1
|
Deng J, Li J, Li S, Zhang D, Bai X. Progress of research on short-chain fatty acids, metabolites of gut microbiota, and acute ischemic stroke. Clin Neurol Neurosurg 2025; 249:108725. [PMID: 39805257 DOI: 10.1016/j.clineuro.2025.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Acute ischemic stroke (AIS) significantly impacts the well-being and quality of life of individuals within our population. Short-chain fatty acids (SCFAs), metabolites produced by the intestinal microbiota, are integral to the bidirectional regulatory pathway linking the gut and the brain. SCFAs may significantly influence the risk, prognosis, recurrence, and management of complications associated with AIS. Potential mechanisms underlying these effects include the facilitation of brain-gut barrier repair, the mitigation of oxidative stress, the reduction of neuroinflammatory responses, and the inhibition of autophagy and apoptosis. Consequently, SCFAs hold promise as a prospective target for AIS intervention, with the potential to significantly impact AIS prevention and treatment strategies.
Collapse
Affiliation(s)
- Jinbao Deng
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Jianrong Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Hutkins R, Walter J, Gibson GR, Bedu-Ferrari C, Scott K, Tancredi DJ, Wijeyesekera A, Sanders ME. Classifying compounds as prebiotics - scientific perspectives and recommendations. Nat Rev Gastroenterol Hepatol 2025; 22:54-70. [PMID: 39358591 DOI: 10.1038/s41575-024-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Microbiomes provide key contributions to health and potentially important therapeutic targets. Conceived nearly 30 years ago, the prebiotic concept posits that targeted modulation of host microbial communities through the provision of selectively utilized growth substrates provides an effective approach to improving health. Although the basic tenets of this concept remain the same, it is timely to address certain challenges pertaining to prebiotics, including establishing that prebiotic-induced microbiota modulation causes the health outcome, determining which members within a complex microbial community directly utilize specific substrates in vivo and when those microbial effects sufficiently satisfy selectivity requirements, and clarification of the scientific principles on which the term 'prebiotic' is predicated to inspire proper use. In this Expert Recommendation, we provide a framework for the classification of compounds as prebiotics. We discuss ecological principles by which substrates modulate microbiomes and methodologies useful for characterizing such changes. We then propose statistical approaches that can be used to establish causal links between selective effects on the microbiome and health effects on the host, which can help address existing challenges. We use this information to provide the minimum criteria needed to classify compounds as prebiotics. Furthermore, communications to consumers and regulatory approaches to prebiotics worldwide are discussed.
Collapse
Affiliation(s)
| | | | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Karen Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Daniel J Tancredi
- Department of Pediatrics, University of California at Davis, Sacramento, CA, USA
| | | | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA.
| |
Collapse
|
3
|
Altamura S, Lombardi F, Palumbo P, Cinque B, Ferri C, Del Pinto R, Pietropaoli D. The Evolving Role of Neutrophils and Neutrophil Extracellular Traps (NETs) in Obesity and Related Diseases: Recent Insights and Advances. Int J Mol Sci 2024; 25:13633. [PMID: 39769394 PMCID: PMC11727698 DOI: 10.3390/ijms252413633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity is a chronic, multifactorial disease characterized by persistent low-grade tissue and systemic inflammation. Fat accumulation in adipose tissue (AT) leads to stress and dysfunctional adipocytes, along with the infiltration of immune cells, which initiates and sustains inflammation. Neutrophils are the first immune cells to infiltrate AT during high-fat diet (HFD)-induced obesity. Emerging evidence suggests that the formation and release of neutrophil extracellular traps (NETs) play a significant role in the progression of obesity and related diseases. Additionally, obesity is associated with an imbalance in gut microbiota and increased intestinal barrier permeability, resulting in the translocation of live bacteria, bacterial deoxyribonucleic acid (DNA), lipopolysaccharides (LPS), and pro-inflammatory cytokines into the bloodstream and AT, thereby contributing to metabolic inflammation. Recent research has also shown that short-chain fatty acids (SCFAs), produced by gut microbiota, can influence various functions of neutrophils, including their activation, migration, and the generation of inflammatory mediators. This review comprehensively summarizes recent advancements in understanding the role of neutrophils and NET formation in the pathophysiology of obesity and related disorders while also focusing on updated potential therapeutic approaches targeting NETs based on studies conducted in humans and animal models.
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
- Prevention and Translational Research—Dental Clinic, Center of Oral Diseases, 67100 L’Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
- Unit of Internal Medicine and Nephrology, San Salvatore Hospital, Center for Hypertension and Cardiovascular Prevention, 67100 L’Aquila, Italy
| | - Rita Del Pinto
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
- Unit of Internal Medicine and Nephrology, San Salvatore Hospital, Center for Hypertension and Cardiovascular Prevention, 67100 L’Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (F.L.); (P.P.); (B.C.); (C.F.); (R.D.P.)
- Prevention and Translational Research—Dental Clinic, Center of Oral Diseases, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Manokasemsan W, Jariyasopit N, Poungsombat P, Kaewnarin K, Wanichthanarak K, Kurilung A, Duangkumpha K, Limjiasahapong S, Pomyen Y, Chaiteerakij R, Tansawat R, Srisawat C, Sirivatanauksorn Y, Sirivatanauksorn V, Khoomrung S. Quantifying fecal and plasma short-chain fatty acids in healthy Thai individuals. Comput Struct Biotechnol J 2024; 23:2163-2172. [PMID: 38827233 PMCID: PMC11141283 DOI: 10.1016/j.csbj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are involved in important physiological processes such as gut health and immune response, and changes in SCFA levels can be indicative of disease. Despite the importance of SCFAs in human health and disease, reference values for fecal and plasma SCFA concentrations in healthy individuals are scarce. To address this gap in current knowledge, we developed a simple and reliable derivatization-free GC-TOFMS method for quantifying fecal and plasma SCFAs in healthy individuals. We targeted six linear- and seven branched-SCFAs, obtaining method recoveries of 73-88% and 83-134% in fecal and plasma matrices, respectively. The developed methods are simpler, faster, and more sensitive than previously published methods and are well suited for large-scale studies. Analysis of samples from 157 medically confirmed healthy individuals showed that the total SCFAs in the feces and plasma were 34.1 ± 15.3 µmol/g and 60.0 ± 45.9 µM, respectively. In fecal samples, acetic acid (Ace), propionic acid (Pro), and butanoic acid (But) were all significant, collectively accounting for 89% of the total SCFAs, whereas the only major SCFA in plasma samples was Ace, constituting of 93% of the total plasma SCFAs. There were no statistically significant differences in the total fecal and plasma SCFA concentrations between sexes or among age groups. The data revealed, however, a positive correlation for several nutrients, such as carbohydrate, fat, iron from vegetables, and water, to most of the targeted SCFAs. This is the first large-scale study to report SCFA reference intervals in the plasma and feces of healthy individuals, and thereby delivers valuable data for microbiome, metabolomics, and biomarker research.
