1
|
Ferreira AP, de Oliveira Machado GB, Pardo JCF, Augusto A, Costa TM, Leite FPP. The effects of ocean warming and elevated CO 2 on the feeding behavior and physiology of two sympatric mesograzers. Comp Biochem Physiol A Mol Integr Physiol 2025; 304:111831. [PMID: 40021047 DOI: 10.1016/j.cbpa.2025.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Atmospheric CO2 concentrations have increased significantly since pre-industrial times, leading to ocean warming and acidification. These environmental changes affect the physiology of marine organisms as they modify metabolic processes. Despite the critical role of temperature and pH in marine biology, studies of their combined effects are limited. This study investigated the interactive effects of ocean warming and acidification on the feeding behavior and physiology of two sympatric amphipods, Hyale niger and Cymadusa filosa. Using an orthogonal experimental design with two temperatures (27 °C and 30 °C) and two pH levels (7.8 and 7.5), we assessed feeding rates, respiration rates, ammonia excretion, and O/N ratios. Results indicated that C. filosa was less tolerant to these stressors than H. niger. While H. niger showed no significant changes between treatments, C. filosa showed reduced feeding rates and altered physiological responses to elevated temperature and decreased pH. Reducing the feeding rate of C. filosa may favor macroalgal biomass and strengthen bottom-up control in phytal communities. In addition, increased ammonia excretion in C. filosa suggests increased protein catabolism to meet energy demands at higher temperatures, despite reduced oxygen consumption. This indicates a compromised metabolism and a reduction in circulating oxygen capacity for C. filosa. The study shows heterogeneous responses to climate change, highlighting the need to assess combined environmental stressors in different species to accurately understand the impacts of climate change.
Collapse
Affiliation(s)
- Ana Paula Ferreira
- Postgraduate Program in Ecology, Bioscience Institute, University of Campinas - (Instituto de Biologia, Universidade Estadual de Campinas- UNICAMP), Campinas, Brazil.
| | | | - Juan Carlos Farias Pardo
- Centre for Coastal Research (CCR), Department of Natural Sciences, University of Agder (UiA), Kristiansand, Norway; Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Alessandra Augusto
- São Paulo State University - UNESP, Institute of Biosciences, São Vicente, Brazil
| | - Tânia Marcia Costa
- São Paulo State University - UNESP, Institute of Biosciences, São Vicente, Brazil
| | | |
Collapse
|
2
|
Giménez EM, Vanella FA, Wolinski LI, Torres R, Lattuca ME. Harpagifer bispinis, but not Patagonotothen tessellata, appears robust to interactive effects of ocean warming and acidification in southern Patagonia. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107123. [PMID: 40174482 DOI: 10.1016/j.marenvres.2025.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/23/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Ocean warming and acidification challenge marine ectotherms with rapid, multiple and simultaneous environmental changes. As knowledge of these impacts on fish from the sub-Antarctic is scarce, this study seeks to explore the combined effects of warming and acidification on the thermal and metabolic responses of Patagonotothen tessellata and Harpagifer bispinis, two sympatric notothenioid fish from the Beagle Channel. Juveniles were exposed to present-day and near-future summer temperatures (∼10 and 13 °C) and pCO2 levels (∼500 and 1300 μatm) in a full factorial design. Their critical thermal minimum/maximum (CTmin/CTmax) were assessed and their partial thermal tolerance polygons were estimated. Oxygen consumption rates allowed us to calculate fish' aerobic scope (AS) as the difference between the standard and maximum metabolic rates (SMR and MMR). The CTmin of both species were affected by temperature, pCO2 level and their interaction, while the CTmax of P. tessellata was affected by both factors and that of H. bispinis, only by temperature. The partial thermal tolerance polygon of P. tessellata significantly decreased with future pCO2 levels, while no changes were observed for H. bispinis. In P. tessellata, SMR and MMR were affected by temperature and pCO2 levels and the AS by their interaction. Conversely, H. bispinis showed no differences in SMR, MMR and AS under different conditions. The increase in SMR and decrease in AS of P. tessellata with future temperatures and pCO2 levels may explain the changes in its thermal tolerance, while for H. bispinis, either the species has a greater capacity to adapt its metabolic response to warming and acidification, or different physiological processes are responsible for the observed changes in its thermal tolerance. Overall, present information could be a valuable tool for forecasting shifts in habitat suitability across the distribution range of both species and other similar fish in the context of climate change.
Collapse
Affiliation(s)
- Eloísa M Giménez
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabián A Vanella
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| | - Laura I Wolinski
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego (ICPA - UNTDF), Ushuaia, Argentina
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina.
| |
Collapse
|
3
|
Ferreira AP, Francelino AC, Costa TM. Effects of marine heatwaves on primary and secondary production in macroalgae-amphipod systems. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107231. [PMID: 40398005 DOI: 10.1016/j.marenvres.2025.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Marine heatwaves are becoming more frequent and intense as climate change progresses, with potential consequences for the functioning of marine ecosystems, particularly macroalgal beds and their associated mesoherbivores. While the direct effects of heatwaves on macroalgae have been well studied, the interactions between species at different trophic levels that affect ecosystem functioning remain underexplored. The aim of this study was to investigate how marine heatwaves affect primary and secondary productivity in marine ecosystems. We conducted a mesocosm experiment combining the macroalga Sargassum filipendula and the mesoherbivore amphipod Cymadusa filosa under two temperature scenarios: a current summer temperature (27 °C) and a heatwave scenario (32 °C), with and without herbivores. The experiment lasted 30 days, with 5 days of marine heatwave. All replicates were kept at 27 °C for ten days. Then, the 'heatwave' treatment replicates were exposed to 32 °C for five days. Subsequently, all replicates were returned to 27 °C and maintained for 15 days until the end of the experiment. We evaluated the variation in macroalgal biomass and the variation in amphipod biomass and abundance. The results showed that heatwaves reduced primary and secondary productivity, with the greatest effects observed on primary producers. The reduction in primary productivity suggests that these extreme events may compromise the ability of macroalgae to support the base of the coastal food web and facilitate the occurrence of an abundant and diverse associated fauna. Thus, changes in mesoherbivore biomass may have significant implications for higher trophic levels, affecting the dynamics and stability of marine ecosystems. These results suggest that marine heatwaves affect the functioning of marine ecosystems by reducing productivity, potentially altering the flow of energy and matter along the food web, and affecting ecosystem services such as carbon storage by algae.
Collapse
Affiliation(s)
- Ana Paula Ferreira
- Postgraduate Program in Biodiversity in Coastal Environments, Unesp, Institute of Biosciences, São Vicente, 11330-900, SP, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil.
| | - Ana Carolina Francelino
- São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil
| | - Tania Marcia Costa
- Postgraduate Program in Biodiversity in Coastal Environments, Unesp, Institute of Biosciences, São Vicente, 11330-900, SP, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil; Postgraduate Program in Biological Sciences (Zoology), Bioscience Institute, São Paulo State University - UNESP, Botucatu Campus, SP, 18618-000, Brazil
| |
Collapse
|
4
|
Tietbohl MD, Genevier LGC, Krieger EC, Kattan A, Wang Y, Gokul EA, Rodriguez Bravo LM, Palm L, Mele G, Hoteit I, Johnson MD. Extreme marine heatwave linked to mass fish kill in the Red Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179073. [PMID: 40179758 DOI: 10.1016/j.scitotenv.2025.179073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Anthropogenic climate change has precipitated an increase in marine heatwaves (MHWs) that have significant and multifaceted impacts on marine ecosystems. In late August 2023, an intense heatwave coincided with a mass fish kill event on the Saudi Arabian coast of the central Red Sea. Here, we compile MHW metrics from satellite data to illustrate the mortality event was linked with the most intense period of rapid heating in the central Red Sea in recent history. Using field surveys, we quantified the impact of the event on the fish community and found that nearly 1000 fish washed ashore along a 60 km stretch of coastline. Representatives of 54 species were detected, which illustrates the impact of the MHW event on a broad range of fishes. The exact cause of mortality during the event is unknown, but likely related to temperature-induced physiological stress and associated factors. Sparse coastal monitoring limited our ability to rapidly respond to the event and document the proximate cause of mortality. This study not only sheds light on the immediate impacts of a MHW on components of a coral reef ecosystem, but also emphasizes the broader ecological consequences. Mass fish kills may have cascading impacts on ecosystem functioning by causing shifts in community structure and a decrease in biodiversity, which can undermine both the ecological functioning and economic stability of marine-dependent regions. This may be especially true for reefs already occupying a thermal niche that approaches the upper limits of many species, such as those in the Red Sea. Our study highlights the critical need for enhanced reporting mechanisms and forecasting tools to effectively document and help mitigate further impacts linked to MHW-induced mass marine die-offs.
Collapse
Affiliation(s)
- Matthew D Tietbohl
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Lily G C Genevier
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Erik C Krieger
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alexander Kattan
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yixin Wang
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Elamurugu Alias Gokul
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lucia M Rodriguez Bravo
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lea Palm
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Gage Mele
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ibrahim Hoteit
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Maggie D Johnson
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
5
|
ten Brink H. Environmental Change Can Result in Irreversible Biodiversity Loss in Recently Formed Species Flocks. GLOBAL CHANGE BIOLOGY 2025; 31:e70239. [PMID: 40346882 PMCID: PMC12065021 DOI: 10.1111/gcb.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/24/2025] [Indexed: 05/12/2025]
Abstract
Adaptive radiations, where a lineage diversifies into multiple species exploiting different niches, are key drivers of biodiversity. It is therefore important to understand the factors that drive such radiations and how changing environmental conditions affect their persistence. Using a size-structured model, I study how changing environmental conditions impact the persistence of a six-species flock. At birth, individuals are constrained to feed on a shared resource. As they mature, individuals diversify into six specialized forms, each adapted to feed on specific resources. Environmental changes affecting one species can trigger a cascade, altering the size structure of the focal species and subsequently affecting resource availability for other species. Under these altered ecological conditions, coexistence of all species becomes impossible. Importantly, once species are lost, they cannot re-establish even when environmental conditions return to their original state, resulting in irreversible biodiversity loss. These findings underscore the vulnerability of species flocks to environmental change and highlight the potential for unexpected outcomes in the face of shifting ecological conditions due to climate change.
