1
|
Ha AW, Meliton LN, Chen W, Wang L, Maienschein‐Cline M, Jacobson JR, Letsiou E, Dudek SM. Epigenetic mechanisms mediate cytochrome P450 1A1 expression and lung endothelial injury caused by MRSA in vitro and in vivo. FASEB J 2024; 38:e70205. [PMID: 39588951 PMCID: PMC11590412 DOI: 10.1096/fj.202401812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene. Subsequent experiments confirm that MRSA increases CYP1A1 protein and mRNA expression, and its enzymatic activity in EC. Epigenetic inhibitors (C646, RVX-208) reduce MRSA-induced CYP1A1 expression and inflammatory responses, including cytokine release and adhesion molecule expression. Inhibition of the Aryl hydrocarbon receptor (Ahr), a known mediator of CYP1A1 expression, blocks MRSA-induced upregulation of CYP1A1 mRNA and protein expression, enzyme activity, and cytokine release. Reduction of CYP1A1 protein expression by siRNA or inhibition of its activity by rhapontigenin attenuated MRSA-induced EC permeability and inflammatory responses. In a mouse model of MRSA-induced acute lung injury (ALI), inhibition of CYP1A1 activity by rhapontigenin improved multiple indices of ALI, including bronchoalveolar lavage (BAL) protein concentration, cytokine levels, and markers of endothelial damage. Analysis of publicly available data suggests upregulation of CYP1A1 expression in ARDS patients compared to ICU controls. In summary, these studies provide new insights into MRSA-induced lung injury and identify a novel functional role for epigenetic upregulation of CYP1A1 in lung EC during ARDS pathogenesis.
Collapse
Affiliation(s)
- Alison W. Ha
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lucille N. Meliton
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Mark Maienschein‐Cline
- Research Informatics Core, Research Resources CenterUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
4
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Major J, Crotta S, Finsterbusch K, Chakravarty P, Shah K, Frederico B, D'Antuono R, Green M, Meader L, Suarez-Bonnet A, Priestnall S, Stockinger B, Wack A. Endothelial AHR activity prevents lung barrier disruption in viral infection. Nature 2023; 621:813-820. [PMID: 37587341 PMCID: PMC7615136 DOI: 10.1038/s41586-023-06287-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/06/2023] [Indexed: 08/18/2023]
Abstract
Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.
Collapse
Affiliation(s)
- Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
- Laboratory of Epithelial Barrier Immunity, New York University Langone Health, New York, NY, USA.
| | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Kathleen Shah
- AhRimmunity Laboratory, Francis Crick Institute, London, UK
- Immunology Research Unit, GSK, Stevenage, UK
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, London, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Mary Green
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Lucy Meader
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Simon Priestnall
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | | | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Dong F, Annalora AJ, Murray IA, Tian Y, Marcus CB, Patterson AD, Perdew GH. Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback. Int J Tryptophan Res 2023; 16:11786469231182508. [PMID: 37434789 PMCID: PMC10331327 DOI: 10.1177/11786469231182508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| |
Collapse
|
7
|
Dong F, Murray IA, Annalora A, Coslo D, Desai D, Gowda K, Yang J, Wang D, Koo I, Hao F, Amin SG, Patterson AD, Marcus C, Perdew GH. Complex chemical signals dictate Ah receptor activation through the gut-lung axis. FASEB J 2023; 37:e23010. [PMID: 37272852 PMCID: PMC10264151 DOI: 10.1096/fj.202300703r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Denise Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Pariano M, Puccetti M, Stincardini C, Napolioni V, Gatticchi L, Galarini R, Renga G, Barola C, Bellet MM, D'Onofrio F, Nunzi E, Bartoli A, Antognelli C, Cariani L, Russo M, Porcaro L, Colombo C, Majo F, Lucidi V, Montemitro E, Fiscarelli E, Ellemunter H, Lass-Flörl C, Ricci M, Costantini C, Giovagnoli S, Romani L. Aryl Hydrocarbon Receptor Agonism Antagonizes the Hypoxia-driven Inflammation in Cystic Fibrosis. Am J Respir Cell Mol Biol 2023; 68:288-301. [PMID: 36252182 DOI: 10.1165/rcmb.2022-0196oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1β heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.
Collapse
Affiliation(s)
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | | | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | | | | | | | | | | | - Lisa Cariani
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Maria Russo
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Luigi Porcaro
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Carla Colombo
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | | | | | | | | | - Helmut Ellemunter
- Cystic Fibrosis Centre, Medical University Innsbruck, Innsbruck, Austria
| | | | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | |
Collapse
|
9
|
Dong F, Murray IA, Annalora A, Coslo D, Desai D, Gowda K, Yang J, Wang D, Koo I, Hao F, Amin SG, Patterson AD, Marcus C, Perdew GH. Complex chemical signals dictate Ah receptor activation through the gut-lung axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529529. [PMID: 36865156 PMCID: PMC9980078 DOI: 10.1101/2023.02.22.529529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal "escape", likely through the lymphatic system, increasing AHR activation in key barrier tissues.
Collapse
|
10
|
Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat Rev Gastroenterol Hepatol 2021; 18:559-570. [PMID: 33742166 PMCID: PMC7611426 DOI: 10.1038/s41575-021-00430-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/01/2023]
Abstract
Mammalian aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that belongs to the basic helix-loop-helix (bHLH)-PAS family of transcription factors, which are evolutionarily conserved environmental sensors. In the absence of ligands, AHR resides in the cytoplasm in a complex with molecular chaperones such as HSP90, XAP2 and p23. Upon ligand binding, AHR translocates into the nuclear compartment, where it dimerizes with its partner protein, AHR nuclear translocator (ARNT), an obligatory partner for the DNA-binding and functional activity. Historically, AHR had mostly been considered as a key intermediary for the detrimental effects of environmental pollutants on the body. However, following the discovery of AHR-mediated functions in various immune cells, as well as the emergence of non-toxic 'natural' AHR ligands, this view slowly began to change, and the study of AHR-deficient mice revealed a plethora of important beneficial functions linked to AHR activation. This Review focuses on regulation of the AHR pathway and the barrier-protective roles AHR has in haematopoietic, as well as non-haematopoietic, cells within the intestinal microenvironment. It covers the nature of AHR ligands and feedback regulation of the AHR pathway, outlining the currently known physiological functions in immune, epithelial, endothelial and neuronal cells of the intestine.
