1
|
Casao A, Peña-Delgado V, Pérez-Pe R. From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa. Domest Anim Endocrinol 2025; 91:106916. [PMID: 39823652 DOI: 10.1016/j.domaniend.2025.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors. In the epididymis, this hormone modulates sperm maturation and the secretory activity of epidydimal epithelial cells. In addition, the antioxidant activity of melatonin may protect spermatozoa from oxidative damage during their formation in the testis and their maturation in the epididymis. After ejaculation, the melatonin present in seminal plasma may also protect sperm from oxidative damage and premature capacitation and may improve seminal quality. Finally, once the sperm begins its transit through the female genital tract, melatonin may modulate sperm capacitation. Thus, melatonin could have a bimodal activity in ram sperm capacitation, so high concentrations, such as those in seminal plasma, have a decapacitating effect. In contrast, low concentrations, such as those present in the female reproductive tract, may promote it, likely through interaction with MT2 receptors. In addition, melatonin could also be involved in chemotaxis and fertilisation, although further studies are needed to elucidate the specific role of melatonin in these processes. Finally, the effect of latitude and melatonin receptor gene polymorphisms in ram reproduction is also discussed.
Collapse
Affiliation(s)
- Adriana Casao
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Victoria Peña-Delgado
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosaura Pérez-Pe
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
2
|
Miguel-Jiménez S, Borao S, Portolés-Bayod V, Casao A, Pérez-Pe R. In vitro approach points to a chemotactic effect of melatonin on ram spermatozoa. Theriogenology 2023; 198:36-46. [PMID: 36542876 DOI: 10.1016/j.theriogenology.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Sperm orientation mechanisms, such as chemotaxis, are essential for the sperm to reach the oocyte and fertilize it. Melatonin is secreted by the cumulus cells and is also present in the follicular fluid in mammals. The presence of membrane receptors for melatonin in ram spermatozoa, and its proven involvement in the sperm functionality, may suggest a possible role in the guided movement towards the oocyte. Hence, the objective of the present work is to study the in vitro potential chemotactic action of melatonin on ram spermatozoa, analysing the influence of the season (breeding and non-breeding) and the sperm capacitation state. The first experimental approach consisted in the inclusion of melatonin in the upper layer of a swim-up selection method. During the non-breeding season, the presence of melatonin at 100 pM and 1 μM concentrations significantly increased the cell recovery rate, and induced changes in the sperm location of the MT2 melatonin receptor, compared with the standard swim-up. Moreover, the selected sperm population with 100 pM melatonin presented a higher percentage of capacitated spermatozoa. The greater recovery rate obtained with melatonin could be due to the stimulation of sperm movement in random directions, i.e., a chemokinetic effect, or due to a guided movement (chemotaxis) towards the gradient of the melatonin. To elucidate this issue, together with the study of the influence of the sperm capacitation status, we performed a second experimental approach which consisted in the use of chemotaxis chambers and an open-source software (Open-CASA) that analyses the sperm trajectories towards the hormone gradient and calculates a chemotaxis index (SL index). There was a significant difference between the SL index in the presence of 1 μM melatonin and the control without hormone. This effect was only observed in capacitated spermatozoa with cAMP-elevating agents (Cap-CK samples) obtained during the non-breeding season. These results would point to an in vitro chemotactic effect of melatonin on ram spermatozoa, although chemokinesis cannot be ruled out. Nonetheless, the inclusion of this hormone in the swim-up procedure could enhance the sperm recovery rate.
Collapse
Affiliation(s)
- Sara Miguel-Jiménez
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | - Sonia Borao
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | - Virginia Portolés-Bayod
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | - Adriana Casao
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | - Rosaura Pérez-Pe
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain.
| |
Collapse
|
3
|
Hamid K, Tran VH, Duke RK, Duke CC. Three Australian Lepidosperma Labill. Species as sources of prenylated and oxyprenylated derivatives of piceatannol, resveratrol and pinosylvin: Melatoninergic binding and inhibition of quinone reductase 2. PHYTOCHEMISTRY 2022; 203:113396. [PMID: 35998831 DOI: 10.1016/j.phytochem.2022.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Prenylated and hydroxyprenylated piceatannol, resveratrol and pinosylvin derivatives were isolated from resin produced by three Australian Lepidosperma Labill. Species (Cyperaceae). From L. congestum R.Br. one known compound, 3',5'-bis-prenyl-E-resveratrol, and five undescribed compounds were isolated, 3'-O-prenyl-5'-prenyl-E-piceatannol, 5',6'-bis-prenyl-E-piceatannol, 5'-prenyl-E-piceatannol, 3',5'-bis(3-hydroxy-3-methylbutyl)-E-resveratrol and 3',5'-bis-E-hydroxyprenyl-E-resveratrol. From L. gunnii Boeckeler one undescribed compound was isolated, 3'-E-hydroxyprenyl-5'-Z-hydroxyprenyl-E-resveratrol. From L. laterale R.Br. six undescribed compounds were isolated, 3-O-prenyl-E-pinosylvin, 3-O-Z-hydroxyprenyl-E-pinosylvin, 3'-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-4'-O-methyl-E-resveratrol, and 3-O-prenyl-3'-δ,δ'-dihydroxyprenyl-E-resveratrol. Compounds, including a reference compound 3-O-prenyl-3'-O-methyl-E-piceatannol, were screened in an assay for melatoninergic binding to MT1 and MT2 receptors and binding to QR2/MT3 enzyme, and for inhibition of QR2/MT3 in a functional assay. Strong binding was observed for 3-O-Z-hydroxyprenyl-E-resveratrol with a Ki of 0.022 nM and the strongest inhibition of QR2/MT3 observed was for the reference compound, 3-O-prenyl-3'-O-methyl-E-piceatannol, with an inhibition of 61% at 1 μM and 95% at 10 μM. The three most active binders and inhibitors of QR2/MT3 were found to have a common substructure corresponding to 3-O-prenylresveratrol.
Collapse
Affiliation(s)
- Kaiser Hamid
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Van H Tran
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Rujee K Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Colin C Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Glatfelter GC, Sosa J, Hudson RL, Dubocovich ML. Methods to Assess Melatonin Receptor-Mediated Phase-Shift and Re-entrainment of Rhythmic Behaviors in Mouse Models. Methods Mol Biol 2022; 2550:391-411. [PMID: 36180708 DOI: 10.1007/978-1-0716-2593-4_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The neurohormone melatonin facilitates entrainment of biological rhythms to environmental light-dark conditions as well as phase-shifts of circadian rhythms in constant conditions via activation of the MT1 and/or MT2 receptors expressed within the suprachiasmatic nucleus of the hypothalamus. The efficacy of melatonin and related agonists to modulate biological rhythms can be assessed using two well-validated mouse models of rhythmic behaviors. These models serve as predictive measures of therapeutic efficacy for treatment of circadian phase disorders caused by internal (e.g., clock gene mutations, blindness, depression, seasonal affective disorder) or external (e.g., shift work, travel across time zones) causes in humans. Here we provide background and detailed protocols for quantitative assessment of the magnitude and efficacy of melatonin receptor ligands in mouse circadian phase-shift and re-entrainment paradigms. The utility of these models in the discovery of novel therapeutics acting on melatonin receptors will also be discussed.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
- Designer Drug Research Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Jennifer Sosa
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Randall L Hudson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences University at Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
5
|
Moderie C, Boudreau P, Shechter A, Lespérance P, Boivin DB. Effects of exogenous melatonin on sleep and circadian rhythms in women with premenstrual dysphoric disorder. Sleep 2021; 44:zsab171. [PMID: 34240212 PMCID: PMC8664575 DOI: 10.1093/sleep/zsab171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
We previously found normal polysomnographic (PSG) sleep efficiency, increased slow-wave sleep (SWS), and a blunted melatonin secretion in women with premenstrual dysphoric disorder (PMDD) compared to controls. Here, we investigated the effects of exogenous melatonin in five patients previously studied. They took 2 mg of slow-release melatonin 1 h before bedtime during their luteal phase (LP) for three menstrual cycles. At baseline, patients spent every third night throughout one menstrual cycle sleeping in the laboratory. Measures included morning urinary 6-sulfatoxymelatonin (aMt6), PSG sleep, nocturnal core body temperature (CBT), visual analog scale for mood (VAS-Mood), Prospective Record of the Impact and Severity of Menstrual Symptoms (PRISM), and ovarian plasma hormones. Participants also underwent two 24-hour intensive physiological monitoring (during the follicular phase and LP) in time-isolation/constant conditions to determine 24-hour plasma melatonin and CBT rhythms. The same measures were repeated during their third menstrual cycle of melatonin administration. In the intervention condition compared to baseline, we found increased urinary aMt6 (p < 0.001), reduced objective sleep onset latency (p = 0.01), reduced SWS (p < 0.001), and increased Stage 2 sleep (p < 0.001). Increased urinary aMt6 was correlated with reduced SWS (r = -0.51, p < 0.001). Circadian parameters derived from 24-hour plasma melatonin and CBT did not differ between conditions, except for an increased melatonin mesor in the intervention condition (p = 0.01). Ovarian hormones were comparable between the conditions (p ≥ 0.28). Symptoms improved in the intervention condition, as measured by the VAS-Mood (p = 0.02) and the PRISM (p < 0.001). These findings support a role for disturbed melatonergic system in PMDD that can be partially corrected by exogenous melatonin.