Collapse
Affiliation(s)
- Weerawan Manokasemsan
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Patcha Poungsombat
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, Singapore
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kassaporn Duangkumpha
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| | - Rossarin Tansawat
- Thailand Metabolomics Society, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vorapan Sirivatanauksorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Sakda Khoomrung
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Özdemir A, Buyuktuncer Z. Dietary legumes and gut microbiome: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39607793 DOI: 10.1080/10408398.2024.2434725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The gut microbiome plays a crucial role in human health, affecting metabolic, immune, and cognitive functions. While the impact of various dietary components on the microbiome is well-studied, the effect of legumes remains less explored. This review examines the influence of legume consumption on gut microbiome composition, diversity, and metabolite production, based on 10 human and 21 animal studies. Human studies showed mixed results, with some showing increased microbial diversity and others finding no significant changes. However, legume consumption was linked to increases in beneficial bacteria like Bifidobacterium and Faecalibacterium. Animal studies generally indicated enhanced microbial diversity and composition changes, though these varied by legume type and the host's health. Some studies highlighted legume-induced shifts in bacteria associated with better metabolic health. Overall, the review emphasizes the complexity of legume-microbiome interactions and the need for standardized methodologies and longitudinal studies. While legumes have the potential to positively affect the gut microbiome, the effects are nuanced and depend on context. Future research should investigate the long-term impacts of legume consumption on microbiome stability and its broader health implications, particularly for disease prevention and dietary strategies.
Collapse
Affiliation(s)
- Aslıhan Özdemir
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| | - Zehra Buyuktuncer
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
6
|
Green CG, Ong MLY, Rowland SN, Bongiovanni T, James LJ, Clifford T, Bailey SJ, Heaney LM. Investigating serum concentration profiles of orally ingested short-chain fatty acid supplements. Food Funct 2024; 15:11525-11536. [PMID: 39498577 DOI: 10.1039/d4fo04028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Acetate, propionate, and butyrate are naturally-occurring short-chain fatty acids (SCFAs) derived from bacterial metabolism of dietary fibre and have been associated with numerous positive health outcomes. All three acids have been shown to offer unique physiological and metabolic effects and, therefore, could be targeted for co-ingestion as part of a nutritional/medicinal plan. However, a better understanding of the outcomes of supplementing in combination on circulating concentration profiles is necessary to confirm uptake efficacy. This study sought to investigate the acute circulating concentration profiles of acetate, propionate, and butyrate following oral supplementation. Three experimental trials were conducted including investigations to understand the impact of capsule coating on circulating concentration profiles, the effect of supplementation dose on uptake kinetics, and the outcome of a short, repeated, supplementation routine on circulating levels. Serum samples were analysed for SCFA content using a quantitative GC-MS assay. It was observed that an acid-resistant coated capsule caused a delayed and blunted blood concentration response, with the non-acid resistant trial displaying earlier and more intense peak serum concentrations. For dose comparison investigations, all SCFAs peaked within 60 min and returned to baseline concentrations by 120 min post-supplementation. A graded dose relationship was present for propionate and butyrate when considering the total circulating exposure across a 240 min monitoring period. In addition, a one-week, twice-daily, repeated supplementation protocol resulted in no changes in basal serum SCFA concentrations. Overall, these data indicate that acetate, propionate, and butyrate display relatively similar circulating concentration profiles following oral co-ingestion, adding knowledge to help inform supplementation strategies for future outcomes where acute elevation of circulating SCFAs is desired.
Collapse
Affiliation(s)
- Christopher G Green
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Marilyn L Y Ong
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
- Exercise and Sports Science Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Tindaro Bongiovanni
- Player Health & Performance Department, Palermo Football Club, Palermo, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
7
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
8
|
Lu J, Petri R, McCart D, Baxendell-Young A, Collins SA. Distinct fecal microbiome between wild and habitat-housed captive polar bears (Ursus maritimus): Impacts of captivity and dietary shifts. PLoS One 2024; 19:e0311518. [PMID: 39565828 PMCID: PMC11578516 DOI: 10.1371/journal.pone.0311518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the gut microbiome of polar bears can shed light on the effects of climate change-induced prolonged ice-free seasons on their health and nutritional status as a sentinel species. The fecal microbiome of habitat-housed captive polar bears who had consumed a high protein diet long-term was compared with that of the wild population. Individual differences, season, year and dietary inclusion of a brown seaweed (Fucus spiralis; part of the natural diet of wild polar bears), as a representation for nutritional change, were investigated for their effects on the fecal microbiome of captive polar bears. Microbial variations among fecal samples from wild and captive polar bears were investigated using 16s rRNA gene based metataxonomic profiling. The captive bears exhibited more diverse fecal microbiota than wild bears (p<0.05). The difference was due to significantly increased Firmicutes, Campilobacterota and Fusobacteriota, decreased Actinobacteriota (p<0.05), and absent Bdellovibrionota and Verrucomicrobiota in the captive bears. Compared with other factors, individual variation was the main driver of differences in fecal microbial composition in the captive bears. Seaweed consumption did not alter microbial diversity or composition, but this did not rule out dietary influences on the hosts. This is the first study, to the best of our knowledge, comparing the fecal microbiota of captive and wild polar bears and it reveals distinct differences between the two groups, which could result from many factors, including available food sources and the ratio of dietary macronutrients. Our findings provide preliminary insights into climate-change induced dietary shifts in polar bears related to climate-associated habitat change.
Collapse
Affiliation(s)
- Jing Lu
- Faculty of Agriculture, Department Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Renee Petri
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrook, QC, Canada
| | - Dylan McCart
- Churchill Northern Studies Centre, Churchill, MB, Canada
| | | | - Stephanie Anne Collins
- Faculty of Agriculture, Department Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
9
|
Oliver A, Alkan Z, Stephensen CB, Newman JW, Kable ME, Lemay DG. Diet, Microbiome, and Inflammation Predictors of Fecal and Plasma Short-Chain Fatty Acids in Humans. J Nutr 2024; 154:3298-3311. [PMID: 39173973 PMCID: PMC11600052 DOI: 10.1016/j.tjnut.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Gut microbes produce short-chain fatty acids (SCFAs), which are associated with broad health benefits. However, it is not fully known how diet and/or the gut microbiome could be modulated to improve SCFA production. OBJECTIVES The objective of this study was to identify dietary, inflammatory, and/or microbiome predictors of SCFAs in a cohort of healthy adults. METHODS SCFAs were measured in fecal and plasma samples from 359 healthy adults in the United States Department of Agriculture Nutritional Phenotyping Study. Habitual and recent diet was assessed using a Food Frequency Questionnaire and Automated Self-Administered 24-h Dietary Assesment Tool dietary recalls. Markers of systemic and gut inflammation were measured in fecal and plasma samples. The gut microbiome was assessed using shotgun metagenomics. Using statistics and machine learning, we determined how the abundance and composition of SCFAs varied with measures of diet, inflammation, and the gut microbiome. RESULTS We show that fecal pH may be a good proxy for fecal SCFA abundance. A higher Healthy Eating Index for a habitual diet was associated with a compositional increase in fecal butyrate relative to acetate and propionate. SCFAs were associated with markers of subclinical gastrointestinal (GI) inflammation. Fecal SCFA abundance was inversely related to plasma lipopolysaccharide-binding protein. When we analyzed hierarchically organized diet and microbiome data with taxonomy-aware algorithms, we observed that diet and microbiome features were far more predictive of fecal SCFA abundances compared to plasma SCFA abundances. The top diet and microbiome predictors of fecal butyrate included potatoes and the thiamine biosynthesis pathway, respectively. CONCLUSIONS These results suggest that resistant starch in the form of potatoes and microbially produced thiamine provide a substrate and essential cofactor, respectively, for butyrate synthesis. Thiamine may be a rate-limiting nutrient for butyrate production in adults. Overall, these findings illustrate the complex biology underpinning SCFA production in the gut. This trial was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Andrew Oliver
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States
| | - Zeynep Alkan
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States
| | - Charles B Stephensen
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - John W Newman
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States; Genome Center, University of California, Davis, CA, United States
| | - Mary E Kable
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Danielle G Lemay
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States; Genome Center, University of California, Davis, CA, United States.