Collapse
Affiliation(s)
- Hanna ten Brink
- Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamthe Netherlands
- Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and BiogeochemistryEawag Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| |
Collapse
|
6
|
Wang D, Liu N, Kong X, Zhu X, Wang Y, Hu J, Bao Z. Single-cell transcriptomic dynamics of scallop heart reveals the heterogeneous response to heat stress. BMC Biol 2025; 23:98. [PMID: 40234911 PMCID: PMC12001498 DOI: 10.1186/s12915-025-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Animals with open circulatory systems are highly vulnerable to environmental temperature fluctuations, making them particularly threatened by global warming. However, research on the cellular heterogeneity of heart responses to elevated temperatures in animals with open circulatory systems remains limited. RESULTS Here, we conducted a comprehensive investigation of the morphology, metabolism and scRNA-seq of the heart in a molluscan model, Argopecten irradians, under heat stress. Our results unraveled that the severity of cardiac structure damage increased progressively with rising temperature, accompanied by widespread mitochondrial dysfunction and neurohumoral response. We identified two subpopulations within cardiomyocytes (CMs), including ventricular myocytes (VMs) and atrial myocytes (AMs), which exhibited specialized functional roles in response to thermal stress. Specifically, AMs enhanced cell-cell communications with the immune-like cells and fibroblasts to contribute to maintaining cardiac homeostasis under heat stress. Whereas, VMs displayed enhanced energy supply and differentiation potential to withstand thermal challenges. Furthermore, RNA interference targeting the most heat-responsive gene, PLRP2-like, resulted in a significant reduction in heat tolerance and triglyceride accumulation in scallops. CONCLUSIONS Our study investigated the heterogeneous response of the scallop heart to high temperatures, revealing distinct response patterns between VMs and AMs. We further identified a key gene, AiPLRP2-like, which exhibits unique cellular localization patterns compared to its mammalian counterpart and may play a pivotal role in regulating cardiac thermotolerance in organisms with open circulatory systems. These findings provide novel insights into the theoretical framework and evolutionary adaptations of marine invertebrate hearts in response to environmental temperature fluctuations.
Collapse
Affiliation(s)
- Danyang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Fang Zongxi Center for Marine Evo Devo, Ocean University of China, Qingdao, China
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Weber AV, Craig PM. Characterization of darter ( Etheostoma spp.) interspecific energetic responses to acute temperature elevations. CONSERVATION PHYSIOLOGY 2025; 13:coaf027. [PMID: 40235653 PMCID: PMC11998911 DOI: 10.1093/conphys/coaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Understanding metabolic responses to temperature elevations is critical for determining how fish populations will be impacted by the increased occurrence of extreme heat events. Here, we characterized the thermal tolerance limits and metabolic functions of three closely related darter species native to the Grand River of Southern Ontario: Fantail darter (Etheostoma flabellare; FTD), Rainbow darter (Etheostoma caeruleum; RBD) and Johnny darter (Etheostoma nigrum; JD). Brain and heart activity of enzymes associated with cellular respiration were analysed for each species at 15°C baseline and following a Critical Thermal Maximum (CTmax) test. Additionally, aerobic scope (AS) was determined for each species while exposed to four heat ramps designed to mimic previously recorded heatwaves. CTmax significantly differed between species with FTD displaying the highest at 33.3°C, JD second at 31.8°C and RBD the lowest at 30.7°C. In darters not exposed to heat stress, FTD possessed higher brain enzymatic activity rates, specifically in pyruvate kinase (PK), citrate synthase (CS) and malate dehydrogenase (MDH). These patterns shifted slightly after exposure to CTmax, with JD displaying a substantial elevation in PK, lactate dehydrogenase, CS and MDH activity, suggesting they had greater enzymatic capacity at temperature extremes. Within heart tissue, we observed no interspecific differences at baseline temperatures; however, RBD had lower enzyme activity than FTD or JD in all enzymes but cytochrome c oxidase following CTmax. Metabolically, FTD exhibited the highest AS following exposure to 10 and 15°C temperature elevations. Our findings demonstrate that FTD may be the best equipped to respond to temperature-induced increases in metabolic demand due to their elevated baseline enzymatic activity and broader AS. These insights may contribute to future darter conservation efforts by informing predictions on species population shifts, particularly in the context of climate change.
Collapse
Key Words
- Aerobic scope
- Ctmaxenzymatic activity
- climate change
- heatwaves
- metabolism
- small-bodied fishes Abbreviations: FTD, fantail darter; RBD, rainbow darter; JD, Johnny darter; PK, pyruvate kinase; LDH, lactate dehydrogenase; MDH, malate dehydrogenase; CS, citrate synthase; COX, cytochrome c oxidase; AS, aerobic scope; CTmax, critical thermal maximum; LOE, loss of equilibrium
Collapse
Affiliation(s)
- Allison V Weber
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Schmidt E, Milles H, Kennedy L, Donelson J. Interspecies differences in lactate dehydrogenase and citrate synthase activity among damselfish and cardinalfish. J Therm Biol 2025; 129:104089. [PMID: 40117912 DOI: 10.1016/j.jtherbio.2025.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/15/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Species with different thermal distributions, life-history traits, and behaviours have evolved physiological processes to suit energetic demands. Previous research has argued that these interspecies differences are often reflected in muscle enzyme activity that serve as proxies for aerobic and anaerobic respiration. Here, we measured the maximal enzyme activity of two enzymes, citrate synthase and lactate dehydrogenase, between two damselfish (Pomacentrus) and cardinalfish (Ostorhinchus) species. Citrate synthase was measured as a proxy for mitochondrial volume density, a marker of aerobic metabolism; lactate dehydrogenase was measured as a proxy for anaerobic energy production, a marker for anaerobic metabolism. Thermal performance curves of maximal enzyme activity were measured from 10 to 50 °C, at 10 °C intervals. Citrate synthase and lactate dehydrogenase both showed a positive correlation with temperature, that was absent of a plateau. Damselfish displayed higher levels of citate synthase maximal enzyme activity, while cardinalfish displayed a higher lactate dehydrogenase to citrate synthase ratio. Ostorhinchus doederleini, a sedentary cardinalfish, displayed higher level of lactate dehydrogenase maximal enzyme activity. Temperature coefficients (Q10) for lactate dehydrogenase showed a curved relationship, peaking at differences between 30 and 40 °C. No differences in Q10 values were observed between species, suggesting no difference in the thermal sensitivity of enzymes. Interspecies differences in maximal enzyme activity identified in this study compliments previous research, whereby more active species require higher levels of citrate synthase to fuel sustained swimming, as well as energetically demanding locomotion behaviours. Alternatively, more sedentary species possessed higher levels of lactate dehydrogenase and reliance on anaerobic metabolism, possibly due to an increased reliance on infrequent burst swimming behaviours.
Collapse
Affiliation(s)
- Elliott Schmidt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Hunter Milles
- Biology Department, Oberlin College, Oberlin, OH, United States of America.
| | - Lauren Kennedy
- College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Jennifer Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
9
|
Mallett SL, Leahy L, Vaughan IP, Klaftenberger T, Cerdá X, Wheatley LJ, Leyshon K, King S, Dawson W, Harrendence K, Wilker I, Bishop TR. Automating thermal limits: continuous, objective, and high-throughput thermal data for small mobile ectotherms. J Therm Biol 2025; 129:104127. [PMID: 40344753 DOI: 10.1016/j.jtherbio.2025.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Affiliation(s)
- Sophie L Mallett
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom.
| | - Lily Leahy
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Ian P Vaughan
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Tristan Klaftenberger
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Lucy J Wheatley
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Kester Leyshon
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Shane King
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Will Dawson
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom; School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 4LB, United Kingdom
| | - Kelsey Harrendence
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Icaro Wilker
- Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom; Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Gamperl AK, Nati JJH, Clow KA, Sandrelli RM, Gerber L, Porter ES, Peroni EC. It's a good thing that severely hypoxic salmon (Salmo salar) have a limited capacity to increase heart rate when warmed. J Exp Biol 2025; 228:JEB249594. [PMID: 39882674 PMCID: PMC11925397 DOI: 10.1242/jeb.249594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
With climate change, fish are facing rising temperatures, an increase in the frequency and severity of heat waves and hypoxia, sometimes concurrently. However, only limited studies have examined the combined effects of increases in temperature and hypoxia on fish physiology and survival. We measured the cardiorespiratory physiology of 12°C-acclimated Atlantic salmon when exposed acutely to normoxia [100% air saturation (sat.)] versus 75 and 50% air sat., and then warmed to their critical thermal maximum (CTmax) at 2°C h-1. Fish exposed to 50% air sat. became bradycardic, were unable to increase heart rate (fH) when warmed, and had lower values for metabolic scope and CTmax (21.3 vs 26.1°C in normoxic fish). The effects of 75% air sat. on cardiorespiratory parameters and CTmax were intermediate. We then used atropine (1.2 mg kg-1) and 8-cyclopentyltheophylline (CPT; 50 nmol kg-1) to investigate what role(s) cholinergic tone on the heart and cardiac adenosinergic effects, respectively, play in preventing severely hypoxic salmon (40% air sat.) from increasing fH when warmed. CPT had no/limited effects on salmon cardiorespiratory parameters and thermal tolerance. However, atropine increased fH in hypoxic fish and allowed it to rise with temperature, and this resulted in salmon that were much less tolerant to warming. Collectively, these results: (1) show that fish in severely hypoxic environments will be very susceptible to climate change-associated heat waves; and (2) suggest that cholinergic tone on the heart is not removed when severely hypoxic fish are exposed to rising temperatures to protect the heart's pumping capacity.
Collapse
Affiliation(s)
- Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Julie J. H. Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Ellen C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
11
|
Annis ER, Jane A, Frederich M, Waller J, Fecteau-Volk CD, O'Loughlin H, Larkin R, Rasher DB. Laboratory-Reared Lobster Larvae Yield Inaccurate Estimates of Thermal Tolerance. GLOBAL CHANGE BIOLOGY 2025; 31:e70154. [PMID: 40129183 DOI: 10.1111/gcb.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Physiological response to temperature stress defines the distribution of many marine invertebrates, and their thermal limits provide a foundation for understanding marine invertebrate response to climate change. In bottom dwelling species with free swimming planktonic larvae, such as the American lobster (Homarus americanus), thermal tolerance of early life stages influences vertical distribution in the water, settlement patterns on the bottom, and ultimately the species' range. We used measures of scope for activity, size, survivorship, and molecular techniques to demonstrate that wild-caught lobster larvae were more tolerant of temperature stress than laboratory-reared larvae (reared at 18°C and fed brine shrimp). Thermal tolerance in wild larvae exceeded both upper and lower critical temperatures of laboratory-reared larvae by approximately 5°C. The difference appeared to be driven by diet and acclimation temperature, yet altering these parameters still did not produce larvae with a range of thermal tolerance equal to wild larvae. We report that nearly all studies examining physiological response to temperature in marine invertebrate larvae have used laboratory-reared larvae and no studies have compared their thermal tolerance to wild larvae. The lack of similar comparisons in other species reveals a significant gap in our understanding of organismal response to temperature stress spanning multiple phyla. Our research is a novel effort to close this gap and better represent how this species responds to global climate change driven extremes.
