1
|
Bränström R, Vukojević V, Lu M, Shabo I, Mun HC, Conigrave AD, Farnebo LO, Larsson C. Ca 2+-activated K + channels modulate membrane potential in the human parathyroid cell: Possible role in exocytosis. Exp Cell Res 2023; 433:113858. [PMID: 37995920 DOI: 10.1016/j.yexcr.2023.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The relationships between parathyroid hormone (PTH) secretion and parathyroid cell membrane potential, including the identities and roles of K+ channels that regulate and/or modulate membrane potential are not well defined. Here we have used Western blot/immunohistochemistry as well as patch-clamp and perifusion techniques to identify and localize specific K+ channels in parathyroid cells and to investigate their roles in the control of membrane potential and PTH secretion. We also re-investigated the relationship between membrane potential and exocytosis. We showed that in single human parathyroid cells K+ current is dependent on at least two types of Ca2+-activated K+ channels: a small-conductance Ca2+-activated K+ channel (KSK) and a large-conductance voltage and Ca2+-activated K+ channel (KBK). These channels were sensitive to specific peptide blocking toxins including apamin, charybdotoxin, and iberiotoxin. These channels confer sensitivity of the membrane potential in single cells to high extracellular K+, TEA, and peptide toxins. Blocking of KBK potently inhibited K+ channel current, and KBK was shown to be expressed in the plasma membrane of parathyroid cells. In addition, when using the capacitance technique as an indicator of exocytosis, clamping the parathyroid cell at -60 mV prevented exocytosis, whereas holding the membrane potential at 0 mV facilitated it. Taken together, the results show that human parathyroid cells have functional KBK and KSK channels but the data presented herein suggest that KBK/KSK channels likely contribute to the maintenance of the membrane potential, and that membrane potential, per se, modulates exocytosis independently of [Ca2+]i.
Collapse
Affiliation(s)
- Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ming Lu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Shabo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hee-Chang Mun
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | - Arthur D Conigrave
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | - Lars-Ove Farnebo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Quiroz-Acosta T, Bermeo K, Arenas I, Garcia DE. G-protein tonic inhibition of calcium channels in pancreatic β-cells. Am J Physiol Cell Physiol 2023; 325:C592-C598. [PMID: 37458440 DOI: 10.1152/ajpcell.00447.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/17/2023]
Abstract
Voltage-gated calcium channels (CaV) conduct Ca2+ influx promoting neurotransmitters and hormone release. CaV are finely regulated by voltage-dependent and independent pathways either by G-protein-coupled receptors (GPCRs) or intramembrane lipids, respectively, in neurons and glands. Interestingly, pancreatic β-cells are abundantly innervated by both sympathetic and parasympathetic neurons, while a variety of high-voltage activated (HVA) Ca2+ channels are present in these cells. Thus, autonomic system seems to exert a tonic inhibition on HVA Ca2+ channels throughout GPCRs, constitutively preventing hormone secretion. Therefore, this work aimed to investigate noradrenergic and cholinergic inhibition of HVA Ca2+ channels in pancreatic β-cells. Experiments were conducted in pancreatic β-cells of rat by using patch-clamping methods, immunocytochemistry, pharmacological probes, and biochemical reagents. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask tonic inhibition. Herein, we consistently find a basal tonic inhibition of HVA Ca2+ channels according to a GPCRs regulation. Facilitation ratio is enhanced by noradrenaline (NA) according to a voltage-dependent regulation and a membrane-delimited mechanism, while no facilitation changes are observed with carbachol or phosphatidylinositol 4,5-bisphosphate (PIP2). Furthermore, carbachol or intramembrane lipids, such as PIP2, do not change facilitation ratio according to a voltage-independent regulation. Together, HVA Ca2+ channels of pancreatic β-cells are constitutively inhibited by GPCRs, suggesting a natural brake preventing cells from exhaustive insulin secretion.NEW & NOTEWORTHY Our results support the hypothesis that GPCRs tonically inhibit HVA Ca2+ channels in pancreatic β-cells. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask voltage-dependent inhibition of Ca2+ channels. The novelty of these results strengthens the critical role of Gβγ's in Ca2+ channel regulation, highlighting kinetic slowing and increased facilitation ratio. Together, HVA Ca2+ channels of pancreatic β-cells are constitutively inhibited by GPCRs underlying fine-tuning modulation of insulin secretion.
Collapse
Affiliation(s)
- Tayde Quiroz-Acosta
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Karina Bermeo
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Isabel Arenas
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - David E Garcia
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| |
Collapse
|
3
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
4
|
Kebede MA, Piston DW. Sorting Out the Receptor Isoforms Underlying Dopamine Inhibition of Insulin Secretion. Diabetes 2022; 71:1831-1833. [PMID: 35984964 DOI: 10.2337/dbi22-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, Australia
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
5
|
Al-Abdulla R, Ferrero H, Soriano S, Boronat-Belda T, Alonso-Magdalena P. Screening of Relevant Metabolism-Disrupting Chemicals on Pancreatic β-Cells: Evaluation of Murine and Human In Vitro Models. Int J Mol Sci 2022; 23:ijms23084182. [PMID: 35457000 PMCID: PMC9025712 DOI: 10.3390/ijms23084182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with the normal function of the endocrine system. EDCs are ubiquitous and can be found in a variety of consumer products such as food packaging materials, personal care and household products, plastic additives, and flame retardants. Over the last decade, the impact of EDCs on human health has been widely acknowledged as they have been associated with different endocrine diseases. Among them, a subset called metabolism-disrupting chemicals (MDCs) is able to promote metabolic changes that can lead to the development of metabolic disorders such as diabetes, obesity, hepatic steatosis, and metabolic syndrome, among others. Despite this, today, there are still no definitive and standardized in vitro tools to support the metabolic risk assessment of existing and emerging MDCs for regulatory purposes. Here, we evaluated the following two different pancreatic cell-based in vitro systems: the murine pancreatic β-cell line MIN6 as well as the human pancreatic β-cell line EndoC-βH1. Both were challenged with the following range of relevant concentrations of seven well-known EDCs: (bisphenol-A (BPA), bisphenol-S (BPS), bisphenol-F (BPF), perfluorooctanesulfonic acid (PFOS), di(2-ethylhexyl) phthalate (DEHP), cadmium chloride (CdCl2), and dichlorodiphenyldichloroethylene (DDE)). The screening revealed that most of the tested chemicals have detectable, deleterious effects on glucose-stimulated insulin release, insulin content, electrical activity, gene expression, and/or viability. Our data provide new molecular information on the direct effects of the selected chemicals on key aspects of pancreatic β-cell function, such as the stimulus-secretion coupling and ion channel activity. In addition, we found that, in general, the sensitivity and responses were comparable to those from other in vivo studies reported in the literature. Overall, our results suggest that both systems can serve as effective tools for the rapid screening of potential MDC effects on pancreatic β-cell physiology as well as for deciphering and better understanding the molecular mechanisms that underlie their action.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
| | - Hilda Ferrero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
7
|
Postić S, Gosak M, Tsai WH, Pfabe J, Sarikas S, Stožer A, Korošak D, Yang SB, Slak Rupnik M. pH-Dependence of Glucose-Dependent Activity of Beta Cell Networks in Acute Mouse Pancreatic Tissue Slice. Front Endocrinol (Lausanne) 2022; 13:916688. [PMID: 35837307 PMCID: PMC9273738 DOI: 10.3389/fendo.2022.916688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular pH has the potential to affect various aspects of the pancreatic beta cell function. To explain this effect, a number of mechanisms was proposed involving both extracellular and intracellular targets and pathways. Here, we focus on reassessing the influence of extracellular pH on glucose-dependent beta cell activation and collective activity in physiological conditions. To this end we employed mouse pancreatic tissue slices to perform high-temporally resolved functional imaging of cytosolic Ca2+ oscillations. We investigated the effect of either physiological H+ excess or depletion on the activation properties as well as on the collective activity of beta cell in an islet. Our results indicate that lowered pH invokes activation of a subset of beta cells in substimulatory glucose concentrations, enhances the average activity of beta cells, and alters the beta cell network properties in an islet. The enhanced average activity of beta cells was determined indirectly utilizing cytosolic Ca2+ imaging, while direct measuring of insulin secretion confirmed that this enhanced activity is accompanied by a higher insulin release. Furthermore, reduced functional connectivity and higher functional segregation at lower pH, both signs of a reduced intercellular communication, do not necessary result in an impaired insulin release.