Collapse
Affiliation(s)
| | | | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Puccetti M, Pariano M, Renga G, Santarelli I, D’Onofrio F, Bellet MM, Stincardini C, Bartoli A, Costantini C, Romani L, Ricci M, Giovagnoli S. Targeted Drug Delivery Technologies Potentiate the Overall Therapeutic Efficacy of an Indole Derivative in a Mouse Cystic Fibrosis Setting. Cells 2021; 10:1601. [PMID: 34202407 PMCID: PMC8305708 DOI: 10.3390/cells10071601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays a major role in the pathophysiology of cystic fibrosis (CF), a multisystem disease. Anti-inflammatory therapies are, therefore, of interest in CF, provided that the inhibition of inflammation does not compromise the ability to fight pathogens. Here, we assess whether indole-3-aldehyde (3-IAld), a ligand of the aryl hydrocarbon receptor (AhR), may encompass such an activity. We resorted to biopharmaceutical technologies in order to deliver 3-IAld directly into the lung, via dry powder inhalation, or into the gut, via enteric microparticles, in murine models of CF infection and inflammation. We found the site-specific delivery of 3-IAld to be an efficient strategy to restore immune and microbial homeostasis in CF organs, and mitigate lung and gut inflammatory pathology in response to fungal infections, in the relative absence of local and systemic inflammatory toxicity. Thus, enhanced delivery to target organs of AhR agonists, such as 3-IAld, may pave the way for the development of safe and effective anti-inflammatory agents in CF.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Marina M. Bellet
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Andrea Bartoli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (G.R.); (I.S.); (F.D.); (M.M.B.); (C.S.); (A.B.); (C.C.); (L.R.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
12
|
Santos C, Martinez CBDR. Multixenobiotic resistance mechanism: Organ-specific characteristics in the fish Prochilodus lineatus and its role as a protection against genotoxic agents. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108996. [PMID: 33548546 DOI: 10.1016/j.cbpc.2021.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
The multixenobiotic resistance mechanism (MXR) can decrease intracellular genotoxic pressure through the efflux of compounds out of the cell. Thus, this work presents a temporal approach to evaluate the MXR activity and the occurrence of genotoxic damage in different organs of the fish Prochilodus lineatus after an intraperitoneal injection of benzo[a]pyrene (B[a]P). Although the liver and brain demonstrated rapid MXR induction (6 h), the occurrence of DNA damage was not prevented. However, these organs presented some return to DNA integrity after MXR activity. The kidney demonstrated the slowest response in the MXR induction (24 h), which may be related to the preferential excretion of B[a]P metabolites by this route. Moreover, the kidney MXR reduction at 96 h may be related to its role in the excretion of metabolites from all other metabolizing organs. The gills did not appear to play an essential role in xenobiotics efflux; however, their participation in biotransformation is exhibited through the occurrence of DNA damage. The integrated response of the organs in the dynamics for the maintenance of the organism integrity could be promoted by the circulation of the xenobiotic through the bloodstream, which corroborates the increase in the DNA damage in the erythrocytes at 6 h. Therefore, the ability to induce MXR was linked to the preservation of DNA integrity in the presence of B[a]P, since MXR acts to avoid the accumulation of xenobiotics inside the cell.
Collapse
Affiliation(s)
- Caroline Santos
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | |
Collapse
|
13
|
Ma Y, Cao X, Zhang L, Zhang JY, Qiao ZS, Feng WL. Neuropathy and chloracne induced by 3,5,6-trichloropyridin-2-ol sodium: Report of three cases. World J Clin Cases 2021; 9:1079-1086. [PMID: 33644170 PMCID: PMC7896668 DOI: 10.12998/wjcc.v9.i5.1079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloracne is a rare skin condition that is caused by systemic exposure to halogenated aromatic compounds. The main characteristic of chloracne is blackhead, and in severe cases, it can be accompanied by systemic symptoms. Sodium 3,5,6-trichloropyridin-2-ol (STCP) is a necessary precursor compound for the production of chlorpyrifos and triclopyr, which are extensively used as a pesticide and herbicide, respectively. STCP is also a chlorophenol that has been associated with chloracne. STCP poisoning could induce mild myelin sheath damage. We herein report three cases with chloracne due to exposure to STCP.
CASE SUMMARY Three young men, aged 29, 33, and 26 years, respectively, in the same workplace had polymorphic skin lesions, characterized mainly by comedones and cysts, and one of them also had acne like lesions in the genital area. These clinical manifestations appeared when they were exposed to STCP for 3 d, 1 wk, and 2 wk, respectively. Among them, polyneuropathy and liver damage occurred. We performed dermoscopy and clinical and laboratory tests on these patients. Additionally, histopathology was used for further diagnosis in the serious patient. These patients were diagnosed with chloracne and separated from STCP. The patients were prescribed oral viaminate capsules, topical adapalene gel, and regular hematologic follow-up for aspartate transaminase and lipids. They are still under follow-up. There was no new lesions and the laboratory tests returned to normal in two patients. Pigmentation and shallow scars remained in the original areas of papules. However, in the most serious patient, new papules still appeared intermittently. All these remind us that the treatment of chloracne caused by STCP is difficult, and we should attach great importance to this new compound related with the neuropathy and chloracne.
CONCLUSION STCP is becoming a new chemical product to induce chloracne, which should attract the attention of all medical professionals, especially dermatologists. Due to the lack of knowledge on the new chemical, the diagnosis of chloracne cannot be made in time. Chloracne still deserves our attention.
Collapse
Affiliation(s)
- Yan Ma
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xue Cao
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Li Zhang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Yu Zhang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zu-Sha Qiao
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Wen-Li Feng
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
14
|
Yidana DB. Hidradenitis suppurativa - The role of interleukin-17, the aryl hydrocarbon receptor and the link to a possible fungal aetiology. Med Hypotheses 2021; 149:110530. [PMID: 33607406 DOI: 10.1016/j.mehy.2021.110530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Hidradenitis Suppurativa (HS) is a chronic, recurrent, debilitating skin disease of the hair follicle that usually presents after puberty with painful, deep-seated, inflamed lesions in the apocrine gland bearing areas of the body, most commonly the axillae, inguinal and anogenital regions. The pathophysiology of the disease remains elusive, with newer therapies targeting various aspects of the dysregulated immune system. This presents a useful opportunity to look at the cytokine profile in HS and other inflammatory conditions that share similar patterns with the aim of teasing out less considered explanations for HS pathogenesis. It has been observed that IL-17 appears to be the most common denominator linking HS with other immune mediated diseases like Crohn, ulcerative colitis, multiple sclerosis and psoriasis. Given that IL-17 plays an important role in antifungal immunity, evidenced by the cytokine pattern in fungal disease and the bulk of data citing their potential involvement in Crohn, ulcerative colitis, multiple sclerosis and psoriasis; it is fair to suggest the need to explore the role that fungi play in the setting of HS going forward. The aryl hydrocarbon receptor (ahr) is a ubiquitous and largely conserved entity that is gaining interest in inflammatory conditions such as psoriasis and atopic dermatitis. It is well known to modulate autoimmune states. Its activation by both exogenous and endogenous agents result in secretion of IL-17 by Th17 cells. One of such agents is the tryptophan metabolite 6-formylindolo [3,2-b] carbazole (FICZ)-which can be produced by microorganisms such as fungi. It will be interesting to explore its usefulness in HS pathogenesis.
Collapse
Affiliation(s)
- Daniel B Yidana
- King's College London, St. John's Institute of Dermatology, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
15
|
Gaber M, Sequely AA, Monem NA, Balbaa M. Effect of polyaromatic hydrocarbons on cellular cytochrome P450 1A induction. OCEAN AND COASTAL RESEARCH 2021. [DOI: 10.1590/2675-2824069.21026mg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
17
|
Murray IA, Perdew GH. How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. Int J Mol Sci 2020; 21:ijms21249614. [PMID: 33348604 PMCID: PMC7766308 DOI: 10.3390/ijms21249614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Increasingly, the aryl hydrocarbon receptor (AHR) is being recognized as a sensor for endogenous and pseudo-endogenous metabolites, and in particular microbiota and host generated tryptophan metabolites. One proposed explanation for this is the role of the AHR in innate immune signaling within barrier tissues in response to the presence of microorganisms. A number of cytokine/chemokine genes exhibit a combinatorial increase in transcription upon toll-like receptors and AHR activation, supporting this concept. The AHR also plays a role in the enhanced differentiation of intestinal and dermal epithelium leading to improved barrier function. Importantly, from an evolutionary perspective many of these tryptophan metabolites exhibit greater activation potential for the human AHR when compared to the rodent AHR. These observations underscore the importance of the AHR in barrier tissues and may lead to pharmacologic therapeutic intervention.