Collapse
Affiliation(s)
- Christophe Moderie
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Ari Shechter
- Department of Medicine, Columbia University, New York, NY, USA
| | - Paul Lespérance
- CHUM, Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Diane B Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Ren Q, Gao D, Mou L, Zhang S, Zhang M, Li N, Sik A, Jin M, Liu K. Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. Eur J Pharmacol 2021; 912:174589. [PMID: 34699755 DOI: 10.1016/j.ejphar.2021.174589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Epilepsy is one of common neurological disorders, greatly distresses the well-being of the sufferers. Melatonin has been used in clinical anti-epileptic studies, but its effect on epileptic comorbidities is unknown, and the underlying mechanism needs further investigation. Herein, by generating PTZ-induced zebrafish seizure model, we carried out interdisciplinary research using neurobehavioral assays, bioelectrical detection, molecular biology, and network pharmacology to investigate the activity of melatonin as well as its pharmacological mechanisms. We found melatonin suppressed seizure-like behavior by using zebrafish regular locomotor assays. Zebrafish freezing and bursting activity assays revealed the ameliorative effect of melatonin on comorbidity-like symptoms. The preliminary screening results of neurobehavioral assays were further verified by the expression of key genes involved in neuronal activity, neurodevelopment, depression and anxiety, as well as electrical signal recording from the midbrain of zebrafish. Subsequently, network pharmacology was introduced to identify potential targets of melatonin and its pathways. Real-time qPCR and protein-protein interaction (PPI) were conducted to confirm the underlying mechanisms associated with glutathione metabolism. We also found that melatonin receptors were involved in this process, which were regulated in response to melatonin exposure before PTZ treatment. The antagonists of melatonin receptors affected anticonvulsant activity of melatonin. Overall, current study revealed the considerable ameliorative effects of melatonin on seizure and epileptic comorbidity-like symptoms and unveiled the underlying mechanism. This study provides an animal model for the clinical application of melatonin in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Mengqi Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
7
|
Glatfelter GC, Jones AJ, Rajnarayanan RV, Dubocovich ML. Pharmacological Actions of Carbamate Insecticides at Mammalian Melatonin Receptors. J Pharmacol Exp Ther 2021; 376:306-321. [PMID: 33203660 PMCID: PMC7841424 DOI: 10.1124/jpet.120.000065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Integrated in silico chemical clustering and melatonin receptor molecular modeling combined with in vitro 2-[125I]-iodomelatonin competition binding were used to identify carbamate insecticides with affinity for human melatonin receptor 1 (hMT1) and human melatonin receptor 2 (hMT2). Saturation and kinetic binding studies with 2-[125I]-iodomelatonin revealed lead carbamates (carbaryl, fenobucarb, bendiocarb, carbofuran) to be orthosteric ligands with antagonist apparent efficacy at hMT1 and agonist apparent efficacy at hMT2 Furthermore, using quantitative receptor autoradiography in coronal brain slices from C3H/HeN mice, carbaryl, fenobucarb, and bendiocarb competed for 2-[125I]-iodomelatonin binding in the suprachiasmatic nucleus (SCN), paraventricular nucleus of the thalamus (PVT), and pars tuberalis (PT) with affinities similar to those determined for the hMT1 receptor. Carbaryl (10 mg/kg i.p.) administered in vivo also competed ex vivo for 2-[125I]-iodomelatonin binding to the SCN, PVT, and PT, demonstrating the ability to reach brain melatonin receptors in C3H/HeN mice. Furthermore, the same dose of carbaryl given to C3H/HeN mice in constant dark for three consecutive days at subjective dusk (circadian time 10) phase-advanced circadian activity rhythms (mean = 0.91 hours) similar to melatonin (mean = 1.12 hours) when compared with vehicle (mean = 0.04 hours). Carbaryl-mediated phase shift of overt circadian activity rhythm onset is likely mediated via interactions with SCN melatonin receptors. Based on the pharmacological actions of carbaryl and other carbamate insecticides at melatonin receptors, exposure may modulate time-of-day information conveyed to the master biologic clock relevant to adverse health outcomes. SIGNIFICANCE STATEMENT: In silico chemical clustering and molecular modeling in conjunction with in vitro bioassays identified several carbamate insecticides (i.e., carbaryl, carbofuran, fenobucarb, bendiocarb) as pharmacologically active orthosteric melatonin receptor 1 and 2 ligands. This work further demonstrated that carbaryl competes for melatonin receptor binding in the master biological clock (suprachiasmatic nucleus) and phase-advances overt circadian activity rhythms in C3H/HeN mice, supporting the relevance of circadian effects when interpreting toxicological findings related to carbamate insecticide exposure.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Anthony J Jones
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rajendram V Rajnarayanan
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS. MT 2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol 2021; 891:173722. [PMID: 33159932 DOI: 10.1016/j.ejphar.2020.173722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/26/2022]
Abstract
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jessica L Ilkiw
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Juliane Fagotti
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Erika Cecon
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Marcelo M S Lima
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Imamura S, Tabuchi M, Oizumi H, Ueki T, Omiya Y, Ikarashi Y, Mizoguchi K. Yokukansankachimpihange, a traditional Japanese (Kampo) medicine, enhances the adaptation to circadian rhythm disruption by increasing endogenous melatonin levels. J Pharmacol Sci 2020; 144:129-138. [PMID: 32921394 DOI: 10.1016/j.jphs.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022] Open
Abstract
The traditional Japanese (Kampo) medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) have similar formulas and the same indications. In animals or cultured cells, the neuropharmacological actions of YKS are sometimes more beneficial than those of YKSCH. Since both drugs are used to treat sleep disorders in Japan, we examined the ameliorative effects of YKS and YKSCH on circadian rhythm disturbance and compared their efficacy using a mouse model of circadian rhythm disruption. Ramelteon was used as the positive control. Ramelteon treatment significantly reversed decreased running wheel activity during the advanced dark phase, indicating facilitation of circadian adaptation. YKS treatment also reversed the activity in the early period of drug treatment; however, it was not statistically significant. YKSCH treatment significantly reversed the decreased activity during the advanced dark phase. Plasma melatonin (MT) levels were significantly increased in the YKSCH but not in the YKS group. The ameliorative effect of YKSCH on rhythm disruption was significantly inhibited by coadministration of the MT2 receptor antagonist. Therefore, the therapeutic effect of YKSCH on circadian rhythm disruption would be attributable, to elevated endogenous MT levels. Taken together, YKS and YKSCH have different pharmacological properties and may be more precisely prescribed depending on patients' psychological symptoms.
Collapse
Affiliation(s)
- Sachiko Imamura
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Toshiyuki Ueki
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
10
|
Melatonin membrane receptors MT 1 and MT 2 are expressed in ram spermatozoa from non-seasonal breeds. Trop Anim Health Prod 2020; 52:2549-2557. [PMID: 32445158 DOI: 10.1007/s11250-020-02289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
Abstract
In mammals, many melatonin biological functions are mediated through its interaction with the membrane receptors MT1 and MT2. We have previously reported their presence in ram spermatozoa from males located in temperate climates, but there is no information on their presence in spermatozoa from rams in areas with an equatorial photoperiod (12L:12D). Thus, we have investigated the existence and cellular distribution of melatonin receptors in spermatozoa from three sheep breeds in Colombia (Colombian Creole, Hampshire, and Romney Marsh) during dry and rainy seasons, using indirect immunofluorescence and western blot. Our results indicated the presence of melatonin receptors in spermatozoa from these rams, and that their distribution differs from that previously found in spermatozoa from rams in temperate climates. Moreover, two new immunotypes of MT2 were identified: type N, with staining only in the neck, and type E with a band of immunofluorescence in the upper part of the post-acrosome and the apical edge. Likewise, differences between breeds and climate seasons were detected for both receptors. However, densitometry analysis of western blot bands only revealed differences between seasons in the Creole rams for MT1 and the Romney Marsh rams for MT2, whereas differences between breeds were only detected for MT2. It could be inferred that melatonin receptors in rams subjected to an equatorial photoperiod might be more closely related to sperm quality than seasonal control. Therefore, the presence of these receptors suggests that melatonin could be a useful tool to increase the fertility of rams located in tropical or equatorial climates.