Collapse
Affiliation(s)
- Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sandra Postić,
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Wen-Hao Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Dean Korošak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Shi-Bing Yang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea – European Center Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Langlhofer G, Kogel A, Schaefer M. Glucose-induced [Ca2+]i oscillations in β cells are composed of trains of spikes within a subplasmalemmal microdomain. Cell Calcium 2021; 99:102469. [PMID: 34509871 DOI: 10.1016/j.ceca.2021.102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Electrical activity and oscillations of cytosolic Ca2+ concentrations ([Ca2+]i) that trigger insulin release in response to glucose are key functions of pancreatic β cells. Although oscillatory Ca2+ signals have been intensively studied in β cells, their lower frequency did not match that of electrical activity. In addition, the measured peak [Ca2+]i did not reach levels that are typically required by synaptotagmins to elicit the release of insulin-containing vesicles in live-cell experiments. We therefore sought to resolve the Ca2+ dynamics in the subplasmalemmal microdomain that is critical for triggering fast exocytosis. Applying total internal reflection fluorescence (TIRF) microscopy in insulin-producing INS-1E and primary mouse β cells, we resolved extraordinary fast trains of Ca2+ spiking (frequency > 3 s-1) in response to glucose exposure. Using a low-affinity [Ca2+]i indicator dye, we provide experimental evidence that Ca2+ spikes reach low micromolar apparent concentrations in the vicinity of the plasma membrane. Analysis of Ca2+ spikes evoked by repeated depolarization for 10 ms closely matched the Ca2+ dynamics observed upon glucose application. To our knowledge, this is the first study that experimentally demonstrates Ca2+ spikes in β cells with velocities that resemble those of bursting or continuously appearing trains of action potentials (APs) in non-patched cells.
Collapse
Affiliation(s)
- Georg Langlhofer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexander Kogel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H. The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 2021; 14:691363. [PMID: 34421537 PMCID: PMC8375295 DOI: 10.3389/fnmol.2021.691363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Exocytosis is a Ca2+-regulated process that requires the participation of Ca2+ sensors. In the 1980s, two classes of Ca2+-binding proteins were proposed as putative Ca2+ sensors: EF-hand protein calmodulin, and the C2 domain protein synaptotagmin. In the next few decades, numerous studies determined that in the final stage of membrane fusion triggered by a micromolar boost in the level of Ca2+, the low affinity Ca2+-binding protein synaptotagmin, especially synaptotagmin 1 and 2, acts as the primary Ca2+ sensor, whereas calmodulin is unlikely to be functional due to its high Ca2+ affinity. However, in the meantime emerging evidence has revealed that calmodulin is involved in the earlier exocytotic steps prior to fusion, such as vesicle trafficking, docking and priming by acting as a high affinity Ca2+ sensor activated at submicromolar level of Ca2+. Calmodulin directly interacts with multiple regulatory proteins involved in the regulation of exocytosis, including VAMP, myosin V, Munc13, synapsin, GAP43 and Rab3, and switches on key kinases, such as type II Ca2+/calmodulin-dependent protein kinase, to phosphorylate a series of exocytosis regulators, including syntaxin, synapsin, RIM and Ca2+ channels. Moreover, calmodulin interacts with synaptotagmin through either direct binding or indirect phosphorylation. In summary, calmodulin and synaptotagmin are Ca2+ sensors that play complementary roles throughout the process of exocytosis. In this review, we discuss the complementary roles that calmodulin and synaptotagmin play as Ca2+ sensors during exocytosis.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiaxiang Yin
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jingyao Xia
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
11
|
Adams MT, Dwulet JM, Briggs JK, Reissaus CA, Jin E, Szulczewski JM, Lyman MR, Sdao SM, Kravets V, Nimkulrat SD, Ponik SM, Merrins MJ, Mirmira RG, Linnemann AK, Benninger RKP, Blum B. Reduced synchroneity of intra-islet Ca 2+ oscillations in vivo in Robo-deficient β cells. eLife 2021; 10:e61308. [PMID: 34231467 PMCID: PMC8289414 DOI: 10.7554/elife.61308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among β cells, yet testing this in vivo in the intact pancreas is challenging. Robo βKO mice, in which the genes Robo1 and Robo2 are deleted selectively in β cells, provide a unique model of altered islet spatial architecture without loss of β cell differentiation or islet damage from diabetes. Combining Robo βKO mice with intravital microscopy, we show here that Robo βKO islets have reduced synchronized intra-islet Ca2+ oscillations among β cells in vivo. We provide evidence that this loss is not due to a β cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Jennifer K Briggs
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Christopher A Reissaus
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Joseph M Szulczewski
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Melissa R Lyman
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Sophia M Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Sutichot D Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and the Department of Medicine, University of ChicagoChicagoUnited States
| | - Amelia K Linnemann
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
12
|
Nicholas LM, Nagao M, Kusinski LC, Fernandez-Twinn DS, Eliasson L, Ozanne SE. Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice. Diabetologia 2020; 63:324-337. [PMID: 31773193 PMCID: PMC6946752 DOI: 10.1007/s00125-019-05037-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Obesity during pregnancy increases offspring type 2 diabetes risk. Given that nearly half of women of child-bearing age in many populations are currently overweight/obese, it is key that we improve our understanding of the impact of the in utero/early life environment on offspring islet function. Whilst a number of experimental studies have examined the effect of maternal obesity on offspring islet architecture and/or function, it has not previously been delineated whether these changes are independent of other confounding risk factors such as obesity, postnatal high-fat-feeding and ageing. Thus, we aimed to study the impact of exposure to maternal obesity on offspring islets in young, glucose-tolerant male and female offspring. METHODS Female C57BL/6J mice were fed ad libitum either chow or obesogenic diet prior to and throughout pregnancy and lactation. Offspring were weaned onto a chow diet and remained on this diet until the end of the study. An IPGTT was performed on male and female offspring at 7 weeks of age. At 8 weeks of age, pancreatic islets were isolated from offspring for measurement of insulin secretion and content, mitochondrial respiration, ATP content, reactive oxygen species levels, beta and alpha cell mass, granule and mitochondrial density (by transmission electron microscopy), and mRNA and protein expression by real-time RT-PCR and Western blotting, respectively. RESULTS Glucose tolerance was similar irrespective of maternal diet and offspring sex. However, blood glucose was lower (p < 0.001) and plasma insulin higher (p < 0.05) in female offspring of obese dams 15 min after glucose administration. This was associated with higher glucose- (p < 0.01) and leucine/glutamine-stimulated (p < 0.05) insulin secretion in these offspring. Furthermore, there was increased mitochondrial respiration (p < 0.01) and density (p < 0.05) in female offspring of obese dams compared with same-sex controls. Expression of mitochondrial and nuclear-encoded components of the electron transport chain, L-type Ca2+ channel subtypes that play a key role in stimulus-secretion coupling [Cacna1d (p < 0.05)], and oestrogen receptor α (p < 0.05) was also increased in islets from these female offspring of obese dams. Moreover, cleaved caspase-3 expression and BAX:Bcl-2 were decreased (p < 0.05) reflecting reduced susceptibility to apoptosis. In contrast, in male offspring, glucose and leucine/glutamine-stimulated insulin secretion was comparable between treatment groups. There was, however, compromised mitochondrial respiration characterised by decreased ATP synthesis-driven respiration (p < 0.05) and increased uncoupled respiration (p < 0.01), reduced docked insulin granules (p < 0.001), decreased Cacna1c (p < 0.001) and Cacna1d (p < 0.001) and increased cleaved caspase-3 expression (p < 0.05). CONCLUSIONS/INTERPRETATION Maternal obesity programs sex differences in offspring islet function. Islets of female but not male offspring appear to be primed to cope with a nutritionally-rich postnatal environment, which may reflect differences in future type 2 diabetes risk.