Collapse
Affiliation(s)
| | - Aubrey Jane
- University of New England, Biddeford, Maine, USA
| | | | - Jesica Waller
- Maine Department of Marine Resources, West Boothbay, Maine, USA
| | | | | | | | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
12
|
Angeles-Gonzalez LE, Alvarez-Lee L, Osorio-Olvera L, López-Ripoll E, Díaz F, Rosas C, Cruz-López H, Pascual C. Linking Inferred Laboratory-Derived Temperature Stress to the Immunocompetence of Wild Octopus maya (Mayan Octopus) G.L. Voss & Solís, 1966. Ecol Evol 2025; 15:e70805. [PMID: 40109552 PMCID: PMC11922577 DOI: 10.1002/ece3.70805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 03/22/2025] Open
Abstract
The "oxygen capacity-dependent thermal tolerance" (OCLTT) hypothesis suggests that the ability of ectotherms to tolerate heat is limited by their ability to supply oxygen to their tissues at various temperatures set by the capacity of the cardiovascular and respiratory systems. Optimal temperatures and oxygen can supply enough energy through adenosine triphosphate (ATP) via the electron transport chain to support fitness-related processes. Conversely, stressful temperatures indicate an energetic limitation that could describe physiological parameters and biogeographical patterns. Our study aimed to determine if stressful temperatures could be related to immunological performance under a macroecological approach. To prove this hypothesis, we recapitulated key immune parameters, including total hemocyte count, hemagglutination, phenoloxidase system, and lysozyme activity, of wild mayan octopus (Octopus maya), an endemic species in Mexico's Yucatan Peninsula, with physiological data via thermal metabolic scope (a proxy of the aerobic scope) from its fishing regions. Our results indicate that stressful temperatures (> 27°C) are associated with depression in the immunocompetence of the mayan octopus. Specifically, we found that favorable temperatures (< 27°C) are positively correlated with a better immunocompetence of wild octopus. This study provides evidence that temperature stress inferred from laboratory studies presents a potential tool to determine wild populations' health. However, predictions and modeling should consider additional factors such as demographic distribution, seasonality, biotic/abiotic interactions, and ontogenetic development.
Collapse
Affiliation(s)
- Luis Enrique Angeles-Gonzalez
- Laboratorio de Ecofisiología de Organismos Acuáticos Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE) Ensenada Baja California Mexico
| | - Laura Alvarez-Lee
- Laboratorio de Ecofisiología de Organismos Acuáticos Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE) Ensenada Baja California Mexico
| | - Luis Osorio-Olvera
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Estefany López-Ripoll
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias Universidad Nacional Autónoma de México Sisal Yucatán Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE) Ensenada Baja California Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias Universidad Nacional Autónoma de México Sisal Yucatán Mexico
| | - Honorio Cruz-López
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias Universidad Nacional Autónoma de México Sisal Yucatán Mexico
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias Universidad Nacional Autónoma de México Sisal Yucatán Mexico
| |
Collapse
|
13
|
Espasandín L, Ramírez F, Ortega M, Villarino E, Chust G, Sbragaglia V, Coll M. Ocean Warming Effects on Catch and Revenue Composition in the Northwestern Mediterranean Sea. GLOBAL CHANGE BIOLOGY 2025; 31:e70112. [PMID: 40116039 DOI: 10.1111/gcb.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 03/23/2025]
Abstract
Climate change-induced ocean warming can have profound implications for marine ecosystems and the socioeconomic activities dependent on them, affecting the catch composition, and fisheries revenue. Our study evaluates spatio-temporal changes in the Northwestern Mediterranean marine fisheries catch and revenue composition tied to ocean warming and disentangles the different underlying processes. To do so, we analyzed the weighted mean thermal affinity of the catch (Mean Temperature of the Catch: MTC) and revenue (Mean Temperature of Revenue: MTR) across different taxonomic groups, fishing fleets, and fishing harbors, using a 23-year time series of commercial landings. Results revealed changes in catch and revenue composition, with an overall temporal increase in the MTC (0.68°C per decade) and MTR (0.58°C per decade) linked to local sea temperature. The temporal increase in both indices prevailed across fishing fleets and taxonomic groups. The processes underpinning these changes over time were tropicalization (i.e. relative increase of warm-affinity species; 41.97% for MTC and 45.20% for MTR), and deborealization (i.e. relative decrease of cold-affinity species; 46.58% for MTC and 44.99% for MTR), with variability across dimensions. Deborealization particularly influenced pelagic fisheries (i.e. purse-seiners and surface longliners) and some commercially important species (e.g. European hake, blue whiting, and Norway lobster). Even if the temporal increase in MTC and MTR was consistent across taxonomic groups and fleets, the spatial dimension showed heterogeneity and temporal declines in some cases. In summary, our study provides valuable information about temporal changes in catch composition associated with local ocean warming and reveals potential cascading effects through the social-ecological system. In particular, we presented the MTR approach for the first time, evidencing ocean warming effects on revenue composition. We suggest that the correlation between changes in catch and revenue composition reveals the adaptive capacity, or fragility of specific fishing fleets and points to management priorities.
Collapse
Affiliation(s)
- Lucía Espasandín
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Francisco Ramírez
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Miquel Ortega
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ernesto Villarino
- AZTI Marine Research Division, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Guillem Chust
- AZTI Marine Research Division, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Valerio Sbragaglia
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Marta Coll
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| |
Collapse
|
14
|
Wu Z, Zhang Q, Wang X, Li A. Alterations and resilience of intestinal microbiota to increased water temperature are accompanied by the recovery of immune function in Nile tilapia. Sci Rep 2025; 15:5094. [PMID: 39934152 PMCID: PMC11814331 DOI: 10.1038/s41598-025-87980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
In the context of ongoing global warming, fish, as aquatic ectotherms, are highly vulnerable to increased water temperature caused by climate change and extreme heatwaves because of their inability to maintain their body temperature. After prolonged coevolution, the intestinal microbiota has become an integral part of fish and plays a pivotal role in immunity and metabolism. To date, however, little is known about the effects of increased water temperature on the intestinal microbiota of fish, particularly the intestinal mucosa-associated microbiota. Here, we investigated the variation patterns of the intestinal microbiota and immune status in Nile tilapia (Oreochromis niloticus; 125.02 ± 4.55 g) under increased water temperature. The results showed that the microbial diversity, structure, dominant microbes, and predicted function of fish intestinal microbiota were resilient to low-level warming (increasing by 2 °C) but not to high-level warming (increasing by 8 °C) and that fish immune parameters (serum lysozyme content and bactericidal activity) recovered simultaneously. Notably, along with compromised immune function, short-term warming (7 days) drove a significant increase in the microbial richness and diversity of fish intestinal mucosae, in which the overgrowth of opportunistic pathogens such as Romboutsia ilealis, Escherichia-Shigella, Fusobacterium, Streptococcus, Acinetobacter, and Enterobacter inhibited the colonization of potential probiotics such as Cetobacterium, ultimately resulting in a significant reduction in metabolic pathways and a significant increase in the potentially pathogenic phenotype. After long-term warming (37 days), the above alterations disappeared in low-level warming but remained in high-level warming. Critically, long-term warming disrupted the network complexity and stability of the intestinal mucosa- and digesta-associated microbiota to different extents. Collectively, this study revealed that the alterations and resilience of intestinal microbiota to increased water temperature coincided with the recovery of immune function in fish. Our findings extend the understanding of how the intestinal microbiota in aquatic ectotherms respond to increased water temperature, providing important implications for harnessing the potential benefits of host-associated microorganisms to enhance their resilience to climate change.
Collapse
Affiliation(s)
- Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiehao Wang
- Icongene (Wuhan) Gene Technology Co., Ltd, Wuhan, 430074, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Chan F, Sokolova I, Vopel K. Ocean hypoxia: The science of climate change in the sea. Sci Rep 2025; 15:4260. [PMID: 39905190 PMCID: PMC11794425 DOI: 10.1038/s41598-025-86706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Affiliation(s)
- Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, USA.
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State University, Newport, USA.
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Kay Vopel
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
16
|
Jiang X, Zhang X, Guan J, He P, Wei P, Zhang L, Peng J, Zhao L. Physiological energetics of selectively bred oysters (Crassostrea hongkongensis) under marine heatwaves. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106871. [PMID: 39612895 DOI: 10.1016/j.marenvres.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Marine heatwaves (MHWs) have become more frequent and intense in the context of rapid climate change, causing detrimental effects on marine bivalves and ecosystems they sustain. While selective breeding programs for bivalves can substantially enhance growth performance, their ability to improve thermal stress tolerance remains largely unexplored. Here, we compared physiological energetics of wild and selectively bred Hongkong oysters (Guihao No. 1) under intensifying MHWs conditions. Following two consecutive events of MHWs, selectively bred oysters exhibited around 10% higher survival rate than that of wild oysters. Throughout the course of the experiment, the clearance rate of selectively bred oysters was significantly increased in comparison to wild oysters showing significantly depressed ability to feed. Nevertheless, exposure of selectively bred oysters to MHWs elicited significantly increased oxygen assumption and ammonia excretion rates, which in turn enhanced their O:N ratio. When couched into energetic terms, while MHWs inhibited the individual scope for growth, selectively bred oysters displayed better thermal tolerance than wild oysters. Taken together, our findings highlight the potential of new varieties of selectively bred oysters (such as Guihao No. 2) in coping with intensifying MHWs and guide the future development of selective breeding strategies to enhance the oyster thermal resilience in this era of unprecedented climate change.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xingzhi Zhang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Junliang Guan
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Pingping He
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Pingyuan Wei
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Li Zhang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Jinxia Peng
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, China; Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, China.
| | - Liqiang Zhao
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fishery College, Guangdong Ocean University, Zhanjiang, China; Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.