Collapse
|
18
|
Santos C, Bueno Dos Reis Martinez C. Biotransformation in the fish Prochilodus lineatus: An organ-specific approach to cyp1a gene expression and biochemical activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103467. [PMID: 32791344 DOI: 10.1016/j.etap.2020.103467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation ability of the organism is the result of organ-specific responses. This paper presents a molecular and biochemical approach to elucidate the biotransformation mechanisms in different organs of Prochilodus lineatus induced at 6, 24, and 96 h after a benzo[a]pyrene (B[a]P) injection. The induction in cyp1a transcription showed an organ-specific intensity at every tested time time. The EROD (ethoxyresorufin-O-deethylase) activity increased rapidly (6 h) in the liver and the kidney; the gills and the brain showed an increase at 24 h; and the gills demonstrated the highest activity among all the organs tested. There was no increase in glutathione S-transferase (GST) activity or lipoperoxidation. The decreased hepatic glutathione content (GSH) may be due to its role as an antioxidant. B[a]P was detected in the bile, confirming the xenobiotic efflux from the metabolizing organs. The gills, liver, brain, and kidney of P. lineatus presented an integrated mechanism to deal with the xenobiotic biotransformation.
Collapse
Affiliation(s)
- Caroline Santos
- Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Parana, 86057-970, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
19
|
Doan TQ, Connolly L, Igout A, Muller M, Scippo ML. In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114966. [PMID: 32563119 DOI: 10.1016/j.envpol.2020.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and several other environment/food-borne toxic compounds induce their toxicity via the aryl hydrocarbon receptor (AhR). AhR is also modulated by various endogenous ligands e.g. highly potent tryptophan (Trp)-derivative FICZ (6-formylindolo[3,2-b]carbazole) and natural ligands abundant in the human diet e.g. polyphenols. Therefore, evaluating AhR species-specific responses is crucial for understanding AhR physiological functions, establishing risk assessments, and exploring the applicability of AhR mediators in drug and food industry towards human-based usages. We studied AhR transactivation of FICZ/TCDD in vitro in a time-dependent and species-specific manner using dioxin responsive luciferase reporter gene assays derived from rat (DR-H4IIE) and human (DR-HepG2) hepatoma cells. We observed for the first time that FICZ potency was similar in both cell lines and was 40 times higher than TCDD in DR-HepG2 cells. Depleting Trp-derivative endogenously produced ligands by using culture medium without Trp, resulted in 3-fold higher AhR activation upon adding FICZ in DR-H4IIE cells, in contrast to DR-HepG2 cells which revealed a fast degradation of FICZ induction from 10 h post-exposure to complete disappearance after 24 h. Seven polyphenols and a mixture thereof, chosen based on commercially recommended doses and adjusted to human realistic exposure, caused rat and human species-specific AhR responses. Two isoflavones (daidzein and genistein) induced rat AhR synergistic effects with FICZ and/or TCDD, while quercetin, chrysin, curcumin, resveratrol, and the mixture exerted a strong inhibitory effect on the human AhR. Strikingly, resveratrol and quercetin at their realistic nanomolar concentrations acted additively in the mixture to abolish human AhR activation induced by various TCDD concentrations. Taken together, these results illustrate the species-specific complexity of AhR transcriptional activities modulated by various ligands and highlight the need for studies of human-based approaches.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
20
|
Phelan-Dickinson SJ, Palmer BC, Chen Y, DeLouise LA. The UVR Filter Octinoxate Modulates Aryl Hydrocarbon Receptor Signaling in Keratinocytes via Inhibition of CYP1A1 and CYP1B1. Toxicol Sci 2020; 177:188-201. [PMID: 32603427 DOI: 10.1093/toxsci/kfaa091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.
Collapse
Affiliation(s)
| | - Brian C Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642
| | - Yue Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Lisa A DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
21
|
Li Z, Liang X, Liu W, Zhao Y, Yang H, Li W, Adamovsky O, Martyniuk CJ. Elucidating mechanisms of immunotoxicity by benzotriazole ultraviolet stabilizers in zebrafish (Danio rerio): Implication of the AHR-IL17/IL22 immune pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114291. [PMID: 32146360 DOI: 10.1016/j.envpol.2020.114291] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used additives in industrial materials and personal care products that protect products from ultraviolet damage. Due to their high production volume and potential to bioaccumulate, BUVSs are an environmental pollutant of concern. In this study, juvenile zebrafish (Danio rerio) were exposed to 4 BUVSs (UV-234, UV-326, UV-329, and UV-P) at 10 and 100 μg/L for 28 d. BUVSs induced hepatic vacuolization and nuclei pyknosis in the liver following 100 μg/L UV-234 and UV-329 exposure. Transcriptomic analysis in the liver uncovered pathways related to inflammation that were affected by BUVSs. Based upon these data, we measured the expression levels of 9 genes involved in AHR-IL17/IL22 pathway in zebrafish larvae exposed to each BUVSs at one dose of either 10 or 100 μg/L for 6 days in a second set experiment. Transcript levels of interleukins il17a and il22 were decreased, while il6 mRNA was increased with exposure to UV-234, UV-329, and UV-P. No change to targeted transcripts was observed with UV-326 treatments. Moreover, cyp1a1 and ahr2 levels were increased in larvae treated with 100 μg/L UV-329 or UV-P. Consistent with expression data, protein abundance of IL22 was decreased by 29% with exposure to 100 μg/L UV-P. Taken together, these results demonstrate that exposure to different benzotriazole congeners may be associated with immunotoxicity in zebrafish through the AHR-IL17/IL22 pathway, and this may be associated with hepatic damage with prolonged exposures. This study provides new insight into unique pathways perturbed by specific BUVSs congeners.
Collapse
Affiliation(s)
- Zhitong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Wang Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yaqian Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huiting Yang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wenjing Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
22
|
Manzella CR, Ackerman M, Singhal M, Ticho AL, Ceh J, Alrefai WA, Saksena S, Dudeja PK, Gill RK. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol Biochem 2020; 54:126-141. [PMID: 32017483 PMCID: PMC7050772 DOI: 10.33594/000000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). METHODS Inhibition of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was measured by ethoxyresorufin-O-deethylase (EROD) assays. For in vivo studies, AhR ligands were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA was measured. RESULTS We show that 5-HT inhibits metabolism of both the pro-luciferin CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates such as FICZ. Administration of β-napthoflavone by gavage or indole-3-carbinol via diet to SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. CONCLUSION Our studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.