| |
Collapse
|
10
|
Mhanna T, Grand M, Schiphorst AM, Le Balch R, Rizk T, Bejjani J, Remaud GS, Tea I. Carbon-13-isotopomics and metabolomics of fatty acids from triacylglycerols: overcoming the limitations of GC-C-IRMS for short- and medium-acyl chains. Anal Bioanal Chem 2024; 416:5557-5564. [PMID: 39160436 DOI: 10.1007/s00216-024-05479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Carbon-13 isotopomics of triacylglycerol (TAG) fatty acids or free fatty acids in biological matrices holds considerable potential in food authentication, forensic investigations, metabolic studies, and medical research. However, challenges arise in the isotopic analysis of short- and medium-chain (C4 to C10) fatty acid methyl esters (SMCFAMEs) through gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The high volatility of these esters results in losses during their preparation, leading to isotopic fractionation. Moreover, the methoxy group added to acyl chains requires the correction of δ13C values, thereby increasing the uncertainty of the final results. Analyzing free fatty acids (FFAs) addresses both issues encountered with SMCFAMEs. To achieve this objective, we have developed a new protocol enabling the isotopomics of individual fatty acids (FAs) by GC-C-IRMS. The same experiment also provides the FA profile, i.e., the relative percentage of each FA in the TAG hydrolysate or its concentration in the studied matrix. The method exhibited high precision, as evidenced by the repeatability and within-lab reproducibility of results when tested on TAGs from both animal and vegetal origins. Compared to the analysis of FAMEs by GC-C-IRMS, the current procedure also brings several improvements in alignment with the principles of green analytical chemistry and green sample preparation. Thus, we present a two-in-one method for 13C-isotopomic and metabolomic biomarker quantitation within quasi-universal TAG compounds, encompassing the short- and medium-acyl chains.
Collapse
Affiliation(s)
- Tania Mhanna
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France
- LMFI, Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies Et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104 2020, Lebanon
| | - Mathilde Grand
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Anne-Marie Schiphorst
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Romain Le Balch
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Toufic Rizk
- LMFI, Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies Et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104 2020, Lebanon
| | - Joseph Bejjani
- LMFI, Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies Et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104 2020, Lebanon
| | - Gérald S Remaud
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Illa Tea
- CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR 6230, 2 Rue de La Houssinière, BP 92208, 44322, Nantes Cedex 3, France.
| |
Collapse
|
11
|
Vandermeulen G, Rosseel R, Chatonidi G, Deroover L, Boets E, Verbeke K. The optimization and validation of a gas chromatography-mass spectrometry method to analyze the concentration of acetate, propionate and butyrate in human plasma or serum. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124299. [PMID: 39276608 DOI: 10.1016/j.jchromb.2024.124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Fermentation-derived short-chain fatty acids (SCFA)4 are potential mediators of the health benefits associated with dietary fiber intake. SCFA affect physiological processes locally in the gut and on distant organs via the systemic circulation. Since SCFA are used as energy source for colonocytes and substrate for the liver metabolism, their concentrations in the systemic circulation are low. Therefore, quantification of systemic SCFA requires sensitive analytical techniques. This article covers the optimization and validation of a gas chromatography-mass spectrometry method to measure systemic SCFA concentrations following derivatization with 2,4-difluoroaniline (DFA)5 and extraction in ethyl acetate. Sample preparation was optimized by varying the amount of DFA, coupling agent 1,3-dicyclohexylcarbodiimide, ethyl acetate and sodium bicarbonate, which is used to quench derivatization. In addition, evaporation of the samples using a vacuum concentrator resulted in less contamination, notably of acetate, compared to drying with N2 gas. The method showed excellent linearity with coefficient of variation (R2) > 0.99 and a good precision (relative standard deviation < 20 %) and accuracy. Finally, systemic concentrations of SCFA in human plasma samples could successfully be determined.
Collapse
Affiliation(s)
- Greet Vandermeulen
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Riet Rosseel
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Georgia Chatonidi
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lise Deroover
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eef Boets
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders (TARGID), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
14
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Pugh JE, Petropoulou K, Vasconcelos JC, Anjum A, Thom G, McCombie L, Tashkova M, Alshehhi S, Babalis D, Holroyd L, Sadiq BA, Prechtl C, Preston T, Chambers E, Lean MJ, Dhillo W, Prevost AT, Morrison D, Frost G. Increase in colonic PRopionate as a method of prEVENTing weight gain over 12 months in adults aged 20-40 years (iPREVENT): a multi-centre, double-blind, randomised, parallel-group trial. EClinicalMedicine 2024; 76:102844. [PMID: 39391015 PMCID: PMC11466568 DOI: 10.1016/j.eclinm.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Background Obesity drives metabolic disease development. Preventing weight gain during early adulthood could mitigate later-life chronic disease risk. Increased dietary fibre intake, leading to enhanced colonic microbial fermentation and short-chain fatty acid (SCFA) production, is associated with lower body weight. Despite national food policy recommendations to consume 30 g of dietary fibre daily, only 9% of adults achieve this target. Inulin-propionate ester (IPE) selectively increases the production of the SCFA propionate in the colon. In previous studies, IPE has prevented weight gain in middle-aged adults over 6 months, compared with the inulin control. IPE is a novel food ingredient that can be added to various commonly consumed foods with a potential health benefit. This 12-month study aimed to determine whether using IPE to increase colonic propionate prevents further weight gain in overweight younger adults. Methods This multi-centre randomised-controlled, double-blind trial was conducted in London and Glasgow, UK. Recruited participants were individuals at risk of weight gain, aged between 20 and 40 years and had an overweight body mass index. Sealed Envelope Software was used to randomise participants to consume 10 g of IPE or inulin (control), once per day for 12 months. The primary outcome was the weight gained from baseline to 12 months, analysed by an 'Intention to Treat' strategy. The safety profile and tolerability of IPE were monitored through adverse events and compliance. This study is registered with the International Standard Randomised Controlled Trials (ISRCT) Database (ISRCT number: 16299902). Findings Participants (n = 135 per study arm) were recruited from July 2019 to October 2021. At 12 months, there was no significant difference in baseline-adjusted mean weight gain for IPE compared with control (1.02 kg, 95% CI: -0.37 to 2.41; p = 0.15; n = 226). Neither the IPE (+1.22 kg) nor the control arm (+0.07 kg) unadjusted mean gains in body weight reached the expected 2 kg threshold. In the IPE arm, fat-free mass was greater by 1.07 kg (95% CI: 0.21-1.93), and blood glucose elevated by 0.11 mmol/L (95% CI: 0.01-0.21). Compliance, determined by intake of ≥50% sachets, was reached by 63% of IPE participants. There were no unexpected adverse events or safety concerns. Interpretation Our study indicates that at 12 months, IPE did not differentially affect weight gain, compared with the inulin control, in adults between 20 and 40 years of age, at risk of obesity. Funding NIHR EME Programme (15/185/16).
