1
|
Li H, Yi J, Xu X, Ma Y, Xiang J, Shu Y, Ye W, Wang T, Hao J, Zhang X, Huang W. Dysfunction in neuro-mesenchymal units impairs the development of bone marrow B cells in mice with anxiety. Brain Behav Immun 2025; 124:305-320. [PMID: 39667632 DOI: 10.1016/j.bbi.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
The reduction in B lymphocytes observed in individuals with anxiety disorders may compromise antiviral responses, yet the precise mechanisms behind this decline remain unclear. While elevated glucocorticoid levels have been suggested as contributing factors, anxiety disorders are associated with diminished glucocorticoid signaling. Given that autonomic nervous system dysfunction is a hallmark of anxiety disorders, we established an anxiety-related behavior mouse model by stimulating C1 neurons in the rostral ventrolateral medulla. Using this model, we confirmed that sustained activation of sympathetic nerves can disrupt adaptive immunity, particularly affecting the development of B cells. The underlying mechanism involves the control of B cell development through neuro-mesenchymal units within the bone marrow, with mesenchyme-derived CXCL12 playing a pivotal role in this regulatory process. Intriguingly, targeting these neuro-mesenchymal units not only restored B cell development but also alleviated anxiety-like behavior in the mice. Our study provides compelling evidence regarding the regulatory role of neuro-mesenchymal units in the development of B cells within the bone marrow. Additionally, our findings suggest that anxiety disorders can create a vicious cycle, perpetuating ongoing mental and immunological damage and ultimately leading to irreversible harm. To break this cycle, it is essential to focus on the dysfunction of immune cells and strive to restore immune homeostasis in individuals suffering from anxiety disorders.
Collapse
Affiliation(s)
- Heshe Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Junzhe Yi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510080, China
| | - Xinghao Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Junkai Xiang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Yue Shu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Wenjin Ye
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiang Hao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
3
|
Besedovsky H, Del Rey A. A Glucocorticoid-Mediated Immunoregulatory Circuit Integrated at Brain Levels: Our Early Studies and a Present View. Neuroimmunomodulation 2024; 31:230-245. [PMID: 39504948 DOI: 10.1159/000542401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND It was known since the 1940s that pharmacological administration of glucocorticoids can inhibit inflammatory and immune processes, and these hormones are still today among the most widely used therapeutic tools to treat diseases with immune components. However, it became clear later that endogenous glucocorticoids can either support or restrain immune processes. SUMMARY Early studies showed that (a) endogenous levels of glucocorticoids can modulate immune cell activity; (b) the immune response itself can stimulate the hypothalamus-pituitary-adrenal (HPA) axis to release glucocorticoids to levels that can exert immunoregulatory effects; (c) immune products, later identified as cytokines, mediate this effect. On these bases, the existence of a glucocorticoid-mediated immunoregulatory circuit was proposed. It was also shown that increased levels of endogenous glucocorticoids exert protective effects during infections and other diseases with immune components. However, it was found in animal models and in humans that these effects can be blunted in several immune-linked diseases by defects at several levels, for example, by glucocorticoid resistance or by adrenal insufficiency. Evidence was later provided that the glucocorticoid-mediated immunoregulatory circuit can also be activated by cytokines produced not only as consequence of immune stimulation but also following psycho/sensorial and physical stimuli. Thus, this circuit can be integrated at brain levels and, besides stimulating the HPA axis, cytokines can also affect synaptic plasticity, most likely via a tripartite synapse, with astrocytes as neuro-immune cells acting as the third component. KEY MESSAGES It is now well established that the glucocorticoid-mediated immunoregulatory circuit plays a central role in maintaining health. However, several variables can condition the efficacy of the effect of endogenous glucocorticoids. Furthermore, since cytokines and other immune products have many other neuroendocrine and metabolic effects, other neuroendocrine-immune circuits could simultaneously operate or become predominant during different pathologies. The consideration of these aspects might help to implement strategies to eventually decrease therapeutic doses of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Hugo Besedovsky
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
4
|
Gomez A, Wu Y, Zhang C, Boyd L, Wee TL, Gewolb J, Amor C, Cheadle L, Borniger JC. A brain-body feedback loop driving HPA-axis dysfunction in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612923. [PMID: 39314280 PMCID: PMC11419152 DOI: 10.1101/2024.09.13.612923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Breast cancer patients often exhibit disrupted circadian rhythms in circulating glucocorticoids (GCs), such as cortisol. This disruption correlates with reduced quality of life and higher cancer mortality 1-3 . The exact cause of this phenomenon - whether due to treatments, stress, age, co-morbidities, lifestyle factors, or the cancer itself remains unclear. Here, we demonstrate that primary breast cancer alone blunts host GC rhythms by disinhibiting neurons in the hypothalamus, and that circadian phase-specific neuromodulation of these neurons can attenuate tumor growth by enhancing anti-tumor immunity. We find that mice with mammary tumors exhibit blunted GC rhythms before tumors are palpable, alongside increased activity in paraventricular hypothalamic neurons expressing corticotropin-releasing hormone (i.e., PVN CRH neurons). Tumor-bearing mice have fewer inhibitory synapses contacting PVN CRH neurons and reduced miniature inhibitory post-synaptic current (mIPSC) frequency, leading to net excitation. Tumor-bearing mice experience impaired negative feedback on GC production, but adrenal and pituitary gland functions are largely unaffected, indicating that alterations in PVN CRH neuronal activity are likely a primary cause of hypothalamic-pituitary-adrenal (HPA) axis dysfunction in breast cancer. Using chemogenetics (hM3Dq) to stimulate PVN CRH neurons at different circadian phases, we show that stimulation just before the light-to-dark transition restores normal GC rhythms and reduces tumor progression. These mice have significantly more effector T cells (CD8+) within the tumor than non-stimulated controls, and the anti-tumor effect of PVN CRH neuronal stimulation is absent in mice lacking CD8+ T cells. Our findings demonstrate that breast cancer distally regulates neurons in the hypothalamus that control output of the HPA axis and provide evidence that therapeutic targeting of these neurons could mitigate tumor progression.