Collapse
Affiliation(s)
- Lisa M Nicholas
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Mototsugu Nagao
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, CRC, Skåne University Hospital, Malmö, Sweden
| | - Laura C Kusinski
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, CRC, Skåne University Hospital, Malmö, Sweden
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
13
|
Dwulet JM, Ludin NWF, Piscopio RA, Schleicher WE, Moua O, Westacott MJ, Benninger RKP. How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca 2+] Response. Biophys J 2019; 117:2188-2203. [PMID: 31753287 PMCID: PMC6895742 DOI: 10.1016/j.bpj.2019.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022] Open
Abstract
Understanding how cell subpopulations in a tissue impact overall system function is challenging. There is extensive heterogeneity among insulin-secreting β-cells within islets of Langerhans, including their insulin secretory response and gene expression profile, and this heterogeneity can be altered in diabetes. Several studies have identified variations in nutrient sensing between β-cells, including glucokinase (GK) levels, mitochondrial function, or expression of genes important for glucose metabolism. Subpopulations of β-cells with defined electrical properties can disproportionately influence islet-wide free-calcium activity ([Ca2+]) and insulin secretion via gap-junction electrical coupling. However, it is poorly understood how subpopulations of β-cells with altered glucose metabolism may impact islet function. To address this, we utilized a multicellular computational model of the islet in which a population of cells deficient in GK activity and glucose metabolism was imposed on the islet or in which β-cells were heterogeneous in glucose metabolism and GK kinetics were altered. This included simulating GK gene (GCK) mutations that cause monogenic diabetes. We combined these approaches with experimental models in which gck was genetically deleted in a population of cells or GK was pharmacologically inhibited. In each case, we modulated gap-junction electrical coupling. Both the simulated islet and the experimental system required 30-50% of the cells to have near-normal glucose metabolism, fewer than cells with normal KATP conductance. Below this number, the islet lacked any glucose-stimulated [Ca2+] elevations. In the absence of electrical coupling, the change in [Ca2+] was more gradual. As such, electrical coupling allows a large minority of cells with normal glucose metabolism to promote glucose-stimulated [Ca2+]. If insufficient numbers of cells are present, which we predict can be caused by a subset of GCK mutations that cause monogenic diabetes, electrical coupling exacerbates [Ca2+] suppression. This demonstrates precisely how metabolically heterogeneous β-cell populations interact to impact islet function.
Collapse
Affiliation(s)
- JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Robert A Piscopio
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Ong Moua
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| |
Collapse
|
14
|
Salunkhe VA, Ofori JK, Gandasi NR, Salö SA, Hansson S, Andersson ME, Wendt A, Barg S, Esguerra JLS, Eliasson L. MiR-335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiol Rep 2018; 5:5/21/e13493. [PMID: 29122960 PMCID: PMC5688784 DOI: 10.14814/phy2.13493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs contribute to the maintenance of optimal cellular functions by fine‐tuning protein expression levels. In the pancreatic β‐cells, imbalances in the exocytotic machinery components lead to impaired insulin secretion and type 2 diabetes (T2D). We hypothesize that dysregulated miRNA expression exacerbates β‐cell dysfunction, and have earlier shown that islets from the diabetic GK‐rat model have increased expression of miRNAs, including miR‐335‐5p (miR‐335). Here, we aim to determine the specific role of miR‐335 during development of T2D, and the influence of this miRNA on glucose‐stimulated insulin secretion and Ca2+‐dependent exocytosis. We found that the expression of miR‐335 negatively correlated with secretion index in human islets of individuals with prediabetes. Overexpression of miR‐335 in human EndoC‐βH1 and in rat INS‐1 832/13 cells (OE335) resulted in decreased glucose‐stimulated insulin secretion, and OE335 cells showed concomitant reduction in three exocytotic proteins: SNAP25, Syntaxin‐binding protein 1 (STXBP1), and synaptotagmin 11 (SYT11). Single‐cell capacitance measurements, complemented with TIRF microscopy of the granule marker NPY‐mEGFP demonstrated a significant reduction in exocytosis in OE335 cells. The reduction was not associated with defective docking or decreased Ca2+ current. More likely, it is a direct consequence of impaired priming of already docked granules. Earlier reports have proposed reduced granular priming as the cause of reduced first‐phase insulin secretion during prediabetes. Here, we show a specific role of miR‐335 in regulating insulin secretion during this transition period. Moreover, we can conclude that miR‐335 has the capacity to modulate insulin secretion and Ca2+‐dependent exocytosis through effects on granular priming.
Collapse
Affiliation(s)
- Vishal A Salunkhe
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sofia A Salö
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sofia Hansson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Markus E Andersson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jonathan L S Esguerra
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
16
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, Matveev V, Rorsman P, Sherman A, Pedersen MG, Barg S. Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. J Clin Invest 2017; 127:2353-2364. [PMID: 28481223 PMCID: PMC5451232 DOI: 10.1172/jci88491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/16/2017] [Indexed: 01/27/2023] Open
Abstract
Loss of first-phase insulin secretion is an early sign of developing type 2 diabetes (T2D). Ca2+ entry through voltage-gated L-type Ca2+ channels triggers exocytosis of insulin-containing granules in pancreatic β cells and is required for the postprandial spike in insulin secretion. Using high-resolution microscopy, we have identified a subset of docked insulin granules in human β cells and rat-derived clonal insulin 1 (INS1) cells for which localized Ca2+ influx triggers exocytosis with high probability and minimal latency. This immediately releasable pool (IRP) of granules, identified both structurally and functionally, was absent in β cells from human T2D donors and in INS1 cells cultured in fatty acids that mimic the diabetic state. Upon arrival at the plasma membrane, IRP granules slowly associated with 15 to 20 L-type channels. We determined that recruitment depended on a direct interaction with the synaptic protein Munc13, because expression of the II–III loop of the channel, the C2 domain of Munc13-1, or of Munc13-1 with a mutated C2 domain all disrupted L-type channel clustering at granules and ablated fast exocytosis. Thus, rapid insulin secretion requires Munc13-mediated recruitment of L-type Ca2+ channels in close proximity to insulin granules. Loss of this organization underlies disturbed insulin secretion kinetics in T2D.
Collapse
Affiliation(s)
| | - Peng Yin
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michela Riz
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Per-Eric Lund
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Victor Matveev
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Morten G Pedersen
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling the spatiotemporal distribution of Ca
2+
during action potential firing in human pancreatic
β
-cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa669f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Bilkova E, Pleskot R, Rissanen S, Sun S, Czogalla A, Cwiklik L, Róg T, Vattulainen I, Cremer PS, Jungwirth P, Coskun Ü. Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition. J Am Chem Soc 2017; 139:4019-4024. [PMID: 28177616 PMCID: PMC5364432 DOI: 10.1021/jacs.6b11760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.
Collapse
Affiliation(s)
- Eva Bilkova
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden , Fetscher Strasse 74, 01307 Dresden, Germany.,German Center for Diabetes Research (DZD e.V.) , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Roman Pleskot
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.,Institute of Experimental Botany, Academy of Sciences of the Czech Republic , v.v.i., Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Sami Rissanen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | | | - Aleksander Czogalla
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden , Fetscher Strasse 74, 01307 Dresden, Germany.,Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław , Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Cwiklik
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.,J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki , P.O. Box 64, FI-00014, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki , P.O. Box 64, FI-00014, Helsinki, Finland.,MEMPHYS- Center for Biomembrane Physics, University of Southern Denmark , DK-5230 Odense, Denmark
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.,Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden , Fetscher Strasse 74, 01307 Dresden, Germany.,German Center for Diabetes Research (DZD e.V.) , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
21
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
22
|
Heileman KL, Daoud J, Tabrizian M. Elaboration of a finite element model of pancreatic islet dielectric response to gap junction expression and insulin release. Colloids Surf B Biointerfaces 2016; 148:474-480. [PMID: 27665380 DOI: 10.1016/j.colsurfb.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/23/2022]
Abstract
Dielectric spectroscopy could potentially be a powerful tool to monitor isolated human pancreatic islets for applications in diabetes therapy and research. Isolated intact human islets provide the most relevant means to understand the cellular and molecular mechanisms associated with diabetes. The advantages of dielectric spectroscopy for continuous islet monitoring are that it is a non-invasive, inexpensive and real-time technique. We have previously assessed the dielectric response of human islet samples during stimulation and differentiation. Because of the complex geometry of islets, analytical solutions are not sufficiently representative to provide a pertinent model of islet dielectric response. Here, we present a finite element dielectric model of a single intact islet that takes into account the tight packing of islet cells and intercellular junctions. The simulation yielded dielectric spectra characteristic of cell aggregates, similar to those produced with islets. In addition, the simulation showed that both exocytosis, such as what occurs during insulin secretion, and differential gap junction expression have significant effects on islet dielectric response. Since the progression of diabetes has some connections with dysfunctional islet gap junctions and insulin secretion, the ability to monitor these islet features with dielectric spectroscopy would benefit diabetes research.
