1
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
2
|
Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol 2025:169161. [PMID: 40268233 DOI: 10.1016/j.jmb.2025.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis(ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more recent work has brought to light additional mitochondrial quality control mechanisms that operate either in parallel to or independent of PINK1/Parkin mitophagy. Here, we discuss our current understanding of mitophagy mechanisms operating in neurons to govern mitochondrial homeostasis. We also summarize progress in our understanding of the links between mitophagic dysfunction and neurodegeneration and highlight the potential for therapeutic interventions to maintain mitochondrial health and neuronal function.
Collapse
Affiliation(s)
- Bishal Basak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
4
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
6
|
Raas Q, Haouy G, de Calbiac H, Pasho E, Marian A, Guerrera IC, Rosello M, Oeckl P, Del Bene F, Catanese A, Ciura S, Kabashi E. TBK1 is involved in programmed cell death and ALS-related pathways in novel zebrafish models. Cell Death Discov 2025; 11:98. [PMID: 40075110 PMCID: PMC11903655 DOI: 10.1038/s41420-025-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic mutations within the TBK1 gene leading to haploinsufficiency are causative of amyotrophic lateral sclerosis (ALS). This gene is linked to autophagy and inflammation, two cellular mechanisms reported to be dysregulated in ALS patients, although its functional role in the pathogenesis could involve other players. We targeted the TBK1 ortholog in zebrafish, an optimal vertebrate model for investigating genetic defects in neurological disorders. We generated zebrafish models with invalidating tbk1 mutations using CRISPR-Cas9 or tbk1 knockdown models using antisense morpholino oligonucleotide (AMO). The early motor phenotype of zebrafish injected with tbk1 AMO beginning at 2 days post fertilization (dpf) is associated with the degeneration of motor neurons. In parallel, CRISPR-induced tbk1 mutants exhibit impaired motor function beginning at 5 dpf and increased lethality beginning at 9 dpf. A metabolomic analysis showed an association between tbk1 loss and severe dysregulation of nicotinamide metabolism, and incubation with nicotinamide riboside rescued the motor behavior of tbk1 mutant zebrafish. Furthermore, a proteomic analysis revealed increased levels of inflammatory markers and dysregulation of programmed cell death pathways. Necroptosis appeared to be strongly activated in TBK1 fish, and larvae treated with the necroptosis inhibitor necrosulfonamide exhibited improved survival. Finally, a combined analysis of mutant zebrafish and TBK1-mutant human motor neurons revealed dysregulation of the KEGG pathway "ALS", with disrupted nuclear-cytoplasmic transport and increased expression of STAT1. These findings point toward a major role for necroptosis in the degenerative features and premature lethality observed in tbk1 mutant zebrafish. Overall, the novel tbk1-deficient zebrafish models offer a great opportunity to better understand the cascade of events leading from the loss of tbk1 expression to the onset of motor deficits, with involvement of a metabolic defect and increased cell death, and for the development of novel therapeutic avenues for ALS and related neuromuscular diseases.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Gregoire Haouy
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Hortense de Calbiac
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Elena Pasho
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Anca Marian
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UAR 3633, Université Paris Cité, 75015, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Alberto Catanese
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sorana Ciura
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
7
|
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, Bezbradica JS. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways. SCIENCE ADVANCES 2025; 11:eadq1047. [PMID: 40053580 PMCID: PMC11887814 DOI: 10.1126/sciadv.adq1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The loss of TBK1, or both TBK1 and the related kinase IKKε, results in uncontrolled cell death-driven inflammation. Here, we show that the pathway leading to cell death depends on the nature of the activating signal. Previous models suggest that in steady state, TBK1/IKKε-deficient cells die slowly and spontaneously predominantly by uncontrolled tumor necrosis factor-RIPK1-driven death. However, upon infection of cells that express the NLRP3 inflammasome, (e.g., macrophages), with pathogens that activate this pathway (e.g., Listeria monocytogenes), TBK1/IKKε-deficient cells die rapidly, prematurely, and exclusively by enhanced NLRP3-driven pyroptosis. Even infection with the RIPK1-activating pathogen, Yersinia pseudotuberculosis, results in enhanced RIPK1-caspase-8 activation and enhanced secondary NLRP3 activation. Mechanistically, TBK1/IKKε control endosomal traffic, and their loss disrupts endosomal homeostasis, thereby signaling cell stress. This results in premature NLRP3 activation even upon sensing "signal 2" alone, without the obligatory "signal 1." Collectively, TBK1/IKKε emerge as a central brake in limiting death-induced inflammation by both RIPK1 and NLRP3 death-inducing pathways.