Collapse
|
5
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
6
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
7
|
Ishida S, Nakanishi H, Sekiya R, Kawada K, Kosaka Y, Yamaguchi A, Ooka M. Evaluation of Postnatal Complications in Clinical and Histological Chorioamnionitis in Extremely Preterm Infants: A Japanese Cohort Study. Am J Perinatol 2024; 41:e2383-e2389. [PMID: 37339674 DOI: 10.1055/a-2113-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Terminating pregnancy appropriately before the intrauterine infection has progressed may have an improved prognosis for preterm infants. We evaluate how the combination of histological chorioamnionitis (hCAM) and clinical chorioamnionitis (cCAM) affects the short-term prognosis of infants. STUDY DESIGN This retrospective multicenter cohort study based on the Neonatal Research Network of Japan included extremely preterm infants born weighing <1,500 g between 2008 and 2018. Demographic characteristics, morbidity, and mortality were compared between the cCAM(-)hCAM(+) and cCAM(+)hCAM(+) groups. RESULTS We included 16,304 infants. The progression to cCAM in infants with hCAM was correlated with the increase in home oxygen therapy (HOT) (adjusted odds ratio [aOR], 1.27; 95% confidence interval [CI], 1.11-1.44) and persistent pulmonary hypertension of the newborn (PPHN) (1.20, 1.04-1.38). Furthermore, increased progression of the hCAM stage in infants with cCAM correlated with an increase in bronchopulmonary dysplasia (BPD; 1.05, 1.01-1.11), HOT (1.10, 1.02-1.18), and PPHN (1.09, 1.01-1.18). However, it had a negative impact on hemodynamically significant patent ductus arteriosus (hsPDA; 0.87, 0.83-0.92) and death before discharge from the neonatal intensive care unit (NICU; 0.88, 0.81-0.96). CONCLUSION Progression to cCAM in infants with hCAM positively correlated with HOT and PPHN. Progression of hCAM staging in infants with cCAM further increases the prevalence of BPD and the need for HOT and PPHN while reducing the prevalence of hsPDA and death before discharge from the NICU. The effects of the progressive hCAM stage in infants with cCAM vary from positive to negative by disease. KEY POINTS · Retrospective multicenter cohort study based on the Neonatal Research Network of Japan.. · Clinical and histological chorioamnionitis increases the prevalence of BPD, HOT, and PPHN.. · Progression of histological chorioamnionitis in infants reduces the prevalence of hsPDA and death..
Collapse
Affiliation(s)
- Shuji Ishida
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidehiko Nakanishi
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
- Division of Neonatal Intensive Care Medicine, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Rika Sekiya
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kohei Kawada
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yukako Kosaka
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Ayano Yamaguchi
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Mari Ooka
- Department of Pediatrics, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
8
|
Attia YA, Abdallah AA, Bovera F, Abd El-Hamid AEHE, El-Naggar AS, Alhotan RA, Tufarelli V, Zaki RM. Effect of dietary electrolyte balance and arginine to lysine ratio on hematological, antioxidant and immunological traits in dual-purpose breeding hens under cyclic heat stress condition. J Therm Biol 2024; 121:103835. [PMID: 38531186 DOI: 10.1016/j.jtherbio.2024.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
A total of 245 hens and 35 cocks (32 weeks age) were assigned to seven treatment groups (five replicates with seven hens and one cock) to investigate the effect of dietary electrolyte balance (DEB) and arginine to lysine ratio (Arg/Lys) on birds' physiological and biochemical traits under cyclic heat stress (CHS) condition. Birds were housed in an environmentally controlled facility having four sectors. The first group (positive control, PC) was kept under thermoneutral conditions and fed diet with DEB of 180 mEq and Arg/Lys of 1.25, whereas the other six treatments were kept in the second sector under CHS and fed diet with DEB and Arg/Lys equal to: 180 mEq and 1.25 (negative control, NC); 250 mEq and 1.25; 320 mEq and 1.25; 180 mEq and 1.37; 250 mEq and 1.37; 320 mEq and 1.37, respectively. Hens on NC group had significantly decreased red blood cells (RBCs), white blood cells (WBCs) and its fractions. The groups fed different DEB and Arg/Lys in diet significantly enhanced the blood parameters and plasma lipid profile compared NC group. Hens under CHS fed on 250 and 320 DEB with 1.37 Arg/Lys recorded the lowest concentration of low-density lipoprotein (LDL) compared with the other groups. Triiodothyronine (T3) activity was not differed among groups, while T4 activity in layer exposed to CHS (NC group) recorded the highest activity compared to PC. From findings, it can be concluded that laying hens fed a diet having DEB 250 mEq with 1.37 Arg/Lys could be successfully applied to counteract the adverse effect of CHS and to improve blood hematological and biochemical traits, antioxidants, and immunity response.
Collapse
Affiliation(s)
- Youssef A Attia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, 22713, Egypt.
| | - Ahmed A Abdallah
- Department of Poultry Nutrition, Animal Production Research Institute, El-Sabahiah Poultry, Research Station Alexandria 21917, Agriculture Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137, Napoli, Italy
| | - Abd El-Hamid E Abd El-Hamid
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, 22713, Egypt
| | - Asmaa Sh El-Naggar
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, 22713, Egypt
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', 70010, Valenzano, Bari, Italy.
| | - Reda M Zaki
- Department of Poultry Nutrition, Animal Production Research Institute, El-Sabahiah Poultry, Research Station Alexandria 21917, Agriculture Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| |
Collapse
|
9
|
Knezevic E, Nenic K, Milanovic V, Knezevic NN. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023; 12:2726. [PMID: 38067154 PMCID: PMC10706127 DOI: 10.3390/cells12232726] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Cortisol, a critical glucocorticoid hormone produced by the adrenal glands, plays a pivotal role in various physiological processes. Its release is finely orchestrated by the suprachiasmatic nucleus, governing the circadian rhythm and activating the intricate hypothalamic-pituitary-adrenal (HPA) axis, a vital neuroendocrine system responsible for stress response and maintaining homeostasis. Disruptions in cortisol regulation due to chronic stress, disease, and aging have profound implications for multiple bodily systems. Animal models have been instrumental in elucidating these complex cortisol dynamics during stress, shedding light on the interplay between physiological, neuroendocrine, and immune factors in the stress response. These models have also revealed the impact of various stressors, including social hierarchies, highlighting the role of social factors in cortisol regulation. Moreover, chronic stress is closely linked to the progression of neurodegenerative diseases, like Alzheimer's and Parkinson's, driven by excessive cortisol production and HPA axis dysregulation, along with neuroinflammation in the central nervous system. The relationship between cortisol dysregulation and major depressive disorder is complex, characterized by HPA axis hyperactivity and chronic inflammation. Lastly, chronic pain is associated with abnormal cortisol patterns that heighten pain sensitivity and susceptibility. Understanding these multifaceted mechanisms and their effects is essential, as they offer insights into potential interventions to mitigate the detrimental consequences of chronic stress and cortisol dysregulation in these conditions.