| |
Collapse
|
17
|
Nissen C, Caccavo JA, Morée AL. Twenty-First-Century Environmental Change Decreases Habitat Overlap of Antarctic Toothfish (Dissostichus mawsoni) and Its Prey. GLOBAL CHANGE BIOLOGY 2025; 31:e70063. [PMID: 39930895 PMCID: PMC11811694 DOI: 10.1111/gcb.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
Antarctic toothfish are a commercially exploited upper-level predator in the Southern Ocean. As many of its prey, the ectothermic, water-breathing Antarctic toothfish is specifically adapted to the temperature and oxygen conditions present in the high-latitude Southern Ocean. Additionally, the life cycle of Antarctic toothfish depends on sea-ice dynamics and the transport of individuals by currents between regions with different prey. To assess the impact of 21st-century climate change on potential interactions of Antarctic toothfish and its prey, we here employ the extended aerobic growth index (AGI), which quantifies the effect of ocean temperature and oxygen levels on the habitat viability of individual species. We quantify changes in predator-prey interactions by a change in viable habitat overlap as obtained with the AGI. As environmental data, we use future projections for four emission scenarios from the model FESOM-REcoM, which is specifically designed for applications on and near the Antarctic continental shelf. For the two highest-emission scenarios, we find that warming and deoxygenation in response to climate change cause a subsurface decline of up to 40% in viable habitat overlap of Antarctic toothfish with important prey species, such as Antarctic silverfish and icefish. Acknowledging regional differences, our results demonstrate that warming and deoxygenation alone can significantly perturb predator-prey habitat overlap in the Southern Ocean. Our findings highlight the need for a better quantitative understanding of climate change impacts on Antarctic species to better constrain future ecosystem impacts of climate change.
Collapse
Affiliation(s)
- Cara Nissen
- Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine ResearchUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Jilda Alicia Caccavo
- Laboratoire Des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Laboratoire d'Océanographie et du Climat Expérimentations et Approches Numériques, LOCEAN/IPSL, UPMC‐CNRS‐IRD‐MNHNSorbonne UniversitéParisFrance
| | - Anne L. Morée
- Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
18
|
Egan JP, Ma J, Myrsell VL, Chen Z, Masingale J, Caudill CC, Boyle T, Browning J, Narum SR, Cain KD, Hohenlohe PA. Temperature-Related Effects on Disease Susceptibility and Immune Response in Redband Trout (Oncorhynchus mykiss gairdneri) Following Challenge With Flavobacterium columnare. JOURNAL OF FISH DISEASES 2025; 48:e14046. [PMID: 39578409 DOI: 10.1111/jfd.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Heat stress can increase disease risk in fishes by reducing immune function. Interactions between redband trout (Oncorhynchus mykiss gairdneri) and Flavobacterium columnare, a causative agent of columnaris disease, provide an opportunity to investigate the effects of temperature on immune function and disease resistance during periods of thermal stress. We conducted three trials to characterise differences in immune function and mortality between redband trout held at 18°C and 21°C following challenge with F. columnare. In trial 1, cumulative per cent mortality (CPM) was low and not statistically different between 18°C and 21°C. In trials 2 and 2, we administered higher challenge doses and observed increased CPM overall and significantly greater CPM at 21°C than 18°C. Redband trout upregulated il-8, tnf-α, igm and igt following infection by F. columnare, suggesting that all of these genes may be involved in immune responses to F. columnare infection. We found no differences in the strength of the immune responses between fish held at 21°C versus 18°C. This indicated that 21°C did not elicit sufficient thermal stress to impair immune function and that increased CPM at 21°C versus 18°C was due to enhanced F. columnare virulence.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
| | - Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Veronica L Myrsell
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Zhongqi Chen
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA
| | - Jonathan Masingale
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Timothy Boyle
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA
| | - Julianna Browning
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA
| | - Shawn R Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, Idaho, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
19
|
Widdrington JB, Reis‐Santos P, Macdonald JI, Moore BR, Nicol SJ, Morrongiello JR, Gillanders BM. Local- and Regional-Scale Climate Variability Drives Complex Patterns of Growth Synchrony and Asynchrony in Deep-Sea Snappers Across the Indo-Pacific. GLOBAL CHANGE BIOLOGY 2025; 31:e70051. [PMID: 39906997 PMCID: PMC11795348 DOI: 10.1111/gcb.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 02/06/2025]
Abstract
Climatic variation can play a critical role in driving synchronous and asynchronous patterns in the expression of life history characteristics across vast spatiotemporal scales. The synchronisation of traits, such as an individual's growth rate, under environmental stress may indicate a loss of phenotypic diversity and thus increased population vulnerability to stochastic deleterious events. In contrast, synchronous growth under favourable ecological conditions and asynchrony during unfavourable conditions may help population resilience and buffer against the negative implications of future environmental variability. Despite the significant implications of growth synchrony and asynchrony to population productivity and persistence, little is known about its causes and consequences either within or among fish populations. This is especially true for long-lived deep-sea species that inhabit environments characterised by large-scale interannual and decadal changes, which could propagate growth synchrony across vast distances. We developed otolith growth chronologies for three deep-sea fishes (Etelis spp.) over 65° of longitude and 20° of latitude across the Indo-Pacific region. Using reconstructed time series of interannual growth from six distinct Exclusive Economic Zones (EEZs), we assessed the level of spatial synchrony at the individual-, population- and species-scale. Across five decades of data, complex patterns of synchronous and asynchronous growth were apparent for adult populations within and among EEZs of the Pacific Ocean, mediated by shifts in oceanographic phenomena such as the Pacific Decadal Oscillation. Overall, our results indicate that the degree of synchrony in biological traits at depth depends on life history stage, spatiotemporal scales of environmental variability and the influence of ecological factors such as competition and dispersal. By determining the magnitude and timing of spatially synchronous growth at depth and its links to environmental variability, we can better understand fluctuations in deep-sea productivity and its vulnerability to future environmental stressors, which are key considerations for sustainability.
Collapse
Affiliation(s)
- Joseph B. Widdrington
- Southern Seas Ecology Laboratories, School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Patrick Reis‐Santos
- Southern Seas Ecology Laboratories, School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jed I. Macdonald
- Oceanic Fisheries ProgrammeThe Pacific CommunityNoumeaSouth ProvinceNew Caledonia
| | - Bradley R. Moore
- National Institute of Water and Atmospheric Research LtdNelsonNew Zealand
| | - Simon J. Nicol
- Oceanic Fisheries ProgrammeThe Pacific CommunityNoumeaSouth ProvinceNew Caledonia
| | | | - Bronwyn M. Gillanders
- Southern Seas Ecology Laboratories, School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
20
|
Chang J, Zhang J, Chu L, Liu A, Hou X, Zhu X, Huang X, Xing Q, Hu J, Bao Z. AMPK-mediated regulation of cardiac energy metabolism: Implications for thermotolerance in Argopecten irradians irradians. Gene 2025; 933:148922. [PMID: 39244169 DOI: 10.1016/j.gene.2024.148922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKβ and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Götze S, Reddin CJ, Ketelsen I, Busack M, Lannig G, Bock C, Pörtner HO. Cardiac performance mirrors the passive thermal tolerance range in the oyster Ostrea edulis. J Exp Biol 2025; 228:JEB249750. [PMID: 39717879 PMCID: PMC11832122 DOI: 10.1242/jeb.249750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here, we assessed how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate. We studied organismal and heart tissue cellular responses of the European oyster, Ostrea edulis, challenged by rapid warming (+2°C per hour) and gradual warming (+2°C per 24 h). Starting at 22°C, cardiac activity was monitored as temperature was increased, tracking cardiac performance curves. Hearts were collected at discrete temperatures to determine cardiomyocyte metabolic profiles. Heart rate peaked at a lower Arrhenius breakpoint temperatures (ABT) of 30.5°C under rapid warming versus 33.9°C under gradual warming. However, oysters survived to higher temperatures under rapid than under gradual warming, with half of oysters dying (LT50) by 36.9°C versus 34.8°C, respectively. As rapid warming passed 30°C, heart rate fell and cardiomyocyte metabolic profiles suddenly changed as oysters switched to anaerobic metabolism for survival. By 36°C, severe fluctuations in Krebs cycle-related metabolites accompanied cardiac failure. In contrast, oysters exposed to gradual warming made gradual, extensive adjustments to intracellular metabolic pathways, prolonging aerobic cardiomyocyte metabolism to higher temperatures. This extended survival duration and ABT, beyond which cardiac activity decreased sharply and ceased. Our results emphasize how the rate of warming forces a trade-off between temperature maxima and survival duration, via tissue- and cellular-level impacts. European oysters possess adaptations that enable extended tolerance and survival of intertidal populations.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| | - Carl J. Reddin
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Isabel Ketelsen
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| | - Michael Busack
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| | - Hans-O. Pörtner
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany
| |
Collapse
|
22
|
Onukwufor JO, Kamunde C. Interactive effects of temperature, cadmium, and hypoxia on rainbow trout (Oncorhynchus mykiss) liver mitochondrial bioenergetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117450. [PMID: 39632330 PMCID: PMC11783143 DOI: 10.1016/j.ecoenv.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Fish in their natural environments possess elaborate mechanisms that regulate physiological function to mitigate the adverse effects of multiple environmental stressors such as temperature, metals, and hypoxia. We investigated how warm acclimation affects mitochondrial responses to Cd, hypoxia, and acute temperature shifts (heat shock and cold snap) in rainbow trout. We observed that state 3 respiration driven by complex I (CI) was resistant to the stressors while warm acclimation and Cd reduced complex I +II (CI + II) driven state 3 respiration. In contrast, state 4 (leak) respirations for both CI and CI + II were consistently stimulated by warm acclimation resulting in reduced mitochondrial coupling efficiency (respiratory control ratio [RCR]). Warm acclimation and Cd exacerbated their individual effect on leak respiration to further reduce the RCR. Moreover, the effect of warm acclimation on mitochondrial bioenergetics aligned with its inhibitory effect on activities of citrate synthase and both CI and CII. Unlike the Cd and warm acclimation combined exposure, hypoxia alone and in combination with warm acclimation and/or Cd abolished the stimulation of CI and CI + II powered leak respirations resulting in partial recovery of RCR. The response to acute temperature shifts indicated that while state 3 respiration returned to pre-acclimation level, the leak respiration did not. Overall, our findings suggest a complex in vivo interaction of multiple stressors on mitochondrial function that are not adequately predicted by their individual effects.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
23
|
Guo X, Gong X, Wang J, Nguyen TD, Kazmi SSUH, Mo J, Hua F, Liu W, Wang Z. Temperature-dependent toxicity and mechanisms of florfenicol on the embryonic development of marine medaka (Oryzias melastigma). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117687. [PMID: 39778313 DOI: 10.1016/j.ecoenv.2025.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
The extensive use of antibiotics and their persistence in the environment have seriously threatened marine ecosystems in recent years. The frequent occurrence of extreme weather due to climate change has also increased the uncertainty of effective toxicity identification and risk assessment of the chemicals of concern. This study aimed to investigate the toxic effects and potential mechanisms of florfenicol (0.5, 10, 100, 500 and 1000 μg/L) on the embryonic development of marine medaka (Oryzias melastigma) through 21-d experiment under three temperature exposure scenarios (20, 25, and 30 °C). Considering embryo development, the highest level of florfenicol at 1000 μg/L decreased the hatching success at 25 °C, whereas the total inhibition of hatching was observed at 20 °C regardless of florfenicol concentrations of concern. The ATP content was inhibited by the highest florfenicol dose at 20 °C, while stimulated ATP content at 20 °C and 30 °C, compared to 25 °C. Fluctuation of temperatures, especially at 20 ℃, induced oxidative stresses, including increased MDA contents and decreased CYP450 and HSP90 contents. For inflammatory response-related genes (nf-κb, nlrx1, pycard, caspase 1, and il-1β), an increase of florfenicol dose led to gene upregulation at 25 °C. Conversely, gene upregulation was also observed for all treatments at 30 °C, while predominantly downregulation was observed for all treatments at 20 °C. For genes related to DNA damage and apoptosis (pi3k, akt, foxo1, tp53, bcl-2, bax, apaf-1, caspase 9, and 3), alterations in gene expression were evident for all florfenicol treatments at both 20 °C and 30 °C. Therefore, this study suggests that the combined effects of florfenicol and temperature may disrupt the normal function of mitochondria, impacting ATP production, thereby inducing oxidative stress, inflammatory response, DNA damage, and apoptosis, ultimately resulting in decreased hatching rates and increased mortality. Furthermore, the key findings of this study reveal the complex interactions between florfenicol and temperature and emphasize the need to consider temperature when identifying toxicity and mechanisms, as well as the ecological risk assessment of florfenicol in marine environments.