Collapse
Affiliation(s)
- Fabian A. Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felicia Chan Hui Min
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kaiwen W. Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
8
|
Swarup G, Medchalmi S, Ramachandran G, Sayyad Z. Molecular aspects of cytoprotection by Optineurin during stress and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119895. [PMID: 39753182 DOI: 10.1016/j.bbamcr.2024.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Optineurin/OPTN is an adapter protein that plays a crucial role in mediating many cellular functions, including autophagy, vesicle trafficking, and various signalling pathways. Mutations of OPTN are linked with neurodegenerative disorders, glaucoma, and amyotrophic lateral sclerosis (ALS). Recent work has shown that OPTN provides cytoprotection from many types of stress, including oxidative stress, endoplasmic reticulum stress, protein homeostasis stress, tumour necrosis factor α, and microbial infection. Here, we discuss the mechanisms involved in cytoprotective functions of OPTN, which possibly depend on its ability to modulate various stress-induced signalling pathways. ALS- and glaucoma-causing mutants of OPTN are altered in this regulation, which may affect cell survival, particularly under various stress conditions. We suggest that OPTN deficiency created by mutations may cooperate with stress-induced signalling to enhance or cause neurodegeneration. Other functions of OPTN, such as neurotrophin secretion and vesicle trafficking, may also contribute to cytoprotection.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| | - Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Gopalakrishna Ramachandran
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Zuberwasim Sayyad
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
9
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
10
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
11
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
12
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Rifai OM, Waldron FM, Sleibi D, O'Shaughnessy J, Leighton DJ, Gregory JM. Clinicopathological analysis of NEK1 variants in amyotrophic lateral sclerosis. Brain Pathol 2025; 35:e13287. [PMID: 38986433 PMCID: PMC11669413 DOI: 10.1111/bpa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Many genes have been linked to amyotrophic lateral sclerosis (ALS), including never in mitosis A (NIMA)-related kinase 1 (NEK1), a serine/threonine kinase that plays a key role in several cellular functions, such as DNA damage response and cell cycle regulation. Whole-exome sequencing studies have shown that NEK1 mutations are associated with an increased risk for ALS, where a significant enrichment of NEK1 loss-of-function (LOF) variants were found in individuals with ALS compared to controls. In particular, the p.Arg261His missense variant was associated with significantly increased disease susceptibility. This case series aims to understand the neuropathological phenotypes resulting from NEK1 mutations in ALS. We examined a cohort of three Scottish patients with a mutation in the NEK1 gene and evaluated the distribution and cellular expression of NEK1, as well as the abundance of phosphorylated TDP-43 (pTDP-43) aggregates, in the motor cortex compared to age- and sex-matched control tissue. We show pathological, cytoplasmic TDP-43 aggregates in all three NEK1-ALS cases. NEK1 protein staining revealed no immunoreactivity in two of the NEK1-ALS cases, indicating a LOF and corresponding to a reduction in NEK1 mRNA as detected by in situ hybridisation. However, the p.Arg261His missense mutation resulted in an increase in NEK1 mRNA molecules and abundant NEK1-positive cytoplasmic aggregates, with the same morphologic appearance, and within the same cells as co-occurring TDP-43 aggregates. Here we show the first neuropathological assessment of a series of ALS cases carrying mutations in the NEK1 gene. Specifically, we show that TDP-43 pathology is present in these cases and that potential NEK1 LOF can either be mediated through loss of NEK1 translation or through aggregation of NEK1 protein as in the case with p.Arg261His mutation, a potential novel pathological feature of NEK1-ALS.
Collapse
Affiliation(s)
- Olivia M. Rifai
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Department of NeurologyCenter for Motor Neuron Biology and Disease, Columbia UniversityNew YorkNew YorkUSA
| | | | - Danah Sleibi
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - Danielle J. Leighton
- Department of ChemistryUniversity of EdinburghEdinburghUK
- Department of NeurologyUniversity of GlasgowGlasgowUK
- School of Psychology & NeuroscienceUniversity of GlasgowGlasgowUK
- Euan MacDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
14
|
Nogueira-Machado JA, das Chagas Lima E Silva F, Rocha-Silva F, Gomes N. Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:83-90. [PMID: 39171600 DOI: 10.2174/0118715273315891240801065231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.