Collapse
Affiliation(s)
- Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Katarina Nenic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- Department of Psychology, University of Central Florida, Orlando, FL 32826, USA
| | - Vladislav Milanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- College of Medicine Rockford, University of Illinois, Rockford, IL 61107, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Akter S, Emon FA, Nahar Z, Shalahuddin Qusar M, Islam SMA, Shahriar M, Bhuiyan MA, Islam MR. Altered IL-3 and lipocalin-2 levels are associated with the pathophysiology of major depressive disorder: a case-control study. BMC Psychiatry 2023; 23:830. [PMID: 37957650 PMCID: PMC10644478 DOI: 10.1186/s12888-023-05354-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a common mental ailment and is the primary reason for disability. It manifests a severe impact on moods, thoughts, and physical health. At present, this disorder has become a concern in the field of public health. Alteration of neurochemicals is thought to be involved in the pathogenesis of many psychiatric disorders. Therefore, we aimed to evaluate serum IL-3 and lipocalin-2 in MDD patients and healthy controls (HCs). METHOD We included a total of 376 participants in this study. Among them, 196 were MDD patients, and 180 were age-sex-matched HCs. MDD patients were recruited from the Psychiatry Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), but the controls were from different parts of Dhaka. All study participants were evaluated by a psychiatrist using the DSM-5 criteria. To assess the severity of the depression, we used the Hamilton depression (Ham-D) rating scale. Serum IL-3 and lipocalin-2 levels were measured using commercially available enzyme-linked immune-sorbent assay kits (ELISA kits). RESULTS According to this study, we observed elevated serum levels of IL-3 (1,024.73 ± 29.84 pg/mL) and reduced levels of serum lipocalin-2 (29.019 ± 2.073 ng/mL) in MDD patients compared to HCs (911.11 ± 20.55 pg/mL and 48.065 ± 3.583 ng/mL, respectively). No associations between serum levels of IL-3 and lipocalin-2 and depression severity were observed in patients. CONCLUSIONS According to the present findings, alterations of serum IL-3 and lipocalin might be associated with the pathogenesis of MDD. These results support that altered serum neurochemicals can serve as early risk assessment markers for depression. Further interventional studies are recommended for a better understanding of the role of IL-3 and lipocalin-2 in the pathophysiology of depression.
Collapse
Affiliation(s)
- Sarmin Akter
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Faisal Abdullah Emon
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Zabun Nahar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
11
|
Zeng Y, Sun B, Zhang F, Hu Z, Li W, Lan X, Ning Y, Zhou Y. The core inflammatory factors in patients with major depressive disorder: a network analysis. Front Psychiatry 2023; 14:1216583. [PMID: 37692303 PMCID: PMC10491022 DOI: 10.3389/fpsyt.2023.1216583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The symptoms of major depressive disorder (MDD) vary widely. Psycho-neuro-inflammation has shown that MDD's inflammatory factors can accelerate or slow disease progression. This network analysis study examined the complex interactions between depressed symptoms and inflammatory factors in MDD prevention and treatment. Measures We gathered participants' inflammatory factor levels, used the Hamilton Depression Scale (HAMD-17), and network analysis was used to analyzed the data. Network analysis revealed the core inflammatory (nodes) and their interactions (edges). Stability and accuracy tests assessed these centrality measures' network robustness. Cluster analysis was used to group persons with similar dimension depressive symptoms and examine their networks. Results Interleukin-1β (IL-1β) is the core inflammatory factor in the overall sample, and IL-1β-interleukin-4 (IL-4) is the strongest correlation. Network precision and stability passed. Network analysis showed significant differences between Cluster 1 (with more severe anxiety/somatization and sleep disruption) and Cluster 3 (with more severe retardation and cognitive disorders), as well as between Cluster 2 (with more severe anxiety/somatization, sleep disruption and body weight) and Cluster 3. IL-1β is the core inflammatory factor in Cluster 1 and Cluster 2, while tumor necrosis factor alpha (TNF-α) in Cluster 3. Conclusion IL-1β is the central inflammatory factor in the network, and there is heterogeneity in the core inflammatory factor of MDD with specific depressive dimension symptoms as the main manifestation. In conclusion, inflammatory factors and their links should be prioritized in future theoretical models of MDD and may provide new research targets for MDD intervention and treatment.
Collapse
Affiliation(s)
- Yexian Zeng
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Bin Sun
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Psychology,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
13
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Cernackova A, Tillinger A, Bizik J, Mravec B, Horvathova L. Dynamics of cachexia-associated inflammatory changes in the brain accompanying intra-abdominal fibrosarcoma growth in Wistar rats. J Neuroimmunol 2023; 376:578033. [PMID: 36738563 DOI: 10.1016/j.jneuroim.2023.578033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Accumulated data indicate that inflammation affecting brain structures participates in the development of cancer-related cachexia. However, the mechanisms responsible for the induction and progression of cancer-related neuroinflammation are still not fully understood. Therefore, we studied the time-course of neuroinflammation in selected brain structures and cachexia development in tumor-bearing rats. After tumor cells inoculation, specifically on the 7th, 14th, 21st, and 28th day of tumor growth, we assessed the presence of cancer-associated cachexia in rats. Changes in gene expression of inflammatory factors were studied in selected regions of the hypothalamus, brain stem, and circumventricular organs. We showed that the initial stages of cancer growth (7th and 14th day after tumor cells inoculation), are not associated with cachexia, or increased expression of inflammatory molecules in the brain. Even when we did not detect cachexia in tumor-bearing rats by the 21st day of the experiment, the inflammatory brain reaction had already started, as we found elevated levels of interleukin 1 beta, interleukin 6, tumor necrosis factor alpha, and glial fibrillary acidic protein mRNA levels in the nucleus of the solitary tract. Furthermore, we found increased interleukin 1 beta expression in the locus coeruleus and higher allograft inflammatory factor 1 expression in the vascular organ of lamina terminalis. Ultimately, the most pronounced manifestations of tumor growth were present on the 28th day post-inoculation of tumor cells. In these animals, we detected cancer-related cachexia and significant increases in interleukin 1 beta expression in all brain areas studied. We also observed significantly decreased expression of the glial cell activation markers allograft inflammatory factor 1 and glial fibrillary acidic protein in most brain areas of cachectic rats. In addition, we showed increased expression of cluster of differentiation 163 and cyclooxygenase 2 mRNA in the hypothalamic paraventricular nucleus, A1/C1 neurons, and area postrema of cachectic rats. Our data indicate that cancer-related cachexia is associated with complex neuroinflammatory changes in the brain. These changes can be found in both hypothalamic as well as extrahypothalamic structures, while their extent and character depend on the stage of tumor growth.
Collapse
Affiliation(s)
- Alena Cernackova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University in Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Kropp DR, Hodes GE. Sex differences in depression: An immunological perspective. Brain Res Bull 2023; 196:34-45. [PMID: 36863664 DOI: 10.1016/j.brainresbull.2023.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Depression is a heterogenous disorder with symptoms that present differently across individuals. In a subset of people depression is associated with alterations of the immune system that may contribute to disorder onset and symptomology. Women are twice as likely to develop depression and on average have a more sensitive adaptive and innate immune system when compared to men. Sex differences in pattern recognition receptors (PRRs), release of damage-associated molecular patterns (DAMPs), cell populations, and circulating cytokines play a critical role in inflammation onset. Sex differences in innate and adaptive immunity change the response of and repair to damage caused by dangerous pathogens or molecules in the body. This article reviews the evidence for sex specific immune responses that contribute to the sex differences in symptoms of depression that may account for the higher rate of depression in women.
Collapse
Affiliation(s)
- Dawson R Kropp
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177:106005. [PMID: 36680805 DOI: 10.1016/j.nbd.2023.106005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl Psychiatry 2022; 12:404. [PMID: 36151082 PMCID: PMC9508168 DOI: 10.1038/s41398-022-02175-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1β, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.