Collapse
Affiliation(s)
| | | | - Maryam Tabrizian
- Biomedical Engineering Department, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
23
|
Kakei M, Yoshida M, Dezaki K, Ito K, Yamada H, Funazaki S, Kawakami M, Sugawara H, Yada T. Glucose and GTP-binding protein-coupled receptor cooperatively regulate transient receptor potential-channels to stimulate insulin secretion [Review]. Endocr J 2016; 63:867-876. [PMID: 27321586 DOI: 10.1507/endocrj.ej16-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In pancreatic β-cells, glucose-induced closure of the ATP-sensitive K+ (KATP) channel is an initial process triggering glucose-stimulated insulin secretion (GSIS). This KATP-channel dependent pathway has been believed to be a central mechanism for GSIS. However, since the resting membrane potential of cells is determined by the balance of the net result of current amplitudes in outward and inward directions, it must be taken into consideration that not only KATP channel inhibition but also inward current via the basal opening of non-selective cation channels (NSCCs) plays a crucial role in membrane potential regulation. The basal activity of NSCCs is essential to effectively evoke depolarization in concert with KATP channel closure that is dependent on glucose metabolism. The present study summarizes recent findings regarding the roles of NSCCs in GSIS and GTP-binding protein coupled receptor-(GPCR) operated potentiation of GSIS.
Collapse
Affiliation(s)
- Masafumi Kakei
- Internal Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, Li H. Regulation of L-type Ca2+ Channel Activity and Insulin Secretion by Huntingtin-associated Protein 1. J Biol Chem 2016; 291:26352-26363. [PMID: 27624941 DOI: 10.1074/jbc.m116.727990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Huntingtin-associated protein 1 (Hap1) was originally identified as a protein that binds to the Huntington disease protein, huntingtin. Growing evidence has shown that Hap1 participates in intracellular trafficking via its association with various microtubule-dependent transporters and organelles. Recent studies also revealed that Hap1 is involved in exocytosis such as insulin release from pancreatic β-cells. However, the mechanism underlying the action of Hap1 on insulin release remains to be investigated. We found that Hap1 knock-out mice had a lower plasma basal insulin level than control mice. Using cultured pancreatic β-cell lines, INS-1 cells, we confirmed that decreasing Hap1 reduces the number of secreted vesicles and inhibits vesicle exocytosis. Electrophysiology and imaging of intracellular Ca2+ measurements demonstrated that Hap1 depletion significantly reduces the influx of Ca2+ mediated by L-type Ca2+ channels (Cav). This decrease is not due to reduced expression of Cav1.2 channel mRNA but results from the decreased distribution of Cav1.2 on the plasma membrane of INS-1 cells. Fluorescence recovery after photobleaching showed a defective movement of Cav1.2 in Hap1 silencing INS-1 cells. Our findings suggest that Hap1 is important for insulin secretion of pancreatic β-cells via regulating the intracellular trafficking and plasma membrane localization of Cav1.2, providing new insight into the mechanisms that regulate insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Jing-Ying Pan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Shijin Yuan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Tao Yu
- the Clinic Laboratory, Wuhan Children's Hospital, Wuhan 430016, China
| | - Cong-Lin Su
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Xiao-Long Liu
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Jun He
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - He Li
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| |
Collapse
|
25
|
de la Cruz L, Puente EI, Reyes-Vaca A, Arenas I, Garduño J, Bravo-Martínez J, Garcia DE. PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 2016; 311:C630-C640. [PMID: 27488666 DOI: 10.1152/ajpcell.00111.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a membrane phosphoinositide that regulates the activity of many ion channels. Influx of calcium primarily through voltage-gated calcium (CaV) channels promotes insulin secretion in pancreatic β-cells. However, whether CaV channels are regulated by PIP2, as is the case for some non-insulin-secreting cells, is unknown. The purpose of this study was to investigate whether CaV channels are regulated by PIP2 depletion in pancreatic β-cells through activation of a muscarinic pathway induced by oxotremorine methiodide (Oxo-M). CaV channel currents were recorded by the patch-clamp technique. The CaV current amplitude was reduced by activation of the muscarinic receptor 1 (M1R) in the absence of kinetic changes. The Oxo-M-induced inhibition exhibited the hallmarks of voltage-independent regulation and did not involve PKC activation. A small fraction of the Oxo-M-induced CaV inhibition was diminished by a high concentration of Ca2+ chelator, whereas ≥50% of this inhibition was prevented by diC8-PIP2 dialysis. Localization of PIP2 in the plasma membrane was examined by transfecting INS-1 cells with PH-PLCδ1, which revealed a close temporal association between PIP2 hydrolysis and CaV channel inhibition. Furthermore, the depletion of PIP2 by a voltage-sensitive phosphatase reduced CaV currents in a way similar to that observed following M1R activation. These results indicate that activation of the M1R pathway inhibits the CaV channel via PIP2 depletion by a Ca2+-dependent mechanism in pancreatic β- and INS-1 cells and thereby support the hypothesis that membrane phospholipids regulate ion channel activity by interacting with ion channels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Erika I Puente
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Arturo Reyes-Vaca
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Julieta Garduño
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Jorge Bravo-Martínez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - David E Garcia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| |
Collapse
|
26
|
Mollet IG, Malm HA, Wendt A, Orho-Melander M, Eliasson L. Integrator of Stress Responses Calmodulin Binding Transcription Activator 1 (Camta1) Regulates miR-212/miR-132 Expression and Insulin Secretion. J Biol Chem 2016; 291:18440-52. [PMID: 27402838 DOI: 10.1074/jbc.m116.716860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/04/2023] Open
Abstract
Altered microRNA profiles have been demonstrated in experimental models of type 2 diabetes, including in islets of the diabetic Goto-Kakizaki (GK) rat. Our bioinformatic analysis of conserved sequences in promoters of microRNAs, previously observed to be up-regulated in GK rat islets, revealed putative CGCG-core motifs on the promoter of the miR-212/miR-132 cluster, overexpression of which has been shown to increase insulin secretion. These motifs are possible targets of calmodulin binding transcription activators Camta1 and Camta2 that have been recognized as integrators of stress responses. We also identified putative NKE elements, possible targets of NK2 homeobox proteins like the essential islet transcription factor Nkx2-2. As Camtas can function as co-activators with NK2 proteins in other tissues, we explored the role of Camta1, Camta2, and Nkx2-2 in the regulation of the miR-212/miR-132 cluster and insulin secretion. We demonstrate that exposure of control Wistar or GK rat islets to 16.7 mm glucose increases miR-212/miR-132 expression but significantly less so in the GK rat. In addition, Camta1, Camta2, and Nkx2-2 were down-regulated in GK rat islets, and knockdown of Camta1 reduced miR-212/miR-132 promoter activity and miR-212/miR-132 expression, even under cAMP elevation. Knockdown of Camta1 decreased insulin secretion in INS-1 832/13 cells and Wistar rat islets but increased insulin content. Furthermore, knockdown of Camta1 reduced K(+)-induced insulin secretion and voltage-dependent Ca(2+) currents. We also demonstrate Camta1 and Nkx2-2 protein interaction. These results indicate that Camta1 is required not only for expression of the miR-212/miR-132 cluster but at multiple levels for regulating beta cell insulin content and secretion.