Collapse
|
11
|
Endogenous and Exogenous Melatonin Exposure Attenuates Hepatic MT 1 Melatonin Receptor Protein Expression in Rat. Antioxidants (Basel) 2019; 8:antiox8090408. [PMID: 31540398 PMCID: PMC6770540 DOI: 10.3390/antiox8090408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin receptors are highly relevant for the hepatoprotective effects of the pineal hormone melatonin after experimental hemorrhagic shock in rats. In this study, we sought to determine the spatial expression pattern and a putative regulation of two melatonin receptors, membrane bound type 1 and 2 (MT1 and MT2), in the liver of rats. In a male rat model (Sprague Dawley) of hemorrhage and resuscitation, we investigated the gene expression and protein of MT1 and MT2 in rat liver by utilizing real-time quantitative polymerase chain reaction, a western blot analysis, and immunohistochemistry. Plasma melatonin content was measured by an enzyme-linked immunosorbent assay. Male rats underwent hemorrhage and were resuscitated with shed blood and a Ringer’s solution (n = 8 per group). After 90 min of hemorrhage, animals were given vehicle, melatonin, or ramelteon (each 1.0 mg/kg intravenously). Sham-operated controls did not undergo hemorrhage but were treated likewise. Plasma melatonin was significantly increased in all groups treated with melatonin and also after hemorrhagic shock. Only MT1, but not the MT2 messenger ribonucleic acid (mRNA) and protein, was detected in the rat liver. The MT1 protein was located in pericentral fields of liver lobules in sham-operated animals. After hemorrhagic shock and treatment with melatonin or ramelteon, the hepatic MT1 protein amount was significantly attenuated in all groups compared to sham controls (50% reduction; p < 0.001). With respect to MT1 mRNA, no significant changes were observed between groups (p = 0.264). Our results indicate that both endogenous melatonin exposure from hemorrhagic shock, as well as exogenous melatonin and ramelteon exposure, may attenuate melatonin receptors in rat hepatocytes, possibly by means of desensitization.
Collapse
|
12
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
13
|
Abstract
Last year melatonin was 60 years old, or at least its discovery was 60 years ago. The molecule itself may well be almost as old as life itself. So it is time to take yet another perspective on our understanding of its functions, effects and clinical uses. This is not a formal review-there is already a multitude of systematic reviews, narrative reviews, meta-analyses and even reviews of reviews. In view of the extraordinary variety of effects attributed to melatonin in the last 25 years, it is more of an attempt to sort out some areas where a consensus opinion exists, and where placebo controlled, randomized, clinical trials have confirmed early observations on therapeutic uses. The current upsurge of concern about the multiple health problems associated with disturbed circadian rhythms has generated interest in related therapeutic interventions, of which melatonin is one. The present text will consider the physiological role of endogenous melatonin, and the mostly pharmacological effects of exogenous treatment, on the assumption that normal circulating concentrations represent endogenous pineal production. It will concentrate mainly on the most researched, and accepted area of therapeutic use and potential use of melatonin-its undoubted ability to realign circadian rhythms and sleep-since this is the author's bias. It will touch briefly upon some other systems with prominent rhythmic attributes including certain cancers, the cardiovascular system, the entero-insular axis and metabolism together with the use of melatonin to assess circadian status. Many of the ills of the developed world relate to deranged rhythms-and everything is rhythmic unless proved otherwise.
Collapse
|
14
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
15
|
Zemła A, Grzegorek I, Dzięgiel P, Jabłońska K. Melatonin Synergizes the Chemotherapeutic Effect of Cisplatin in Ovarian Cancer Cells Independently of MT1 Melatonin Receptors. ACTA ACUST UNITED AC 2018; 31:801-809. [PMID: 28882945 DOI: 10.21873/invivo.11133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIM Melatonin (MLT), through the interaction with membrane melatonin receptors MT1, can improve the effectiveness of cytostatic agents, including cisplatin (CP). The aim of this study was to examine the synergistic effect of MLT and CP in three cell lines: IOSE 364, SK-OV-3 and OVCAR-3, as well as to assess the role of MT1 receptors in this mechanism. MATERIALS AND METHODS Using the SRB assay we investigated the effect of different concentrations of CP and MLT on cell viability. Tests, using luzindole - MT1 inhibitor, allowed us to assess the potential involvement of MT1 in the mechanism of MLT action. RESULTS MLT at certain concentrations demonstrated a synergistic effect in combination with CP. The addition of luzindole did not affect the action of MLT in combination with CP. CONCLUSION In summary, the synergistic effect of MLT with CP seems to be independent of membrane MT1 receptors.
Collapse
Affiliation(s)
- Agata Zemła
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Irmina Grzegorek
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland .,Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| | - Karolina Jabłońska
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Popovska-Gorevski M, Dubocovich ML, Rajnarayanan RV. Carbamate Insecticides Target Human Melatonin Receptors. Chem Res Toxicol 2017; 30:574-582. [PMID: 28027439 DOI: 10.1021/acs.chemrestox.6b00301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbaryl (1-naphthyl methylcarbamate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) are among the most toxic insecticides, implicated in a variety of diseases including diabetes and cancer among others. Using an integrated pharmacoinformatics based screening approach, we have identified these insecticides to be structural mimics of the neurohormone melatonin and were able to bind to the putative melatonin binding sites in MT1 and MT2 melatonin receptors in silico. Carbaryl and carbofuran then were tested for competition with 2-[125I]-iodomelatonin (300 pM) binding to hMT1 or hMT2 receptors stably expressed in CHO cells. Carbaryl and carbofuran showed higher affinity for competition with 2-[125I]-iodomelatonin binding to the hMT2 compared to the hMT1 melatonin receptor (33 and 35-fold difference, respectively) as predicted by the molecular modeling. In the presence of GTP (100 μM), which decouples the G-protein linked receptors to modulate signaling, the apparent efficacy of carbaryl and carbofuran for 2-[125I]-iodomelatonin binding for the hMT1 melatonin receptor was not affected but significantly decreased for the hMT2 melatonin receptor compatible with receptor antagonist/inverse agonist and agonist efficacy, respectively. Altogether, our data points to a potentially new mechanism through which carbamate insecticides carbaryl and carbofuran could impact human health by altering the homeostatic balance of key regulatory processes by directly binding to melatonin receptors.
Collapse
Affiliation(s)
- Marina Popovska-Gorevski
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| | - Rajendram V Rajnarayanan
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York 14221, United States
| |
Collapse
|
17
|
Gonzalez-Arto M, Luna C, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. New evidence of melatonin receptor contribution to ram sperm functionality. Reprod Fertil Dev 2016; 28:924-935. [DOI: 10.1071/rd14302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
The present study analysed the involvement of melatonin, acting via its receptors (MT1 and MT2), in ram sperm functionality. Indirect immunofluorescence assays revealed no changes in the distribution or intensity of MT1 receptors, whereas different subpopulations were established for MT2 receptors in control, in vitro capacitated and acrosome-reacted ram spermatozoa. Chlortetracycline staining revealed the following correlations between the pattern of staining for MT2 receptors in: (1) non-capacitated (NC) sperm rate and the proportion of spermatozoa with equal immunostaining intensity in the acrosome and post-acrosome (r = 0.59, P < 0.001); (2) in capacitated (C) sperm rate and the proportion of spermatozoa with stronger reactivity in the acrosome (r = 0.60, P < 0.001); and (3) in acrosome-reacted (AR) sperm rate and the proportion of spermatozoa with more intense staining on the post-acrosome (r = 0.67, P < 0.001). Incubation of swim-up-selected samples with either 1 μM melatonin or MT1 and MT2 receptor agonists (2-phenylmelatonin 1 µM and 8-Methoxy-2-propionamidotetralin (8M-PDOT) 1 µM and 10 nM) at 39°C and 5% CO2 for 3 h resulted in a higher proportion of the NC pattern compared with the control group (P < 0.05), whereas treatment with MT1 and MT2 receptor antagonists (luzindole 1 µM and 4-phenyl-2-propionamidotetralin (4P-PDOT) 1 µM and 10 nM) decreased the proportion of spermatozoa exhibiting the NC pattern (P < 0.001) concomitant with an increase in those exhibiting the C pattern (P < 0.01). In conclusion, melatonin exerts a modulating effect on ram sperm functionality, primarily via activation of the MT2 receptor.
Collapse
|
18
|
Benleulmi-Chaachoua A, Chen L, Sokolina K, Wong V, Jurisica I, Emerit MB, Darmon M, Espin A, Stagljar I, Tafelmeyer P, Zamponi GW, Delagrange P, Maurice P, Jockers R. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016; 60:95-108. [PMID: 26514267 DOI: 10.1111/jpi.12294] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein-coupled receptor (GPCR) super-family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1 , but not with MT2 , we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage-gated calcium channel Cav 2.2 and inhibits Cav 2.2-promoted Ca(2+) entry in an agonist-independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav 2.2 activity, providing a first hint for potential synaptic functions of MT1.