Collapse
|
18
|
Klak K, Maciuszek M, Marcinkowska M, Verburg-van Kemenade BML, Chadzinska M. The importance of CXC-receptors CXCR1-2 and CXCR4 for adaptive regulation of the stress axis in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 127:647-658. [PMID: 35803509 DOI: 10.1016/j.fsi.2022.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In an ever-changing environment, an adaptive stress response is the pivotal regulatory mechanism to maintain allostasis. Physiologic responses to stressors enable to overcome potential threat. Glucocorticoid effects can be considered compensatory and adaptive, however prolonged or excessive glucocorticoid secretion can be also maladaptive and detrimental. Therefore, it must be tightly regulated. Apart from the essential hormonal feedback regulation, evidence accrues that cytokines, e.g., proinflammatory interleukin 1β (IL-1β), also play an important regulatory role in the stress axis. Here we focused on the potential role of CXC chemokines (CXCL8 and CXCL12) and their receptors (CXCR1, 2 and 4) in the regulation of the stress response in common carp. We studied changes in gene expression of CXC chemokines and CXCRs in the stress axis organs (hypothalamus-pituitary gland-head kidney) upon 11 h of restraint stress and we established how CXCR blocking affects the activation of the stress axis and the synthesis/conversion of cortisol. During restraint stress, gene expression of the majority of the proinflammatory CXCL8 and homeostatic CXCL12 chemokines and their receptors was upregulated in the stress axis organs. Inhibition of CXCR1-2 and CXCR4 differentially affected the expression of genes encoding stress-related molecules: hormones, binding proteins, receptors as well as expression of genes encoding IL-1β and its receptor. Moreover, we observed that CXC chemokines, via interaction with their respective CXCRs, regulate gene expression of molecules involved in cortisol synthesis and conversion and consistently affect the level of cortisol released into the circulation during the stress response. We revealed that in fish, CXC chemokines and their receptors are important regulators of the stress response at multiple levels of the stress axis, with particularly pronounced effects on steroidogenesis and cortisol conversion in the head kidney.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
19
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Korkmaz C, Cansu DÜ, Cansu GB. A Hypothesis Regarding Neurosecretory Inhibition of Stress Mediators by Colchicine in Preventing Stress-Induced Familial Mediterranean Fever Attacks. Front Immunol 2022; 13:834769. [PMID: 35251026 PMCID: PMC8891608 DOI: 10.3389/fimmu.2022.834769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
Familial Mediterranean fever (FMF) is a monogenic autoinflammatory disease characterized by recurrent episodes of fever and serositis. Colchicine (Col) has a crucial role in the prevention of amyloidosis and FMF attacks. The effect of Col on innate immune cells is based on the inhibition of the microtubule system. The microtubule system is also very important for neurosecretory functions. The inhibitory effect of Col on neurosecretory functions is an overlooked issue. Considering that the neuroimmune cross-talk process plays a role in the development of inflammatory diseases, the effect of Col on the neuronal system becomes important. FMF attacks are related to emotional stress. Therefore, the effect of Col on stress mediators is taken into consideration. In this hypothetical review, we discuss the possible effects of Col on the central nervous systems (CNS) and peripheral nervous systems (PNS) in light of mostly experimental study findings using animal models. Studies to be carried out on this subject will shed light on the pathogenesis of FMF attacks and the other possible mechanisms of action of Col apart from the anti-inflammatory features.
Collapse
Affiliation(s)
- Cengiz Korkmaz
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Döndü Üsküdar Cansu
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Güven Barıs Cansu
- Department of Endocrinology, School of Medicine, Kutahya Health Science University, Kutahya, Turkey
| |
Collapse
|
21
|
Rudzki S. Is PTSD an Evolutionary Survival Adaptation Initiated by Unrestrained Cytokine Signaling and Maintained by Epigenetic Change? Mil Med 2022; 188:usac095. [PMID: 35446412 DOI: 10.1093/milmed/usac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Treatment outcomes for PTSD with current psychological therapies are poor, with very few patients achieving sustained symptom remission. A number of authors have identified physiological and immune disturbances in Post Traumatic Stress Disorder (PTSD) patients, but there is no unifying hypothesis that explains the myriad features of the disorder. MATERIALS AND METHODS The medical literature was reviewed over a 6-year period primarily using the medical database PUBMED. RESULTS The literature contains numerous papers that have identified a range of physiological and immune dysfunction in association with PTSD. This paper proposes that unrestrained cytokine signaling induces epigenetic changes that promote an evolutionary survival adaptation, which maintains a defensive PTSD phenotype. The brain can associate immune signaling with past threat and initiate a defensive behavioral response. The sympathetic nervous system is pro-inflammatory, while the parasympathetic nervous system is anti-inflammatory. Prolonged cholinergic withdrawal will promote a chronic inflammatory state. The innate immune cytokine IL-1β has pleiotropic properties and can regulate autonomic, glucocorticoid, and glutamate receptor functions, sleep, memory, and epigenetic enzymes. Changes in epigenetic enzyme activity can potentially alter phenotype and induce an adaptation. Levels of IL-1β correlate with severity and duration of PTSD and PTSD can be prevented by bolus administration of hydrocortisone in acute sepsis, consistent with unrestrained inflammation being a risk factor for PTSD. The nervous and immune systems engage in crosstalk, governed by common receptors. The benefits of currently used psychiatric medication may arise from immune, as well as synaptic, modulation. The psychedelic drugs (3,4-Methylenedioxymethamphetamine (MDMA), psilocybin, and ketamine) have potent immunosuppressive and anti-inflammatory effects on the adaptive immune system, which may contribute to their reported benefit in PTSD. There may be distinct PTSD phenotypes induced by innate and adaptive cytokine signaling. CONCLUSION In order for an organism to survive, it must adapt to its environment. Cytokines signal danger to the brain and can induce epigenetic changes that result in a persistent defensive phenotype. PTSD may be the price individuals pay for the genomic flexibility that promotes adaptation and survival.