Collapse
Affiliation(s)
| | | | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Tian Y, Heinsinger N, Hu Y, Lim UM, Wang Y, Fernandis AZ, Parmentier-Batteur S, Klein B, Uslaner JM, Smith SM. Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets. PLoS One 2024; 19:e0308428. [PMID: 39739690 DOI: 10.1371/journal.pone.0308428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43. Co-immunoprecipitation demonstrated that Ataxin-2 and TDP-43 interact, that their interaction is mediated through the RNA recognition motif (RRM) of TDP-43, and knocking down Ataxin-2 or mutating the RRM domains rescued TDP-43 toxicity in an iPSC-derived neuronal model with TDP-43 overexpression. To decipher the Ataxin-2 and TDP-43 interactome, we used co-immunoprecipitation followed by mass spectrometry to identify proteins that interacted with Ataxin-2 and TDP-43 under conditions of endogenous or overexpressed TDP-43 in iPSC-derived neurons. Multiple interactome proteins were differentially regulated by TDP-43 overexpression and toxicity, including those involved in RNA regulation, cell survival, cytoskeleton reorganization, protein modification, and diseases. Interestingly, the RNA-binding protein (RBP), TAF15 which has been implicated in ALS was identified as a strong binder of Ataxin-2 in the condition of TDP-43 overexpression. Together, this study provides a comprehensive annotation of the Ataxin-2 and TDP-43 interactome and identifies potential therapeutic pathways and targets that could be modulated to alleviate Ataxin-2 and TDP-43 interaction-induced toxicity in ALS.
Collapse
Affiliation(s)
- Yuan Tian
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Nicolette Heinsinger
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Yinghui Hu
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - U-Ming Lim
- Quantatitive Biosciences, Merck Sharp & Dohme, Singapore, Singapore
| | - Yi Wang
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | | | - Sophie Parmentier-Batteur
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Becky Klein
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Jason M Uslaner
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Sean M Smith
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| |
Collapse
|
16
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
17
|
Luan T, Li Q, Huang Z, Feng Y, Xu D, Zhou Y, Hu Y, Wang T. Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights. Neurosci Bull 2024; 40:1789-1810. [PMID: 39097850 PMCID: PMC11607281 DOI: 10.1007/s12264-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 08/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Collapse
Affiliation(s)
- Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Huang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Duo Xu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yujie Zhou
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Naruse H, Iseki C, Mitsui J, Miki J, Nagasawa H, Kurokawa K, Kobayashi R, Sato H, Goto J, Satake W, Ishiura H, Tsuji S, Ohta Y, Toda T. A novel TBK1 loss-of-function variant associated with ALS and parkinsonism phenotypes. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:791-794. [PMID: 38963079 DOI: 10.1080/21678421.2024.2374374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Loss-of-function (LoF) variants in the TANK binding kinase 1 (TBK1) gene are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. In this study, we present the first familial cases of ALS and parkinsonism associated with a novel TBK1 variant. We describe two siblings: one diagnosed with classical ALS and the other with a unique syndrome overlapping ALS and parkinsonism. Comprehensive clinical and imaging evaluations supported these diagnoses. Genetic analysis through whole-genome sequencing revealed a previously unknown heterozygous splice site variant in TBK1. Functional assessments demonstrated that this splice site variant leads to abnormal splicing and subsequent degradation of the mutated TBK1 allele by nonsense-mediated decay, confirming its pathogenic impact. Our findings suggest a broader involvement of TBK1 in neurodegenerative diseases and underscore the need for further research into TBK1's role, advocating for screening for TBK1 variants in similar familial cases.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chifumi Iseki
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Hikaru Nagasawa
- Department of Neurology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Katsuro Kurokawa
- Department of Neurology, Yamagata National Hospital, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan, and
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Theme 5 Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:158-184. [PMID: 39508672 DOI: 10.1080/21678421.2024.2403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
20
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
21
|
Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, Valenti LVC, de Cid R, Bujanda L, Julià A, Pairo-Castineira E, Baillie JK, May S, Zametica B, Heggemann J, Albillos A, Banales JM, Barretina J, Blay N, Bonfanti P, Buti M, Fernandez J, Marsal S, Prati D, Ronzoni L, Sacchi N, Schultze JL, Riess O, Franke A, Rawlik K, Ellinghaus D, Hoischen A, Schmidt A, Ludwig KU. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG ADVANCES 2024; 5:100323. [PMID: 38944683 PMCID: PMC11320601 DOI: 10.1016/j.xhgg.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024] Open
Abstract
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.