Collapse
Affiliation(s)
- Jennifer E. Pugh
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Katerina Petropoulou
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Joana C. Vasconcelos
- Nightingale-Saunders Clinical Trials & Epidemiology Unit, King's Clinical Trials Unit, King's College London, London, UK
| | - Aisha Anjum
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - George Thom
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Louise McCombie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Martina Tashkova
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sumayya Alshehhi
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Daphne Babalis
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Christina Prechtl
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Tom Preston
- Scottish Universities Environmental Research Centre (SUERC), College of Science and Engineering, University of Glasgow, UK
| | - Edward Chambers
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mike J. Lean
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Waljit Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, UK
| | - A. Toby Prevost
- Nightingale-Saunders Clinical Trials & Epidemiology Unit, King's Clinical Trials Unit, King's College London, London, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre (SUERC), College of Science and Engineering, University of Glasgow, UK
| | - Gary Frost
- Section for Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
17
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
18
|
Byndloss M, Devkota S, Duca F, Hendrik Niess J, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 2024; 47:1491-1508. [PMID: 38996003 PMCID: PMC11362125 DOI: 10.2337/dci24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
19
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
20
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes 2024; 73:1391-1410. [PMID: 38912690 PMCID: PMC11333376 DOI: 10.2337/dbi24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
21
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
22
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
23
|
Hengist A, Davies RG, Walhin JP, Buniam J, Merrell LH, Rogers L, Bradshaw L, Moreno-Cabañas A, Rogers PJ, Brunstrom JM, Hodson L, van Loon LJC, Barton W, O'Donovan C, Crispie F, O'Sullivan O, Cotter PD, Proctor K, Betts JA, Koumanov F, Thompson D, Gonzalez JT. Ketogenic diet but not free-sugar restriction alters glucose tolerance, lipid metabolism, peripheral tissue phenotype, and gut microbiome: RCT. Cell Rep Med 2024; 5:101667. [PMID: 39106867 PMCID: PMC11384946 DOI: 10.1016/j.xcrm.2024.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Restricted sugar and ketogenic diets can alter energy balance/metabolism, but decreased energy intake may be compensated by reduced expenditure. In healthy adults, randomization to restricting free sugars or overall carbohydrates (ketogenic diet) for 12 weeks reduces fat mass without changing energy expenditure versus control. Free-sugar restriction minimally affects metabolism or gut microbiome but decreases low-density lipoprotein cholesterol (LDL-C). In contrast, a ketogenic diet decreases glucose tolerance, increases skeletal muscle PDK4, and reduces AMPK and GLUT4 levels. By week 4, the ketogenic diet reduces fasting glucose and increases apolipoprotein B, C-reactive protein, and postprandial glycerol concentrations. However, despite sustained ketosis, these effects are no longer apparent by week 12, when gut microbial beta diversity is altered, possibly reflective of longer-term adjustments to the ketogenic diet and/or energy balance. These data demonstrate that restricting free sugars or overall carbohydrates reduces energy intake without altering physical activity, but with divergent effects on glucose tolerance, lipoprotein profiles, and gut microbiome.
Collapse
Affiliation(s)
| | | | | | - Jariya Buniam
- University of Bath, Bath, UK; Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | | | | | | | | | - Leanne Hodson
- University of Oxford and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | | | - Wiley Barton
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | - Ciara O'Donovan
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2024:S1078-1439(24)00541-6. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
25
|
Behrens LMP, Gasparotto J, Rampelotto PH, Escalona MAR, da Silva LDS, Carazza-Kessler FG, Barbosa CP, Campos MS, Dorn M, Gelain DP, Moreira JCF. Sodium propionate oral supplementation ameliorates depressive-like behavior through gut microbiome and histone 3 epigenetic regulation. J Nutr Biochem 2024; 130:109660. [PMID: 38685283 DOI: 10.1016/j.jnutbio.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Major depressive disorder (MDD) is a global health concern, affecting over 250 million individuals worldwide. In recent years, the gut-brain axis has emerged as a promising field for understanding the pathophysiology of MDD. Microbial metabolites, such as short-chain fatty acids (SCFAs)-acetate, butyrate, and propionate-, have gained attention for their potential to influence epigenetic modifications within the host brain. However, the precise mechanisms through which these metabolites participate in MDD pathophysiology remain elusive. This study was designed to investigate the effects of oral SCFA supplementation in adult male Wistar rats subjected to chronic unpredictable mild stress (CUMS). A subset of control and CUMS-exposed rats received different supplementations: sodium acetate (NaOAc) at a concentration of 60 mM, sodium butyrate (NaB) at 40 mM, sodium propionate (NaP) at 50 mM, or a mixture of these SCFAs. The gut microbiome was assessed through 16S rRNA sequencing, and epigenetic profiling was performed using Western blot analysis. Results demonstrated that NaP supplementation significantly alleviated anhedonia in stressed animals, as evidenced by improved performance in the sucrose consumption test. This ameliorative effect was potentially associated with the modulation of gut bacterial communities, accompanied by the attenuation of the region-specific epigenetic dysregulation in the brain of the animals exposed to chronic stress. These findings suggest a potential association between gut dysbiosis and stress response, and NaP could be a promising target for future MDD interventions. However, further studies are needed to fully elucidate the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Luiza Marques Prates Behrens
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil.