Collapse
Affiliation(s)
- Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate Sokolina
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network and TECHNA Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| | - Michel Boris Emerit
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France
| | - Michèle Darmon
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France
| | - Almudena Espin
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Pascal Maurice
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
19
|
Ortiz-López L, Pérez-Beltran C, Ramírez-Rodríguez G. Chronic administration of a melatonin membrane receptor antagonist, luzindole, affects hippocampal neurogenesis without changes in hopelessness-like behavior in adult mice. Neuropharmacology 2015; 103:211-21. [PMID: 26686389 DOI: 10.1016/j.neuropharm.2015.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022]
Abstract
Melatonin is involved in the regulation of hippocampal neuronal development during adulthood. Emerging evidence indicates that exogenous melatonin acts during different events of the neurogenic process and exerts antidepressant-like behavior in rodents. Thus, melatonin might act through different mechanism, including acting as an antioxidant, interacting with intracellular proteins and/or activating membrane receptors. The melatonin membrane receptors (MMRs; Mt1/Mt2) are distributed throughout the hippocampus with an interesting localization in the hippocampal neurogenic microenvironment (niche), suggesting the involvement of these receptors in the beneficial effects of melatonin on hippocampal neurogenesis and behavior. In this study, we analyzed the participation of MMRs in the baseline neurogenesis in C57BL/6 mice. To this end, we used a pharmacological approach, administering luzindole (10 mg/kg) for 14 days. We observed a decrease in the absolute number of doublecortin-positive cells (49%) without changes in either the dendrite complexity of mature doublecortin-cells or the number of apoptotic cells (TUNEL). However, after the chronic administration of luzindole, cell proliferation (Ki67) significantly decreased (36%) with increasing (>100%) number of neural stem cells (NSCs; GFAP(+)/Sox2(+)) in the subgranular zone of the dentate gyrus of the hippocampus. In addition, luzindole did not affect hopelessness-like behavior in the forced swim test (FST) or changes in the novelty suppressed feeding test (NST) after 14 days of treatment either neuronal activation in the dentate gyrus after FST. These results suggest that the MMRs are involved in the effects of endogenous melatonin to mediate the transition from NSCs and proliferative cells to the following developmental stages implicated in the hippocampal neurogenic process of adult female C57BL/6 mice.
Collapse
Affiliation(s)
- Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico
| | - Carlos Pérez-Beltran
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico.
| |
Collapse
|
20
|
In vitro comparison of duration of action of melatonin agonists on melatonin MT1 receptor: possible link between duration of action and dissociation rate from receptor. Eur J Pharmacol 2015; 757:42-52. [PMID: 25797281 DOI: 10.1016/j.ejphar.2015.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/03/2015] [Accepted: 03/01/2015] [Indexed: 12/15/2022]
Abstract
Melatonin MT1 and MT2 receptors are Gi protein-coupled receptors and promising therapeutic targets for a number of diseases. A proportion of G protein-coupled receptor agonists and antagonists have been classified according to their duration of action, which influences their pharmacological efficacy. However, the duration of action of melatonin agonists remains unclear. In this study, we investigated the duration of action of melatonin agonists (melatonin, 2-iodomelatonin, ramelteon, and the ramelteon metabolite M-II) at the melatonin MT1 receptor, which is more resistant to agonist-induced desensitization than the melatonin MT2 receptor. In Chinese hamster ovary cells stably expressing the human melatonin MT1 receptor, significant differences in the duration of action were observed after 2-h pretreatment with agonists followed by washout. In contrast to melatonin and M-II, the agonist activities of ramelteon and 2-iodomelatonin were persistent (i.e. inhibition of forskolin-stimulated cAMP formation and increase in ERK 1/2 phosphorylation) even after repeated washouts. Similar activities were observed for INS-1 cells endogenously expressing the rat MT1 receptor. Further, we examined potential factors linked to the duration of action. Residual activities of melatonin agonists after washout strongly correlated with their dissociation rates from the human melatonin MT1 receptor, but not their lipophilicity or extent of desensitization. These data suggest that the in vitro duration of action significantly differs between melatonin agonists and might dictate dissociation kinetics. Characterization of these in vitro properties may facilitate further in vivo study of the duration of action.
Collapse
|
21
|
Zibolka J, Mühlbauer E, Peschke E. Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT1 and MT2 receptors. J Pineal Res 2015; 58:198-209. [PMID: 25585597 DOI: 10.1111/jpi.12206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
Melatonin is an effector of the diurnal clock on pancreatic islets. The membrane receptor-transmitted inhibitory influence of melatonin on insulin secretion is well established and contrasts with the reported stimulation of glucagon release from α-cells. Virtually, nothing is known concerning the melatonin-mediated effects on islet δ-cells. Analysis of a human pancreatic δ-cell model, the cell line QGP-1, and the use of a somatostatin-specific radioimmunoassay showed that melatonin primarily has an inhibitory effect on somatostatin secretion in the physiological concentration range. In the pharmacological range, melatonin elicited slightly increased somatostatin release from δ-cells. Cyclic adenosine monophosphate (cAMP) is the major second messenger dose-dependently stimulating somatostatin secretion, in experiments employing the membrane-permeable 8-Br-cAMP. 8-Br-cyclic guanosine monophosphate proved to be of only minor relevance to somatostatin release. As the inhibitory effect of 1 nm melatonin was reversed after incubation of QGP-1 cells with the nonselective melatonin receptor antagonist luzindole, but not with the MT2-selective antagonist 4-P-PDOT (4-phenyl-2-propionamidotetraline), an involvement of the MT1 receptor can be assumed. Somatostatin release from the δ-cells at low glucose concentrations was significantly inhibited during co-incubation with 1 nm melatonin, an effect which was less pronounced at higher glucose levels. Transient expression experiments, overexpressing MT1, MT2, or a deletion variant as a control, indicated that the MT1 and not the MT2 receptor was the major transmitter of the inhibitory melatonin effect. These data point to a significant influence of melatonin on pancreatic δ-cells and on somatostatin release.
Collapse
Affiliation(s)
- Juliane Zibolka
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
22
|
Sakurai T, Koike T, Nakayama M. Pharmacological characterization of a highly selective and potent partial agonist of the MT₂ melatonin receptor. Pharmacology 2014; 93:244-52. [PMID: 25059758 DOI: 10.1159/000362561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The MT₂ melatonin receptor is a potential target for treating circadian rhythm sleep disorders. This study aims to characterize the recently identified MT₂ melatonin receptor agonist. METHODS The pharmacological properties of the MT₂ melatonin receptor-selective agonist as exemplified by compound 1 [N-(2-[7-benzyl-1,6-dihydro-2H-indeno(5,4-b)furan-8-yl]ethyl)acetamide] were evaluated by use of cell-free binding and cell-based functional assays. RESULTS Competition binding assays using 2-[(125)I]iodomelatonin revealed rapid, reversible, and high-affinity binding of compound 1 to human, mouse, and rat MT₂ melatonin receptors. cAMP, ERK1/2, and PathHunter β-arrestin recruitment assays revealed partial agonist activities. However, compound 1 induced a more intense internalization of human MT₂ melatonin receptor than melatonin. Based on studies using structurally related analogs of compound 1, we further demonstrated that the extent of internalization is independent of the intrinsic efficacy of agonists. CONCLUSION These findings provide novel insights into the relationship between intrinsic agonist efficacy and agonist-induced internalization and demonstrate that compound 1 could serve as a pharmacological tool for future studies to elucidate the detailed molecular mechanism of MT₂ receptor internalization.
Collapse
Affiliation(s)
- Taku Sakurai
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Japan
| | | | | |
Collapse
|
23
|
Clough SJ, Hutchinson AJ, Hudson RL, Dubocovich ML. Genetic deletion of the MT1 or MT2 melatonin receptors abrogates methamphetamine-induced reward in C3H/HeN mice. Physiol Behav 2014; 132:79-86. [PMID: 24813704 DOI: 10.1016/j.physbeh.2014.04.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/26/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023]
Abstract
The drug of abuse methamphetamine (METH) is known for its ability to enhance reward responses. The rewarding properties of psychostimulants have been shown to vary across time of day in mice. The goal of this study was to determine the role of the MT1 and MT2 melatonin receptors in METH-induced reward, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for METH-induced CPP at either ZT 6-8 (ZT: Zeitgeber time; ZT 0=lights on), when endogenous melatonin levels are low, or ZT 19-21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The locomotor response to METH (1.2mg/kg, ip) treatment was of similar magnitude at both times; however only C3H/HeN mice conditioned to METH at ZT 6-8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT1 (MT1KO) or MT2 (MT2KO) receptor tested at ZT 6-8 or ZT 19-21 did not develop a place preference for METH, though both showed a similar increase in locomotor activity following METH treatment when compared to wild-type mice. We conclude that in our mouse model METH-induced CPP is dependent on time of day and the presence of the MT1 or MT2 receptors, suggesting a role for melatonin in METH-induced reward.