Collapse
Affiliation(s)
- Jannik Boos
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Caspar I van der Made
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayatri Ramakrishnan
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamon Coughlan
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital - via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Luca V C Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Julià
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Erola Pairo-Castineira
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra May
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Berina Zametica
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Agustín Albillos
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jordi Barretina
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Paolo Bonfanti
- Division of Infectious Diseases, Università degli Studi di Milano Bicocca, Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Maria Buti
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernandez
- Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF CLif), Barcelona, Spain
| | - Sara Marsal
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Konrad Rawlik
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
22
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
23
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
24
|
Nijs M, Van Damme P. The genetics of amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:560-569. [PMID: 38967083 PMCID: PMC11377058 DOI: 10.1097/wco.0000000000001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) has a strong genetic basis, but the genetic landscape of ALS appears to be complex. The purpose of this article is to review recent developments in the genetics of ALS. RECENT FINDINGS Large-scale genetic studies have uncovered more than 40 genes contributing to ALS susceptibility. Both rare variants with variable effect size and more common variants with small effect size have been identified. The most common ALS genes are C9orf72 , SOD1 , TARDBP and FUS . Some of the causative genes of ALS are shared with frontotemporal dementia, confirming the molecular link between both diseases. Access to diagnostic gene testing for ALS has to improve, as effective gene silencing therapies for some genetic subtypes of ALS are emerging, but there is no consensus about which genes to test for. SUMMARY Our knowledge about the genetic basis of ALS has improved and the first effective gene silencing therapies for specific genetic subtypes of ALS are underway. These therapeutic advances underline the need for better access to gene testing for people with ALS. Further research is needed to further map the genetic heterogeneity of ALS and to establish the best strategy for gene testing in a clinical setting.
Collapse
Affiliation(s)
- Melissa Nijs
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Chen YD, Lin XP, Ruan ZL, Li M, Yi XM, Zhang X, Li S, Shu HB. PLK2-mediated phosphorylation of SQSTM1 S349 promotes aggregation of polyubiquitinated proteins upon proteasomal dysfunction. Autophagy 2024; 20:2221-2237. [PMID: 39316746 PMCID: PMC11423667 DOI: 10.1080/15548627.2024.2361574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.
Collapse
Affiliation(s)
- Yun-Da Chen
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiu-Ping Lin
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Mi Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Mei Yi
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xu Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
26
|
Fang SY, Tsai PC, Jih KY, Hsu FC, Liao YC, Yang CC, Lee YC. TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive amyotrophic lateral sclerosis through a haploinsufficiency mechanism. J Chin Med Assoc 2024; 87:920-926. [PMID: 39118204 DOI: 10.1097/jcma.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND TBK1 variants have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia spectrum disorder. The current study elucidated the clinical and molecular genetic features of a novel TBK1 variant identified in a patient with young-onset, rapidly progressive ALS. METHODS The coding regions of TBK1 , SOD1 , TARDBP , and FUS were genetically analyzed using Sanger sequencing. Repeat-primed polymerase chain reaction (PCR) was used to survey the GGGGCC repeat in C9ORF72 . The study participant underwent a comprehensive clinical evaluation. The functional effects of the TBK1 variant were analyzed through in vitro transfection studies. RESULTS We identified a novel frameshift truncating TBK1 variant, c.456_457delGT (p.Y153Qfs*9), in a man with ALS. The disease initially manifested as right hand weakness at the age of 39 years but progressed rapidly, with the revised ALS Functional Rating Scale score declining at an average monthly rate of 1.92 points in the first year after diagnosis. The patient had no cognitive dysfunction. However, Technetium-99m single photon emission tomography indicated hypoperfusion in his bilateral superior and middle frontal cortices. In vitro studies revealed that the p.Y153Qfs*9 variant resulted in a truncated TBK1 protein product, reduced TBK1 protein expression, loss of kinase function, reduced interaction with optineurin, and impaired dimerization. CONCLUSION The heterozygous TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive ALS through a haploinsufficiency mechanism.