Collapse
Affiliation(s)
- Stephan Rudzki
- Canberra Sports Medicine, Deakin, Australian Capital Territory 2600, Australia
| |
Collapse
|
22
|
Zefferino R, Fortunato F, Arsa A, Di Gioia S, Tomei G, Conese M. Assessment of Stress Salivary Markers, Perceived Stress, and Shift Work in a Cohort of Fishermen: A Preliminary Work. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:699. [PMID: 35055521 PMCID: PMC8775760 DOI: 10.3390/ijerph19020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Due to work-related stress, today, work itself represents a daily challenge that must be faced in many occupations. While, in the past, the scientific community has focused on the helping professions, since, an increasing number of professions have since been investigated. Therefore, different approaches exist in order to assess this disorder, representing a scientific field wherein biological and psychological dimensions both need to be evaluated. In this paper, we consider three biological salivary markers: interleukin 1 beta (IL-1β), cortisol, and melatonin. The choice derives from recent contributions to the literature in which the interplay between these markers has been verified. Briefly, such interplay could explain how the central nervous, endocrine, and immune systems communicate with each other, supporting a holistic concept of person. In 30 marine fishermen from the Apulia region of Italy, perceived stress was measured using the Professional Stress Scale (PSS) and sleep disturbances were assessed through the Pittsburgh Sleep Quality Index (PSQI). Salivary markers were collected at 8:00 a.m. and 2:00 p.m. Those subjects reporting sleep disturbance and having altered scores in two PSS subclasses, home-work conflict and self-esteem, presented inverted salivary melatonin and cortisol nictemeral rhythms (with regard to melatonin levels at 8:00 a.m., those workers reporting values higher than the median showed 64.1% versus 48.6% home-work conflict with respect to cortisol levels, subjects having an inverted circadian rhythm showed 69.9% versus 52.5% home-work conflict, and these values resulted 47.7% versus 25.3% when the self-esteem was considered). As regards melatonin, PSQI score is statistically different in the two groups of subjects as identified by median melatonin at 8:00 a.m.; specifically, the subjects who had mean values higher than the median shared higher PSQI scores (10.8 versus 9.8). The same subjects reported more frequent home-work conflict and more sleep disorders. We found a negative correlation between IL-1β at 8:00 a.m. and Cortdiff (the difference between cortisol at 8:00 a.m.-cortisol at 2:00 p.m.), and that high IL-1β at 8:00 a.m. was associated with low Cortdiff. Based on our results we would like to propose this approach in health surveillance, in order to prevent mental and/or physical disorders, however our study is surely preliminary. The interesting perspectives and hypotheses cited in this paper, in which the roles of IL-1β and norepinephrine appear central and important, could remain hypothetical if not supported by more robust observation in order to produce, truly, new knowledge. In the future we will deepen this study with a larger sample, and if these results will be confirmed, this approach could allow preventing, not only mental and physical disorders, but also immuno-mediated diseases, and, perhaps, cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Francesca Fortunato
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Addolorata Arsa
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Gianfranco Tomei
- Department of Human Neurosciences, Faculty of Medicine and Surgery, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| |
Collapse
|
23
|
Abebe EC, Mengstie MA, Seid MA, Dejenie TA. Regulatory effects and potential therapeutic implications of alarin in depression, and arguments on its receptor. Front Psychiatry 2022; 13:1051235. [PMID: 36506414 PMCID: PMC9732279 DOI: 10.3389/fpsyt.2022.1051235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Alarin is a pleiotropic peptide involved in a multitude of putative biological activities, notably, it has a regulatory effect on depression-like behaviors. Although further elucidating research is needed, animal-based cumulative evidence has shown the antidepressant-like effects of alarin. In light of its regulatory role in depression, alarin could be used as a promising antidepressant in future treatment for depression. Nevertheless, the available information is still insufficient and the therapeutic relevance of alarin in depression is still of concern. Moreover, a plethora of studies have reported that the actions of alarin, including antidepressant activities, are mediated by a separate yet unidentified receptor, highlighting the need for more extensive research. This review focuses on the current understanding of the regulatory effects and future therapeutic relevance of alarin on depression, and the arguments on its receptors.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
24
|
Mavedatnia D, Tran J, Oltean I, Bijelić V, Moretti F, Lawrence S, El Demellawy D. Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes. J Clin Med 2021; 10:5693. [PMID: 34884395 PMCID: PMC8658381 DOI: 10.3390/jcm10235693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Placental abruption (PA) is a concern for maternal and neonatal morbidity. Adverse neonatal outcomes in the setting of PA include higher risk of prematurity. Placental pathologies include maternal vascular malperfusion (MVM), fetal vascular malperfusion (FVM), acute chorioamnionitis, and villitis of unknown etiology (VUE). We aimed to investigate how placental pathology contributes to acute neonatal outcome in PA. A retrospective cohort study of all placentas with PA were identified. Exposures were MVM, FVM, acute chorioamnionitis and VUE. The primary outcome was NICU admission and the secondary outcomes included adverse base deficit and Apgar scores, need for resuscitation, and small-for-gestational age. A total of 287 placentas were identified. There were 160 (59.9%) of placentas with PA alone vs 107 (40.1%) with PA and additional placental pathologies. Odds of NICU admission were more than two times higher in pregnancies with placental pathologies (OR = 2.37, 95% CI 1.28-4.52). These estimates were in large part mediated by prematurity and birthweight, indirect effect acting through prematurity was OR 1.79 (95% CI 1.12-2.75) and through birthweight OR 2.12 (95% CI 1.40-3.18). Odds of Apgar score ≤ 5 was more than four times higher among pregnancies with placental pathologies (OR = 4.56, 95% CI 1.28-21.26). Coexisting placental pathology may impact Apgar scores in pregnancies complicated by PA. This knowledge could be used by neonatal teams to mobilize resources in anticipation of the need for neonatal resuscitation.
Collapse
Affiliation(s)
- Dorsa Mavedatnia
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (D.M.); (J.T.); (F.M.)
| | - Jason Tran
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (D.M.); (J.T.); (F.M.)
| | - Irina Oltean
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (I.O.); (V.B.)
- Department of Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Vid Bijelić
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (I.O.); (V.B.)
| | - Felipe Moretti
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (D.M.); (J.T.); (F.M.)
| | - Sarah Lawrence
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (D.M.); (J.T.); (F.M.)
| | - Dina El Demellawy
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (D.M.); (J.T.); (F.M.)
- Department of Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
25
|
Francis N, Borniger JC. Cancer as a homeostatic challenge: the role of the hypothalamus. Trends Neurosci 2021; 44:903-914. [PMID: 34561122 PMCID: PMC9901368 DOI: 10.1016/j.tins.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
The initiation, progression, and metastatic spread of cancer elicits diverse changes in systemic physiology. In this way, cancer represents a novel homeostatic challenge to the host system. Here, we discuss how the hypothalamus, a critical brain region involved in homeostasis senses, integrates and responds to cancer-induced changes in physiology. Through this lens, cancer-associated changes in behavior (e.g., sleep disruption) and physiology (e.g., glucocorticoid dysregulation) can be viewed as the result of an inability to re-establish homeostasis. We provide examples at each level (receptor sensing, integration of systemic signals, and efferent regulatory pathways) of how homeostatic organization becomes disrupted across different cancers. Finally, we lay out predictions of this hypothesis and highlight outstanding questions that aim to guide further work in this area.
Collapse
Affiliation(s)
- Nikita Francis
- Cold Spring Harbor Laboratory, One Bungtown Rd., Cold Spring Harbor, NY 11724
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd., Cold Spring Harbor, NY 11724,Correspondence:
| |
Collapse
|
26
|
Cui J, Song W, Jin Y, Xu H, Fan K, Lin D, Hao Z, Lin J. Research Progress on the Mechanism of the Acupuncture Regulating Neuro-Endocrine-Immune Network System. Vet Sci 2021; 8:149. [PMID: 34437474 PMCID: PMC8402722 DOI: 10.3390/vetsci8080149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the conventional treatment methods, acupuncture is an indispensable component of Traditional Chinese Medicine. Currently, acupuncture has been partly accepted throughout the world, but the mechanism of acupuncture is still unclear. Since the theory of the neuro-endocrine-immune network was put forward, new insights have been brought into the understanding of the mechanism of acupuncture. Studies have proven that acupuncture is a mechanical stimulus that can activate local cell functions and neuroreceptors. It also regulates the release of related biomolecules (peptide hormones, lipid hormones, neuromodulators and neurotransmitters, and other small and large biomolecules) in the microenvironment, where they can affect each other and further activate the neuroendocrine-immune network to achieve holistic regulation. Recently, growing efforts have been made in the research on the mechanism of acupuncture. Some researchers have transitioned from studying the mechanism of acupuncture as a single linear pathway to using systems approaches, including metabolomics, genomics, proteomics and biological pathway analysis. This review summarizes the research progress on the neuro-endocrine-immune network related mechanism of acupuncture and discusses its current challenges and future directions.