Collapse
Affiliation(s)
- Xingying Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xu Gong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jinhui Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tan-Duc Nguyen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Feng Hua
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China.
| |
Collapse
|
24
|
Zhang Y, Luo Y, Huang K, Liu Q, Fu C, Pang X, Fu S. Constraints of digestion on swimming performance and stress tolerance vary with habitat in freshwater fish species. Integr Zool 2025; 20:88-107. [PMID: 38288562 DOI: 10.1111/1749-4877.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Limited aerobic scope (AS) during digestion might be the main constraint on the performance of bodily functions in water-breathing animals. Thus, investigating the postprandial changes in various physiological functions and determining the existence of a shared common pattern because of possible dependence on residual AS during digestion in freshwater fish species are very important in conservation physiology. All species from slow-flow habitats showed impaired swimming speed while digesting, whereas all species from fast-flow habitats showed strong swimming performance, which was unchanged while digesting. Only two species from slow-flow habitats showed impaired heat tolerance during digestion, suggesting that whether oxygen limitation is involved in the heat tolerance process is species-specific. Three species from slow- or intermediate-flow habitats showed impaired hypoxia tolerance during digestion because feeding metabolism cannot cease completely under hypoxia. Overall, there was no common pattern in postprandial changes in different physiological functions because: (1) the digestion process was suppressed under oxygen-limiting conditions, (2) the residual AS decreased during digestion, and (3) performance was related to residual AS, while digestion was context-dependent and species-specific. However, digestion generally showed a stronger effect on bodily functions in species from slow-flow habitats, whereas it showed no impairment in fishes from fast-flow habitats. Nevertheless, the postprandial change in physiological functions varies with habitat, possibly due to divergent selective pressure on such functions. More importantly, the present study suggests that a precise prediction of how freshwater fish populations will respond to global climate change needs to incorporate data from postprandial fishes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Yulian Luo
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Keren Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qianying Liu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Xu Pang
- College of Fisheries, Southwest University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
25
|
Shen Y, Dai Y, Yu F, Peng W, Liu J, You W, Luo X, Ke C, Chen N. The weak association between hypoxia tolerance and thermal tolerance increases the susceptibility of abalone to climate change. ENVIRONMENTAL RESEARCH 2025; 264:120324. [PMID: 39522871 DOI: 10.1016/j.envres.2024.120324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The simultaneous occurrence of high temperatures and hypoxia events caused mass die-offs of aquatic animals. It is crucial to investigate the relationship between hypoxia tolerance and thermal tolerance of aquatic animals to predict the biological and ecological outcomes under global climate change scenarios. In this study, the hypoxia tolerance and thermal tolerance of Pacific abalone, Haliotis discus hannai, were measured by methods based on adhesion capacity (hypoxia adhesion duration and heat adhesion duration) and heart rate fluctuations (breakpoint of dissolved oxygen and Arrhenius breakpoint temperature). Weak correlations were found between hypoxia tolerance and thermal tolerance (Spearman correlation, r = -0.09, P = 0.2069; Pearson correlation, r = -0.04, P = 0.3313). Furthermore, a total of 21 significant SNPs and 19 candidate genes (such as cubn, lrp6, gria2, rft2, and casp8) were identified to be associated with hypoxia tolerance of Pacific abalone by conducting whole genome resequencing and genome-wide association study (GWAS). But there was no overlap between candidate genes associated with hypoxia tolerance and candidate genes associated with thermal tolerance, validating the weak correlation between hypoxia tolerance and thermal tolerance. This study highlights that individuals with greater hypoxia tolerance do not necessarily have greater thermal tolerance. Global warming and hypoxia may pose a greater threat to population size and genetic diversity of some aquatic animals than previously believed.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junyu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Nan Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361102, China.
| |
Collapse
|
26
|
Hamilton TJ, Cheung K, Hudson J, Szaszkiewicz J, Ingraham E, Krook J, Johnson A, Franczak B, McAdam S, Brauner CJ. Embryological incubation temperature modulates behaviour in larval white sturgeon (Acispencer transmontanus). J Therm Biol 2025; 127:104069. [PMID: 39928998 DOI: 10.1016/j.jtherbio.2025.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/03/2024] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
White sturgeon inhabit large rivers and estuaries along the Pacific coast of North America and play important ecological and cultural roles. As with other poikilotherms, the expected rise in global temperatures will create physiological challenges for sturgeon, including direct effects on physiological rates, and may also cause changes in behaviour that impact survival. In this study, we investigated 'carryover effects' in white sturgeon (Acipenser transmontanus) by incubating fish at one of three embryological temperatures (12 °C, 15 °C, or 18 °C) from fertilization to hatch, and then holding them at 15 °C for the following 30 days post-hatch (dph). We investigated the effect of these incubation temperatures on subsequent behaviours, including locomotion and anxiety-like behaviour, at 18, 24 and 30 dph. The open field test was used to quantify distance moved by the fish and time spent near the outer wall of the arena (to quantify thigmotaxis, an indicator of anxiety-like behaviour) and recorded with motion-tracking software. This test was also used to compare behaviour during the day versus night (at 21 dph) and hourly at night (at 28 dph). Additionally, a light/dark test commonly used in rodents and other fish species was performed for the first time on larval sturgeon at 24 dph. We found a significant family effect; the impact of embryo rearing temperature on locomotion and thigmotaxis varied depending on the family lineage of the fish. Furthermore, we provide evidence that larval sturgeon exhibit greater locomotion at 24 and 30 dph compared to 18 dph, and have a preference for the light zone of the light/dark test. Our findings identify a more nuanced effect of incubation temperature on later life stages that varies with family lineage and underscores the need to consider such variation in research and conservation programs.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Katherine Cheung
- Department of Biology, Langara College, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - James Hudson
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | | | - Erica Ingraham
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Jeffrey Krook
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Andréa Johnson
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Franczak
- Department of Mathematics and Statistics, MacEwan University, Edmonton, Alberta, Canada
| | - Steve McAdam
- BC Ministry of Water, Land and Resource Stewardship (UBC), Vancouver, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
27
|
Sinai N, Eterovick PC, Kruger N, Oetken B, Ruthsatz K. Living in a multi-stressor world: nitrate pollution and thermal stress interact to affect amphibian larvae. J Exp Biol 2024; 227:jeb247629. [PMID: 39422187 DOI: 10.1242/jeb.247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The interaction of widespread stressors such as nitrate pollution and increasing temperatures associated with climate change is likely to affect aquatic ectotherms such as amphibians. The metamorphic and physiological traits of amphibian larvae during the critical onset of metamorphosis are particularly susceptible to these stressors. We used a crossed experimental design subjecting Rana temporaria larvae to four constant rearing temperatures (18, 22, 26, 28°C) crossed with three environmentally relevant nitrate concentrations (0, 50, 100 mg l-1) to investigate the interactive and individual effects of these stressors on metamorphic (i.e. growth and development) and physiological traits (i.e. metabolism and heat tolerance) at the onset of metamorphosis. Larvae exposed to elevated nitrate concentrations and thermal stress displayed increased metabolic rates but decreased developmental rate, highlighting interactive effects of these stressors. However, nitrate pollution alone had no effect on either metamorphic or physiological traits, suggesting that detoxification processes were sufficient to maintain homeostasis but not in combination with increased rearing temperatures. Furthermore, larvae exposed to nitrate displayed diminished abilities to exhibit temperature-induced plasticity in metamorphosis timing and heat tolerance, as well as reduced acclimation capacity in heat tolerance and an increased thermal sensitivity of metabolic rate to higher temperatures. These results highlight the importance of considering the exposure to multiple stressors when investigating how natural populations respond to global change.