Collapse
Affiliation(s)
- Shih-Yu Fang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Department of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Chi Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
27
|
Chung YM, Hu CS, Sun E, Tseng HC. Morphological multiparameter filtration and persistent homology in mitochondrial image analysis. PLoS One 2024; 19:e0310157. [PMID: 39302926 DOI: 10.1371/journal.pone.0310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
The complexity of branching and curvilinear morphology of a complete mitochondrial network within each cell is challenging to analyze and quantify. To address this challenge, we developed an image analysis technique using persistent homology with a multiparameter filtration framework, combining image processing techniques in mathematical morphology. We show that such filtrations contain both topological and geometric information about complex cellular organelle structures, which allows a software program to extract meaningful features. Using this information, we also develop a connectivity index that describes the morphology of the branching patterns. As proof of concept, we utilize this approach to study how mitochondrial networks are altered by genetic changes in the Optineurin gene. Mutations in the autophagy gene Optineurin (OPTN) are associated with primary open-angle glaucoma (POAG), amyotrophic lateral sclerosis (ALS), and Paget's disease of the bone, but the pathophysiological mechanism is unclear. We utilized the proposed mathematical morphology-based multiparameter filtration and persistent homology approach to analyze and quantitatively compare how changes in the OPTN gene alter mitochondrial structures from their normal interconnected, tubular morphology into scattered, fragmented pieces.
Collapse
Affiliation(s)
- Yu-Min Chung
- Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Chuan-Shen Hu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Emily Sun
- Columbia Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
28
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
29
|
Zelina P, de Ruiter AA, Kolsteeg C, van Ginneken I, Vos HR, Supiot LF, Burgering BMT, Meye FJ, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons. Acta Neuropathol Commun 2024; 12:144. [PMID: 39227882 PMCID: PMC11373222 DOI: 10.1186/s40478-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Anna Aster de Ruiter
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christy Kolsteeg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ilona van Ginneken
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Liu Y, Wang A, Chen C, Zhang Q, Shen Q, Zhang D, Xiao X, Chen S, Lian L, Le Z, Liu S, Liang T, Zheng Q, Xu P, Zou J. Microglial cGAS-STING signaling underlies glaucoma pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409493121. [PMID: 39190350 PMCID: PMC11388346 DOI: 10.1073/pnas.2409493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Characterized by progressive degeneration of retinal ganglion cells (RGCs) and vision loss, glaucoma is the primary cause of irreversible blindness, incurable and affecting over 78 million patients. However, pathogenic mechanisms leading to glaucoma-induced RGC loss are incompletely understood. Unexpectedly, we found that cGAS-STING (2'3'-cyclic GMP-AMP-stimulator of interferon genes) signaling, which surveils displaced double-stranded DNA (dsDNA) in the cytosol and initiates innate immune responses, was robustly activated during glaucoma in retinal microglia in distinct murine models. Global or microglial deletion of STING markedly relieved glaucoma symptoms and protected RGC degeneration and vision loss, while mice bearing genetic cGAS-STING supersensitivity aggravated retinal neuroinflammation and RGC loss. Mechanistically, dsDNA from tissue injury activated microglial cGAS-STING signaling, causing deleterious macroglia reactivity in retinas by cytokine-mediated microglia-macroglia interactions, progressively driving apoptotic death of RGCs. Remarkably, preclinical investigations of targeting cGAS-STING signaling by intraocular injection of TBK1i or anti-IFNAR1 antibody prevented glaucoma-induced losses of RGCs and vision. Therefore, we unravel an essential role of cGAS-STING signaling underlying glaucoma pathogenesis and suggest promising therapeutic strategies for treating this devastating disease.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Chen Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qian Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qin Shen
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Dan Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Xueqi Xiao
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou325035, China
| | - Lili Lian
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Shengduo Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Jian Zou
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| |
Collapse
|
31
|
Talaia G, Bentley-DeSousa A, Ferguson SM. Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition. EMBO J 2024; 43:3948-3967. [PMID: 39103493 PMCID: PMC11405869 DOI: 10.1038/s44318-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
32
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
33
|
Wang W, Sang Q, Wang L. Genetic factors of oocyte maturation arrest: an important cause for recurrent IVF/ICSI failures. J Assist Reprod Genet 2024; 41:1951-1953. [PMID: 38980564 PMCID: PMC11339007 DOI: 10.1007/s10815-024-03195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Oocyte maturation arrest (OMA) is a common phenotype observed in IVF/ICSI cycles, characterized by the production of immature oocytes which lead to infertility. Previous studies have demonstrated that genetic factors play an important role in OMA, but the genetic mechanisms underlying a group of patients remain to be elucidated. In the recent issue of Journal of Assisted Reproduction and Genetics, Hu et al. and Wan et al. identified novel PATL2 or ZFP36L2 variants in OMA patients, respectively. By conducting in vitro experiments, they demonstrated the destructive effect of the variants on protein function. These findings expand the mutational spectrum of PATL2 and ZFP36L2, and provide precise reference for genetic counseling of OMA patients.