Collapse
Affiliation(s)
- Shannon J Clough
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| | - Anthony J Hutchinson
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| | - Randall L Hudson
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| | - Margarita L Dubocovich
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
24
|
Isola M, Ekström J, Diana M, Solinas P, Cossu M, Lilliu MA, Loy F, Isola R. Subcellular distribution of melatonin receptors in human parotid glands. J Anat 2013; 223:519-24. [PMID: 23998562 DOI: 10.1111/joa.12105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
The hormone melatonin influences oral health through a variety of actions, such as anti-inflammatory, anti-oxidant, immunomodulatory and antitumour. Many of these melatonin functions are mediated by a family of membrane receptors expressed in the oral epithelium and salivary glands. Using immunoblotting and immunohistochemistry, recent studies have shown that the melatonin membrane receptors, MT1 and MT2, are present in rat and human salivary glands. To date, no investigation has dealt with the ultrastructural distribution of the melatonin receptors. This was the aim of the present study, using the immunogold method applied to the human parotid gland. Reactivity to MT1 and, with less intensity, to MT2 appeared in the secretory granules of acinar cells and in the cytoplasmic vesicles of both acinar and ductal cells. Plasma membranes were also stained, albeit slightly. The peculiar intracytoplasmic distribution of these receptors may indicate that there is an uptake/transport system for melatonin from the circulation into the saliva.
Collapse
Affiliation(s)
- M Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
26
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
27
|
Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 2011; 31:18439-52. [PMID: 22171046 PMCID: PMC6623882 DOI: 10.1523/jneurosci.2676-11.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022] Open
Abstract
Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Baptiste Lacoste
- Departments of Pathology and Cell Biology and
- Physiology, Groupe de recherche sur le système nerveux central, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| | - Francis Rodriguez Bambico
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Gilberto Spadoni
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | - Silvia Rivara
- Pharmaceutical Department University of Parma, Parma, Italy 43124
| | - Annalida Bedini
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | | | - Franco Fraschini
- Department of Pharmacology, Chemiotherapy and Medical Toxicology, University of Milan, Milan, Italy 20129
| | - Marco Mor
- Pharmaceutical Department University of Parma, Parma, Italy 43124
| | - Giorgio Tarzia
- Institute of Medicinal Chemistry, Carlo Bo University of Urbino, Urbino, Italy 61029
| | - Laurent Descarries
- Departments of Pathology and Cell Biology and
- Physiology, Groupe de recherche sur le système nerveux central, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| |
Collapse
|
28
|
Mühlbauer E, Albrecht E, Hofmann K, Bazwinsky-Wutschke I, Peschke E. Melatonin inhibits insulin secretion in rat insulinoma β-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2. J Pineal Res 2011; 51:361-72. [PMID: 21585522 DOI: 10.1111/j.1600-079x.2011.00898.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin exerts some of its effects via G-protein-coupled membrane receptors. Two membrane receptor isoforms, MT1 and MT2, have been described. The MT1 receptor is known to inhibit second messenger cyclic adenosine monophosphate (cAMP) signaling through receptor-coupling to inhibitory G-proteins (G(i) ). Much less is known about the MT2 receptor, but it has also been implicated in signaling via G(i) -proteins. In rat pancreatic β-cells, it has recently been reported that the MT2 receptor plays an inhibitory role in the cyclic guanosine monophosphate (cGMP) pathway. This study addresses the signaling features of the constitutively expressed human recombinant MT2 receptor (hMT2) and its impact on insulin secretion, using a rat insulinoma β-cell line (INS-1). On the basis of a specific radioimmunoassay, insulin secretion was found to be more strongly reduced in the clones expressing hMT2 than in INS-1 controls, when incubated with 1 or 100 nm melatonin. Similarly, cAMP and cGMP levels, measured by specific enzyme-linked immunosorbent assays (ELISAs), were reduced to a greater extent in hMT2 clones after melatonin treatment. In hMT2-expressing cells, the inhibitory effect of melatonin on insulin secretion was blocked by pretreatment with pertussis toxin, demonstrating the coupling of the hMT2 to G(i) -proteins. These results indicate that functional hMT2 expression leads to the inhibition of cyclic nucleotide signaling and a reduction in insulin release. Because genetic variants of the hMT2 receptor are considered to be risk factors in the development of type 2 diabetes, our results are potentially significant in explaining and preventing the pathogenesis of this disease.
Collapse
|
29
|
Pandi-Perumal SR, Spence DW, Verster JC, Srinivasan V, Brown GM, Cardinali DP, Hardeland R. Pharmacotherapy of insomnia with ramelteon: safety, efficacy and clinical applications. J Cent Nerv Syst Dis 2011; 3:51-65. [PMID: 23861638 PMCID: PMC3663615 DOI: 10.4137/jcnsd.s1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Ramelteon is a tricyclic synthetic analog of melatonin that acts specifically on MT1 and MT2 melatonin receptors. Ramelteon is the first melatonin receptor agonist approved by the Food and Drug Administration (FDA) for the treatment of insomnia characterized by sleep onset difficulties. Ramelteon is both a chronobiotic and a hypnotic that has been shown to promote sleep initiation and maintenance in various preclinical and in clinical trials. The efficacy and safety of ramelteon in patients with chronic insomnia was initially confirmed in short-term placebo-controlled trials. These showed little evidence of next-day residual effects, withdrawal symptoms or rebound insomnia. Other studies indicated that ramelteon lacked abuse potential and had a minimal risk of producing dependence or adverse effects on cognitive or psychomotor performance. A 6-month placebo-controlled international study and a 1-year open-label study in the USA demonstrated that ramelteon was effective and well tolerated. Other potential off-label uses of ramelteon include circadian rhythm sleep disorders such as shift-work and jet lag. At the present time the drug should be cautiously prescribed for short-term treatment only.
Collapse
|
30
|
Trecherel E, Batailler M, Chesneau D, Delagrange P, Malpaux B, Chemineau P, Migaud M. Functional characterization of polymorphic variants for ovine MT1 melatonin receptors: possible implication for seasonal reproduction in sheep. Anim Reprod Sci 2010; 122:328-34. [PMID: 21075566 DOI: 10.1016/j.anireprosci.2010.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/08/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
Abstract
In seasonal breeding species, the gene encoding for the melatonin MT(1) receptor (oMT(1)) is highly polymorphic and numerous data have reported the existence of an association between an allele of the receptor and a marked expression of the seasonality of reproduction in ewes. This allele called "m" (previously named "-" allele) carries a mutation leading to the absence of a MnlI restriction site as opposed to the "M" allele (previously named "+" allele) carrying the MnlI restriction site (previously "+" allele). This allows the determination of the three genotypes "M/M" (+/+), "M/m" (+/-) and "m/m" (-/-). This mutation is conservative and could therefore not be causal. However, it is associated with another mutation introducing the change of a valine to an isoleucine in the fifth transmembrane domain of the receptor. Homozygous "M/M" and "m/m" animals consequently express structurally different receptors respectively named oMT(1) Val(220) and oMT(1) Ile(220). The objective of this study was to test whether these polymorphic variants are functionally different. To achieve this goal, we characterized the binding properties and the transduction pathways associated with both variants of the receptors. Using a pharmacological approach, no variation in binding parameters between the two receptors when transiently expressed in COS-7. In stably transfected HEK293 cells, significant differences were detected in the inhibition of cAMP production whereas receptors internalization processes were not different. In conclusion, the possibility that subtle alterations induced by the non conservative mutation in "m/m" animals might modify the perception of the melatoninergic signal is discussed in the context of melatonin action.
Collapse
Affiliation(s)
- E Trecherel
- INRA, Unité Physiologie de la Reproduction et des Comportements, Centre de Tours, Nouzilly, F-37380, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 418] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42. [DOI: 10.1038/nrd3140] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Abstract
Ramelteon is a tricyclic synthetic analog of melatonin that acts specifically on MT(1) and MT(2) melatonin receptors. Ramelteon's half-life is longer than that of melatonin, being metabolized in the body to four main metabolites, M-I, M-II, M-III, and M-IV. M-II has an affinity to MT(1) and MT(2) of about one-tenth of the parent compound, but its concentration in the circulation exceeds that of ramelteon by more than an order of magnitude. Ramelteon is effective in decreasing latency to persistent sleep and increasing total sleep time in freely moving monkeys. A number of clinical studies have been undertaken to study the efficacy of ramelteon in subjects with chronic insomnia. In almost all of these studies, ramelteon, in various doses of 4, 8, or 16 mg most commonly, significantly reduced sleep latency and increased sleep duration. Its primary action in sleep promotion is not a generalized gamma-aminobutyric (GABA)-ergic central nervous system depression, but rather it acts as a melatonergic agonist in the suprachiasmatic nucleus (and at other central nervous system sites), from where downstream processes, including GABA-ergic effects, are controlled via the hypothalamic sleep switch. Unlike other commonly prescribed hypnotic drugs, ramelteon is not associated with next morning hangover effects or reductions in alertness, nor has it been shown to cause withdrawal symptoms. The adverse symptoms reported with ramelteon are mild. All long-term investigations that have been carried out support the conclusion that ramelteon is a well tolerated and effective drug for the treatment of insomnia.