Collapse
Affiliation(s)
- Jingwen Cui
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, Beijing 100193, China
| | - Wanrong Song
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, Beijing 100193, China
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
| | - Huihao Xu
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, Beijing 100193, China
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (J.C.); (W.S.); (Y.J.); (H.X.); (K.F.); (D.L.)
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, Beijing 100193, China
| |
Collapse
|
27
|
Glucose Metabolism in Burns-What Happens? Int J Mol Sci 2021; 22:ijms22105159. [PMID: 34068151 PMCID: PMC8153015 DOI: 10.3390/ijms22105159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Severe burns represent an important challenge for patients and medical teams. They lead to profound metabolic alterations, trigger a systemic inflammatory response, crush the immune defense, impair the function of the heart, lungs, kidneys, liver, etc. The metabolism is shifted towards a hypermetabolic state, and this situation might persist for years after the burn, having deleterious consequences for the patient's health. Severely burned patients lack energy substrates and react in order to produce and maintain augmented levels of glucose, which is the fuel "ready to use" by cells. In this paper, we discuss biological substances that induce a hyperglycemic response, concur to insulin resistance, and determine cell disturbance after a severe burn. We also focus on the most effective agents that provide pharmacological modulations of the changes in glucose metabolism.
Collapse
|
28
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Mapping of Microglial Brain Region, Sex and Age Heterogeneity in Obesity. Int J Mol Sci 2021; 22:ijms22063141. [PMID: 33808700 PMCID: PMC8003547 DOI: 10.3390/ijms22063141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
The prevalence of obesity has increased rapidly in recent years and has put a huge burden on healthcare worldwide. Obesity is associated with an increased risk for many comorbidities, such as cardiovascular diseases, type 2 diabetes and hypertension. The hypothalamus is a key brain region involved in the regulation of food intake and energy expenditure. Research on experimental animals has shown neuronal loss, as well as microglial activation in the hypothalamus, due to dietary-induced obesity. Microglia, the resident immune cells in the brain, are responsible for maintaining the brain homeostasis and, thus, providing an optimal environment for neuronal function. Interestingly, in obesity, microglial cells not only get activated in the hypothalamus but in other brain regions as well. Obesity is also highly associated with changes in hippocampal function, which could ultimately result in cognitive decline and dementia. Moreover, changes have also been reported in the striatum and cortex. Microglial heterogeneity is still poorly understood, not only in the context of brain region but, also, age and sex. This review will provide an overview of the currently available data on the phenotypic differences of microglial innate immunity in obesity, dependent on brain region, sex and age.
Collapse
|
30
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Manouchehrian O, Ramos M, Bachiller S, Lundgaard I, Deierborg T. Acute systemic LPS-exposure impairs perivascular CSF distribution in mice. J Neuroinflammation 2021; 18:34. [PMID: 33514389 PMCID: PMC7844902 DOI: 10.1186/s12974-021-02082-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background The exchange of cerebrospinal (CSF) and interstitial fluid is believed to be vital for waste clearance in the brain. The sleep-dependent glymphatic system, which is comprised of perivascular flow of CSF and is largely dependent on arterial pulsatility and astrocytic aquaporin-4 (AQP4) expression, facilitates much of this brain clearance. During the last decade, several observations have indicated that impaired glymphatic function goes hand in hand with neurodegenerative diseases. Since pathologies of the brain carry inflammatory components, we wanted to know how acute inflammation, e.g., with lipopolysaccharide (LPS) injections, would affect the glymphatic system. In this study, we aim to measure the effect of LPS on perivascular CSF distribution as a measure of glymphatic function. Methods Three hours after injection of LPS (1 mg/kg i.p.), C57bl/6 mice were (1) imaged for two CSF tracers, injected into cisterna magna, (2) transcardially perfused with buffer, or (3) used for physiological readouts. Tracer flow was imaged using a low magnification microscope on fixed brains, as well as using vibratome-cut slices for measuring tracer penetration in the brain. Cytokines, glial, and BBB-permeability markers were measured with ELISAs, Western blots, and immunohistochemistry. Cerebral blood flow was approximated using laser Doppler flowmetry, respiration and heart rate with a surgical monitor, and AQP4-polarization was quantified using confocal microscopy of immunolabeled brain sections. Results LPS-injections significantly lowered perivascular CSF tracer flow and penetration into the parenchyma. No differences in AQP4 polarization, cytokines, astroglial and BBB markers, cerebral blood flow, or respiration were detected in LPS-injected mice, although LPS did elevate cortical Iba1+ area and heart rate. Conclusions This study reports another physiological response after acute exposure to the bacterial endotoxin LPS, namely the statistically significant decrease in perivascular distribution of CSF. These observations may benefit our understanding of the role of systemic inflammation in brain clearance.
Collapse
Affiliation(s)
- Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, SE-223 62, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, SE-223 62, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| |
Collapse
|
32
|
Ross JA, Van Bockstaele EJ. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front Psychiatry 2021; 11:601519. [PMID: 33584368 PMCID: PMC7873441 DOI: 10.3389/fpsyt.2020.601519] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Arousal may be understood on a spectrum, with excessive sleepiness, cognitive dysfunction, and inattention on one side, a wakeful state in the middle, and hypervigilance, panic, and psychosis on the other side. However, historically, the concepts of arousal and stress have been challenging to define as measurable experimental variables. Divergent efforts to study these subjects have given rise to several disciplines, including neurobiology, neuroendocrinology, and cognitive neuroscience. We discuss technological advancements that chronologically led to our current understanding of the arousal system, focusing on the multifaceted nucleus locus coeruleus. We share our contemporary perspective and the hypotheses of others in the context of our current technological capabilities and future developments that will be required to move forward in this area of research.
Collapse
Affiliation(s)
- Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | | |
Collapse
|
33
|
Melief J, Huitinga I, Gold SM. The stress-axis in multiple sclerosis: Clinical, cellular, and molecular aspects. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:119-126. [PMID: 34238451 DOI: 10.1016/b978-0-12-820683-6.00008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Altered activity of the hypothalamus-pituitary-adrenal (HPA) stress-axis has been implicated in the pathogenesis and progression of multiple sclerosis (MS) and linked to the development of specific symptoms and comorbidities such as mood disorders, fatigue, or cognitive dysfunction. Overall the HPA-axis is activated or hyperresponsive in MS, though a hyporesponsive HPA-axis has been observed in a subgroup of MS patients that has a more severe course of the disease. Here we provide an overview of the possible causes of HPA-axis activation, sex- and subtype dependent differences, pathological, cellular, and molecular effects, and the clinical correlates of HPA-axis activity in MS.
