physiology for 10 000 patches of leaf in a canopy and used a ray-tracing model, Helios, to simulate realistic variation in sunfleck dynamics. Our simulations demonstrated that kinetic parameters of leaf physiology and sunfleck properties influence the economic landscape of short-term hydraulic risk, as characterized by the effect of stomatal strategy (gauged by the water potential causing a 50% hydraulic penalty) on both aggregated carbon gain and the aggregated carbon cost of short-term hydraulic risk. Hydraulic penalties in optimization models should be generalized to allow their parameters to account for kinetic factors, in addition to parameters of hydraulic vulnerability.
Collapse
Affiliation(s)
- Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Ethan H Frehner
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Brian N Bailey
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
40
|
Davidson KJ, Lamour J, Rogers A, Ely KS, Li Q, McDowell NG, Pivovaroff AL, Wolfe BT, Wright SJ, Zambrano A, Serbin SP. Short-term variation in leaf-level water use efficiency in a tropical forest. THE NEW PHYTOLOGIST 2023; 237:2069-2087. [PMID: 36527230 DOI: 10.1111/nph.18684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.
Collapse
Affiliation(s)
- Kenneth J Davidson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY, 11794, USA
| | - Julien Lamour
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Alistair Rogers
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Kim S Ely
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Qianyu Li
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | | | - Brett T Wolfe
- School of Renewable Natural Resources, Louisiana State University, Room 227, Renewable Natural Resources Bldg, Baton Rouge, LA, 70803, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Alfonso Zambrano
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Shawn P Serbin
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| |
Collapse
|
41
|
Cai G, Wankmüller F, Ahmed MA, Carminati A. How the interactions between atmospheric and soil drought affect the functionality of plant hydraulics. PLANT, CELL & ENVIRONMENT 2023; 46:733-735. [PMID: 36624562 PMCID: PMC10108313 DOI: 10.1111/pce.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Gaochao Cai
- School of AgricultureShenzhen Campus of Sun Yat‐sen UniversityShenzhenP.R. China
| | - Fabian Wankmüller
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Mutez A. Ahmed
- Department of Land, Air and Water Resources, Soil‐Plant InteractionsUniversity of California DavisDavisCaliforniaUSA
| | - Andrea Carminati
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
42
|
Li H, Liu Y, Jiao X, Li J, Liu K, Wu T, Zhang Z, Luo D. Response of soil nutrients retention and rice growth to biochar in straw returning paddy fields. CHEMOSPHERE 2023; 312:137244. [PMID: 36395890 DOI: 10.1016/j.chemosphere.2022.137244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Applying straw to agricultural production to improve soil productivity and crop yields is significant. However, the straw-only application is possibly not a practical choice for achieving environmental protection and high yield. This study evaluated the applicability of straw combined with biochar to the paddy field. Two-year pot experiments were conducted to examine the effect of straw combined with different proportions (0, 5, 20, 40 t ha-1) of biochar on soil nitrogen retention, phosphorous availability, rice yield, and physiological parameters. Five treatments were included: control (CK), 7 t ha-1 straw + 0 t ha-1 biochar (ST), 7 t ha-1 straw + 5 t ha-1 biochar (SC1), 7 t ha-1 straw + 20 t ha-1 biochar (SC2), 7 t ha-1 straw + 40 t ha-1 biochar (SC3). The results indicated that the biochar had an encouraging effect on paddy fields with straw returning: (1) SC3 treatment significantly increased ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) content in soils compared to ST, increasing by 30.19% and 42.72%, while SC2 treatment increased by 25.84% and 30.40%, respectively; (2) Regarding soil phosphorus availability, ST treatment showed a negative effect, while proper biochar application rate (20 t ha-1) effectively increased Olsen-P content (18.24%); (3) No significant difference among these treatments was observed in the photosynthetic characteristics. Notably, 20 t ha-1 biochar application (SC2) effectively enhanced rice components (stem, ear) dry biomass, improved rice yield (10.14%), and Harvest index (HI: 4.99%). Hence, the appropriate rate (20 t ha-1) of biochar combined with straw (7 t ha-1) returning is a promising strategy for increasing nitrogen retention and phosphorous availability, alleviating N and P losses and promoting rice growth and yield. These findings are expected to provide a new perspective in that straw-returning with biochar achieves high efficiency, ecological, and sustainable development of agriculture.