Collapse
Affiliation(s)
- Christopher R Manzella
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Max Ackerman
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander L Ticho
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Justin Ceh
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
23
|
Chen J, Yakkundi P, Chan WK. Down-Regulation of p23 in Normal Lung Epithelial Cells Reduces Toxicities From Exposure to Benzo[a]pyrene and Cigarette Smoke Condensate via an Aryl Hydrocarbon Receptor-Dependent Mechanism. Toxicol Sci 2019; 167:239-248. [PMID: 30204910 DOI: 10.1093/toxsci/kfy234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule which controls tumor growth and metastasis, T cell differentiation, and liver development. Expression levels of this receptor protein is sensitive to the cellular p23 protein levels in immortalized cancer cell lines. As little as 30% reduction of the p23 cellular content can suppress the AHR function. Here we reported that down-regulation of the p23 protein content in normal, untransformed human bronchial/tracheal epithelial cells to 48% of its content also suppresses the AHR protein levels to 54% of its content. This p23-mediated suppression of AHR is responsible for the suppression of (1) the ligand-dependent induction of the cyp1a1 gene transcription; (2) the benzo[a]pyrene- or cigarette smoke condensate-induced CYP1A1 enzyme activity, and (3) the benzo[a]pyrene and cigarette smoke condensate-mediated production of reactive oxygen species. Reduction of the p23 content does not alter expression of oxidative stress genes and production of PGE2. Down regulation of p23 suppresses the AHR protein levels in two other untransformed cell types, namely human breast MCF-10A and mouse immune regulatory Tr1 cells. Collectively, down-regulation of p23 suppresses the AHR protein levels in normal and untransformed cells and can in principle protect our lung epithelial cells from AHR-dependent oxidative damage caused by exposure to agents from environment and cigarette smoking.
Collapse
Affiliation(s)
- Jinyun Chen
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California 95211
| | - Poonam Yakkundi
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California 95211
| | - William K Chan
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California 95211
| |
Collapse
|
24
|
Schurman SH, O'Hanlon TP, McGrath JA, Gruzdev A, Bektas A, Xu H, Garantziotis S, Zeldin DC, Miller FW. Transethnic associations among immune-mediated diseases and single-nucleotide polymorphisms of the aryl hydrocarbon response gene ARNT and the PTPN22 immune regulatory gene. J Autoimmun 2019; 107:102363. [PMID: 31759816 DOI: 10.1016/j.jaut.2019.102363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because immune responses are sensitive to environmental changes that drive selection of genetic variants, we hypothesized that polymorphisms of some xenobiotic response and immune response genes may be associated with specific types of immune-mediated diseases (IMD), while others may be associated with IMD as a larger category regardless of specific phenotype or ethnicity. OBJECTIVE To examine transethnic gene-IMD associations for single nucleotide polymorphism (SNP) frequencies of prototypic xenobiotic response genes-aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), AHR repressor (AHRR) - and a prototypic immune response gene, protein tyrosine phosphatase, non-receptor type 22 (PTPN22), in subjects from the Environmental Polymorphisms Registry (EPR). METHODS Subjects (n = 3731) were genotyped for 14 SNPs associated with functional variants of the AHR, ARNT, AHRR, and PTPN22 genes, and their frequencies were compared among African Americans (n = 1562), Caucasians (n = 1838), and Hispanics (n = 331) with previously reported data. Of those genotyped, 2015 EPR subjects completed a Health and Exposure survey. SNPs were assessed via PLINK for associations with IMD, which included those with autoimmune diseases, allergic disorders, asthma, or idiopathic pulmonary fibrosis. Transethnic meta-analyses were performed using METAL and MANTRA approaches. RESULTS ARNT SNP rs11204735 was significantly associated with autoimmune disease by transethnic meta-analyses using METAL (odds ratio, OR [95% confidence interval] = 1.29 [1.08-1.55]) and MANTRA (ORs ranged from 1.29 to 1.30), whereas ARNT SNP rs1889740 showed a significant association with autoimmune disease by METAL (OR = 1.25 [1.06-1.47]). For Caucasian females, PTPN22 SNP rs2476601 was significantly associated with autoimmune disease by allelic association tests (OR = 1.99, [1.30-3.04]). In Caucasians and Caucasian males, PTPN22 SNP rs3811021 was significantly associated with IMD (OR = 1.39 [1.12-1.72] and 1.50 [1.12-2.02], respectively) and allergic disease (OR = 1.39 [1.12-1.71], and 1.62 [1.19-2.20], respectively). In the transethnic meta-analysis, PTPN22 SNP rs3811021 was significantly implicated in IMD by METAL (OR = 1.31 [1.10-1.56]), and both METAL and MANTRA suggested that rs3811021 was associated with IMD and allergic disease in males across all three ethnic groups (IMD METAL OR = 1.50 [1.15-1.95]; IMD MANTRA ORs ranged from 1.47 to 1.50; allergic disease METAL OR = 1.58 [1.20-2.08]; allergic disease MANTRA ORs ranged from 1.55 to 1.59). CONCLUSIONS Some xenobiotic and immune response gene polymorphisms were shown here, for the first time, to have associations across a broad spectrum of IMD and ethnicities. Our findings also suggest a role for ARNT in the development of autoimmune diseases, implicating environmental factors metabolized by this pathway in pathogenesis. Further studies are needed to confirm these data, assess the implications of these findings, define gene-environment interactions, and explore the mechanisms leading to these increasingly prevalent disorders.
Collapse
Affiliation(s)
- Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA.
| | - Terrance P O'Hanlon
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Bethesda, MD, USA.
| | | | - Artiom Gruzdev
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Hong Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA.
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA; Bethesda, MD, USA.
| |
Collapse
|
25
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
26
|
Veith AC, Bou Aram B, Jiang W, Wang L, Zhou G, Jefcoate CR, Couroucli XI, Lingappan K, Moorthy B. Mice Lacking the Cytochrome P450 1B1 Gene Are Less Susceptible to Hyperoxic Lung Injury Than Wild Type. Toxicol Sci 2019; 165:462-474. [PMID: 29939353 DOI: 10.1093/toxsci/kfy154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.
Collapse
Affiliation(s)
- Alex C Veith
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics
| | - Guodong Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
27
|
Pan Y, Peng T, Xu P, Zeng X, Tian F, Song J, Shang Q. Transcription Factors AhR/ARNT Regulate the Expression of CYP6CY3 and CYP6CY4 Switch Conferring Nicotine Adaptation. Int J Mol Sci 2019; 20:E4521. [PMID: 31547315 PMCID: PMC6770377 DOI: 10.3390/ijms20184521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotine is one of the most toxic secondary plant metabolites in nature and it is highly toxic to herbivorous insects. The overexpression of CYP6CY3 and its homologous isozyme CYP6CY4 in Myzus persicae nicotianae is correlated with nicotine tolerance. The expanded (AC)n repeat in promoter is the cis element for CYP6CY3 transcription. These repeat sequences are conserved in the CYP6CY3 gene from Aphis gossypii and the homologous P450 genes in Acyrthosiphon pisum. The potential transcriptional factors that may regulate CYP6CY3 were isolated by DNA pulldown and sequenced in order to investigate the underlying transcriptional regulation mechanism of CYP6CY3. These identified transcriptional factors, AhR and ARNT, whose abundance was highly correlated with an abundance of the CYP6CY3 gene, were validated. RNAi and co-transfection results further confirm that AhR and ARNT play a major role in the transcriptional regulation of the CYP6CY3 gene. When the CYP6CY3 transcript is destabilized by AhR/ARNT RNAi, the transcription of the CYP6CY4 is dramatically up-regulated, indicating a compensatory mechanism between the CYP6CY3 and CYP6CY4 genes. Our present study sheds light on the CYP6CY3 and CYP6CY4 mediated nicotine adaption of M. persicae nicotianae to tobacco. The current studies shed light on the molecular mechanisms that underlie the genotypic and phenotypic changes that are involved in insect host shifts and we conclude that AhR/ARNT regulate the expression of CYP6CY3 and CYP6CY4 cooperatively, conferring the nicotine adaption of M. persicae nicotianae to tobacco.