Collapse
Affiliation(s)
- Weijie Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
35
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
36
|
Pottinger TD, Motelow JE, Povysil G, Moreno CAM, Ren Z, Phatnani H, Aitman TJ, Santoyo-Lopez J, Mitsumoto H, Goldstein DB, Harms MB. Rare variant analyses validate known ALS genes in a multi-ethnic population and identifies ANTXR2 as a candidate in PLS. BMC Genomics 2024; 25:651. [PMID: 38951798 PMCID: PMC11218304 DOI: 10.1186/s12864-024-10538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. METHODS Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. RESULTS A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR = 19.18, p = 3.67 × 10-39; OR = 4.73, p = 2 × 10-10; OR = 2.3, p = 7.49 × 10-9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 10-7), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR = 10.08, p = 3.62 × 10-16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p = 8.38 × 10-6). CONCLUSIONS In a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.
Collapse
Affiliation(s)
- Tess D Pottinger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Division of General Medicine, Department of Medicine, 622 West 168 , New York, NY, 10032, USA.
| | - Joshua E Motelow
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hemali Phatnani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Hiroshi Mitsumoto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Huang X, Lee S, Chen K, Kawaguchi R, Wiskow O, Ghosh S, Frost D, Perrault L, Pandey R, Klim JR, Boivin B, Hermawan C, Livak KJ, Geschwind DH, Wainger BJ, Eggan KC, Bean BP, Woolf CJ. Downregulation of the silent potassium channel Kv8.1 increases motor neuron vulnerability in amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae202. [PMID: 38911266 PMCID: PMC11191651 DOI: 10.1093/braincomms/fcae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Laura Perrault
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Roshan Pandey
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bruno Boivin
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Crystal Hermawan
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kenneth J Livak
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel H Geschwind
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian J Wainger
- Department of Neurology, Mass General Brigham and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
39
|
Huang M, Liu YU, Yao X, Qin D, Su H. Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications. Transl Neurodegener 2024; 13:28. [PMID: 38811997 PMCID: PMC11138100 DOI: 10.1186/s40035-024-00416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Miaodan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
40
|
Huang TN, Shih YT, Yen TL, Hsueh YP. Vcp overexpression and leucine supplementation extend lifespan and ameliorate neuromuscular junction phenotypes of a SOD1G93A-ALS mouse model. Hum Mol Genet 2024; 33:935-944. [PMID: 38382647 PMCID: PMC11102594 DOI: 10.1093/hmg/ddae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Many genes with distinct molecular functions have been linked to genetically heterogeneous amyotrophic lateral sclerosis (ALS), including SuperOxide Dismutase 1 (SOD1) and Valosin-Containing Protein (VCP). SOD1 converts superoxide to oxygen and hydrogen peroxide. VCP acts as a chaperon to regulate protein degradation and synthesis and various other cellular responses. Although the functions of these two genes differ, in the current report we show that overexpression of wild-type VCP in mice enhances lifespan and maintains the size of neuromuscular junctions (NMJs) of both male and female SOD1G93A mice, a well-known ALS mouse model. Although VCP exerts multiple functions, its regulation of ER formation and consequent protein synthesis has been shown to play the most important role in controlling dendritic spine formation and social and memory behaviors. Given that SOD1 mutation results in protein accumulation and aggregation, it may direct VCP to the protein degradation pathway, thereby impairing protein synthesis. Since we previously showed that the protein synthesis defects caused by Vcp deficiency can be improved by leucine supplementation, to confirm the role of the VCP-protein synthesis pathway in SOD1-linked ALS, we applied leucine supplementation to SOD1G93A mice and, similar to Vcp overexpression, we found that it extends SOD1G93A mouse lifespan. In addition, the phenotypes of reduced muscle strength and fewer NMJs of SOD1G93A mice are also improved by leucine supplementation. These results support the existence of crosstalk between SOD1 and VCP and suggest a critical role for protein synthesis in ASL. Our study also implies a potential therapeutic treatment for ALS.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, 128 Sec 2, Academia Rd, Taipei, 11529, Taiwan, ROC