Collapse
Affiliation(s)
- Inês Guerra Mollet
- From the Department of Clinical Sciences, Clinical Research Centre, Lund University, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Helena Anna Malm
- From the Department of Clinical Sciences, Clinical Research Centre, Lund University, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Anna Wendt
- From the Department of Clinical Sciences, Clinical Research Centre, Lund University, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Marju Orho-Melander
- From the Department of Clinical Sciences, Clinical Research Centre, Lund University, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Lena Eliasson
- From the Department of Clinical Sciences, Clinical Research Centre, Lund University, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| |
Collapse
|
27
|
Salunkhe VA, Elvstam O, Eliasson L, Wendt A. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells. PLoS One 2016; 11:e0151592. [PMID: 26986474 PMCID: PMC4795644 DOI: 10.1371/journal.pone.0151592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug.
Collapse
Affiliation(s)
- Vishal A. Salunkhe
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Dept. Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Malmö, Sweden
- * E-mail:
| | - Olof Elvstam
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Dept. Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Malmö, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Dept. Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Malmö, Sweden
| | - Anna Wendt
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Dept. Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Malmö, Sweden
| |
Collapse
|
28
|
Ma Y, Wang X, Peng Y, Ding X. Forkhead box O1 promotes INS‑1 cell apoptosis by reducing the expression of CD24. Mol Med Rep 2016; 13:2991-8. [PMID: 26935354 PMCID: PMC4805100 DOI: 10.3892/mmr.2016.4896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes seriously affects human health and burdens public health systems. Pancreatic β-cell apoptosis contributes to a reduction in β-cell mass, which is responsible for the occurrence of type 2 diabetes. However, the mechanism that underlies this effect remains unclear. In the present study, the role of forkhead box O1 (Foxo1) was investigated (which is a key regulatory factor in β-cell function) in the apoptotic behavior of β-cells and a potential underlying mechanism was determined. It was demonstrated that Foxo1 overexpression significantly reduced the proliferation of INS-1 cells and increased the apoptosis of INS-1 cells, in contrast to foxm1, foxp, foxa1, foxc and foxb1 overexpression. The present study aimed to investigate potential underlying mechanisms using bioinformatics, including Gene Set Enrichment Analysis, and biological experiments, including flow cytometry, cell counting kit-8, immunofluorescence, western blotting, reverse transcription-quantitative polymerase chain reaction analysis and lentiviral transfection. Further experiments conclusively showed that cluster of differentiation (CD)24 expression was significantly decreased when INS-1 cells were treated with Foxo1. Animal experiments showed high CD24 expression in the pancreatic islets of diabetic Goto-Kakizaki rats. Moreover, Gene Set Enrichment Analysis showed that CD24 expression was associated with the adaptive immune response of β-cells. Finally, no significant differences in the proliferation and apoptosis of CD24 overexpressing INS-1 cells were observed after Foxo1 treatment. These results suggested that Foxo1 overexpression in β-cells was able to increase apoptosis by inhibiting CD24 expression. This study may provide an approach for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
29
|
Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, Sones WR, Vergari E, Weston C, Gorelik J, Katsura M, Nikolaev VO, Vennekens R, Zaccolo M, Galione A, Johnson PRV, Kaku K, Ladds G, Rorsman P. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest 2015; 125:4714-28. [PMID: 26571400 DOI: 10.1172/jci81975] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca(2+) channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na(+). The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells.
Collapse
|
30
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling Ca(2+) currents and buffered diffusion of Ca(2+) in human β-cells during voltage clamp experiments. Math Biosci 2015; 270:66-80. [PMID: 26476144 DOI: 10.1016/j.mbs.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022]
Abstract
Macroscopic Ca(2+) currents of the human β-cells were characterized using the Hodgkin-Huxley formalism. Expressions describing the Ca(2+)-dependent inactivation process of the L-type Ca(2+) channels in terms of the concentration of Ca(2+) were obtained. By coupling the modeled Ca(2+) currents to a three-dimensional model of buffered diffusion of Ca(2+), we simulated the Ca(2+) transients formed in the immediate vicinity of the cell membrane during voltage clamp experiments performed in high buffering conditions. Our modeling approach allowed us to consider the distribution of the Ca(2+) sources over the cell membrane. The effect of exogenous (EGTA) and endogenous Ca(2+) buffers on the temporal course of the Ca(2+) transients was evaluated. We show that despite the high Ca(2+) buffering capacity, nanodomains are formed in the submembrane space, where a peak Ca(2+) concentration between ∼76 and 143 µM was estimated from our simulations. In addition, the contribution of each Ca(2+) current to the formation of the Ca(2+) nanodomains was also addressed. Here we provide a general framework to incorporate the spatial aspects to the models of the pancreatic β-cell, such as a more detailed and realistic description of Ca(2+) dynamics in response to electrical activity in physiological conditions can be provided by future models.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico .
| | - J Rafael Godínez-Fernández
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico
| |
Collapse
|
31
|
Heileman K, Daoud J, Hasilo C, Gasparrini M, Paraskevas S, Tabrizian M. Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy. BIOMICROFLUIDICS 2015; 9:044125. [PMID: 26339324 PMCID: PMC4552695 DOI: 10.1063/1.4929652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/14/2015] [Indexed: 05/07/2023]
Abstract
Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects.
Collapse
Affiliation(s)
- K Heileman
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| | - J Daoud
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| | - C Hasilo
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - M Gasparrini
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - S Paraskevas
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - M Tabrizian
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
32
|
Christensen GL, Jacobsen MLB, Wendt A, Mollet IG, Friberg J, Frederiksen KS, Meyer M, Bruun C, Eliasson L, Billestrup N. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents. Diabetologia 2015; 58:1282-90. [PMID: 25828920 DOI: 10.1007/s00125-015-3568-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression is increased in diabetic animals and BMP4 reduces glucose-stimulated insulin secretion (GSIS). Here, we investigate the molecular mechanism behind this inhibition. METHODS BMP4-mediated inhibition of GSIS was investigated in detail using single cell electrophysiological measurements and live cell Ca(2+) imaging. BMP4-mediated gene expression changes were investigated by microarray profiling, quantitative PCR and western blotting. RESULTS Prolonged exposure to BMP4 reduced GSIS from rodent pancreatic islets. This inhibition was associated with decreased exocytosis due to a reduced Ca(2+) current through voltage-dependent Ca(2+) channels. To identify proteins involved in the inhibition of GSIS, we investigated global gene expression changes induced by BMP4 in neonatal rat pancreatic islets. Expression of the Ca(2+)-binding protein calbindin1 was significantly induced by BMP4. Overexpression of calbindin1 in primary islet cells reduced GSIS, and the effect of BMP4 on GSIS was lost in islets from calbindin1 (Calb1) knockout mice. CONCLUSIONS/INTERPRETATION We found BMP4 treatment to markedly inhibit GSIS from rodent pancreatic islets in a calbindin1-dependent manner. Calbindin1 is suggested to mediate the effect of BMP4 by buffering Ca(2+) and decreasing Ca(2+) channel activity, resulting in diminished insulin exocytosis. Both BMP4 and calbindin1 are potential pharmacological targets for the treatment of beta cell dysfunction.
Collapse
Affiliation(s)
- Gitte L Christensen
- Department of Biomedical Sciences, University of Copenhagen, Nørre Alle 20, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kong X, Yan D, Wu X, Guan Y, Ma X. Glucotoxicity inhibits cAMP-protein kinase A-potentiated glucose-stimulated insulin secretion in pancreatic β-cells. J Diabetes 2015; 7:378-85. [PMID: 24981285 DOI: 10.1111/1753-0407.12185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The effect of incretin is markedly blunted in patients with type 2 diabetes (T2D), and this reduced effect of incretin is correlated with a diminished insulintropic potency of glucagon-like peptide-1 (GLP-1). We reported recently that GLP-1 potentiates glucose-stimulated insulin secretion (GSIS) mainly via activation of the cAMP-protein kinase A (PKA) signaling pathway in INS-1E cells under hyperglycemic conditions. In the present study, we further explored whether glucotoxicity impairs cAMP-PKA-mediated effects and its relevance to the reduced insulinotropic action of GLP-1 in hyperglycemia. METHODS Mouse islets and INS-1E cells were cultured in 30 mmol/L glucose for 72 h. The effects of glucotoxicity on cAMP-PKA-linked pathways and its insulinotropic action were then evaluated. RESULTS Chronic exposure of INS-1E cells and primary mouse islets to 30 mmol/L glucose almost abolished GSIS. The cAMP-elevating agent forskolin produced an approximate 1.9-fold increase in GSIS, significantly lower than that observed with 5.5 mmol/L glucose (~3.3-fold). Moreover, 72 h culture in the presence of 30 mmol/L glucose reduced forskolin-stimulated cAMP accumulation in β-cells. Notably, glucotoxicity reduced the expression and activity of PKA, as well as PKA-mediated effects. In contrast, glucotoxicity had no effect on the expression of Epac2, another cAMP effector. CONCLUSIONS Glucotoxicity-induced reductions in PKA and its signaling account, at least in part, for the decreased incretin effect under conditions of glucotoxicity.