Collapse
|
34
|
Abstract
Melatonin acts both as a hormone of the pineal gland and as a local regulator molecule in various tissues. Quantities of total tissue melatonin exceed those released from the pineal. With regard to this dual role, to the orchestrating, systemic action on various target tissues, melatonin is highly pleiotropic. Numerous secondary effects result from the control of the circadian pacemaker and, in seasonal breeders, of the hypothalamic/pituitary hormonal axes. In mammals, various binding sites for melatonin have been identified, the membrane receptors MT(1) and MT(2), which are of utmost chronobiological importance, ROR and RZR isoforms as nuclear receptors from the retinoic acid receptor superfamily, quinone reductase 2, calmodulin, calreticulin, and mitochondrial binding sites. The G protein-coupled receptors (GPCRs) MT(1) and MT(2) are capable of parallel or alternate signaling via different Galpha subforms, in particular, Galpha(i) (2/) (3) and Galpha(q), and via Gbetagamma, as well. Multiple signaling can lead to the activation of different cascades and/or ion channels. Melatonin frequently decreases cAMP, but also activates phospholipase C and protein kinase C, acts via the MAP kinase and PI3 kinase/Akt pathways, modulates large conductance Ca(2+)-activated K(+) and voltage-gated Ca(2+) channels. MT(1) and MT(2) can form homo and heterodimers, and MT(1) interacts with other proteins in the plasma membrane, such as an orphan GPCR, GPR50, and the PDZ domain scaffolding protein MUPP1, effects which negatively or positively influence signaling capacity. Cross-talks between different signaling pathways, including influences of the membrane receptors on nuclear binding sites, are discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
35
|
Jarzynka MJ, Passey DK, Johnson DA, Konduru NV, Fitz NF, Radio NM, Rasenick M, Benloucif S, Melan MA, Witt-Enderby PA. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res 2009; 46:161-71. [PMID: 19175856 PMCID: PMC2707086 DOI: 10.1111/j.1600-079x.2008.00644.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MT1 melatonin receptors expressed in Chinese hamster ovary (CHO) cells remain sensitive to a melatonin re-challenge even following chronic melatonin exposure when microtubules are depolymerized in the cell, an exposure that normally results in MT1 receptor desensitization. We extended our findings to MT2 melatonin receptors using both in vitro and in vivo approaches. Using CHO cells expressing human MT2 melatonin receptors, microtubule depolymerization prevents the loss in the number of high potency states of the receptor when compared to melatonin-treated cells. In addition, microtubule depolymerization increases melatonin-induced PKC activity but not PI hydrolysis via Gi proteins similar to that shown for MT1Rs. Furthermore, microtubule depolymerization in MT2-CHO cells enhances the exchange of GTP on Gi-proteins using a photoaffinity analog of GTP. To test whether microtubules are capable of modulating melatonin-induced phase-shifts, microtubules are depolymerized specifically within the suprachiasmatic nucleus of the hypothalamus (SCN) of the Long Evans rat and the efficacy of melatonin to phase shift their circadian activity rhythms was assessed and compared to animals with intact SCN microtubules. We find that microtubule depolymerization in the SCN using either Colcemid or nocodazole enhances the efficacy of 10 pm melatonin to phase-shift the activity rhythms of the Long Evans rat. No enhancement occurs in the presence of beta-lumicolchicine, the inactive analog of Colcemid. Taken together, these data suggest that microtubule dynamics can modulate melatonin-induced phase shifts of circadian activity rhythms which may explain, in part, why circadian disturbances occur in individuals afflicted with diseases associated with microtubule disturbances.
Collapse
MESH Headings
- Animals
- CHO Cells
- Central Nervous System Depressants/pharmacology
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Cricetulus
- Demecolcine/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Male
- Melatonin/metabolism
- Melatonin/pharmacology
- Microtubules/genetics
- Microtubules/metabolism
- Nocodazole/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Rats
- Rats, Long-Evans
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Suprachiasmatic Nucleus/metabolism
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Michael J. Jarzynka
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - Deepshikha K. Passey
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - David A. Johnson
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| | - Nagarjun V. Konduru
- Department of Environmental and Occupational Health, University of Pittsburgh
| | - Nicholas F. Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh
| | | | - Mark Rasenick
- Division of Molecular Diagnostics, Dept of Pathology, University of Pittsburgh Medical Center
| | | | | | - Paula A. Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
36
|
Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines. Breast Cancer Res Treat 2008; 118:293-305. [DOI: 10.1007/s10549-008-0220-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/02/2008] [Indexed: 12/15/2022]
|
37
|
Sethi S, Adams W, Pollock J, Witt-Enderby PA. C-terminal domains within human MT1 and MT2 melatonin receptors are involved in internalization processes. J Pineal Res 2008; 45:212-8. [PMID: 18341518 DOI: 10.1111/j.1600-079x.2008.00579.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, a molecule implicated in a variety of diseases, including cancer, often exerts its effects through G-protein-coupled melatonin receptors, MT(1) and MT(2). In this study, we sought to understand further the domains involved in the function and desensitization patterns of these receptors through site-directed mutagenesis. Two mutations were constructed in the cytoplasmic C-terminal tail of each receptor subtype: (i) a cysteine residue in the C-terminal tail was mutated to alanine, thus removing a putative palmitoylation site, and a site possibly required for normal receptor function (MT(1)C7.72A and MT(2)C7.77A) and (ii) the C-terminal tail in the MT(1) and MT(2) receptors was truncated, removing the putative phosphorylation and beta-arrestin binding sites (MT(1)Y7.64 and MT(2)Y7.64). These mutations did not alter the affinity of 2-[(125)I]-iodomelatonin binding to the MT(1) or MT(2) receptors. Using confocal microscopy, it was determined that the putative palmitoylation site (cysteine residue) did not play a role in receptor internalization; however, this residue was essential for receptor function, as determined by 3',5'-cyclic adenosine monophosphate (cAMP) accumulation assays. Truncation of the C-terminal tail of both receptors (MT(1)Y7.64 and MT(2)Y7.64) inhibited internalization as well as the cAMP response, suggesting the importance of the C-terminal tail in these receptor functions.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Binding Sites/genetics
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/metabolism
- Endocytosis/physiology
- Humans
- Melatonin/metabolism
- Microscopy, Confocal
- Models, Biological
- Mutation
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/physiology
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- Shalini Sethi
- Division of Pharmaceutical Sciences, School of Pharmacy, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | |
Collapse
|
38
|
Dufourny L, Levasseur A, Migaud M, Callebaut I, Pontarotti P, Malpaux B, Monget P. GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals. BMC Evol Biol 2008; 8:105. [PMID: 18400093 PMCID: PMC2323367 DOI: 10.1186/1471-2148-8-105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/09/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The melatonin receptor subfamily contains three members Mel1a, Mel1b and Mel1c, found in all vertebrates except for Mel1c which is found only in fish, Xenopus species and the chicken. Another receptor, the melatonin related receptor known as GPR50, found exclusively in mammals and later identified as a member of the melatonin receptor subfamily because of its identity to the three melatonin receptors despite its absence of affinity for melatonin. The aim of this study was to describe the evolutionary relationships between GPR50 and the three other members of the melatonin receptor subfamily. RESULTS Using an in silico approach, we demonstrated that GPR50 is the ortholog of the high affinity Mel1c receptor. It was necessary to also study the synteny of this gene to reach this conclusion because classical mathematical models that estimate orthology and build phylogenetic trees were not sufficient. The receptor has been deeply remodelled through evolution by the mutation of numerous amino acids and by the addition of a long C-terminal tail. These alterations have modified its affinity for melatonin and probably affected its interactions with the other two known melatonin receptors MT1 and MT2 that are encoded by Mel1a and Mel1b genes respectively. Evolutionary studies provided evidence that the GPR50 group evolved under different selective pressure as compared to the orthologous groups Me11 a, b, and c. CONCLUSION This study demonstrated that there are only three members in the melatonin receptor subfamily with one of them (Me11c) undergoing rapid evolution from fishes and birds to mammals. Further studies are necessary to investigate the physiological roles of this receptor.