| | - Yu-Tzu Shih
- Institute of Molecular Biology, Academia Sinica, 128 Sec 2, Academia Rd, Taipei, 11529, Taiwan, ROC
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tzu-Li Yen
- Institute of Molecular Biology, Academia Sinica, 128 Sec 2, Academia Rd, Taipei, 11529, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128 Sec 2, Academia Rd, Taipei, 11529, Taiwan, ROC
| |
Collapse
|
41
|
Prasad K, Hassan MI, Raghuvanshi S, Kumar V. Understanding the relationship between cerebellum and the frontal-cortex region of C9orf72-related amyotrophic lateral sclerosis: A comparative analysis of genetic features. PLoS One 2024; 19:e0301267. [PMID: 38753768 PMCID: PMC11098475 DOI: 10.1371/journal.pone.0301267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, India
| |
Collapse
|
42
|
Brenner D, Sieverding K, Srinidhi J, Zellner S, Secker C, Yilmaz R, Dyckow J, Amr S, Ponomarenko A, Tunaboylu E, Douahem Y, Schlag JS, Rodríguez Martínez L, Kislinger G, Niemann C, Nalbach K, Ruf WP, Uhl J, Hollenbeck J, Schirmer L, Catanese A, Lobsiger CS, Danzer KM, Yilmazer-Hanke D, Münch C, Koch P, Freischmidt A, Fetting M, Behrends C, Parlato R, Weishaupt JH. A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice. J Exp Med 2024; 221:e20221190. [PMID: 38517332 PMCID: PMC10959724 DOI: 10.1084/jem.20221190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.
Collapse
Affiliation(s)
- David Brenner
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jahnavi Srinidhi
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Susanne Zellner
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüstem Yilmaz
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Julia Dyckow
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Shady Amr
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Ponomarenko
- Department of Neurology, University of Ulm, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Esra Tunaboylu
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Yasmin Douahem
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Joana S. Schlag
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucía Rodríguez Martínez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cornelia Niemann
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | | | - Jonathan Uhl
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Johanna Hollenbeck
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucas Schirmer
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christian S. Lobsiger
- Institut du Cerveau—Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, Centre National de la Recherche Scientifique, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Karin M. Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy Unit, University of Ulm, Ulm, Germany
| | - Christian Münch
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Philipp Koch
- University of Heidelberg/Medical Faculty Mannheim, Central Institute of Mental Health, Mannheim, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Martina Fetting
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christian Behrends
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Rosanna Parlato
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
43
|
Petrauskas A, Fortunati DL, Kandi AR, Pothapragada SS, Agrawal K, Singh A, Huelsmeier J, Hillebrand J, Brown G, Chaturvedi D, Lee J, Lim C, Auburger G, VijayRaghavan K, Ramaswami M, Bakthavachalu B. Structured and disordered regions of Ataxin-2 contribute differently to the specificity and efficiency of mRNP granule formation. PLoS Genet 2024; 20:e1011251. [PMID: 38768217 PMCID: PMC11166328 DOI: 10.1371/journal.pgen.1011251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.