Collapse
Affiliation(s)
- Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Stefan M Gold
- Department of Psychiatry and Medical Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute for Neuroimmunology and Multiple Sclerosis, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
35
|
Higher levels of serum IL-1β and TNF-α are associated with an increased probability of major depressive disorder. Psychiatry Res 2021; 295:113568. [PMID: 33199026 DOI: 10.1016/j.psychres.2020.113568] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disease. The dysregulated cytokines in depression are assumed due to the hyperactivation of the immune system. Here we aimed to evaluate the serum interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in MDD. This study recruited 87 MDD patients and 87 age and sex-matched healthy controls (HCs). The increased levels of serum IL-1β and TNF-α were observed among MDD patients. These higher levels of peripheral markers were positively correlated with the severity of depression. Therefore, the elevated levels of serum IL-1β and TNF-α might be used as risk assessment indicators for depression.
Collapse
|
36
|
Eckhardt F, Pauliny A, Rollings N, Mutschmann F, Olsson M, Kraus C, Kappeler PM. Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evol Biol 2020; 20:160. [PMID: 33261558 PMCID: PMC7709289 DOI: 10.1186/s12862-020-01724-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms' position along a fast-slow continuum in interspecific comparisons. Labord's chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4-9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. RESULTS We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3-4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. CONCLUSION We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
Collapse
Affiliation(s)
- Falk Eckhardt
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Angela Pauliny
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Nicky Rollings
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Mats Olsson
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Cornelia Kraus
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
37
|
Zarate MA, Wesolowski SR, Nguyen LM, De Dios RK, Wilkening RB, Rozance PJ, Wright CJ. In utero inflammatory challenge induces an early activation of the hepatic innate immune response in late gestation fetal sheep. Innate Immun 2020; 26:549-564. [PMID: 32538259 PMCID: PMC7556190 DOI: 10.1177/1753425920928388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chorioamnionitis is associated with inflammatory end-organ damage in the fetus. Tissues in direct contact with amniotic fluid drive a pro-inflammatory response and contribute to this injury. However, due to a lack of direct contact with the amniotic fluid, the liver contribution to this response has not been fully characterized. Given its role as an immunologic organ, we hypothesized that the fetal liver would demonstrate an early innate immune response to an in utero inflammatory challenge. Fetal sheep (131 ± 1 d gestation) demonstrated metabolic acidosis and high cortisol and norepinephrine values within 5 h of exposure to intra-amniotic LPS. Likewise, expression of pro-inflammatory cytokines increased significantly at 1 and 5 h of exposure. This was associated with NF-κB activation, by inhibitory protein IκBα degradation, and nuclear translocation of NF-κB subunits (p65/p50). Corroborating these findings, LPS exposure significantly increased pro-inflammatory innate immune gene expression in fetal sheep hepatic macrophages in vitro. Thus, an in utero inflammatory challenge induces an early hepatic innate immune response with systemic metabolic and stress responses. Within the fetal liver, hepatic macrophages respond robustly to LPS exposure. Our results demonstrate that the fetal hepatic innate immune response must be considered when developing therapeutic approaches to attenuate end-organ injury associated with in utero inflammation.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Randall B Wilkening
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
39
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
40
|
Rilett KC, Luo OD, McVey-Neufeld KA, MacKenzie RN, Foster JA. Loss of T cells influences sex differences in stress-related gene expression. J Neuroimmunol 2020; 343:577213. [PMID: 32278229 DOI: 10.1016/j.jneuroim.2020.577213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Deficiencies in the adaptive immune system have been linked to anxiety-like behaviours and stress reactivity. Mice lacking T lymphocytes through knockout of the T cell receptor (TCR) β and δ chains were compared to wild type C57Bl/6 mice. Central stress circuitry gene expression was assessed following repeated restraint stress. TCRβ-/-δ-/- mice showed an increased baseline plasma corticosterone and exaggerated changes in stress-related gene expression after repeated restraint stress. Sexual dimorphic stress responses were observed in wild-type C57Bl/6 mice but not in TCRβ-/-δ-/- mice. These data suggest that T cell-brain interactions influence sex-differences in CNS stress circuitry and stress reactivity.
Collapse
Affiliation(s)
- Kelly C Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Owen D Luo
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Karen-Anne McVey-Neufeld
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Robyn N MacKenzie
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
41
|
Matsuzaki S, Pouly JL, Canis M. Dose-dependent pro- or anti-fibrotic responses of endometriotic stromal cells to interleukin-1β and tumor necrosis factor α. Sci Rep 2020; 10:9467. [PMID: 32528066 PMCID: PMC7289797 DOI: 10.1038/s41598-020-66298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Endometriosis are characterized by dense fibrous tissue. Numerous studies have investigated roles of inflammation on the pathophysiology of endometriosis. However, the interplay of inflammation and fibrosis remains to be clarified. Here we show that low levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNFα) promoted a fibrotic phenotype, whereas high levels of IL-1β and TNFα inactivated the fibrotic phenotype of endometriotic stromal cells (Ectopic-ES). IL-1β 10 pg/mL and TNFα 100 and 1,000 pg/mL had minimal effects, whereas the highest dose of IL-1β (100 pg/mL) significantly decreased collagen gel contraction in Ectopic-ES. Furthermore, in Ectopic-ES, low levels of IL-1β (1 pg/mL) and/or TNFα 10 pg/mL significantly increased Col I mRNA expression, whereas higher doses of IL-1β (10 and/or 100 pg/mL) and/or TNFα (100 and/or 1,000 pg/mL) significantly decreased Col I and/or αSMA mRNA expression and the percentage of cells with Col I + and/or αSMA + stress fibers. In contrast, in either menstrual endometrial stromal cells of patients with endometriosis or those of healthy women, varying doses of IL-1β and/or TNFα had no significant effects on either Col I or αSMA mRNA/protein expression. The present findings bring into question whether we should still continue to attempt anti-inflammatory treatment strategies for endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France.