Collapse
Affiliation(s)
- Noa Sinai
- Institute of Cell and System Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Natasha Kruger
- Animal Behaviour and Wildlife Conservation Group, School of Life Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Ben Oetken
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Rezende EL, Carter MJ. Cumulative Heat Stress in Fluctuating Temperatures and Implications for the Distribution of Freshwater Fish. GLOBAL CHANGE BIOLOGY 2024; 30:e17623. [PMID: 39648972 DOI: 10.1111/gcb.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Predicting how rising temperatures will impact different species and communities is imperative and increasingly urgent with ongoing global warming. Here, we describe how thermal-death time curves obtained in the laboratory can be combined with an envelope model to predict the mortality of freshwater fish under field conditions and their distribution limits. We analyze the heat tolerance and distribution of 22 fish species distributed across North America and demonstrate that high temperatures imposed a distribution boundary for 11 of them, employing a null model. Importantly, predicted thermal boundaries closely match the warmest suitable locality of the envelope model. Simulated warming suggests that the distribution of fish species with lower heat tolerances will be disproportionately affected by rising temperatures, and the rate of local extinctions will be higher across fish communities in warmer localities. Ultimately, our analyses illustrate how physiological information can be combined with distribution models to forecast how warming temperatures are expected to impact different species and ecological communities.
Collapse
Affiliation(s)
- Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, Chile
| | - Mauricio J Carter
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
29
|
Lucore JM, Beehner JC, White AF, Sinclair LF, Martins VA, Kovalaskas SA, Ordoñez JC, Bergman TJ, Benítez ME, Marshall AJ. High temperatures are associated with decreased immune system performance in a wild primate. SCIENCE ADVANCES 2024; 10:eadq6629. [PMID: 39612329 PMCID: PMC11619714 DOI: 10.1126/sciadv.adq6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Rising temperatures due to climate change are predicted to threaten the persistence of wild animals, but there is little evidence that climate change has pushed species beyond their thermal tolerance. The immune system is an ideal avenue to assess the effects of climate change because immune performance is sensitive to changes in temperature and immune competency can affect reproductive success. We investigate the effect of rising temperatures on a biomarker of nonspecific immune performance in a wild population of capuchin monkeys and provide compelling evidence that immune performance is associated with ambient temperature. Critically, we found that immune performance in young individuals is more sensitive to high temperatures compared to other age groups. Coupled with evidence of rising temperatures in the region, our results offer insight into how climate change will affect the immune system of wild mammals.
Collapse
Affiliation(s)
- Jordan M. Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy F. White
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Durham University, Durham, UK
| | - Lorena F. Sinclair
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | | | - Sarah A. Kovalaskas
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Juan Carlos Ordoñez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Thore J. Bergman
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcela E. Benítez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Andrew J. Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
31
|
Almeida J, Lima ARA, Faria AM, Lopes AR. Sand smelt larvae's resilience to hypoxia and implications for thermal tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174969. [PMID: 39117224 DOI: 10.1016/j.scitotenv.2024.174969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Deoxygenation is a growing threat to marine ecosystems, with an increase in the frequency, extent and intensity of hypoxia events in recent decades. These phenomena will pose various challenges to marine species, as it affects their survival, growth, body condition, metabolism and ability to handle other environmental stressors, such as temperature. Early life stages are particularly vulnerable to these changes. Thus, it is crucial to understand how these initial phases will respond to hypoxia to predict the impacts on marine populations and ecosystems. In this work, we aimed to evaluate the effect of oxygen (O2) availability on fitness related traits (mortality, growth and body condition), metabolism (Routine metabolic rates [RMR]) and thermal tolerance (CTmax), in early stages of Atherina presbyter, exposed for two weeks, to two O2 levels: normoxia (6.5-7.2 mg L-1) and hypoxia (2-2.5 mg L-1), through an experiment setup. Our findings showed that while low oxygen levels did not negatively impact mortality, total length, weight, or body condition (Fulton K), the larvae undergo metabolic depression when exposed to hypoxia, as an energy conservation mechanism. Furthermore, CTmax suffered a significant reduction in low O2 availability, due to the inability of the circulatory and respiratory systems to fulfill energy demands. These outcomes suggest that although early life stages of Atherina presbyter can survive under low oxygen environments, they are less capable of dealing with sudden increases in temperature when oxygen is scarce.
Collapse
Affiliation(s)
- João Almeida
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - André R A Lima
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - Ana Margarida Faria
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Rita Lopes
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
32
|
Raynal RS, Bonduriansky R, Schwanz LE. The Impact of Acclimation on Standard and Maximum Metabolic Rate in a Small Freshwater Fish. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:342-353. [PMID: 39946731 DOI: 10.1086/733582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
AbstractThe ability of freshwater fish to acclimate quickly to water temperature variation is imperative when living in shallow changeable environments. However, while it has often been assumed that maximum metabolic rate is constant and therefore that metabolic scope (the difference between maximum and standard metabolic rates) decreases with ambient temperature, this assumption is weakly supported and remains controversial. We investigated acclimation in a temperate, shallow-dwelling Australian freshwater fish, the Pacific blue-eye (Pseudomugil signifer), to rising water temperatures. We placed wild-caught fish into three acclimation treatments (24°C, 28°C, and 30°C) and measured metabolic rate at three test temperatures (24°C, 28°C, and 30°C). We found that fish acclimated (recovered standard metabolic rate) to housing temperatures before the first measurement at 10 d. Moreover, we found that regardless of acclimation temperature, standard metabolic rate, maximum metabolic rate, and aerobic scope all increased with test temperature. Our findings suggest that maximum metabolic rate and metabolic scope can adjust rapidly to ambient temperature. More research is needed to understand the generality of these effects, as well as their consequences for fitness.
Collapse
|
33
|
Jiménez Herrero J, Desiderato A, Vieira PE, Tavares AM, Queiroga H, Santos R. Functional traits of ecosystem engineers as predictors of associated fauna. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106743. [PMID: 39265324 DOI: 10.1016/j.marenvres.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The ongoing combination of global warming and increased anthropogenic pressure is causing latitudinal shifts in marine species, potentially impacting community composition, local richness, and marine trophic webs. This study investigates the factors influencing the distribution and diversity of intertidal seaweed and associated peracarid communities, including their functional traits, and explores various facets of beta diversity (taxonomic and functional). We hypothesize that: 1) abiotic factors such as temperature and anthropogenic pressure significantly influence seaweed distribution and diversity shifts, and 2) changes in seaweed functional diversity have an impact on the diversity and functioning of its associated peracarid communities. The sampling was conducted along a wide latitudinal gradient in the NE Atlantic (27°N - 65°N), encompassing three distinct ecoregions: Northern European coasts, the Iberian Peninsula, and Macaronesia. The identified seaweed and peracarid species were classified functionally, and taxonomic and functional diversity were analysed on a large geographic scale. The northern region exhibited large brown canopy seaweeds and epibiotic isopods, while Macaronesia featured small red, highly branched, and calcareous crust seaweeds with burrower and tube-building tanaids. The Iberian Peninsula acted as a transitional zone, showcasing a mix of green, red, and brown seaweeds, along with Amphipoda peracarids found across all ecoregions. Our findings underscore the impact of geographic distance on total beta diversity, revealing distinct seaweed and peracarid communities across spatial gradients. Environmental variables, particularly pH and maximum sea surface temperature, emerged as significant factors influencing beta diversity patterns of seaweeds, indicating the potential impact of acidification and heat waves on community composition. In addition, seaweed functional traits were shown to be significant in shaping the diversity and abundance of associated peracarid assemblages, impacting both taxonomic and functional beta diversity. These findings provide crucial insights into the factors influencing the biogeography and biodiversity dynamics of intertidal seaweeds and associated peracarids, offering essential implications for conservation and management strategies amid ongoing environmental changes.
Collapse
Affiliation(s)
- Javier Jiménez Herrero
- Marine Plant Ecology Research Group, CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139, Faro, Portugal.
| | - Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland; Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Emanuel Vieira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Mafalda Tavares
- Marine Plant Ecology Research Group, CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139, Faro, Portugal
| | - Henrique Queiroga
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rui Santos
- Marine Plant Ecology Research Group, CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
34
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
35
|
Kumar N, Kumar P, Reddy KS. Magical role of iron nanoparticles for enhancement of thermal efficiency and gene regulation of fish in response to multiple stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109949. [PMID: 39389172 DOI: 10.1016/j.fsi.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The present study addresses the challenges of uncontrolled temperature and pollution in aquatic environments, with a focus on fish ability to tolerate high temperature. The investigation aimed to determine the role of iron nanoparticles (Fe-NPs) in enhancing the thermal tolerance of Pangasianodon hypophthalmus exposed to high-temperature stress, arsenic (As), and ammonia (NH3) toxicity. Fe-NPs were synthesized using green approaches, specifically from fish gill. The dietary Fe-NPs were formulated and supplemented at 10, 15, and 20 mg kg⁻1 of feed. Notably, Fe-NPs at 15 mg kg⁻1 diet significantly reduced the critical thermal minimum (CTmin) (14.44 ± 0.21 °C) and the lethal thermal minimum (LTmin) (13.46 ± 0.15 °C), compared to the control and other treatment groups. Conversely, when Fe-NPs at 15 mg kg⁻1 were supplemented with or without exposure to stressors (As + NH3+T), the critical thermal maximum (CTmax) increased to 47.59 ± 0.16 °C, and the lethal thermal maximum (LTmax) increased to 48.60 ± 0.37 °C, both significantly higher than the control and other groups. A strong correlation was observed between LTmin and CTmin (R2 = 0.90) and between CTmax and LTmax (R2 = 0.98). Furthermore, dietary Fe-NPs at 15 mg kg⁻1 significantly upregulated the expression of stress-related genes, including HSP70, iNOS, Caspase-3a, CYP450, MT, cat, sod, gpx, TNFα, IL, TLR, and Ig. The enhanced thermal tolerance (LTmin and LTmax) can be attributed to these gene regulations, suggesting the mechanistic involvement of Fe-NPs in improving thermal resilience. Overall, the findings demonstrate that dietary supplementation with Fe-NPs, particularly at 15 mg kg⁻1, improves thermal tolerance and stress response in P. hypophthalmus by enhancing gene expression and overall thermal efficiency under stressor conditions.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
36
|
Zhao G, Liu Z, Lu J, Quan J, Pan Y. Protective Effects of 17-βE 2 on the Primary Hepatocytes of Rainbow Trout ( Oncorhynchus mykiss) Under Acute Heat Stress. Antioxidants (Basel) 2024; 13:1316. [PMID: 39594459 PMCID: PMC11590922 DOI: 10.3390/antiox13111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is a typical cold-water species. However, due to global warming, it has experienced prolonged high-temperature stress. Research indicates that thermotolerance in rainbow trout varies by sex at multiple physiological levels. Specifically, females exhibit higher thermotolerance, which may be attributed to estrogen-mediated signal transduction pathways. This study involved culturing primary hepatocytes from rainbow trout and exposing them to estradiol and estrogen receptor antagonists to assess estradiol's protective effects. The analysis focused on expression of ER, HSPs genes, hepatocyte viability, and antioxidant indices. Four experimental groups were treated with 17-βE2 at concentrations of 0, 0.1, 1, and 10 μM/mL for durations of 4, 8, 12, 24, and 48 h at 18 °C. 17-βE2 treatment led to increased hepatocyte viability and enhanced SOD, GSH-Px, and CAT levels but decreased MDA levels. hsp70a, hsp90β, era1, and erβ1 levels were notably higher, with the optimal 17-βE2 concentration being 1.0 μM/mL. Following heat stress (24 °C), the addition of 1.0 μM/mL 17-βE2 improved hepatocyte viability and increased SOD, GSH-Px, and CAT levels, while MDA content initially decreased before rising. The gene expression of hsp70a, hsp90β, era1, and erβ1 was significantly elevated compared to controls. Flow cytometry analysis showed increased apoptosis after heat exposure; however, 17-βE2 treatment significantly reduced the heat stress-induced effects (p < 0.05). In conclusion, 17-βE2 and mild heat stress collaboratively enhanced the expression of HSPs and estrogen receptors, thereby providing protection to hepatocytes from heat stress damage, indicating a beneficial protective role of estradiol in rainbow trout hepatocytes.