Collapse
Affiliation(s)
- Laurence Dufourny
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université François Rabelais de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bondi CD, McKeon RM, Bennett JM, Ignatius PF, Brydon L, Jockers R, Melan MA, Witt-Enderby PA. MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J Pineal Res 2008; 44:288-98. [PMID: 18339124 DOI: 10.1111/j.1600-079x.2007.00525.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melatonin induces cellular differentiation in numerous cell types. Data show that multiple mechanisms are involved in these processes that are cell-type specific and may be receptor dependent or independent. The focus of this study was to specifically assess the role of human MT1 melatonin receptors in cellular differentiation using an MT1-Chinese hamster ovary (CHO) model; one that reproducibly produces measurable morphologic changes in response to melatonin. Using multiple approaches, we show that melatonin induces MT1-CHO cells to hyperelongate through a MEK 1/2, and ERK 1/2-dependent mechanism that is dependent upon MT1 receptor internalization, Gi protein activation, and clathrin-mediated endocytosis. Using immunoprecipitation analysis, we show that MT1 receptors form complexes with Gi(alpha) 2,3, Gq(alpha), beta-arrestin-2, MEK 1/2, and ERK 1/2 in the presence of melatonin. We also show that MEK and ERK activity that is induced by melatonin is dependent on Gi protein activation, clathrin-mediated endocytosis and is modulated by microtubules. We conclude from these studies that melatonin-induced internalization of human MT1 melatonin receptors in CHO cells is responsible for activating both MEK 1/2 and ERK 1/2 to drive these morphologic changes. These events, as mediated by melatonin, require Gi protein activation and endocytosis mediated through clathrin, to form MT1 receptor complexes with beta-arrestin-2/MEK 1/2 and ERK 1/2. The MT1-CHO model is invaluable to mapping out signaling cascades as mediated through MT1 receptors especially because it separates out MEK/ERK 1/2 activation by MT1 receptors from that of receptor tyrosine kinases.
Collapse
Affiliation(s)
- C Dominic Bondi
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sampaio LDFS. Melatonin inhibitory effect on cAMP accumulation in the chick retina development. Int J Dev Neurosci 2008; 26:277-82. [PMID: 18343081 DOI: 10.1016/j.ijdevneu.2008.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022] Open
Abstract
During vertebrate neurodevelopment, neuritogenesis and synaptogenesis are modulated by intracellular cAMP rises. Melatonin, which is implicated in neuronal differentiation, mainly inhibits this pathway. Here, an investigation about the profile of this effect during the vertebrate neurodevelopment is reported. In the embryonic chick retinas at days 8, 12, 14, 16 and at 2 days post-hatched (E8, E12, E14, E16 and PH), those control embryonic retinas incubated only with the phosphodiesterase inhibitor at days corresponding to commencement of neuronal differentiation (E8, E12) and PH, presented cAMP levels inhibited by melatonin. While the cAMP accumulation stimulated by forskolin was inhibited in the embryonic retinas at all testing days. Neither the unselective antagonist N-acetyl-2-benziltryptamine (luzindole) nor the selective Mel(1b) antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT) blocked the melatonin concentration-dependent inhibitory effect on cAMP accumulation in the retinas initiating differentiation (E7-E9), suggesting a tight binding between melatonin and their receptors. However, 4-P-PDOT competitively reverted the melatonin effect on cAMP stimulated by forskolin during synaptogenesis stages. Together, the melatonin effect on cAMP levels in chick retina, which is mainly through melatonin receptors, is depending on the developmental period observed, probably taking part in the mechanisms surrounding the melatonin action on neuronal differentiation.
Collapse
Affiliation(s)
- Lucia de Fatima Sobral Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, 1 Belém, PA, Brazil.
| |
Collapse
|
41
|
Kokkola T, Vaittinen M, Laitinen JT. Inverse agonist exposure enhances ligand binding and G protein activation of the human MT1 melatonin receptor, but leads to receptor down-regulation. J Pineal Res 2007; 43:255-62. [PMID: 17803522 DOI: 10.1111/j.1600-079x.2007.00470.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin binds and activates G protein-coupled melatonin receptors. The density and affinity of the endogenous melatonin receptors change throughout the 24-hr day, and the exposure of recombinant melatonin receptors to melatonin often results in desensitization of the receptors. Receptor density, G protein activation and expression level were analyzed in CHO cell lines stably expressing the human MT1 receptors after 1 or 72 hr of exposure to melatonin (agonist, 10 nm) and luzindole (antagonist/inverse agonist, 10 microm). The 72-hr exposure to luzindole significantly increased the apparent receptor density in cell lines with both high and low MT1 receptor expression levels (MT1(high) and MT1(low) cells, respectively). In the constitutively active MT1(high) cells, luzindole pretreatment also stimulated the functional response to melatonin in [(35)S]GTPgammaS binding assays, whereas melatonin pretreatment attenuated the functional response at both time points. Receptor ELISA was used to analyze the cell membrane and total expression level of the MT1 receptor in intact and permeabilized cells, respectively. Luzindole pretreatment decreased the total cellular level of MT1 receptor in the MT1(high) cells at both time points but increased the cell surface expression of MT1 receptor at 72 hr. Melatonin significantly decreased MT1 receptor cell surface expression only in MT1(high) cells after a 1-hr treatment. These results indicate that melatonin treatment desensitizes MT1 receptors, whereas luzindole increases ligand binding and G-protein activation. Luzindole also stimulates downregulation of the MT1 receptor protein, interfering with the synthesis and/or degradation of the receptor.
Collapse
Affiliation(s)
- Tarja Kokkola
- Institute of Biomedicine/Physiology, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
42
|
Hirsch-Rodriguez E, Imbesi M, Manev R, Uz T, Manev H. The pattern of melatonin receptor expression in the brain may influence antidepressant treatment. Med Hypotheses 2007; 69:120-4. [PMID: 17197111 PMCID: PMC1950672 DOI: 10.1016/j.mehy.2006.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022]
Abstract
The pineal hormone melatonin produces most of its biological effects via G protein-coupled receptors MT1 and MT2. In mammals, these receptors are expressed in various tissues and organs including in the brain. Recent research points to a putative role of MT1/MT2 dimerization as a mechanism that could determine the receptor-mediated biological effects of melatonin. Brain content and the ratios between MT1 and MT2 receptors are affected by illness, e.g., Alzheimer's disease, and by prolonged drug treatment, e.g., antidepressants. New drugs with antidepressant properties that bind and activate melatonin receptors have been discovered. We hypothesize that endogenous, i.e., low, levels of melatonin could contribute to antidepressant effects depending on the expression pattern of melatonin receptors in the brain. Hence, we propose that a prolonged treatment with classical antidepressant drugs alters the brain ratio of MT1/MT2 receptors to enable the endogenous melatonin, which is secreted during the night, to further improve the antidepressant effects. A corollary of this hypothesis is that antidepressants would be less effective in conditions of pathologically altered brain melatonin receptors, e.g., in Alzheimer's patients or due to genetic polymorphisms. If our hypothesis is confirmed, supplementing classical antidepressant treatment with an appropriate dose of a melatonin receptor agonist might be used to improve antidepressant effects in subjects with a susceptible pattern of brain melatonin receptor expression.
Collapse
Affiliation(s)
- Eric Hirsch-Rodriguez
- Department of Psychiatry and the Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, M/C912, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
43
|
Alarma-Estrany P, Pintor J. Melatonin receptors in the eye: location, second messengers and role in ocular physiology. Pharmacol Ther 2006; 113:507-22. [PMID: 17229466 DOI: 10.1016/j.pharmthera.2006.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin, an important regulator of circadian and seasonal rhythms, has a role in ocular pathophysiology. In addition to the pineal gland, melatonin synthesis is carried out in several ocular structures. Moreover, specific melatonin receptors have been located in the retina, cornea, ciliary body, lens, choroid and sclera, which suggests that cells in these tissues may be targets for melatonin action. This review summarizes the current knowledge about melatonin receptor subtypes with the emphasis on those melatonin receptors, which have been identified in ocular tissues and their possible roles in biochemical and physiological processes in the eye.
Collapse
Affiliation(s)
- Pilar Alarma-Estrany
- Departamento de Bioquímica, E.U. Optica, Universidad Complutense de Madrid, C/ Arcos de Jalón s/n, 28037 Madrid, Spain
| | | |
Collapse
|
44
|
Abstract
Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 G protein-coupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasocon-striction, cell proliferation in cancer cells, and reproductive and metabolic functions. Activation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Feinberg School of Medicine Center for Drug Discovery and Chemical Biology, Chicago, IL 60611, USA.