| | - Juciano Gasparotto
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-907, Brazil
| | - Manuel Adrian Riveros Escalona
- Graduate Program in Veterinary Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91540-000, Brazil
| | - Lucas Dos Santos da Silva
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Flávio Gabriel Carazza-Kessler
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Camila Pocharski Barbosa
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Marlene Soares Campos
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Márcio Dorn
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Daniel Pens Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
26
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10328-x. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
27
|
Xie X, Huang C. Role of the gut-muscle axis in mitochondrial function of ageing muscle under different exercise modes. Ageing Res Rev 2024; 98:102316. [PMID: 38703951 DOI: 10.1016/j.arr.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The fundamental role of the gut microbiota through the gut-muscle axis in skeletal muscle ageing is increasingly recognised. Metabolites derived from the intestinal microbiota are essential in maintaining skeletal muscle function and metabolism. The energy produced by mitochondria and moderate levels of reactive oxygen species can contribute to this process. Metabolites can effectively target the mitochondria, slowing the progression of muscle ageing and potentially representing a marker of ageing-related skeletal muscle loss. Moreover, mitochondria can contribute to the immune response, gut microbiota biodiversity, and maintenance of the intestinal barrier function. However, the causal relationship between mitochondrial function and gut microbiota crosstalk remains poorly understood. In addition to elucidating the regulatory pathways of the gut-muscle axis during the ageing process, we focused on the potential role of the "exercise-gut-muscle axis", which represents a pathway under stimulation from different exercise modes to induce mitochondrial adaptations, skeletal muscle metabolism and maintain intestinal barrier function and biodiversity stability. Meanwhile, different exercise modes can induce mitochondrial adaptations and skeletal muscle metabolism and maintain intestinal barrier function and biodiversity. Resistance exercise may promote mitochondrial adaptation, increase the cross-sectional area of skeletal muscle and muscle hypertrophy, and promote muscle fibre and motor unit recruitment. Whereas endurance exercise promotes mitochondrial biogenesis, aerobic capacity, and energy utilisation, activating oxidative metabolism-related pathways to improve skeletal muscle metabolism and function. This review describes the effects of different exercise modes through the gut-muscle axis and how they act through mitochondria in ageing to define the current state of the field and issues requiring resolution.
Collapse
Affiliation(s)
- Xiaoting Xie
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China
| | - Cong Huang
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China; Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
28
|
D'Alessandro AG, Desantis S, Fracchiolla G, Porrelli R, Dibenedetto RS, Di Luca A, Martemucci G. Response of laying hens fed diet supplemented with a mixture of olive, laurel, and rosemary leaf powders: Metabolic profile, oxidative status, intestinal histomorphology, and egg quality. Res Vet Sci 2024; 174:105294. [PMID: 38744020 DOI: 10.1016/j.rvsc.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1β, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.
Collapse
Affiliation(s)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 per Casamassima Km 3, 70010 Valenzano (Bari), Italy.
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | | | | | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | |
Collapse
|
29
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Leclercq S, de Timary P. Role of the Microbiome and the Gut-Brain Axis in Alcohol Use Disorder: Potential Implication for Treatment Development. Curr Top Behav Neurosci 2024. [PMID: 38914878 DOI: 10.1007/7854_2024_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The gut microbiota is constituted by trillions of microorganisms colonizing the human intestine. Studies conducted in patients with alcohol use disorder (AUD) have shown altered microbial composition related to bacteria, viruses, and fungi.This review describes the communication pathways between the gut and the brain, including the ones related to the bacterial metabolites, the inflammatory cytokines, and the vagus nerve. We described in more detail the gut-derived metabolites that have been shown to be implicated in AUD or that could potentially be involved in the development of AUD due to their immune and/or neuroactive properties, including tryptophan-derivatives, tyrosine-derivatives, short chain fatty acids.Finally, we discussed the potential beneficial effects of microbiome-based therapies for AUD such as probiotics, prebiotics, postbiotic, and phage therapy.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
31
|
Eveleens Maarse BC, Eggink HM, Warnke I, Bijlsma S, van den Broek TJ, Oosterman JE, Caspers MPM, Sybesma W, Gal P, van Kraaij SJW, Schuren FHJ, Moerland M, Hoevenaars FPM. Impact of fibre supplementation on microbiome and resilience in healthy participants: A randomized, placebo-controlled clinical trial. Nutr Metab Cardiovasc Dis 2024; 34:1416-1426. [PMID: 38499450 DOI: 10.1016/j.numecd.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AND AIMS The gut microbiome exerts important roles in health, e.g., functions in metabolism and immunology. These functions are often exerted via short-chain fatty acid (SCFA) production by gut bacteria. Studies demonstrating causal relationships between interventions targeting the microbiome and clinical outcomes are limited. This study aimed to show a causal relationship between microbiome modulation through fibre intervention and health. METHODS AND RESULTS This randomized, double-blind, cross-over study included 65 healthy subjects, aged 45-70 years, with increased metabolic risk (i.e., body mass index [BMI] 25-30 kg/m2, low to moderate daily dietary fibre intake, <30g/day). Subjects took daily a fibre mixture of Acacia gum and carrot powder or placebo for 12 weeks, with an 8-week wash-out period. Faecal samples for measurement of SCFAs and microbiome analysis were collected every 4 weeks. Before and after each intervention period subjects underwent the mixed-meal PhenFlex challenge Test (PFT). Health effects were expressed as resilience to the stressors of the PFT and as fasting metabolic and inflammatory state. The fibre mixture exerted microbiome modulation, with an increase in β-diversity (p < 0.001). α-diversity was lower during fibre mixture intake compared to placebo after 4, 8 and 12 weeks (p = 0.002; p = 0.012; p = 0.031). There was no effect observed on faecal SCFA concentrations, nor on any of the primary clinical outcomes (Inflammatory resilience: p = 0.605, Metabolic resilience: p = 0.485). CONCLUSION Although the intervention exerted effects on gut microbiome composition, no effects on SCFA production, on resilience or fasting metabolic and inflammatory state were observed in this cohort. REGISTRATION NUMBER CLINICALTRIALS.GOV: NCT04829396.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Hannah M Eggink
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Ines Warnke
- dsm-firmenich, CH-4303, Kaiseraugst, Switzerland
| | - Sabina Bijlsma
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Tim J van den Broek
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Johanneke E Oosterman
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Martien P M Caspers
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | | | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Frank H J Schuren
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Femke P M Hoevenaars
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands.
| |
Collapse
|
32
|
Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, Wang Y, Hennig B, Deng P. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. MICROBIOME 2024; 12:90. [PMID: 38750595 PMCID: PMC11094917 DOI: 10.1186/s40168-024-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.
Collapse
Affiliation(s)
- Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jing Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, 900 S. Limestone St, 501 Wethington Health Sciences Bldg, Lexington, KY, 40536, USA.
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China.
| |
Collapse
|
33
|
Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 2024; 21:301-318. [PMID: 38326443 DOI: 10.1038/s41575-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Valentin Mocanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
34
|
Dalile B, Fuchs A, La Torre D, Vervliet B, Van Oudenhove L, Verbeke K. Colonic butyrate administration modulates fear memory but not the acute stress response in men: A randomized, triple-blind, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110939. [PMID: 38199487 DOI: 10.1016/j.pnpbp.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Short-chain fatty acids (SCFAs) are produced in the colon following bacterial fermentation of dietary fiber and are important microbiota-gut-brain messengers. However, their mechanistic role in modulating psychobiological processes that underlie the development of stress- and anxiety-related disorders is scarcely studied in humans. We have previously shown that colonic administration of a SCFA mixture (acetate, propionate, butyrate) lowers the cortisol response to stress in healthy participants, but does not impact fear conditioning and extinction. To disentangle the effects of the three main SCFAs, we examined whether butyrate alone would similarly modulate these psychobiological responses in a randomized, triple-blind, placebo-controlled intervention study in 71 healthy male participants (Mage = 25.2, MBMI = 22.7 [n = 35 butyrate group, n = 36 placebo group]). Colon-delivery capsules with pH-dependent coating were used to administer 5.28 g of butyrate or placebo daily for one week. Butyrate administration significantly increased serum butyrate concentrations without modulating serum acetate or propionate, nor fecal SCFAs. Butyrate administration also significantly modulated fear memory at the subjective but not physiological levels. Contrary to expectations, no changes in subjective nor neuroendocrine responses to acute stress were evident between the treatment groups from pre- to post-intervention. We conclude that colonic butyrate administration alone is not sufficient to modulate psychobiological stress responses, unlike administration of a SCFA mixture. The influence of colonic and systemic butyrate on fear memory and the persistence of fear extinction should be further systematically investigated in future studies.