Collapse
Affiliation(s)
| | - Zhe Liu
- Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.L.); (J.Q.); (Y.P.)
| | | | | | | |
Collapse
|
37
|
Hall JM, Tiatragul S, Turner MK, Warner DA. Within the optimal thermal range, temperature fluctuations with similar means have little effect on offspring phenotypes: A comparison of two approaches that simulate natural nest conditions. J Therm Biol 2024; 125:103949. [PMID: 39306971 DOI: 10.1016/j.jtherbio.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 11/25/2024]
Abstract
Temperature influences nearly every aspect of organismal function. Because aspects of global change such as urbanization and climate change influence temperature, researchers must consider how altering thermal regimes will impact biodiversity across the planet. To do so, they often measure temperature in natural and/or human-modified habitats, replicate those temperatures in laboratory experiments to understand organismal responses, and make predictions under models of future change. Consequently, accurately representing temperature in the laboratory is an important concern, yet few studies have assessed the consequences of simulating thermal conditions in different ways. We used nest temperatures for two urban-dwelling, invasive lizards (Anolis sagrei and A. cristatellus) to create two egg incubation treatments in the laboratory. Like most studies of thermal developmental plasticity, we created daily repeating thermal fluctuations; however, we used different methods to create temperature treatments that differed in the magnitude and breadth of thermal cycles, and then evaluated the effects of these different approaches on embryo development and hatchling phenotypes. Additionally, we measured embryo heart rate, a proxy for metabolism, across temperature to understand the immediate effects of treatments. We found that treatments had minimal effect on phenotypes likely because temperatures were within the optimal thermal range for each species and were similar in mean temperature. We conclude that slight differences in thermal treatments may be unimportant so long as temperatures are within a range appropriate for development, and we make several recommendations for future studies of developmental plasticity.
Collapse
Affiliation(s)
- Joshua M Hall
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA.
| | - Sarin Tiatragul
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mallory K Turner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
38
|
Hunt von Herbing I. Energetic Costs of Stress in Developing Fishes: Quantifying Allostasis and Allostatic Load. Integr Comp Biol 2024; 64:1019-1033. [PMID: 38992244 DOI: 10.1093/icb/icae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Stress exerts negative effects on fish health through stimulation of the hypothalamic-pituitary-interrenal axis and autonomic nervous system, resulting in heightened neural and neuroendocrine responses. Energetic investment and physiological adaptation are then required to re-establish homeostatic stability or reach a new allostatic state. The cost of the energetic investment is referred to as allostatic load (AL). While determining the sources of stress and assessing their consequences have resulted in estimates of AL, most of this work has been conducted in adult mammals and humans; no ALs exist for developing fish. From a series of experiments on a model species, zebrafish (Danio rerio), whose yolk-sac larvae were exposed to two chronic stressors (high-temperature and hypoxia), ALs were quantified based on biomarkers of ontogenetic changes in growth, morphometrics, and metabolic activities. Results showed that for zebrafish yolk-sac larvae, chronic stress imposed high AL and, thus, high total allostatic energetic costs, (Rt (AL)), because of prolonged energy demand in the face of limited resources (e.g., yolk). Under severe chronic stress, energetic costs were sufficiently large that energy-limited developing fish may not be able to fully compensate, resulting in maladaptive responses from allostatic overload, leading either to death or to novel allostatic states, possibly more resilient to environmental change.
Collapse
Affiliation(s)
- Ione Hunt von Herbing
- Marine Conservation and Aquatic Physiology Laboratory (MCAPL), Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
39
|
Madeira D, Madeira C, Calosi P, Vermandele F, Carrier-Belleau C, Barria-Araya A, Daigle R, Findlay HS, Poisot T. Multilayer biological networks to upscale marine research to global change-smart management and sustainable resource use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173837. [PMID: 38866145 DOI: 10.1016/j.scitotenv.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Human activities are having a massive negative impact on biodiversity and ecological processes worldwide. The rate and magnitude of ecological transformations induced by climate change, habitat destruction, overexploitation and pollution are now so substantial that a sixth mass extinction event is currently underway. The biodiversity crisis of the Anthropocene urges scientists to put forward a transformative vision to promote the conservation of biodiversity, and thus indirectly the preservation of ecosystem functions. Here, we identify pressing issues in global change biology research and propose an integrative framework based on multilayer biological networks as a tool to support conservation actions and marine risk assessments in multi-stressor scenarios. Multilayer networks can integrate different levels of environmental and biotic complexity, enabling us to combine information on molecular, physiological and behaviour responses, species interactions and biotic communities. The ultimate aim of this framework is to link human-induced environmental changes to species physiology, fitness, biogeography and ecosystem impacts across vast seascapes and time frames, to help guide solutions to address biodiversity loss and ecological tipping points. Further, we also define our current ability to adopt a widespread use of multilayer networks within ecology, evolution and conservation by providing examples of case-studies. We also assess which approaches are ready to be transferred and which ones require further development before use. We conclude that multilayer biological networks will be crucial to inform (using reliable multi-levels integrative indicators) stakeholders and support their decision-making concerning the sustainable use of resources and marine conservation.
Collapse
Affiliation(s)
- Diana Madeira
- Laboratory for Innovation and Sustainability of Marine Biological Resources (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Carolina Madeira
- Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Piero Calosi
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | - Fanny Vermandele
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | | | - Aura Barria-Araya
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | - Remi Daigle
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada; Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Timothée Poisot
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| |
Collapse
|
40
|
Schmidt E, Donelson JM. Regional thermal variation in a coral reef fish. CONSERVATION PHYSIOLOGY 2024; 12:coae058. [PMID: 39139734 PMCID: PMC11320370 DOI: 10.1093/conphys/coae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
How species respond to climate change will depend on the collective response of populations. Intraspecific variation in traits, evolved through genetic adaptation and phenotypic plasticity, can cause thermal performance curves to vary over species' distributions. Intraspecific variation within marine species has received relatively little attention due to the belief that marine systems lack dispersal barriers strong enough to promote locally adapted traits. Here we show that intraspecific variation is present between low- and high-latitude populations of a coral reef damselfish (Acanthochromis polyacanthus). Co-gradient variation was observed when examining aerobic physiology across a thermal gradient that reflected mean summer temperatures of high- and low-latitude regions, as well as projected future ocean temperatures (i.e. 27, 28.5, 30, 31.5°C). Whilst thermally sensitive, no significant differences were observed between high- and low-latitude regions when measuring immunocompetence, haematocrit and anaerobic enzyme activity. The presence of co-gradient variation suggests that dispersal limitations in marine systems can promote local adaptive responses; however, intraspecific variation may not be ubiquitous amongst traits. Identifying locally adapted traits amongst populations remains necessary to accurately project species responses to climate change and identify differences in adaptive potential.
Collapse
Affiliation(s)
- Elliott Schmidt
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Jennifer M Donelson
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
41
|
Shokri M, Lezzi L, Basset A. The seasonal response of metabolic rate to projected climate change scenarios in aquatic amphipods. J Therm Biol 2024; 124:103941. [PMID: 39163749 DOI: 10.1016/j.jtherbio.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Ludovico Lezzi
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; CNR, National Research Council of Italy, Monterotondo Scalo, 00015, Rome, Italy
| |
Collapse
|
42
|
Fuhrmann N, Brasseur MV, Bakowski CE, Podsiadlowski L, Prost S, Krehenwinkel H, Mayer C. Chromosome-Level Genome Assembly of the Viviparous Eelpout Zoarces viviparus. Genome Biol Evol 2024; 16:evae155. [PMID: 39018026 PMCID: PMC11331339 DOI: 10.1093/gbe/evae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The viviparous eelpout Zoarces viviparus is a common fish across the North Atlantic and has successfully colonized habitats across environmental gradients. Due to its wide distribution and predictable phenotypic responses to pollution, Z. viviparus is used as an ideal marine bioindicator organism and has been routinely sampled over decades by several countries to monitor marine environmental health. Additionally, this species is a promising model to study adaptive processes related to environmental change, specifically global warming. Here, we report the chromosome-level genome assembly of Z. viviparus, which has a size of 663 Mb and consists of 607 scaffolds (N50 = 26 Mb). The 24 largest represent the 24 chromosomes of the haploid Z. viviparus genome, which harbors 98% of the complete Benchmarking Universal Single-Copy Orthologues defined for ray-finned fish, indicating that the assembly is highly contiguous and complete. Comparative analyses between the Z. viviparus assembly and the chromosome-level genomes of two other eelpout species revealed a high synteny, but also an accumulation of repetitive elements in the Z. viviparus genome. Our reference genome will be an important resource enabling future in-depth genomic analyses of the effects of environmental change on this important bioindicator species.
Collapse
Affiliation(s)
- Nico Fuhrmann
- Department of Biogeography, Trier University, Trier 54296, Germany
| | - Marie V Brasseur
- Department of Biogeography, Trier University, Trier 54296, Germany
| | - Christina E Bakowski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn 53113, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn 53113, Germany
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
- South African National Biodiversity Institute, National Zoological Garden, Pretoria 0002, South Africa
- Central Research Laboratories, Natural History Museum Vienna, Vienna 1010, Austria
| | | | - Christoph Mayer
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn 53113, Germany
| |
Collapse
|
43
|
Akrokoh J, Bediako JO, Fafanyo K, Musah-Yussif H, Asubonteng AK, Adjei HO, Ofori AGA, Skov PV, Obirikorang KA. Relatedness of hypoxia and hyperthermia tolerances in the Nile tilapia (Oreochromis niloticus) and their relationships with cardiac and gill traits. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111648. [PMID: 38643961 DOI: 10.1016/j.cbpa.2024.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.