| | | |
Collapse
|
45
|
Sumaya IC, Masana MI, Dubocovich ML. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 2005; 39:170-7. [PMID: 16098095 DOI: 10.1111/j.1600-079x.2005.00233.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported an antidepressant-like effect in C3H/HeN mice during the forced swimming test (FST) following treatment with the MT1/MT2 melatonin receptor ligand, luzindole. This study investigated the role melatonin receptors (MT1 and/or MT2) may play in the effect of luzindole in the FST using C3H/HeN mice with a genetic deletion of either MT1 (MT1KO) or MT2 (MT2KO) melatonin receptors. In the light phase (ZT 9-11), luzindole (30 mg/kg, i.p.) significantly decreased immobility during swimming in both wild type (WT) (135.6 +/- 25.3 s, n = 7) and MT(1)KO (132.6 +/- 13.3 s, n = 8) as compared with vehicle-treated mice (WT: 207.1 +/- 6.0 s, n = 7; MT1KO: 209.5 +/- 6.2 s, n = 8) (P < 0.001). In the dark phase (ZT 20-22), luzindole also decreased time of immobility in both WT (89.5 +/- 13.9 s, n = 8) and MT1KO (66.5 +/- 6.4 s, n = 8) mice as compared with the vehicle treated (WT: 193.8 +/- 3.5, n = 6; MT1KO: 176.6 +/- 6.2 s, n = 8) (P < 0.001). Genetic disruption of the MT1 gene did not alter the diurnal rhythm of serum melatonin in MT1KO mice (ZT 9-11: 1.3 +/- 0.6 pg/mL, n = 7; ZT 20-22: 10.3 +/- 1.1 pg/mL, n = 8) as compared with WT (ZT 9-11: 1.4 +/- 0.7 pg/mL; ZT 20-22: 10.6 pg/mL). Swimming did not alter the serum melatonin diurnal rhythm in WT and MT1KO mice. Decreases in immobility of WT and MT1KO mice by luzindole treatment were not affected by gender or age (3 months versus 8 months). In contrast, luzindole did not decrease immobility during the FST in MT2KO mice. We conclude that the antidepressant-like effect of luzindole may be mediated through blockade of MT2 rather than MT1 melatonin receptors.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Ligands
- Melatonin/blood
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Receptor, Melatonin, MT1/biosynthesis
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/physiology
- Receptor, Melatonin, MT2/biosynthesis
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/physiology
- Swimming/physiology
- Tryptamines/metabolism
- Tryptamines/pharmacology
Collapse
Affiliation(s)
- I C Sumaya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
46
|
Gerdin MJ, Masana MI, Rivera-Bermúdez MA, Hudson RL, Earnest DJ, Gillette MU, Dubocovich ML. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J 2005; 18:1646-56. [PMID: 15522910 DOI: 10.1096/fj.03-1339com] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormone melatonin phase shifts circadian rhythms generated by the mammalian biological clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, through activation of G protein-coupled MT2 melatonin receptors. This study demonstrated that pretreatment with physiological concentrations of melatonin (30-300 pM or 7-70 pg/mL) decreased the number of hMT2 melatonin receptors heterologously expressed in mammalian cells in a time and concentration-dependent manner. Furthermore, hMT2-GFP melatonin receptors heterologously expressed in immortalized SCN2.2 cells or in non-neuronal mammalian cells were internalized upon pretreatment with both physiological (300 pM or 70 pg/mL) and supraphysiological (10 nM or 2.3 ng/mL) concentrations of melatonin. The decrease in MT2 melatonin receptor number induced by melatonin (300 pM for 1 h) was reversible and reached almost full recovery after 8 h; however, after treatment with 10 nM melatonin full recovery was not attained even after 24 h. This recovery process was partially protein synthesis dependent. Furthermore, exposure to physiological concentrations of melatonin (300 pM) for a time mimicking the nocturnal surge (8 h) desensitized functional responses mediated through melatonin activation of endogenous MT2 receptors, i.e., stimulation of protein kinase C (PKC) in immortalized SCN2.2 cells and phase shifts of circadian rhythms of neuronal firing in the rat SCN brain slice. We conclude that in vivo the nightly secretion of melatonin desensitizes endogenous MT2 melatonin receptors in the mammalian SCN thereby providing a temporally integrated profile of sensitivity of the mammalian biological clock to a melatonin signal.
Collapse
Affiliation(s)
- Matthew J Gerdin
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Witt-Enderby PA, Jarzynka MJ, Krawitt BJ, Melan MA. Knock-down of RGS4 and beta tubulin in CHO cells expressing the human MT1 melatonin receptor prevents melatonin-induced receptor desensitization. Life Sci 2004; 75:2703-15. [PMID: 15369705 DOI: 10.1016/j.lfs.2004.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 08/04/2004] [Indexed: 11/18/2022]
Abstract
Previously, it has been shown that chronic melatonin exposure in MT1-CHO cells results in receptor desensitization while at the same time producing drastic morphological changes. The addition of a depolymerizing agent during the melatonin pretreatment period prevents MT1 receptor desensitization and the changes in cellular morphology. The lack of morphological change in the presence of a depolymerizing agent is easily explained by the inability of the microtubules to polymerize, however, the prevention of receptor desensitization is a little more complex and may involve G-protein activation. The goal of this study was to determine whether melatonin-induced MT1 receptor desensitization is regulated by proteins known to regulate G-protein activation states, beta-tubulin and RGS4,using anti sense knockdown approaches. The expression of RGS4 mRNA in CHO cells was confirmed using RT PCR and successful knockdown of each was confirmed by western blot analysis or quantitative PCR. Pretreatment of MT1-CHO cells, transfected with the nonsense probes and exposed to melatonin, resulted in a desensitization of the receptor, an increase in forskolin-induced cAMP accumulation, an increase in 2-[125I]-iodomelatonin binding and no change in the affinity of melatonin for the MT1 receptor. However, knockdown of either beta-tubulin or RGS4 in MT1-CHO cells followed by pretreatment with melatonin attenuated the desensitization of melatonin receptors, decreased total 2-[125I]-iodomelatonin binding, and did not affect neither the forskolin response nor the affinity of melatonin for the MT1 receptor. Perhaps RGS4 and beta-tubulin modulate Galpha-GDP and Galpha-GTP states thus modulating MT1 melatonin receptor function.
Collapse
Affiliation(s)
- P A Witt-Enderby
- Division of Pharmaceutical Sciences, Department of Pharmacology-Toxicology, Duquesne University School of Pharmacy, 421 Mellon Hall, Pittsburgh, PA 15282, USA.
| | | | | | | |
Collapse
|
48
|
Gerdin MJ, Masana MI, Dubocovich ML. Melatonin-mediated regulation of human MT1 melatonin receptors expressed in mammalian cells. Biochem Pharmacol 2004; 67:2023-30. [PMID: 15135299 DOI: 10.1016/j.bcp.2004.01.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 01/23/2004] [Indexed: 12/15/2022]
Abstract
In mammals, the pineal hormone melatonin activates G protein-coupled MT(1) and MT(2) melatonin receptors. Acute exposure of recombinant MT(1) and MT(2) melatonin receptors to supraphysiological concentrations of melatonin differentially regulates these two receptors with the MT(2), but not the MT(1), exhibiting rapid desensitization and internalization. In the present study, we sought to determine whether prolonged exposure to supraphysiological and physiological concentrations of melatonin desensitized and/or internalized the MT(1) melatonin receptor. Using a Chinese hamster ovary (CHO) cell line stably expressing MT(1)-FLAG or transiently expressing MT(1)-green fluorescent protein (GFP) melatonin receptors, we found that prolonged exposure (8h) to supraphysiological concentrations of melatonin (100 nM) significantly increased the number of MT(1) melatonin receptors and decreased the affinity (K(i)) of melatonin for competition for 2-[125]iodomelatonin. A similar treatment also desensitized the MT(1) melatonin receptor-mediated stimulation of [(35)S]GTPgammaS binding, but did not internalize the receptor. In contrast, prolonged exposure to a concentration of melatonin mimicking nocturnal levels (400 pM) did not affect the number of MT(1) melatonin receptors, the affinity for melatonin, or the functional sensitivity of the receptor. We conclude that in vivo endogenous melatonin does not significantly affect the functional sensitivity of MT(1) melatonin receptors, however, exogenous melatonin taken therapeutically at doses above physiological levels could desensitize the receptor thereby affecting physiological responses mediated following activation of MT(1) melatonin receptors.
Collapse
Affiliation(s)
- Matthew J Gerdin
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
49
|
Barrenetxe J, Delagrange P, Martínez JA. Physiological and metabolic functions of melatonin. J Physiol Biochem 2004; 60:61-72. [PMID: 15352385 DOI: 10.1007/bf03168221] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin is a lipophilic hormone, mainly produced and secreted at night by the pineal gland. Melatonin synthesis is under the control of postganglionic sympathetic fibers that innervates the pineal gland. Melatonin acts via high affinity G protein-coupled membrane receptors. To date, three different receptor subtypes have been identified in mammals: MT1 (Mel 1a) and MT2 (Mel 1b) and a putative binding site called MT3. The chronobiotic properties of the hormone for resynchronization of sleep and circadian rhythms disturbances has been demonstrated both in animal models or in clinical trials. Several other physiological effects of melatonin in different peripheral tissues have been described in the past years. In this way, it has been demonstrated that the hormone is involved in the regulation of seasonal reproduction, body weight and energy balance. This contribution has been focused to review some of the physiological functions of melatonin as well as the role of the hormone in the regulation of energy balance and its possible involvement in the development of obesity.
Collapse
Affiliation(s)
- J Barrenetxe
- Dpt. Physiology and Nutrition, University of Navarra, C/Irunlarrea, s/n, Pamplona, Spain
| | | | | |
Collapse
|