Collapse
Affiliation(s)
- Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium; Laboratory of Biological Psychology, Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Annalena Fuchs
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Laboratory of Biological Psychology, Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium; Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
36
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
37
|
van Trijp MPH, Rios-Morales M, Witteman B, Abegaz F, Gerding A, An R, Koehorst M, Evers B, van Dongen KCV, Zoetendal EG, Schols H, Afman LA, Reijngoud DJ, Bakker BM, Hooiveld GJ. Intraintestinal fermentation of fructo- and galacto-oligosaccharides and the fate of short-chain fatty acids in humans. iScience 2024; 27:109208. [PMID: 38420581 PMCID: PMC10901090 DOI: 10.1016/j.isci.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon. We studied the fate of SCFA as substrates for glucose and lipid metabolism by the host after infusion of 13C-SCFA. In the human distal ileum, no fermentation of FOS:GOS, nor SCFA production, or bacterial cross-feeding was observed. The relative composition of intestinal microbiota changed rapidly during the test day, which demonstrates the relevance of postprandial intestinal sampling to track acute responses of the microbial community toward interventions. SCFA were vividly taken up and metabolized by the host as shown by incorporation of 13C in various host metabolites.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
- Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede 6716 RP, the Netherlands
| | - Fentaw Abegaz
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Statistics and Probability Unit, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ran An
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Martijn Koehorst
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Bernard Evers
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Katja C V van Dongen
- Division of Toxicology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, the Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
38
|
Steinert RE, Mueller M, Serra M, Lehner-Sigrist S, Frost G, Gero D, Gerber PA, Bueter M. Effect of inulin on breath hydrogen, postprandial glycemia, gut hormone release, and appetite perception in RYGB patients: a prospective, randomized, cross-over pilot study. Nutr Diabetes 2024; 14:9. [PMID: 38448413 PMCID: PMC10918168 DOI: 10.1038/s41387-024-00267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Large intestinal fermentation of dietary fiber may control meal-related glycemia and appetite via the production of short-chain fatty acids (SCFA) and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We investigated whether this mechanism contributes to the efficacy of the Roux-en-Y gastric bypass (RYGB) by assessing the effect of oligofructose-enriched inulin (inulin) vs. maltodextrin (MDX) on breath hydrogen (a marker of intestinal fermentation), plasma SCFAs, gut hormones, insulin and blood glucose concentrations as well as appetite in RYGB patients. METHOD Eight RYGB patients were studied on two occasions before and ~8 months after surgery using a cross-over design. Each patient received 300 ml orange juice containing 25 g inulin or an equicaloric load of 15.5 g MDX after an overnight fast followed by a fixed portion snack served 3 h postprandially. Blood samples were collected over 5 h and breath hydrogen measured as well as appetite assessed using visual analog scales. RESULTS Surgery increased postprandial secretion of GLP-1 and PYY (P ≤ 0.05); lowered blood glucose and plasma insulin increments (P ≤ 0.05) and reduced appetite ratings in response to both inulin and MDX. The effect of inulin on breath hydrogen was accelerated after surgery with an increase that was earlier in onset (2.5 h vs. 3 h, P ≤ 0.05), but less pronounced in magnitude. There was, however, no effect of inulin on plasma SCFAs or plasma GLP-1 and PYY after the snack at 3 h, neither before nor after surgery. Interestingly, inulin appeared to further potentiate the early-phase glucose-lowering and second-meal (3-5 h) appetite-suppressive effect of surgery with the latter showing a strong correlation with early-phase breath hydrogen concentrations. CONCLUSION RYGB surgery accelerates large intestinal fermentation of inulin, however, without measurable effects on plasma SCFAs or plasma GLP-1 and PYY. The glucose-lowering and appetite-suppressive effects of surgery appear to be potentiated with inulin.
Collapse
Affiliation(s)
- R E Steinert
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland.
| | - M Mueller
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - M Serra
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - S Lehner-Sigrist
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - G Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - D Gero
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - P A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - M Bueter
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| |
Collapse
|
39
|
Hu H, Sun W, Zhang L, Zhang Y, Kuang T, Qu D, Lian S, Hu S, Cheng M, Xu Y, Liu S, Qian Y, Lu Y, He L, Cheng Y, Si H. Carboxymethylated Abrus cantoniensis polysaccharide prevents CTX-induced immunosuppression and intestinal damage by regulating intestinal flora and butyric acid content. Int J Biol Macromol 2024; 261:129590. [PMID: 38266859 DOI: 10.1016/j.ijbiomac.2024.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.
Collapse
Affiliation(s)
- Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yajing Qian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
40
|
Barman M, Gio-Batta M, Andrieux L, Stråvik M, Saalman R, Fristedt R, Rabe H, Sandin A, Wold AE, Sandberg AS. Short-chain fatty acids (SCFA) in infants' plasma and corresponding mother's milk and plasma in relation to subsequent sensitisation and atopic disease. EBioMedicine 2024; 101:104999. [PMID: 38340558 PMCID: PMC10869761 DOI: 10.1016/j.ebiom.2024.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) in intestinal contents may influence immune function, while less is known about SCFAs in blood plasma. The aims were to investigate the relation between infants' and maternal plasma SCFAs, as well as SCFAs in mother's milk, and relate SCFA concentrations in infant plasma to subsequent sensitisation and atopic disease. METHODS Infant plasma (N = 148) and corresponding mother's milk and plasma were collected four months postpartum. Nine SCFA (formic, acetic, propionic, isobutyric, butyric, succinic, valeric, isovaleric, and caproic acid) were analysed by UPLC-MS. At 12 months of age, atopic disease was diagnosed by a pediatric allergologist, and sensitisation was measured by skin prick test. All families participated in the Swedish birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). FINDINGS Infants with sensitisation, atopic eczema, or food allergy had significantly lower concentrations of five, three, and two SCFAs, respectively, in plasma at four months. Logistic regressions models showed significant negative associations between formic, succinic, and caproic acid and sensitisation [ORadj (95% CI) per SD: 0.41 (0.19-0.91); 0.19 (0.05-0.75); 0.25 (0.09-0.66)], and between acetic acid and atopic eczema [0.42 (0.18-0.95)], after adjusting for maternal allergy. Infants' and maternal plasma SCFA concentrations correlated strongly, while milk SCFA concentrations were unrelated to both. Butyric and caproic acid concentrations were enriched around 100-fold, and iso-butyric and valeric acid around 3-5-fold in mother's milk, while other SCFAs were less prevalent in milk than in plasma. INTERPRETATION Butyric and caproic acid might be actively transported into breast milk to meet the needs of the infant, although mechanistic studies are needed to confirm this. The negative associations between certain SCFAs on sensitisation and atopic disease adds to prior evidence regarding their immunoregulatory potential. FUNDING Swedish Research Council (Nr. 2013-3145, 2019-0137 and 2023-02217 to A-S.S.), Swedish Research Council for Health, Working Life and Welfare FORTE, Nr 2018-00485 to A.W.), The Swedish Asthma and Allergy Association's Research Fund (2020-0020 to A.S.).