Collapse
Affiliation(s)
- Yiou Pan
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Pengjun Xu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiabao Song
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
28
|
Tian Y, Gui W, Smith PB, Koo I, Murray IA, Cantorna MT, Perdew GH, Patterson AD. Isolation and Identification of Aryl Hydrocarbon Receptor Modulators in White Button Mushrooms ( Agaricus bisporus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9286-9294. [PMID: 31339733 PMCID: PMC7896426 DOI: 10.1021/acs.jafc.9b03212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Natural aryl hydrocarbon (AHR) ligands have been identified in food and herbal medicines, and they may exhibit beneficial activity in humans. In this study, white button (WB) feeding significantly decreased AHR target gene expression in the small intestine of both conventional and germ-free mice. High-performance liquid chromatography (HPLC) fractionation and ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) combined with an AHR-responsive cell-based luciferase gene reporter assay were used to isolate and characterize benzothiazole (BT) derivatives and 6-methylisoquinoline (6-MIQ) as AHR modulators from WB mushrooms. The study showed dose-dependent changes of AHR transformation determined by the cell-based luciferase gene reporter assay and transcription of CYP1A1 in human Caco-2 cells by BT derivatives and 6-MIQ. These findings suggested that WB mushroom contains new classes of natural AHR modulators and demonstrated HPLC fractionation and UHPLC-MS/MS combined with a cell-based luciferase gene reporter assay as a useful approach for isolation and characterization of the previously unidentifed AHR modulators from natural products.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margherita T. Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Hu B, Huang H, Wei Q, Ren M, Mburu DK, Tian X, Su J. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua. PEST MANAGEMENT SCIENCE 2019; 75:2009-2019. [PMID: 30610747 DOI: 10.1002/ps.5316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glutathione S-transferases (GSTs) are a superfamily of multifunctional dimeric proteins existing in both prokaryotic and eukaryotic organisms. They are involved in the detoxification of both endogenous and exogenous electrophiles, including insecticides. However, the molecular mechanisms underlying the regulation of GST genes in insects are poorly understood. RESULTS We first identified at least three GST genes involved in resistance to the insecticides chlorpyrifos and cypermethrin. Analysis of upstream sequences revealed that three GSTs (SeGSTo2, SeGSTe6 and SeGSTd3) harbor the same cap 'n' collar C/muscle aponeurosis fibromatosis (CncC/Maf) binding site, and SeGSTo2 and SeGSTe6 contain the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AhR/ARNT) binding site. Luciferase reporter assay showed co-transfection of reporter plasmid containing the SeGSTe6 promoter with CncC and/or Maf expressing constructs significantly boosted transcription. Similarly, AhR and/or ARNT expressing constructs also significantly increased the promoter activities. The co-transfection of mutated reporter plasmid with CncC/Maf or AhR/ARNT did not increase transcription activity anymore. Constitutive over-expression of CncC, Maf and AhR was also found in the HZ16 strain, which might be the molecular mechanism for up-regulated expression of multiple detoxification genes conferring resistance to insecticides. CONCLUSION These results suggest that CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GST genes involved in insecticide resistance in Spodoptera exigua. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - He Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - David K Mburu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Mescher M, Tigges J, Rolfes KM, Shen AL, Yee JS, Vogeley C, Krutmann J, Bradfield CA, Lang D, Haarmann-Stemmann T. The Toll-like receptor agonist imiquimod is metabolized by aryl hydrocarbon receptor-regulated cytochrome P450 enzymes in human keratinocytes and mouse liver. Arch Toxicol 2019; 93:1917-1926. [PMID: 31111189 PMCID: PMC11088943 DOI: 10.1007/s00204-019-02488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
The Toll-like receptor 7 agonist imiquimod (IMQ) is an approved drug for the topical treatment of various skin diseases that, in addition, is currently tested in multiple clinical trials for the immunotherapy of various types of cancers. As all of these trials include application of IMQ to the skin and evidence exists that exposure to environmental pollutants, i.e., tobacco smoke, affects its therapeutic efficacy, the current study aims to elucidate the cutaneous metabolism of the drug. Treatment of human keratinocytes with 2.5 µM benzo[a]pyrene (BaP), a tobacco smoke constituent and aryl hydrocarbon receptor (AHR) agonist, for 24 h induced cytochrome P450 (CYP) 1A enzyme activity. The addition of IMQ 30 min prior measurement resulted in a dose-dependent inhibition of CYP1A activity, indicating that IMQ is either a substrate or inhibitor of CYP1A isoforms. Incubation of 21 recombinant human CYP enzymes with 0.5 µM IMQ and subsequent LC-MS analyses, in fact, identified CYP1A1 and CYP1A2 as being predominantly responsible for IMQ metabolism. Accordingly, treatment of keratinocytes with BaP accelerated IMQ clearance and the associated formation of monohydroxylated IMQ metabolites. A co-incubation with 5 µM 7-hydroxyflavone, a potent inhibitor of human CYP1A isoforms, abolished basal as well as BaP-induced IMQ metabolism. Further studies with hepatic microsomes from CD-1 as well as solvent- and β-naphthoflavone-treated CYP1A1/CYP1A2 double knock-out and respective control mice confirmed the critical contribution of CYP1A isoforms to IMQ metabolism. Hence, an exposure to life style-related, dietary, and environmental AHR ligands may affect the pharmacokinetics and, thus, treatment efficacy of IMQ.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeremiah S Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christian Vogeley
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, DMPK Drug Metabolism, 42096, Wuppertal, Germany
| | | |
Collapse
|
31
|
Franco ME, Lavado R. Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:685-695. [PMID: 30939321 DOI: 10.1016/j.scitotenv.2019.03.394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The biotransformation of polycyclic aromatic hydrocarbons (PAHs) and the biochemical mechanisms involved in such process continue to be intensively studied in the fields of environmental science and toxicology. The investigation of PAH biotransformation in fish is fundamental to understand how piscine species cope with PAH exposure, as these compounds are ubiquitous in aquatic ecosystems and impact different levels of biological organization. New approaches are continuously developed in the field of ecotoxicology, allowing live animal testing to be combined with and, in some cases, replaced with novel in vitro systems. Many in vitro techniques have been developed and effectively applied in the investigation of the biochemical pathways driving the biotransformation of PAH in fish. In vitro experimentation has been fundamental in the advancement of not only understanding PAH-mediated toxicity, but also in highlighting suitable cell-based models for such investigations. Therefore, the present review highlights the value and applicability of in vitro systems for PAH biotransformation studies, and provides up-to-date information on the use of in vitro fish models in the evaluation of PAH biotransformation, common biomarkers, and challenges encountered when developing and applying such systems.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
32
|
Zhang W, Xie HQ, Li Y, Jin T, Li J, Xu L, Zhou Z, Zhang S, Ma D, Hahn ME, Zhao B. Transcriptomic analysis of Anabas testudineus and its defensive mechanisms in response to persistent organic pollutants exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:621-630. [PMID: 30893621 PMCID: PMC6581032 DOI: 10.1016/j.scitotenv.2019.02.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 06/02/2023]
Abstract