Collapse
Affiliation(s)
- Huandi Li
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Yong Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Xiyun Jiao
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
| | - Jiang Li
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Kaihua Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Tianao Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Zhuangzhuang Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Danhu Luo
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| |
Collapse
|
43
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
44
|
Fan DY, Dang QL, Yang XF, Liu XM, Wang JY, Zhang SR. Nitrogen deposition increases xylem hydraulic sensitivity but decreases stomatal sensitivity to water potential in two temperate deciduous tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157840. [PMID: 35934026 DOI: 10.1016/j.scitotenv.2022.157840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Although the effects of nitrogen deposition on tree water relations are studied extensively, its impact on the relative sensitivities of stomatal and xylem hydraulic conductance to vapor pressure deficit and water potential is still poorly understood. This study investigated the effects of a 7-year N deposition treatment on the responses of leaf water relations and sensitivity of canopy stomatal conductance to vapor pressure deficit (VPD) and water potential, as well as the sensitivity of branch hydraulic conductance to water potential in a dominant tree species (Quercus wutaishanica) and an associated tree species (Acer mono) in a temperate forest. It was found that the N deposition increased stomatal sensitivity to VPD, decreased stomatal sensitivity to water potential, and increased the vulnerability of the hydraulic system to cavitation in both species. The standardized stomatal sensitivity to VPD, however, was not affected by the N deposition, indicating that the stomata maintained the ability to regulate the water balance under nitrogen deposition condition. Although the increased stomatal sensitivity to VPD could compensate the decreased stomatal sensitivity to water potential to some extent, the combined response would increase the percentage loss of hydraulic conductivity (PLC) when 50 % loss in stomatal conductance occurred, particularly in the dominant species Q. wutaishanica. The result indicates that N deposition would increase the risk of hydraulic failure in those species if the soil and/or air becomes drier under future climate change scenarios. The results of the study can have significant implications on the modelling of ecosystem vulnerability to drought under the scenario of atmospheric nitrogen deposition.
Collapse
Affiliation(s)
- Da-Yong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Qing-Lai Dang
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Xiao-Fang Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100096, China
| | - Xiao-Ming Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100096, China
| | - Jia-Yi Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Shou-Ren Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100096, China.
| |
Collapse
|
45
|
Joshi J, Stocker BD, Hofhansl F, Zhou S, Dieckmann U, Prentice IC. Towards a unified theory of plant photosynthesis and hydraulics. NATURE PLANTS 2022; 8:1304-1316. [PMID: 36303010 PMCID: PMC9663302 DOI: 10.1038/s41477-022-01244-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The global carbon and water cycles are governed by the coupling of CO2 and water vapour exchanges through the leaves of terrestrial plants, controlled by plant adaptations to balance carbon gains and hydraulic risks. We introduce a trait-based optimality theory that unifies the treatment of stomatal responses and biochemical acclimation of plants to environments changing on multiple timescales. Tested with experimental data from 18 species, our model successfully predicts the simultaneous decline in carbon assimilation rate, stomatal conductance and photosynthetic capacity during progressive soil drought. It also correctly predicts the dependencies of gas exchange on atmospheric vapour pressure deficit, temperature and CO2. Model predictions are also consistent with widely observed empirical patterns, such as the distribution of hydraulic strategies. Our unified theory opens new avenues for reliably modelling the interactive effects of drying soil and rising atmospheric CO2 on global photosynthesis and transpiration.
Collapse
Affiliation(s)
- Jaideep Joshi
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India.