Collapse
Affiliation(s)
- Xiangchen Kong
- Diabetes Center of Shenzhen University and School of Medicine, Shenzhen University, Shenzhen, China
| | | | | | | | | |
Collapse
|
34
|
Salunkhe VA, Esguerra JLS, Ofori JK, Mollet IG, Braun M, Stoffel M, Wendt A, Eliasson L. Modulation of microRNA-375 expression alters voltage-gated Na(+) channel properties and exocytosis in insulin-secreting cells. Acta Physiol (Oxf) 2015; 213:882-92. [PMID: 25627423 PMCID: PMC4413049 DOI: 10.1111/apha.12460] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/08/2014] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
AIM MiR-375 has been implicated in insulin secretion and exocytosis through incompletely understood mechanisms. Here we aimed to investigate the role of miR-375 in the regulation of voltage-gated Na(+) channel properties and glucose-stimulated insulin secretion in insulin-secreting cells. METHODS MiR-375 was overexpressed using double-stranded mature miR-375 in INS-1 832/13 cells (OE375) or downregulated using locked nucleic acid (LNA)-based anti-miR against miR-375 (LNA375). Insulin secretion was determined using RIA. Exocytosis and ion channel properties were measured using the patch-clamp technique in INS-1 832/13 cells and beta-cells from miR-375KO mice. Gene expression was analysed by RT-qPCR, and protein levels were determined by Western blot. RESULTS Voltage-gated Na(+) channels were found to be regulated by miR-375. In INS-1 832/13 cells, steady-state inactivation of the voltage-gated Na(+) channels was shifted by approx. 6 mV to a more negative membrane potential upon down-regulation of miR-375. In the miR-375 KO mouse, voltage-gated Na(+) channel inactivation was instead shifted by approx. 14 mV to a more positive membrane potential. Potential targets differed among species and expression of suggested targets Scn3a and Scn3b in INS-1 832/13 cells was only slightly moderated by miR-375. Modulation of miR-375 levels in INS-1-832/13 cells did not significantly affect insulin release. However, Ca(2+) dependent exocytosis was significantly reduced in OE375 cells. CONCLUSION We conclude that voltage-gated Na(+) channels are regulated by miR-375 in insulin-secreting cells, and validate that the exocytotic machinery is controlled by miR-375 also in INS-1 832/13 cells. Altogether we suggest miR-375 to be involved in a complex multifaceted network controlling insulin secretion and its different components.
Collapse
Affiliation(s)
- V. A. Salunkhe
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| | - J. L. S. Esguerra
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| | - J. K. Ofori
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| | - I. G. Mollet
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| | - M. Braun
- Alberta Diabetes Institute University of Alberta Edmonton ABCanada
| | - M. Stoffel
- Institute for Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - A. Wendt
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| | - L. Eliasson
- Unit of Islet Cell Exocytosis Department of Clinical Sciences in Malmö Lund University Diabetes Centre Clinical Research Centre Lund University SUS Malmö Malmö Sweden
| |
Collapse
|
35
|
Villate O, Turatsinze JV, Mascali LG, Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe VA, Esguerra JLS, Eliasson L, Marselli L, Marchetti P, Eizirik DL. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 2014; 42:11818-30. [PMID: 25249621 PMCID: PMC4191425 DOI: 10.1093/nar/gku861] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a fundamental mechanism for the regulation of gene expression. It affects more than 90% of human genes but its role in the regulation of pancreatic beta cells, the producers of insulin, remains unknown. Our recently published data indicated that the ‘neuron-specific’ Nova1 splicing factor is expressed in pancreatic beta cells. We have presently coupled specific knockdown (KD) of Nova1 with RNA-sequencing to determine all splice variants and downstream pathways regulated by this protein in beta cells. Nova1 KD altered the splicing of nearly 5000 transcripts. Pathway analysis indicated that these genes are involved in exocytosis, apoptosis, insulin receptor signaling, splicing and transcription. In line with these findings, Nova1 silencing inhibited insulin secretion and induced apoptosis basally and after cytokine treatment in rodent and human beta cells. These observations identify a novel layer of regulation of beta cell function, namely AS controlled by key splicing regulators such as Nova1.
Collapse
Affiliation(s)
- Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Loriana G Mascali
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Michael Sammeth
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis Rio de Janeiro, 25651-076, Brazil
| | - Vishal A Salunkhe
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| |
Collapse
|
36
|
Ma X, Guan Y, Hua X. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. J Diabetes 2014; 6:394-402. [PMID: 24725840 DOI: 10.1111/1753-0407.12161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is the primary incretin hormone secreted from the intestine upon uptake of food to stimulate insulin secretion from pancreatic β-cells. GLP-1 exerts its effects by binding to its G-protein coupled receptors and subsequently activating adenylate cyclase, leading to generation of cyclic adenosine monophosphate (cAMP). cAMP stimulates insulin secretion via activation of its effectors PKA and Epac2 in pancreatic β-cells. In addition to its insulinotropic effects, GLP-1 also preserves pancreatic β-cell mass by stimulating β-cell proliferation. Unlike the action of sulphonylureas in lowering blood glucose levels, action of GLP-1 is affected by and interplays with glucose levels. Due to such advantages, GLP-1-based therapeutics have been rapidly developed and used clinically for treatment of type 2 diabetes. However, molecular mechanisms underlying how GLP-1 potentiates diminished glucose-stimulated insulin secretion and β-cell proliferation under diabetic conditions are not well understood. Here, we review the actions of GLP-1 in regulation of insulin secretion and pancreatic β-cell proliferation.
Collapse
Affiliation(s)
- Xiaosong Ma
- Shenzhen University Diabetes Center, Shenzhen, China
| | | | | |
Collapse
|
37
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
38
|
Pedersen MG, Salunkhe VA, Svedin E, Edlund A, Eliasson L. Calcium current inactivation rather than pool depletion explains reduced exocytotic rate with prolonged stimulation in insulin-secreting INS-1 832/13 cells. PLoS One 2014; 9:e103874. [PMID: 25105407 PMCID: PMC4126658 DOI: 10.1371/journal.pone.0103874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate the dynamics of Ca2+-dependent insulin exocytosis with respect to pool depletion and Ca2+-current inactivation. We studied exocytosis, measured as increase in membrane capacitance (ΔCm), as a function of calcium entry (Q) in insulin secreting INS-1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between ΔCm and Q suggests that Ca2+-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ∼10 granules and most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is unaffected. These findings suggest that most insulin release occurs away from Ca2+-channels, and that pool depletion plays a minor role in the decline of exocytosis upon prolonged stimulation.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- * E-mail:
| | - Vishal Ashok Salunkhe
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine, The Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | - Anna Edlund
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
39
|
Edlund A, Esguerra JLS, Wendt A, Flodström-Tullberg M, Eliasson L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med 2014; 12:87. [PMID: 24885604 PMCID: PMC4035698 DOI: 10.1186/1741-7015-12-87] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene lead to the disease cystic fibrosis (CF). Although patients with CF often have disturbances in glucose metabolism including impaired insulin release, no previous studies have tested the hypothesis that CFTR has a biological function in pancreatic beta-cells. METHODS Experiments were performed on islets and single beta-cells from human donors and NMRI-mice. Detection of CFTR was investigated using PCR and confocal microscopy. Effects on insulin secretion were measured with radioimmunoassay (RIA). The patch-clamp technique was used to measure ion channel currents and calcium-dependent exocytosis (as changes in membrane capacitance) on single cells with high temporal resolution. Analysis of ultrastructure was done on transmission electron microscopy (TEM) images. RESULTS We detected the presence of CFTR and measured a small CFTR conductance in both human and mouse beta-cells. The augmentation of insulin secretion at 16.7 mM glucose by activation of CFTR by cAMP (forskolin (FSK) or GLP-1) was significantly inhibited when CFTR antagonists (GlyH-101 and/or CFTRinh-172) were added. Likewise, capacitance measurements demonstrated reduced cAMP-dependent exocytosis upon CFTR-inhibition, concomitant with a decreased number of docked insulin granules. Finally, our studies demonstrate that CFTR act upstream of the chloride channel Anoctamin 1 (ANO1; TMEM16A) in the regulation of cAMP- and glucose-stimulated insulin secretion. CONCLUSION Our work demonstrates a novel function for CFTR as a regulator of pancreatic beta-cell insulin secretion and exocytosis, and put forward a role for CFTR as regulator of ANO1 and downstream priming of insulin granules prior to fusion and release of insulin. The pronounced regulatory effect of CFTR on insulin secretion is consistent with impaired insulin secretion in patients with CF.