The freshwater climbing perch (Anabas testudineus) can tolerate water environments contaminated with persistent organic pollutants (POPs). The mechanisms underlying this tolerance are unknown. We used de novo transcriptomic analysis to investigate the defensive mechanisms of A. testudineus against POPs based on its genetic features and biological responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Our results revealed a specific expansion of cytochrome P450 (CYP) 3A subfamily, which may be involved in the elimination of certain POPs. In xenobiotic responses, the aryl-hydrocarbon receptor (AhR) pathway represents a critical signaling mechanism, and we characterized four AhR and two AhR nuclear translocator homologs and one AhR repressor (AhRR) gene in A. testudineus. TCDD-induced AhRR and CYP1A mRNA upregulation suggests that negative-feedback regulation of AhR signaling through AhRR helps avoid excessive xenobiotic responses. Furthermore, liver and gill transcriptomic profiles were markedly altered after TCDD exposure, with some of the altered genes being related to common defensive responses reported in other species. Based on the newly identified TCDD-altered genes, several A. testudineus-specific responses are proposed, such as enhanced fatty acid β-oxidation. The genetic features of CYP3A subfamily and AhR pathway and the TCDD-induced defensive biological processes elucidated here enhance our understanding of A. testudineus defensive responses against POPs.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266510, China
| | - Jiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mark E Hahn
- Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Lang D, Radtke M, Bairlein M. Highly Variable Expression of CYP1A1 in Human Liver and Impact on Pharmacokinetics of Riociguat and Granisetron in Humans. Chem Res Toxicol 2019; 32:1115-1122. [DOI: 10.1021/acs.chemrestox.8b00413] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Martin Radtke
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| |
Collapse
|
34
|
Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf 2018; 18:221-242. [DOI: 10.1111/1541-4337.12401] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
- College of Animal Science and Technology; Shihezi Univ.; Xinjiang 832003 China
- Dept. of Internal Medicine; Dept. of Biochemistry; Univ. of Texas Southwestern Medical Center; Dallas TX 75390 USA
| |
Collapse
|
35
|
Shen C, Zhou Y, Ruan J, Chuang YJ, Wang C, Zuo Z. Generation of a Tg(cyp1a-12DRE:EGFP) transgenic zebrafish line as a rapid in vivo model for detecting dioxin-like compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:174-181. [PMID: 30391726 DOI: 10.1016/j.aquatox.2018.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Dioxin-like compounds (DLCs) are extremely stable toxic organic compounds and can cause serious health risks. To develop a convenient biomonitoring tool for the detection of DLCs in the environment, we generated a transgenic line-Tg(cyp1a-12DRE:EGFP)-with a zebrafish cyp1a promoter recombined with multiple dioxin-responsive elements (DREs) that drive EGFP expression. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced EGFP expression was observed in the head cartilage (most sensitive), gut, otic vesicle, pectoral fin bud and eye of larvae. The lowest observed effect concentration of TCDD was estimated to be approximately 1 ng/L. Compared with existing zebrafish lines, our transgenic fish displayed comparable or even higher detection sensitivity to DLCs and could serve as an improved and rapid assay in an in vivo context. The Tg(cyp1a-12DRE:EGFP) transgenic zebrafish line also had higher stability for inducing EGFP expression (nearly 100% of our zebrafish induced EGFP at approximately 1 ng/L TCDD) than other lines. In addition, Tg(cyp1a-12DRE:EGFP) zebrafish could serve as a convenient and straightforward tool to assess potential cranial malformations and related health effects.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yung-Jen Chuang
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
36
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
37
|
Gutiérrez-Vázquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018; 48:19-33. [PMID: 29343438 DOI: 10.1016/j.immuni.2017.12.012] [Citation(s) in RCA: 613] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease. As its activity is regulated by small molecules, AhR also constitutes a potential target for therapeutic immunomodulation. In this review we discuss the role of AhR in the regulation of the immune response in the context of autoimmunity, infection, and cancer, as well as the potential opportunities and challenges of developing AhR-targeted therapeutics.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
38
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
39
|
Alhouayek M, Gouveia-Figueira S, Hammarström ML, Fowler CJ. Involvement of CYP1B1 in interferon γ-induced alterations of epithelial barrier integrity. Br J Pharmacol 2018; 175:877-890. [PMID: 29232759 DOI: 10.1111/bph.14122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE CYP1B1 and CYP1A1 are important extra-hepatic cytochromes, expressed in the colon and involved in the metabolism of dietary constituents and exogenous compounds. CYP1B1 expression is increased by pro-inflammatory cytokines, and it has been recently implicated in regulation of blood brain barrier function. We investigated its involvement in the increased permeability of the intestinal epithelial barrier observed in inflammatory conditions. EXPERIMENTAL APPROACH Epithelial monolayers formed by human T84 colon carcinoma cells cultured on transwells, were disrupted by incubation with IFNγ (10 ng·mL-1 ). Monolayer integrity was measured using transepithelial electrical resistance. CYP1A1 and CYP1B1 inhibitors or inducers were applied apically. Potential mechanisms of action were investigated using RT-qPCR. KEY RESULTS IFNγ disrupts the barrier integrity of the T84 monolayers and increases CYP1B1 and HIF1α mRNA expression. CYP1B1 induction is inhibited by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate (100 μM) but not by the HIF1α inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (50 μM). Inhibition of CYP1B1 with the selective inhibitor 2,4,3',5'-tetramethoxystilbene (100 nM) partly reverses the effects of IFNγ on epithelial permeability. CONCLUSIONS AND IMPLICATIONS These data suggest that increased expression of CYP1B1 is involved in the effects of IFNγ on epithelial permeability. Inhibition of CYP1B1 counteracts the alterations of epithelial barrier integrity induced by IFNγ and could thus have a therapeutic potential in disorders of intestinal permeability associated with inflammation.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden.,Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - Sandra Gouveia-Figueira
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Jiang W, Maturu P, Liang YW, Wang L, Lingappan K, Couroucli X. Hyperoxia-mediated transcriptional activation of cytochrome P4501A1 (CYP1A1) and decreased susceptibility to oxygen-mediated lung injury in newborn mice. Biochem Biophys Res Commun 2018; 495:408-413. [PMID: 29101037 PMCID: PMC5743196 DOI: 10.1016/j.bbrc.2017.10.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 02/02/2023]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this study, we tested the hypothesis that newborn transgenic mice carrying the human CYP1A1-Luc promoter will display transcriptional activation of the human CYP1A1 promoter in vivo upon exposure to hyperoxia, and that these mice will be less susceptible to hyperoxic lung injury and alveolar simplification than similarly exposed wild type (WT) mice. Newborn WT (CD-1) or transgenic mice carrying a 13.2 kb human CYP1A1 promoter and the luciferase (Luc) reporter gene (CYP1A1-luc) were maintained in room air or exposed to hyperoxia (85% O2) for 7-14 days. Hyperoxia exposure of CYP1A1-Luc mice for 7 and 14 days resulted in 4- and 30-fold increases, respectively, in hepatic Luc (CYP1A1) expression, compared to room air controls. In lung, hyperoxia caused a 2-fold induction of reporter Luc at 7 days, but the induction declined after 14 days. The newborn CYP1A1-Luc mice were less susceptible to lung injury and alveolar simplification than similarly exposed wild type (WT) CD-1 mice. Also, the CYP1A1-Luc mice showed increased levels of hepatic and pulmonary CYP1A1 expression and hepatic CYP1A2 activity after hyperoxia exposure. Hyperoxia also increased NADP(H) quinone reductase (NQO1) pulmonary gene expression in both CD-1 and CYP1A1-Luc mice at both time points, but this was more pronounced in the latter at 14 days. Our results support the hypothesis that hyperoxia activates the human CYP1A1 promoter in newborn mice, and that increased endogenous expression of CYP1A1 and NADP(H) quinone reductase (NQO1) contributes to the decreased susceptibilities to hyperoxic lung injury in the transgenic animals. This is the first report providing evidence of hyperoxia-mediated transcriptional activation of the human CYP1A1 promoter in newborn mice, and this in conjunction with decreased lung injury, suggests that these phenomena have important implications for BPD.