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Benjamin D Stocker
- Department of Environmental Systems Science, ETH, Universitätsstrasse 2, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Florian Hofhansl
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, Macquarie Park, Australia
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Ulf Dieckmann
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
| | - Iain Colin Prentice
- Department of Biological Sciences, Macquarie University, Macquarie Park, Australia
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
46
|
Feng X, Lu Y, Jiang M, Katul G, Manzoni S, Mrad A, Vico G. Instantaneous stomatal optimization results in suboptimal carbon gain due to legacy effects. PLANT, CELL & ENVIRONMENT 2022; 45:3189-3204. [PMID: 36030546 DOI: 10.1111/pce.14427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yaojie Lu
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Gabriel Katul
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Assaad Mrad
- Department of Civil and Environmental Engineering, University of California, Irvine, California, USA
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Giulia Vico
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
47
|
Zlobin IE, Kartashov AV, Ivanov YV, Ivanova AI, Kuznetsov VV. Stem notching decreases stem hydraulic conductance but does not influence drought impacts and post-drought recovery in Scots pine and Norway spruce. PHYSIOLOGIA PLANTARUM 2022; 174:e13813. [PMID: 36326172 DOI: 10.1111/ppl.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tight connection between the deterioration of xylem function and plant mortality under drought is well recognized. However, a lack of mechanistic understanding of how substantial conductivity loss influences plant performance under drought and during post-drought recovery hinders our ability to model tree responses to drought stress. We artificially induced a loss of 50% of xylem conducting area in Scots pine and Norway spruce saplings by stem notching and investigated plant performance under drought and during post-drought recovery. Plant mortality, xylem hydraulic conductivity, leaf water status and stomatal conductance were measured. We observed no preferential mortality of top plant parts (above the notches) compared to basal plant parts (below the notches), and no consistent trend in hydraulic conductivity loss was observed between top and basal parts of dying plants. Stem hydraulic conductivity, water status of the needles and stomatal conductance changed similarly between the top and basal parts during drought and post-drought recovery, which indicated the substantial hydraulic overcapacity of the stems. The recovery of stomatal conductance demonstrated prominent hysteresis due to non-hydraulic stomatal limitations. The results obtained are highly important for modelling the influence of plant hydraulic impairment on plant performance under drought and during post-drought recovery.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | - Yury V Ivanov
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | | |
Collapse
|
48
|
Peng P, Li R, Chen ZH, Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1031891. [PMID: 36311113 PMCID: PMC9614343 DOI: 10.3389/fpls.2022.1031891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing global food production is threatened by harsh environmental conditions along with biotic stresses, requiring massive new research into integrated stress resistance in plants. Stomata play a pivotal role in response to many biotic and abiotic stresses, but their orchestrated interactions at the molecular, physiological, and biochemical levels were less investigated. Here, we reviewed the influence of drought, pathogen, and insect herbivory on stomata to provide a comprehensive overview in the context of stomatal regulation. We also summarized the molecular mechanisms of stomatal response triggered by these stresses. To further investigate the effect of stomata-herbivore interaction at a transcriptional level, integrated transcriptome studies from different plant species attacked by different pests revealed evidence of the crosstalk between abiotic and biotic stress. Comprehensive understanding of the involvement of stomata in some plant-herbivore interactions may be an essential step towards herbivores' manipulation of plants, which provides insights for the development of integrated pest management strategies. Moreover, we proposed that stomata can function as important modulators of plant response to stress combination, representing an exciting frontier of plant science with a broad and precise view of plant biotic interactions.
Collapse
Affiliation(s)
- Pengshuai Peng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu M, Yang J. Predicting resilience through the lens of competing adjustments to vegetation function. PLANT, CELL & ENVIRONMENT 2022; 45:2744-2761. [PMID: 35686437 DOI: 10.1111/pce.14376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.
Collapse
Affiliation(s)
- Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Agnieszka Wujeska-Klause
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Urban Studies, School of Social Sciences, Penrith, New South Wales, Australia
| | - Mengyuan Mu
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jinyan Yang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
50
|
Li W, McDowell NG, Zhang H, Wang W, Mackay DS, Leff R, Zhang P, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu C, Bond-Lamberty B, Bailey VL. The influence of increasing atmospheric CO 2 , temperature, and vapor pressure deficit on seawater-induced tree mortality. THE NEW PHYTOLOGIST 2022; 235:1767-1779. [PMID: 35644021 DOI: 10.1111/nph.18275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - D Scott Mackay
- Department of Geography and Department of Environment & Sustainability, University at Buffalo, Buffalo, NY, 14261, USA
| | - Riley Leff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peipei Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- CAS Key Laboratory of Mountain Ecological Restoration, Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Nicholas D Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- School of Oceanography, University of Washington, Seattle, WA, 98105, USA
| | - Matt Norwood
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Allison N Myers-Pigg
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Stephanie C Pennington
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|