Collapse
Affiliation(s)
- Jesslyn Akrokoh
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. https://twitter.com/@missakrokoh
| | - Jedida Osei Bediako
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kelvin Fafanyo
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Harriya Musah-Yussif
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Audrey Korsah Asubonteng
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Henry Owusu Adjei
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Kwasi Adu Obirikorang
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
44
|
Ten Brink H, van Leeuwen A. Impacts of estuarine habitat degradation on the modeled life history of marine estuarine-dependent and resident fish species. JOURNAL OF FISH BIOLOGY 2024; 105:577-602. [PMID: 39048523 DOI: 10.1111/jfb.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Shallow coastal and estuarine habitats play an essential role in the life cycles of many fish species, providing spawning, nursery, feeding, and migration areas. However, these ecologically valuable habitats are increasingly threatened by anthropogenic activities, causing substantial changes in both habitat availability and quality. Fish species use these shallow coastal habitats and estuaries during various life stages, leading to their categorization into guilds based on how and when they rely on these areas. This differential functional use of estuaries means that changes to these habitats may affect each guild differently. To understand the impact of estuarine habitat degradation on fish populations, it is therefore necessary to consider the full life cycle of fish and when they rely on these coastal habitats. Here, we use conceptual size-structured population models to study how estuarine habitat degradation affects two functionally different guilds. We use these models to predict how reduced food productivity in the estuary affects the demographic rates and population dynamics of these groups. Specifically, we model estuarine residents, which complete their entire life cycle in estuaries, and marine estuarine-dependent species, which inhabit estuaries during early life before transitioning offshore. We find that total fish biomass for both guilds decreases with decreasing food productivity. However, the density of juveniles of the marine estuarine-dependent guild can, under certain conditions, increase in the estuary. This occurs due to a shift in the population biomass distribution over different life stages and a simultaneous shift in which life stage is most limited by food. At the individual level, somatic growth of juveniles belonging to the estuarine-dependent guild decreased with lower food supply in the estuary, due to increased competition for food. The somatic growth rates of fish belonging to the resident guild were largely unaffected by low food supply, as the total fish density decreased at the same time and therefore the per-capita food availability was similar. These outcomes challenge the assumption that responses to habitat degradation are similar between fish guilds. Our study highlights the need to assess not only fish biomass but also size distributions, survival, and somatic growth rates for a comprehensive understanding of the effects of habitat degradation on fish populations. This understanding is crucial not only for estuary fish communities but also for successful conservation and management of commercially harvested offshore population components.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Department of Coastal Systems (COS), Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems (COS), Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| |
Collapse
|
45
|
Hinostroza F, Araya-Duran I, Piñeiro A, Lobos I, Pastenes L. Transcription factor roles in the local adaptation to temperature in the Andean Spiny Toad Rhinella spinulosa. Sci Rep 2024; 14:15158. [PMID: 38956427 PMCID: PMC11220030 DOI: 10.1038/s41598-024-66127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Environmental temperature strongly influences the adaptation dynamics of amphibians, whose limited regulation capabilities render them susceptible to thermal oscillations. A central element of the adaptive strategies is the transcription factors (TFs), which act as master regulators that orchestrate stress responses, enabling species to navigate the fluctuations of their environment skillfully. Our study delves into the intricate relationship between TF expression and thermal adaptation mechanisms in the Rhinella spinulosa populations. We sought to elucidate the dynamic modulations of TF expression in prometamorphic and metamorphic tadpoles that inhabit two thermally contrasting environments (Catarpe and El Tatio Geyser, Chile) and which were exposed to two thermal treatments (25 °C vs. 20 °C). Our findings unravel an intriguing dichotomy in response strategies between these populations. First, results evidence the expression of 1374 transcription factors. Regarding the temperature shift, the Catarpe tadpoles show a multifaceted approach by up-regulating crucial TFs, including fosB, atf7, and the androgen receptor. These dynamic regulatory responses likely underpin the population's ability to navigate thermal fluctuations effectively. In stark contrast, the El Tatio tadpoles exhibit a more targeted response, primarily up-regulating foxc1. This differential expression suggests a distinct focus on specific TFs to mitigate the effects of temperature variations. Our study contributes to understanding the molecular mechanisms governing thermal adaptation responses and highlights the resilience and adaptability of amphibians in the face of ever-changing environmental conditions.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Centro Para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro Piñeiro
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Isabel Lobos
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Luis Pastenes
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
46
|
Guibourd de Luzinais V, Gascuel D, Reygondeau G, Cheung WWL. Large potential impacts of marine heatwaves on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17437. [PMID: 39054881 DOI: 10.1111/gcb.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, The University of Miami, Florida, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Makri V, Giantsis IA, Nathanailides C, Feidantsis K, Antonopoulou E, Theodorou JA, Michaelidis B. Seasonal energy investment and metabolic patterns in a farmed fish. J Therm Biol 2024; 123:103894. [PMID: 38879912 DOI: 10.1016/j.jtherbio.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | | | | | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| |
Collapse
|
48
|
Lai H, Bi S, Yi H, Li H, Wei X, Wang G, Guo D, Liu X, Chen J, Chen Q, Zhang Z, Liu S, Huang C, Lin L, Li G. Characteristics of demersal fish community structure during summer hypoxia in the Pearl River Estuary, China. Ecol Evol 2024; 14:e11722. [PMID: 38994211 PMCID: PMC11237343 DOI: 10.1002/ece3.11722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
In recent decades, hypoxic areas have rapidly expanded worldwide in estuaries and coastal zones. The Pearl River Estuary (PRE), one of China's largest estuaries, experiences frequent seasonal hypoxia due to intense human activities and eutrophication. However, the ecological effects of hypoxia in the PRE, particularly on fish communities, remain unclear. To explore these effects, we collected fish community and environmental data in July 2021 during the summer hypoxia development period. The results revealed that bottom-layer dissolved oxygen (DO) in the PRE ranged from 0.08 to 5.71 mg/L, with extensive hypoxic zones (DO ≤ 2 mg/L) observed. Hypoxia has varied effects on fish community composition, distribution, species, and functional diversity in the PRE. A total of 104 fish species were collected in this study, with approximately 30 species (28.6%) exclusively found in hypoxic areas. Species responses to hypoxia varied: species such as Sardinella zunasi, Coilia mystus, and Nuchequula nuchalis were sensitive, while Decapterus maruadsi, Siganus fuscescens, and Lagocephalus spadiceus showed higher tolerance. Within the hypoxia area, dissolved oxygen was the main limiting factor for fish community diversity. Functional diversity (FDiv) decreased with higher dissolved oxygen levels, indicating a potential shift in the functional traits and ecological roles of fish species in response to changing oxygen conditions. Further analysis demonstrated that dissolved oxygen had a significantly stronger effect on fish community structure at hypoxic sites than in the whole PRE. Moreover, other environmental variables also had significant effects on the fish community structure and interacted with dissolved oxygen in the hypoxia area. These findings suggest that maintaining sufficient dissolved oxygen levels is essential for sustaining fish communities and ecosystem health in the PRE. This study provides novel insights into the effects of hypoxia on fish communities in estuarine ecosystems and has significant implications for the ecological health and management of the PRE.
Collapse
Affiliation(s)
- Han Lai
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Sheng Bi
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- Bureau of HydrologyPearl River Water Resources Commission of the Ministry of Water ResourcesGuangzhouChina
| | - Huadong Yi
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Haiyang Li
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Xuchong Wei
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Gongpei Wang
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Dingli Guo
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Xuange Liu
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Jiahui Chen
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Qiuxian Chen
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zhilun Zhang
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Shuang Liu
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Chenlei Huang
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Li Lin
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Guifeng Li
- State Key Laboratory of BiocontrolSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang BaySchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
49
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
50
|
Mahé K, Clota F, Blanc MO, Bled Defruit G, Chatain B, de Pontual H, Amara R, Ernande B. Otolith morphogenesis during the early life stages of fish is temperature-dependent: Validation by experimental approach applied to European seabass (Dicentrarchus labrax). JOURNAL OF FISH BIOLOGY 2024; 104:2032-2043. [PMID: 38569601 DOI: 10.1111/jfb.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Otolith shape is often used as a tool in fish stock identification. The goal of this study was to experimentally assess the influence of changing temperature and ontogenic evolution on the shape component of the European seabass (Dicentrarchus labrax) otolith during early-life stages. A total of 1079 individuals were reared in a water temperature of 16°C up to 232 days post hatch (dph). During this experiment, several specimens were transferred into tanks with a water temperature of 21°C to obtain at the end of this study four different temperature treatments, each with varying ratios between the number of days at 16 and 21°C. To evaluate the otolith morphogenesis, samples were examined at 43, 72, 86 and 100 dph. The evolution of normalized otolith shape from hatching up to 100 dph showed that there were two main successive changes. First, faster growth in the antero-posterior axis than in the dorso-ventral axis changed the circular-shaped otolith from that observed at hatching and, second, increasing the complexity relating to the area between the rostrum and the anti-rostrum. To test the effect of changing temperature, growing degree-day was used in three linear mixed-effect models. Otolith morphogenesis was positively correlated to growing degree-day, but was also dependent on temperature level. Otolith shape is influenced by environmental factors, particularly temperature, making it an efficient tool for fish stock identification.
Collapse
Affiliation(s)
- Kélig Mahé
- IFREMER, Unit HMMN, Laboratoire ressources halieutiques, Boulogne-sur-mer, France
| | | | - Marie Odile Blanc
- MARBEC, Université Montpellier, Ifremer, CNRS, IRD, Montpellier, France
| | | | - Béatrice Chatain
- MARBEC, Université Montpellier, Ifremer, CNRS, IRD, Montpellier, France
| | - Hélène de Pontual
- IFREMER, Centre de Bretagne, Sciences et Technologies Halieutiques, Plouzané, France
| | - Rachid Amara
- Université Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France
| | - Bruno Ernande
- MARBEC, Université Montpellier, Ifremer, CNRS, IRD, Montpellier, France
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|