Collapse
Affiliation(s)
- Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Yanhong Wei Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Xanthi Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Wilhelm C, Kharabi Masouleh S, Kazakov A. Metabolic Regulation of Innate Lymphoid Cell-Mediated Tissue Protection-Linking the Nutritional State to Barrier Immunity. Front Immunol 2017; 8:1742. [PMID: 29375541 PMCID: PMC5770634 DOI: 10.3389/fimmu.2017.01742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILC) are a recently described group of tissue-resident immune cells that play essential roles in maintaining and protecting the tissue barrier against invading pathogens. Extensive research has revealed that ILC-mediated immune responses are controlled by dietary components and metabolites. An additional role of ILC as important direct regulators of host metabolism and glucose tolerance is emerging. This suggests that ILC may act as key dietary sensors integrating nutritional and metabolic stress to facilitate both maintenance of barrier sites and a coordinated immune response protecting these tissues. In this respect, investigations have begun to determine how different ILC responses are metabolically fueled and the impact of nutrient availability on the regulation of ILC function. Here, we discuss the current literature concerning dietary and metabolic control of ILC. In particular, we address whether the dietary and metabolic control of ILC and their simultaneous influence on host metabolism may function as a coordinated program of barrier defense.
Collapse
Affiliation(s)
- Christoph Wilhelm
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Schekufe Kharabi Masouleh
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Kazakov
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Peng T, Chen X, Pan Y, Zheng Z, Wei X, Xi J, Zhang J, Gao X, Shang Q. Transcription factor aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2017; 26:485-495. [PMID: 28463435 DOI: 10.1111/imb.12311] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cotton aphid, Aphis gossypii, is one of the most economically important agricultural pests worldwide as it is polyphagous and resistant to many classes of insecticides. Overexpression of the cytochrome P450 monooxygenase (P450) CYP6DA2 has previously been found to be associated with gossypol and spirotetramat tolerance in the cotton aphid. In the present study, the elements located in the promoter region (-357:-343; -250:-241; -113:-104) of CYP6DA2 were shown to control promoter activity, and gossypol induction was observed. We hypothesized that the expression of CYP6DA2 is subject to transcriptional regulation. To investigate the underlying mechanism, we assessed two transcription factors, aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT), and found that the abundance of AhR was highly correlated with CYP6DA2 abundance. RNA interference of AhR or ARNT significantly decreased the levels of the target gene as well as those of its counterpart, and both dramatically repressed CYP6DA2 expression. Cotransfection of the ARNT, AhR, or AhR plus ARNT and CYP6DA2 promoter constructs elevated CYP6DA2 promoter activity, with the AhR plus ARNT cotransfection being the most effective. Thus, these elements located in the promoter were responsible for CYP6DA2 transcription, and CYP6DA2 expression was regulated by the transcription factors AhR and ARNT.
Collapse
Affiliation(s)
- T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - X Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Z Zheng
- College of Plant Science, Jilin University, Changchun, China
| | - X Wei
- College of Plant Science, Jilin University, Changchun, China
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - J Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
43
|
Joshi AD, Hossain E, Elferink CJ. Epigenetic Regulation by Agonist-Specific Aryl Hydrocarbon Receptor Recruitment of Metastasis-Associated Protein 2 Selectively Induces Stanniocalcin 2 Expression. Mol Pharmacol 2017; 92:366-374. [PMID: 28696214 DOI: 10.1124/mol.117.108878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a plethora of target genes. Historically, the AhR has been studied as a regulator of xenobiotic metabolizing enzyme genes, notably cytochrome P4501A1 encoded by CYP1A1, in response to the exogenous prototypical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AhR activity depends on its binding to the xenobiotic response element (XRE) in partnership with the AhR nuclear translocator (Arnt). Recent studies identified stanniocalcin 2 (Stc2) as a novel AhR target gene responsive to the endogenous AhR agonist cinnabarinic acid (CA). CA-dependent AhR-XRE-mediated Stc2 upregulation is responsible for cytoprotection against ectoplasmic reticulum/oxidative stress-induced apoptosis both in vitro and in vivo. Significantly, CA but not TCDD induces expression of Stc2 in hepatocytes. In contrast to TCDD, CA is unable to induce the CYP1A1 gene, thus revealing an AhR agonist-specific mutually exclusive dichotomous transcriptional response. Studies reported here provide a mechanistic explanation for this differential response by identifying an interaction between the AhR and the metastasis-associated protein 2 (MTA2). Moreover, the AhR-MTA2 interaction is CA-dependent and results in MTA2 recruitment to the Stc2 promoter, concomitant with agonist-specific epigenetic modifications targeting histone H4 lysine acetylation. The results demonstrate that histone H4 acetylation is absolutely dependent on CA-induced AhR and MTA2 recruitment to the Stc2 regulatory region and induced Stc2 gene expression, which in turn confers cytoprotection to liver cells exposed to chemical insults.
Collapse
Affiliation(s)
- Aditya D Joshi
- Department of Pharmacology and Toxicology (A.D.J., C.J.E.) and Sealy Center for Environmental Health and Medicine (E.H., C.J.E.), University of Texas Medical Branch, Galveston, Texas
| | - Ekram Hossain
- Department of Pharmacology and Toxicology (A.D.J., C.J.E.) and Sealy Center for Environmental Health and Medicine (E.H., C.J.E.), University of Texas Medical Branch, Galveston, Texas
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology (A.D.J., C.J.E.) and Sealy Center for Environmental Health and Medicine (E.H., C.J.E.), University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
44
|
A Molecular Mechanism To Switch the Aryl Hydrocarbon Receptor from a Transcription Factor to an E3 Ubiquitin Ligase. Mol Cell Biol 2017; 37:MCB.00630-16. [PMID: 28416634 DOI: 10.1128/mcb.00630-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is known as a mediator of toxic responses. Recently, it was shown that the AhR has dual functions. Besides being a transcription factor, it also possesses an intrinsic E3 ubiquitin ligase function that targets, e.g., the steroid receptors for proteasomal degradation. The aim of this study was to identify the molecular switch that determines whether the AhR acts as a transcription factor or an E3 ubiquitin ligase. To do this, we used the breast cancer cell line MCF7, which expresses a functional estrogen receptor alpha (ERα) signaling pathway. Our data suggest that aryl hydrocarbon receptor nuclear translocator (ARNT) plays an important role in the modulation of the dual functions of the AhR. ARNT knockdown dramatically impaired the transcriptional activation properties of the ligand-activated AhR but did not affect its E3 ubiquitin ligase function. The availability of ARNT itself is modulated by another basic helix-loop-helix (bHLH)-Per-ARNT-SIM (PAS) protein, the repressor of AhR function (AhRR). MCF7 cells overexpressing the AhRR showed lower ERα protein levels, reduced responsiveness to estradiol, and reduced growth rates. Importantly, when these cells were used to produce estrogen-dependent xenograft tumors in SCID mice, we also observed lower ERα protein levels and a reduced tumor mass, implying a tumor-suppressive-like function of the AhR in MCF7 xenograft tumors.