Collapse
Affiliation(s)
- Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Léna Andrieux
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden; Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
| | - Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Robert Saalman
- Institute of Clinical Sciences, Department of Pediatrics, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Rikard Fristedt
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Umeå 901 87, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
41
|
Haq Z, Rastogi A, Sharma RK, Raghuwanshi P, Singh M, Khan AA, Ahmad SM. Exploring the efficacy of a novel prebiotic-like growth promoter on broiler chicken production performance. Vet Anim Sci 2024; 23:100331. [PMID: 38283334 PMCID: PMC10820726 DOI: 10.1016/j.vas.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
This study attempts to isolate a candidate growth promoter from the ovine paunch waste and scrutinize its effects on the production performance of broiler chickens as compared to mannan-oligosaccharide (MOS), a prebiotic, and lincomycin, an antibiotic growth promoter (AB). The paunch waste collected from slaughtered sheep was processed to remove particulate matter. The clarified liquid was then added to an excess of ethanol (1:9 ratio), and the resultant precipitate {(novel growth-promoting paunch extract (NGPE)} was collected, dried, and stored. In vitro increase in cell density for probiotic bacteria viz. Lactobacillus rhamnosus and Enterococcus faecalis (Log10 CFU/ml) were significantly higher (P < 0.01) in NGPE supplemented media (2.78 ± 0.11 and 2.77 ± 0.10) as compared to that on MOS (1.28 ± 0.05 and 2.49 ± 0.09) and glucose (1.09 ± 0.04 and 1.12 ± 0.04) supplemented media. In the in-vivo trial of six weeks duration with broiler chickens (Cobb-400), NGPE supplementation resulted in significantly higher growth in weeks IV (P < 0.05) and VI (P < 0.01) of age in comparison to MOS and AGP supplemented groups, a lower (P < 0.01) cumulative feed conversion ratio in comparison to MOS supplemented groups, and a higher (P < 0.01) cumulative protein efficiency ratio compared to MOS and AGP supplementation. NGPE supplementation also lowered lipid peroxidation (P < 0.01), increased reduced glutathione activity (P < 0.01) in chicken erythrocytes, and boosted the lactic acid bacteria count in the cecal contents (P < 0.01). This is the first report of the isolation of a paunch waste extract that increased the in vitro growth of probiotic bacteria and improved the production performance of broiler chickens.
Collapse
Affiliation(s)
- Zulfqarul Haq
- Indian Council of Medical Research Project, Division of L.P.M, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Ankur Rastogi
- Division of Animal Nutrition, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, India
| | - Ramesh Kumar Sharma
- Division of Animal Nutrition, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, India
| | - Pratiksha Raghuwanshi
- Division of Veterinary Biochemistry and Physiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, India
| | - Maninder Singh
- Department of Veterinary Public Health and Epidemiology, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, India
| | - Azmat Alam Khan
- Division of LPM, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| |
Collapse
|
42
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
43
|
Mellai M, Allesina M, Edoardo B, Cascella F, Nobile V, Spina A, Amone F, Zaccaria V, Insolia V, Perri A, Lofaro D, Puoci F. A Randomized, Double-Blind, Placebo-Controlled Trial: Efficacy of Opuntia ficus- indica Prebiotic Supplementation in Subjects with Gut Dysbiosis. Nutrients 2024; 16:586. [PMID: 38474715 DOI: 10.3390/nu16050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Gut dysbiosis refers to an imbalance in gut microbiota composition and function. Opuntia ficus-indica extract has been shown to modulate gut microbiota by improving SCFA production in vivo and gastrointestinal discomfort (GD) in humans. The aim of this study was to demonstrate the efficacy of OdiliaTM on gastrointestinal health by changing the microbial diversity of species involved in inflammation, immunity, oxidation, and the brain-gut-muscle axis. A randomized, double-blind clinical trial was conducted in 80 adults with gut dysbiosis. The intervention consisted of a 300 mg daily intake of OdiliaTM (n = 40) or maltodextrin as a placebo (n = 40), administered for 8 weeks. Intervention effect was evaluated using 16S metagenomics and GIQLI/GSAS scores at baseline, at 4 and 8 weeks. Eight weeks of OdiliaTM supplementation positively modulates gut microbiota composition with a significant reduction in the Firmicutes to Bacteroidetes ratio (p = 0.0012). Relative abundances of beneficial bacteria (Bacteroides and Clostridium_XIVa) were significantly increased (p < 0.001), in contrast to a significant reduction in pro-inflammatory bacteria (p < 0.001). Accordingly, GIQLI and GSAS scores revealed successful improvement in GD. OdiliaTM may represent an effective and well-tolerated treatment in subjects with gut dysbiosis.