Collapse
Affiliation(s)
| | | | | | | | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Jan Waldenströms gata 35, SE 205 02 Malmö, Sweden.
| |
Collapse
|
40
|
Dadi PK, Vierra NC, Ustione A, Piston DW, Colbran RJ, Jacobson DA. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J Biol Chem 2014; 289:12435-45. [PMID: 24627477 DOI: 10.1074/jbc.m114.562587] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca(2+) entry via voltage-dependent Ca(2+) channels. CaMKII is a key mediator and feedback regulator of Ca(2+) signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here, we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet. The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca(2+) entry via voltage-dependent Ca(2+) channels is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca(2+) and of endoplasmic reticulum Ca(2+) stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca(2+) sensor with a key role as a feed-forward stimulator of β-cell Ca(2+) signals that enhance GSIS under physiological and pathological conditions.
Collapse
Affiliation(s)
- Prasanna K Dadi
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
42
|
Gonzalez A, Merino B, Marroquí L, Ñeco P, Alonso-Magdalena P, Caballero-Garrido E, Vieira E, Soriano S, Gomis R, Nadal A, Quesada I. Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual β-cells. Endocrinology 2013; 154:3515-24. [PMID: 23867214 DOI: 10.1210/en.2013-1424] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insulin resistance and hyperinsulinemia are generally associated with obesity. Obese nondiabetic individuals develop a compensatory β-cell response to adjust insulin levels to the increased demand, maintaining euglycemia. Although several studies indicate that this compensation relies on structural changes, the existence of β-cell functional adaptations is incompletely understood. Here, we fed female mice with a high-fat diet (HFD) for 12 weeks. These animals became obese, hyperinsulinemic, insulin-resistant, and mildly glucose-intolerant while fed, and fasting glycemia was comparable in HFD and control mice. Islets from HFD animals exhibited increased β-cell mass and hypertrophy. Additionally, they had enhanced insulin gene expression and content and augmented glucose-induced insulin secretion. Electrophysiological examination of β-cells from both groups showed no differences in KATP channel open probability and conductance. However, action potentials elicited by glucose had larger amplitude in obese mice. Glucose-induced Ca²⁺ signals in intact islets, in isolated β-cells, and individual β-cells within islets were also increased in HFD mice. Additionally, a higher proportion of glucose-responsive cells was present in obese mice. In contrast, whole-cell Ca²⁺ current densities were similar in both groups. Capacitance measurements showed that depolarization-evoked exocytosis was enhanced in HFD β-cells compared with controls. Although this augment was not significant when capacitance increases of the whole β-cell population were normalized to cell size, the exocytotic output varied significantly when β-cells were distributed by size ranges. All these findings indicate that β-cell functional adaptations are present in the islet compensatory response to obesity.
Collapse
Affiliation(s)
- Alejandro Gonzalez
- Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells. Neuroscience 2013; 250:755-72. [PMID: 23876326 DOI: 10.1016/j.neuroscience.2013.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
Collapse
|
44
|
Luo G, Kong X, Lu L, Xu X, Wang H, Ma X. Glucagon-like peptide 1 potentiates glucotoxicity-diminished insulin secretion via stimulation of cAMP-PKA signaling in INS-1E cells and mouse islets. Int J Biochem Cell Biol 2012; 45:483-90. [PMID: 23220045 DOI: 10.1016/j.biocel.2012.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/12/2012] [Accepted: 11/25/2012] [Indexed: 01/01/2023]
Abstract
Glucagon-like peptide-1 (GLP-1)-enhanced insulin secretion is mainly mediated by cAMP-PKA and cAMP-Epac2 signaling pathways at physiological glucose concentrations. However the cellular mechanisms underlying the insulinotropic action of GLP-1 at glucotoxicity remain largely unknown. In the present study, we examined the effects of GLP-1 on glucotoxicity-diminished insulin secretion and explored the roles of these two cAMP-linked pathways in mediating the effects of GLP-1 under glucotoxic conditions. Consistent with the previous reports, exposure of INS-1E cells and mouse islets to 30 mM glucose for 72 h almost abolished glucose-stimulated insulin secretion. Addition of 10nM GLP-1 significantly increased glucose-stimulated insulin secretion. This was not due to a protective effect of GLP-1 against glucotoxicity-induced apoptosis but instead improvement of the secretory capacity of the insulin-secreting β-cells. It is of note that GLP-1 preferentially increased the expression and activity of PKA, whereas had no effects on Epac2 at high glucose. In correlation with the observations, treatment of INS-1E cells with the specific PKA inhibitor Rp-cAMPS completely abolished the insulinotropic action of GLP-1, whereas knock-down of Epac2 did not interfere the effects of GLP-1. Moreover, GLP-1 did not increase further insulin secretion in the presence of the PKA agonist 6-Bnz-cAMP-AM. By contrast, it produced additional enhancement of insulin secretion when Epac2 was maximally stimulated by its selective agonist 8-pCPT-2'-O-Me-cAMP-AM. Taken together, our results suggest that GLP-1 potentiates glucotoxicity-diminished insulin secretion mainly through cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- Guochun Luo
- Shenzhen University Diabetes Centre, Shenzhen 518060, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Wendt A, Speidel D, Danielsson A, Esguerra JLS, Bogen IL, Walaas SI, Salehi A, Eliasson L. Synapsins I and II are not required for insulin secretion from mouse pancreatic β-cells. Endocrinology 2012; 153:2112-9. [PMID: 22334712 DOI: 10.1210/en.2011-1702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synapsins are a family of phosphoproteins that modulate the release of neurotransmitters from synaptic vesicles. The release of insulin from pancreatic β-cells has also been suggested to be regulated by synapsins. In this study, we have utilized a knock out mouse model with general disruptions of the synapsin I and II genes [synapsin double knockout (DKO)]. Stimulation with 20 mm glucose increased insulin secretion 9-fold in both wild-type (WT) and synapsin DKO islets, whereas secretion in the presence of 70 mm K(+) and 1 mm glucose was significantly enhanced in the synapsin DKO mice compared to WT. Exocytosis in single β-cells was investigated using patch clamp. The exocytotic response, measured by capacitance measurements and elicited by a depolarization protocol designed to visualize exocytosis of vesicles from the readily releasable pool and from the reserve pool, was of the same size in synapsin DKO and WT β-cells. The increase in membrane capacitance corresponding to readily releasable pool was approximately 50fF in both genotypes. We next investigated the voltage-dependent Ca(2+) influx. In both WT and synapsin DKO β-cells the Ca(2+) current peaked at 0 mV and measured peak current (I(p)) and net charge (Q) were of similar magnitude. Finally, ultrastructural data showed no variation in total number of granules (N(v)) or number of docked granules (N(s)) between the β-cells from synapsin DKO mice and WT control. We conclude that neither synapsin I nor synapsin II are directly involved in the regulation of glucose-stimulated insulin secretion and Ca(2)-dependent exocytosis in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Anna Wendt
- Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, 20502 Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hoppa MB, Jones E, Karanauskaite J, Ramracheya R, Braun M, Collins SC, Zhang Q, Clark A, Eliasson L, Genoud C, MacDonald PE, Monteith AG, Barg S, Galvanovskis J, Rorsman P. Multivesicular exocytosis in rat pancreatic beta cells. Diabetologia 2012; 55:1001-12. [PMID: 22189485 PMCID: PMC3296018 DOI: 10.1007/s00125-011-2400-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 11/04/2022]
Abstract
AIMS/HYPOTHESIS To establish the occurrence, modulation and functional significance of compound exocytosis in insulin-secreting beta cells. METHODS Exocytosis was monitored in rat beta cells by electrophysiological, biochemical and optical methods. The functional assays were complemented by three-dimensional reconstruction of confocal imaging, transmission and block face scanning electron microscopy to obtain ultrastructural evidence of compound exocytosis. RESULTS Compound exocytosis contributed marginally (<5% of events) to exocytosis elicited by glucose/membrane depolarisation alone. However, in beta cells stimulated by a combination of glucose and the muscarinic agonist carbachol, 15-20% of the release events were due to multivesicular exocytosis, but the frequency of exocytosis was not affected. The optical measurements suggest that carbachol should stimulate insulin secretion by ∼40%, similar to the observed enhancement of glucose-induced insulin secretion. The effects of carbachol were mimicked by elevating [Ca(2+)](i) from 0.2 to 2 μmol/l Ca(2+). Two-photon sulforhodamine imaging revealed exocytotic events about fivefold larger than single vesicles and that these structures, once formed, could persist for tens of seconds. Cells exposed to carbachol for 30 s contained long (1-2 μm) serpentine-like membrane structures adjacent to the plasma membrane. Three-dimensional electron microscopy confirmed the existence of fused multigranular aggregates within the beta cell, the frequency of which increased about fourfold in response to stimulation with carbachol. CONCLUSIONS/INTERPRETATION Although contributing marginally to glucose-induced insulin secretion, compound exocytosis becomes quantitatively significant under conditions associated with global elevation of cytoplasmic calcium. These findings suggest that compound exocytosis is a major contributor to the augmentation of glucose-induced insulin secretion by muscarinic receptor activation.