Collapse
|
45
|
Effner R, Hiller J, Eyerich S, Traidl-Hoffmann C, Brockow K, Triggiani M, Behrendt H, Schmidt-Weber CB, Buters JTM. Cytochrome P450s in human immune cells regulate IL-22 and c-Kit via an AHR feedback loop. Sci Rep 2017; 7:44005. [PMID: 28276465 PMCID: PMC5343665 DOI: 10.1038/srep44005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/02/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanisms how environmental compounds influence the human immune system are unknown. The environmentally sensitive transcription factor aryl hydrocarbon receptor (AHR) has immune-modulating functions and responds to small molecules. Cytochrome P4501 enzymes (CYP1) act downstream of the AHR and metabolize small molecules. However, it is currently unknown whether CYP1 activity is relevant for immune modulation. We studied the interdependence of CYP1 and AHR in human primary immune cells using pharmacological methods. CYP1 inhibition increased the expression levels of the stem cell factor receptor (c-Kit) and interleukin (IL)-22 but decreased IL-17. Single cell analyses showed that CYP1 inhibition especially promoted CD4+ helper T (Th) cells that co-express c-Kit and IL-22 simultaneously. The addition of an AHR antagonist reversed all these effects. In addition to T cells, we screened other human immune cells for CYP and found cell-specific fingerprints, suggesting that similar mechanisms are present in multiple immune cells. We describe a feedback loop yet unknown in human immune cells where CYP1 inhibition resulted in an altered AHR-dependent immune response. This mechanism relates CYP1-dependent metabolism of environmental small molecules to human immunity.
Collapse
Affiliation(s)
- Renate Effner
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Julia Hiller
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Knut Brockow
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Salerno, Italy
| | - Heidrun Behrendt
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Jeroen T. M. Buters
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
46
|
Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik AJ, Omenetti S, Henderson CJ, Wolf CR, Nebert DW, Stockinger B. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017; 542:242-245. [PMID: 28146477 PMCID: PMC5302159 DOI: 10.1038/nature21080] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023]
Abstract
The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.
Collapse
Affiliation(s)
| | - Emma Wincent
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | - Alexandre J Potocnik
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | | | - Colin J Henderson
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - C Roland Wolf
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - Daniel W Nebert
- University of Cincinnati, Department of Environmental Health, Cincinnati, Ohio, USA
| | | |
Collapse
|
47
|
Wang Z, Monti S, Sherr DH. The diverse and important contributions of the AHR to cancer and cancer immunity. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Li J, Phadnis-Moghe AS, Crawford RB, Kaminski NE. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology 2016; 378:17-24. [PMID: 28049042 DOI: 10.1016/j.tox.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.
Collapse
Affiliation(s)
- Jinpeng Li
- Genetics Program, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Ashwini S Phadnis-Moghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
49
|
Kim IS, Hwang JH, Hirano M, Iwata H, Kim EY. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:1-9. [PMID: 27060260 DOI: 10.1016/j.cbpc.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/05/2016] [Accepted: 03/29/2016] [Indexed: 02/09/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is well conserved from invertebrates to vertebrates, and it mediates the toxic effects of exogenous ligands, including dioxins. Recent studies reported that AHRs activated by endogenous ligands play critical roles in mammalian physiological homeostasis. Avian species possess at least two AHR isoforms (AHR1 and AHR2), which exhibit species- and isoform-specific transactivation potencies to exogenous ligands, whereas mammals possess a single AHR. To delineate the profiles and roles of endogenous ligands for avian AHR isoforms, we investigated in vitro transactivation potencies of avian AHRs (AHR1 and AHR2 from the jungle crow, Corvus macrorhynchos; common cormorant, Phalacrocorax carbo; and black-footed albatross, Phoebastria nigripes) treated with the endogenous tryptophan metabolites 6-formylindolo [3,2-b] carbazole (FICZ), l-kynurenine (l-Kyn), kynurenic acid (KYNA), and indoxyl sulfate (IS). Furthermore, we analyzed the binding mode of these ligands to each avian AHR isoform by in silico docking simulations. The EC50 of FICZ (0.009-0.032nM) was similar regardless of the species or isoform of AHR. The estimated in silico binding mode of FICZ to AHRs was well conserved in both isoforms. The transactivation potencies of avian AHRs to other tryptophan metabolites were 10(5)-10(7) fold lower than those for FICZ, and EC50 values varied in a species- and isoform-specific manner. This was consistent with poor conservation of the binding mode of l-Kyn, KYNA, and IS predicted in in silico docking simulations. Our results suggest that in avian species, FICZ is the most potent endogenous AHR ligand, and that AHR1 and AHR2 are physiologically functional.
Collapse
Affiliation(s)
- In-Sung Kim
- Department of Biology, Kyung Hee University, Hoegi Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Ji-Hee Hwang
- Department of Biology, Kyung Hee University, Hoegi Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Hoegi Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
50
|
Larsen MC, N'Jai AU, Alexander DL, Rondelli CM, Forsberg EC, Czuprynski CJ, Jefcoate CR. Cyp1b1-mediated suppression of lymphoid progenitors in bone marrow by polycyclic aromatic hydrocarbons coordinately impacts spleen and thymus: a selective role for the Ah Receptor. Pharmacol Res Perspect 2016; 4:e00245. [PMID: 28116098 PMCID: PMC5242170 DOI: 10.1002/prp2.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023] Open
Abstract
Bone marrow (BM) hematopoietic stem cells differentiate to common lymphoid progenitors (CLP) that emigrate to the thymus to form T cells or differentiate into immature B cells that then migrate to the spleen for maturation. Rapid in vivo suppression of BM progenitor cells by a single oral or intraperitoneal dose of 7,12-dimethylbenz(a)anthracene (DMBA) subsequently decreased mature lymphoid populations in BM, spleen, and thymus. These suppressions depended on BM CYP1B1, but not on aryl hydrocarbon receptor (AhR) activity. Suppression of pre-B colony formation at 6 h, correlated with subsequent decreases in mature BM, spleen, and thymus populations (48-168 h). Thymus T-cell ratios were unaffected, suggesting low local toxicity. DMBA treatment suppressed progenitor cells 24-h post treatment in wild type (WT), AhRb mice, but not in Cyp1b1-ko mice. The stem cell populations were sustained. Benzo(a)pyrene (BP) mediated a similar progenitor suppression up to 6 h, but reversal rapidly ensued. This recovery was absent in mice with a polycyclic aromatic hydrocarbon (PAH)-resistant, AhRd genotype. This AhR-dependent progenitor recovery with BP induction accounts for the absence of suppression of B220+ BM and spleen populations at 48-168 h. However, DMBA and BP produced similar profiles for thymus cell suppression, independent of AhR genotype. Thus, lymphoid progenitors may exit the BM to the thymus prior to the BP reversal. This progenitor recovery is associated with elevated chemokines and cytokines that depend on AhR-mediated induction of CYP1A1. This response increased constitutively in Cyp1b1-ko BM, demonstrating that CYP1B1 metabolizes local stimulants that impact a basal progenitor protection process.
Collapse
Affiliation(s)
| | - Alhaji U N'Jai
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706; Department of Pathobiological Sciences University of Wisconsin Madison Wisconsin 53706
| | - David L Alexander
- Department of Biomolecular Engineering Institute for the Biology of Stem Cells, University of California Santa Cruz California 95064
| | - Catherine M Rondelli
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706
| | - E C Forsberg
- Department of Biomolecular Engineering Institute for the Biology of Stem Cells, University of California Santa Cruz California 95064
| | - Charles J Czuprynski
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706; Department of Pathobiological Sciences University of Wisconsin Madison Wisconsin 53706; Food Research Institute University of Wisconsin Madison Wisconsin 53706
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology University of Wisconsin Madison Wisconsin; Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706
| |
Collapse
|