Collapse
Affiliation(s)
- Marta Mellai
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Genomics & Transcriptomics Unit, Center for Translational Research on Autoimmune and Allergic Disease, 28100 Novara, Italy
| | - Marta Allesina
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Benedetto Edoardo
- GIGA-CP Italian Association for Primary Care Gastroenterology, 87036 Rende, Italy
| | - Federica Cascella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy
| | - Amelia Spina
- Nutratech S.r.l., Spin-Off of University of Calabria, 87036 Rende, Italy
| | - Fabio Amone
- Nutratech S.r.l., Spin-Off of University of Calabria, 87036 Rende, Italy
| | | | | | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Grecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Danilo Lofaro
- Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87100 Cosenza, Italy
| |
Collapse
|
44
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
45
|
Fagundes RR, Belt SC, Bakker BM, Dijkstra G, Harmsen HJM, Faber KN. Beyond butyrate: microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol 2024; 32:178-189. [PMID: 37596118 DOI: 10.1016/j.tim.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Human gut bacteria produce metabolites that support energy and carbon metabolism of colonic epithelial cells. While butyrate is commonly considered the primary fuel, it alone cannot meet all the carbon requirements for cellular synthetic functions. Glucose, delivered via circulation or microbial metabolism, serves as a universal carbon source for synthetic processes like DNA, RNA, protein, and lipid production. Detailed knowledge of epithelial carbon and energy metabolism is particularly relevant for epithelial regeneration in digestive and metabolic diseases, such as inflammatory bowel disease and type 2 diabetes. Here, we review the production and role of different colonic microbial metabolites in energy and carbon metabolism of colonocytes, also critically evaluating the common perception that butyrate is the preferred fuel.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Saskia C Belt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Sangouni AA, Nadjarzadeh A, Rohani FS, Sharuni F, Zare Z, Rahimpour S, Hojjat H, Hosseinzadeh M. Dietary approaches to stop hypertension (DASH) diet improves hepatic fibrosis, steatosis and liver enzymes in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Eur J Nutr 2024; 63:95-105. [PMID: 37855891 DOI: 10.1007/s00394-023-03221-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Recent evidence suggests that adherence to dietary approaches to stop hypertension (DASH) diet can be effective in managing non-alcoholic fatty liver disease (NAFLD). We investigated the effect of DASH diet on hepatic fibrosis, steatosis and liver enzymes in patients with NAFLD. METHODS This 12-week randomized controlled trial was conducted among seventy patients with NAFLD who were randomly assigned into two groups including intervention group (DASH diet containing 50-55% carbohydrate, 15-20% protein, and 30% total fat) and the control group (a healthy diet containing 50-55% carbohydrate, 15-20% protein, and 30% total fat). Both diets were calorie-restricted (500-700 kcal lower than the energy requirement). The primary outcomes included hepatic fibrosis, hepatic steatosis, alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamyl transpeptidase (GGT). RESULTS At the baseline, there was no significant difference between two groups in the level of hepatic fibrosis (P = 0.63), hepatic steatosis (P = 0.53), ALT (P = 0.93), AST (P = 0.18) and GGT (P = 0.76). A significant reduction was found in the intervention group compared to the control group in hepatic fibrosis (23 grades reduction vs. 7 grades reduction; P = 0.008) and hepatic steatosis (31 grades reduction vs. 9 grades reduction; P = 0.03) after intervention. In addition, a significant change was observed in the intervention group compared to control group in ALT ( - 8.50 ± 8.98 vs. - 2.09 ± 7.29; P = 0.002), and AST ( - 5.79 ± 6.83 vs. - 0.51 ± 6.62; P = 0.002). CONCLUSIONS Adherence to DASH diet may be effective in management of NAFLD. TRIAL REGISTRATION The trial was registered on 06 February 2022 at Iranian Registry of Clinical Trials (IRCT20170117032026N3) with URL: https://www.irct.ir/trial/60887 .
Collapse
Affiliation(s)
- Abbas Ali Sangouni
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadat Rohani
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sharuni
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Zare
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shahab Rahimpour
- Faculty of Medicine, Gastroentrology Department, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hashem Hojjat
- Faculty of Medicine, Department of Radiology, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
48
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
49
|
Pedersen SS, Ingerslev LR, Olsen M, Prause M, Billestrup N. Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction. FEBS J 2024; 291:566-583. [PMID: 37985375 DOI: 10.1111/febs.17005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Butyrate, a gut microbial metabolite, has beneficial effects on glucose homeostasis and has become an attractive drug candidate for type 2 diabetes (T2D). Recently, we showed that butyrate protects pancreatic beta cells against cytokine-induced dysfunction. In this study, we explored the underlying mechanisms of butyrate action. Pancreatic mouse islets were exposed to a non-cytotoxic concentration of interleukin-1β (IL-1β) for 10 days to mimic low-grade inflammation in T2D. Similar to the effect of butyrate, an isoform-selective histone deacetylase 3 (HDAC3) inhibitor normalized IL-1β-reduced glucose-stimulated insulin secretion and insulin content. In contrast, free fatty acid receptor 2 and 3 (FFAR2/3) agonists failed to normalize IL-1β-induced beta cell dysfunction. Furthermore, butyrate inhibited HDAC activity and increased the acetylation of histone H3 and H4 by 3- and 10-fold, respectively. Genome-wide analysis of histone H3 lysine 27 acetylation (H3K27ac) revealed that butyrate mainly increased H3K27ac at promoter regions (74%), while H3K27ac peaks regulated by IL-1β were more equally distributed at promoters (38%), introns (23%) and intergenic regions (23%). Gene ontology analysis showed that butyrate increased IL-1β-reduced H3K27ac levels near several genes related to hormone secretion and reduced IL-1β-increased H3K27ac levels near genes associated with inflammatory responses. Butyrate alone increased H3K27ac near many genes related to MAPK signaling, hormone secretion, and differentiation, and decreased H3K27ac at genes involved in cell replication. Together, these results suggest that butyrate prevents IL-1β-induced pancreatic islet dysfunction by inhibition of HDACs resulting in changes in H3K27ac levels at genes relevant for beta cell function and inflammatory responses.
Collapse
Affiliation(s)
- Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mathias Olsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
50
|
Thing M, Werge MP, Kimer N, Hetland LE, Rashu EB, Nabilou P, Junker AE, Galsgaard ED, Bendtsen F, Laupsa-Borge J, McCann A, Gluud LL. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2024; 24:43. [PMID: 38262952 PMCID: PMC10804800 DOI: 10.1186/s12876-024-03129-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Alterations in the production of short-chain fatty acids (SCFAs) may reflect disturbances in the gut microbiota and have been linked to metabolic dysfunction-associated steatotic liver disease (MASLD). We assessed plasma SCFAs in patients with MASLD and healthy controls. METHODS Fasting venous blood samples were collected and eight SCFAs were measured using gas chromatography-tandem mass spectrometry (GC-MS/MS). Relative between-group differences in circulating SCFA concentrations were estimated by linear regression, and the relation between SCFA concentrations, MASLD, and fibrosis severity was investigated using logistic regression. RESULTS The study includes 100 patients with MASLD (51% with mild/no fibrosis and 49% with significant fibrosis) and 50 healthy controls. Compared with healthy controls, MASLD patients had higher plasma concentrations of propionate (21.8%, 95% CI 3.33 to 43.6, p = 0.02), formate (21.9%, 95% CI 6.99 to 38.9, p = 0.003), valerate (35.7%, 95% CI 4.53 to 76.2, p = 0.02), and α-methylbutyrate (16.2%, 95% CI 3.66 to 30.3, p = 0.01) but lower plasma acetate concentrations (- 30.0%, 95% CI - 40.4 to - 17.9, p < 0.001). Among patients with MASLD, significant fibrosis was positively associated with propionate (p = 0.02), butyrate (p = 0.03), valerate (p = 0.03), and α-methylbutyrate (p = 0.02). Six of eight SCFAs were significantly increased in F4 fibrosis. CONCLUSIONS In the present study, SCFAs were associated with MASLD and fibrosis severity, but further research is needed to elucidate the potential mechanisms underlying our observations and to assess the possible benefit of therapies modulating gut microbiota.
Collapse
Affiliation(s)
- Mira Thing
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Mikkel Parsberg Werge
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Nina Kimer
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Liv Eline Hetland
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Elias Badal Rashu
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Puria Nabilou
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Anders Ellekaer Junker
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | | | - Flemming Bendtsen
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | | | | | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| |
Collapse
|