Collapse
Affiliation(s)
- M. B. Hoppa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - E. Jones
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - J. Karanauskaite
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - R. Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - M. Braun
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - S. C. Collins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - Q. Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - A. Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - L. Eliasson
- Lund University Diabetes Centre, Clinical Research Centre, Malmo, Sweden
| | - C. Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - P. E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - S. Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J. Galvanovskis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - P. Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
47
|
Misler S, Gillis KD. Modes of exocytosis and electrogenesis underlying canine biphasic insulin secretion. Front Biosci (Elite Ed) 2012. [PMID: 22201903 DOI: 10.2741/408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biphasic insulin secretion in response to glucose consists of a transient first phase followed by a progressive second phase. It is a well described feature of whole perfused pancreases as well as isolated pancreatic islets of Langerhans. Applying to single cell assays of exocytosis (capacitance monitoring and amperometry) to single canine Beta-cells we have examined the time courses of granule exocytosis in response to voltage-clamp depolarizations that mimic two modes of glucose-induced electrical activity, and then compared these to biphasic insulin secretion. Action potentials evoked in short trains at frequencies similar those recorded during first phase insulin secretion trigger phasic exocytosis from a small pool of insulin granules that are likely docked near voltage-activated Ca²⁺ channels. In contrast, prolonged voltage-clamp pulses mimicking plateau depolarizations occur during second phase insulin secretion and trigger tonic or continuous exocytosis. Comparing the latter results with ones obtained using photorelease of caged Ca²⁺ in other insulin-secreting cells, we suggest that tonic exocytosis likely results from granule release from a highly Ca²⁺-sensitive pool of insulin granules, likely located further from Ca²⁺ channels. Both phasic and tonic modes of exocytosis are enhanced by glucose, via its metabolism. Hence, in canine Beta-cells we propose that two distinct modes of exocytosis, tuned to two types of electrical activity, may underlay biphasic insulin secretion.
Collapse
Affiliation(s)
- Stanley Misler
- Department of Medicine, Washington University School of Medicine, St. Louis MO 63110, USA.
| | | |
Collapse
|
48
|
Misler S, Gillis KD. Modes of exocytosis and electrogenesis underlying canine biphasic insulin secretion. Front Biosci (Elite Ed) 2012; 4:669-76. [PMID: 22201903 PMCID: PMC5868347 DOI: 10.2741/e408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biphasic insulin secretion in response to glucose consists of a transient first phase followed by a progressive second phase. It is a well described feature of whole perfused pancreases as well as isolated pancreatic islets of Langerhans. Applying to single cell assays of exocytosis (capacitance monitoring and amperometry) to single canine Beta-cells we have examined the time courses of granule exocytosis in response to voltage-clamp depolarizations that mimic two modes of glucose-induced electrical activity, and then compared these to biphasic insulin secretion. Action potentials evoked in short trains at frequencies similar those recorded during first phase insulin secretion trigger phasic exocytosis from a small pool of insulin granules that are likely docked near voltage-activated Ca²⁺ channels. In contrast, prolonged voltage-clamp pulses mimicking plateau depolarizations occur during second phase insulin secretion and trigger tonic or continuous exocytosis. Comparing the latter results with ones obtained using photorelease of caged Ca²⁺ in other insulin-secreting cells, we suggest that tonic exocytosis likely results from granule release from a highly Ca²⁺-sensitive pool of insulin granules, likely located further from Ca²⁺ channels. Both phasic and tonic modes of exocytosis are enhanced by glucose, via its metabolism. Hence, in canine Beta-cells we propose that two distinct modes of exocytosis, tuned to two types of electrical activity, may underlay biphasic insulin secretion.
Collapse
Affiliation(s)
- Stanley Misler
- Department of Medicine, Washington University School of Medicine, St. Louis MO 63110, USA.
| | | |
Collapse
|
49
|
Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2011; 51:300-8. [PMID: 22177710 PMCID: PMC3334273 DOI: 10.1016/j.ceca.2011.11.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 12/15/2022]
Abstract
The glucoregulatory hormones insulin and glucagon are released from the β- and α-cells of the pancreatic islets. In both cell types, secretion is secondary to firing of action potentials, Ca2+-influx via voltage-gated Ca2+-channels, elevation of [Ca2+]i and initiation of Ca2+-dependent exocytosis. Here we discuss the mechanisms that underlie the reciprocal regulation of insulin and glucagon secretion by changes in plasma glucose, the roles played by different types of voltage-gated Ca2+-channel present in α- and β-cells and the modulation of hormone secretion by Ca2+-dependent and -independent processes. We also consider how subtle changes in Ca2+-signalling may have profound impact on β-cell performance and increase risk of developing type-2 diabetes.
Collapse
|
50
|
On depolarization-evoked exocytosis as a function of calcium entry: possibilities and pitfalls. Biophys J 2011; 101:793-802. [PMID: 21843469 DOI: 10.1016/j.bpj.2011.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022] Open
Abstract
Secretion from many endocrine cells is a result of calcium-regulated exocytosis due to Ca²⁺ influx. Using the patch-clamp technique, voltage pulses can be applied to the cells to open Ca²⁺ channels, resulting in a measurable Ca²⁺ current, and evoke exocytosis, which can be seen as an increase in membrane capacitance. A common tool for evaluating the relation between Ca²⁺ influx and exocytosis is to plot the increase in capacitance (ΔC(m)) as a function of the integral of the measured Ca²⁺current (Q). When depolarizations of different lengths are imposed, the rate of exocytosis is typically higher for shorter than for longer pulses, which has been suggested to result from depletion of a granule pool or from Ca²⁺ current inactivation. It is here demonstrated that ΔC(m) as a function of Q can reveal whether Ca²⁺ current inactivation masquerades as pool depletion. Moreover, it is shown that a convex, cooperativity-like, relation between ΔC(m) and Q surprisingly cannot occur as a result of cooperative effects, but can result from delays in the exocytotic process or in Ca²⁺dynamics. An overview of expected ΔC(m)-versus-Q relations for a range of explicit situations is given, which should help in the interpretation of data of depolarization-evoked exocytosis in endocrine cells.
Collapse
|