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand, France.
| | - Jean-Luc Pouly
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| | - Michel Canis
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| |
Collapse
|
42
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
43
|
Pearlstein JG, Staudenmaier PJ, West AE, Geraghty S, Cosgrove VE. Immune response to stress induction as a predictor of cognitive-behavioral therapy outcomes in adolescent mood disorders: A pilot study. J Psychiatr Res 2020; 120:56-63. [PMID: 31634750 DOI: 10.1016/j.jpsychires.2019.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Cognitive-behavioral therapy (CBT) alleviates symptoms of depression in youth with bipolar disorder (BD) and major depressive disorder (MDD). Empirical research has linked inflammatory markers to depressive symptoms and acute psychosocial stress; however, a gap remains as to whether immune response to stress may serve as a putative mechanism of treatment. This preliminary pilot study determined the modest feasibility of assessing psychobiological response to stress as a predictor of CBT outcomes for youth with mood disorders. We evaluated whether participation in a 10-session group-CBT intervention for mood disorders altered inflammatory response to a laboratory psychosocial stress induction and if this alteration in immune stress responsivity was related to a decrease in depressive symptoms. Thirty-four youth (age M = 15.03, SD = 1.91) diagnosed with BD or MDD participated in a 10-session CBT group and pre- and post-group assessments; twenty-eight participants who completed the group had usable cytokine data. Pre- and post-group assessments included stress induction with the Trier Social Stress Test (TSST) during which inflammatory cytokines were measured at baseline (time 0) and after the TSST at 30, 60, and 90 min. Results suggest it is modestly feasible to measure immune response to stress alongside CBT treatment for adolescent mood disorders. Our findings were mixed; across seven cytokines, hierarchical linear models indicated two cytokines, IL6 and IL12, were sensitive to acute laboratory stress. We also found significant correlations between life stress, inflammation, and depression both pre- and post- CBT group. Inflammation pre-group, as measured by IL12 and IL1 β predicted depressive symptoms following treatment. Although we did not find significant within-subject reductions in inflammation, chronic stress predicted changes in IL β, signaling the central role of chronic stress. This study offers preliminary evidence that immune responsivity to stress induction could serve as a mechanism of treatment for mood disorders in youth, indicating a potential marker for more personalized model of healthcare.
Collapse
Affiliation(s)
| | | | - Amy E West
- University of Southern California, United States
| | | | | |
Collapse
|
44
|
Abstract
Systemic infections of all types lead to a syndrome known as sickness behaviors. Changes in the behavior of febrile humans and animals formed the original basis for this concept. Body temperature is behaviorally regulated in both endotherms and ectotherms. However, infections cause other changes in body functions, including sleep disruption, anorexia, cognitive and memory deficits and disorientation. The brain mediates this entire cluster of symptoms, even though most major infections occur outside the brain. The true importance of sickness behaviors is not the numerous discoveries of symptoms that affect all of us when we get sick. Instead, the legacy of 30 years of research in sickness behaviors is that it established the physiologic importance of reciprocal communication systems between the immune system and the brain. This conceptual advance remains in its infancy.
Collapse
Affiliation(s)
- Keith W Kelley
- Department of Pathology, College of Medicine, Urbana, IL, United States.,Department of Animal Sciences, College of Agricultural, Consumer & Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Urbana, IL, United States.,School of Psychology and Public Health, University of Illinois in Urbana-Champaign, Urbana, IL, United States
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Dean and Head of School of Psychology & Public Health, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Pan MH, Zhu SR, Duan WJ, Ma XH, Luo X, Liu B, Kurihara H, Li YF, Chen JX, He RR. "Shanghuo" increases disease susceptibility: Modern significance of an old TCM theory. JOURNAL OF ETHNOPHARMACOLOGY 2019; 250:112491. [PMID: 31863858 DOI: 10.1016/j.jep.2019.112491] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shanghuo", a concept based on Traditional Chinese Medicine (TCM) theory, describes a status of Yin-Yang imbalance when Yang overwhelms Yin. The imbalance of Yin-Yang resembles the breaking of homeostasis and manifests by the impaired physiological functions, which leads to the onset, recurrence, and progression of diseases. Since ancient times, Chinese Materia Medica (CMM), such as herbal tea, has been applied as a treatment for "Shanghuo". AIM OF THE STUDY This review is aimed to describe the origin of "Shanghuo" from the Yin-Yang theory in TCM, as well as explore the relevance and correlations between "Shanghuo" and diseases susceptibility from the perspective of modern medicine. We also propose several strategies from CMM to improve the status of "Shanghuo" for the purpose of treating diseases. METHODS Systematic research of articles with keywords including Shanghuo, Yin-Yang, emotional stress and disease susceptibility was done by using the literature databases (Web of Science, Google Scholar, PubMed, CNKI). Related books, PhD and master's dissertations were also researched. Full scientific plant names were validated by "The Plant List" (www.theplantlist.org). RESULTS To date, a large number of publications have reported research on sub-health status, but studies about the theory or intervention of "Shanghuo" are rarely found. The articles we reviewed indicate that accumulated emotional stress is critical for the cause of "Shanghuo". As a status similar to sub-health, "Shanghuo" is also manifested by impaired physiological functions and decreased nonspecific resistance, which increase susceptibility to various diseases. What's more, some studies highlight the importance of TCM treatment towards "Shanghuo" in maintaining normal physiological functions, such as immunity, lipid metabolism and ROS clearance. CONCLUSIONS Researches on "Shanghuo" and its mechanism are every rare currently and are in need of investigation in the future. Studies on disease susceptibility recently are mostly about susceptible genes that relate to a few parts of people, however, for most of the people, accumulated emotional stress or other stressors is accountable for the susceptibility of diseases. Given that emotional stress plays an important factor in the causation of "Shanghuo", we reviewed the articles about this relevance and discussed the connection of "Shanghuo" with disease susceptibility in a novel perspective. In addition, we have reviewed the disease susceptibility model of restraint stress from its biochemical manifestation to application in CMM assessment. Although it would be a breakthrough in evaluating CMM efficacy of attenuating disease-susceptibility, understanding the comprehensive theory and establishing more models of "Shanghuo" would be required in further investigation.
Collapse
Affiliation(s)
- Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Rui Zhu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, Guangzhou, 510006, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- College of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
46
|
Bielefeld P, Durá I, Danielewicz J, Lucassen P, Baekelandt V, Abrous D, Encinas J, Fitzsimons C. Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies. Behav Brain Res 2019; 372:112032. [DOI: 10.1016/j.bbr.2019.112032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
47
|
|
48
|
|
49
|
Futch HS, McFarland KN, Moore BD, Kuhn MZ, Giasson BI, Ladd TB, Scott KA, Shapiro MR, Nosacka RL, Goodwin MS, Ran Y, Cruz PE, Ryu DH, Croft CL, Levites Y, Janus C, Chakrabarty P, Judge AR, Brusko TM, de Kloet AD, Krause EG, Golde TE. An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. J Exp Med 2019; 216:2479-2491. [PMID: 31467037 PMCID: PMC6829597 DOI: 10.1084/jem.20190430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
A high-affinity monoclonal antibody (CTRND05) targeting corticotropin-releasing factor (CRF) blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. Hypothalamic–pituitary–adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.
Collapse
Affiliation(s)
- Hunter S Futch
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Karen N McFarland
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Brenda D Moore
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - M Zino Kuhn
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Benoit I Giasson
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Thomas B Ladd
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Karen A Scott
- McKnight Brain Institute, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL
| | - Melanie R Shapiro
- Diabetes Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Rachel L Nosacka
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Marshall S Goodwin
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Yong Ran
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Pedro E Cruz
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Daniel H Ryu
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Cara L Croft
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Yona Levites
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Christopher Janus
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Paramita Chakrabarty
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Diabetes Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Annette D de Kloet
- McKnight Brain Institute, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL
| | - Eric G Krause
- McKnight Brain Institute, Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL
| | - Todd E Golde
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
50
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|