Collapse
Affiliation(s)
- Arnas Petrauskas
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Daniel L. Fortunati
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Arvind Reddy Kandi
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
| | | | - Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam, Kerala, India
| | - Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Manipal Institute of Regenerative Medicine, MAHE-Bengaluru, Govindapura, Bengaluru, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jens Hillebrand
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Georgia Brown
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Jongbo Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Georg Auburger
- Experimental Neurology, Medical School, Goethe University, Frankfurt, Germany
| | | | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Baskar Bakthavachalu
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
| |
Collapse
|
44
|
Ruffo P, De Amicis F, La Bella V, Conforti FL. Investigating Repeat Expansions in NIPA1, NOP56, and NOTCH2NLC Genes: A Closer Look at Amyotrophic Lateral Sclerosis Patients from Southern Italy. Cells 2024; 13:677. [PMID: 38667292 PMCID: PMC11049433 DOI: 10.3390/cells13080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of repeat expansions in ALS in different populations and ethnic groups is therefore of great importance. Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56, and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened 302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and control groups, a moderate association was observed between longer RE lengths and clinical features such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes, contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare pathogenic REs in these genes do not allow an association with the disease.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD 20892, USA
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy;
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
45
|
Silva-Hucha S, Fernández de Sevilla ME, Humphreys KM, Benson FE, Franco JM, Pozo D, Pastor AM, Morcuende S. VEGF expression disparities in brainstem motor neurons of the SOD1 G93A ALS model: Correlations with neuronal vulnerability. Neurotherapeutics 2024; 21:e00340. [PMID: 38472048 PMCID: PMC11070718 DOI: 10.1016/j.neurot.2024.e00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Cell and Developmental Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK
| | | | - Kirsty M Humphreys
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla Medical School, 41009 Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
46
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
47
|
Moțățăianu A, Andone S, Stoian A, Bălașa R, Huțanu A, Sărmășan E. A Potential Role of Interleukin-5 in the Pathogenesis and Progression of Amyotrophic Lateral Sclerosis: A New Molecular Perspective. Int J Mol Sci 2024; 25:3782. [PMID: 38612591 PMCID: PMC11011909 DOI: 10.3390/ijms25073782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cumulative data suggest that neuroinflammation plays a prominent role in amyotrophic lateral sclerosis (ALS) pathogenesis. The purpose of this work was to assess if patients with ALS present a specific peripheral cytokine profile and if it correlates with neurological disability assessed by ALSFRS-R, the rate of disease progression, and the pattern of disease progression (horizontal spreading [HSP] versus vertical spreading [VSP]). We determined the levels of 15 cytokines in the blood of 59 patients with ALS and 40 controls. We identified a positive correlation between levels of pro-inflammatory cytokines (interleukin [IL]-17F, IL-33, IL-31) and the age of ALS patients, as well as a positive correlation between IL-12p/70 and survival from ALS onset and ALS diagnosis. Additionally, there was a positive correlation between the ALSFRS-R score in the upper limb and respiratory domain and IL-5 levels. In our ALS cohort, the spreading pattern was 42% horizontal and 58% vertical, with patients with VSP showing a faster rate of ALS progression. Furthermore, we identified a negative correlation between IL-5 levels and the rate of disease progression, as well as a positive correlation between IL-5 and HSP of ALS. To the best of our knowledge, this is the first study reporting a "protective" role of IL-5 in ALS.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Stoian
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emanuela Sărmășan
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
| |
Collapse
|
48
|
Cao W, Cao Z, Tang L, Xu C, Fan D. Immune-mediated diseases are associated with a higher risk of ALS incidence: a prospective cohort study from the UK Biobank. Front Immunol 2024; 15:1356132. [PMID: 38504981 PMCID: PMC10948436 DOI: 10.3389/fimmu.2024.1356132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Objective The occurrence of immune-mediated diseases (IMDs) in amyotrophic lateral sclerosis (ALS) patients is widely reported. However, whether IMDs and ALS is a simple coexistence or if there exists causal relationships between the two has been a subject of great interest to researchers. Methods A total of 454,444 participants from the prospective cohort of UK Biobank were recruited to investigate the longitudinal association between IMDs and ALS. Previously any IMDs and organ specific IMDs were analyzed in relation to the following incident ALS by Cox-proportional hazard models. Subgroup analyses were performed to explore the covariates of these relationships. Results After adjusting for potential covariates, the multivariate analysis showed that any IMDs were associated with an increased risk of ALS incidence (HR:1.42, 95%CI:1.03-1.94). IMDs of the endocrine-system and the intestinal-system were associated with increased risk of ALS incidence (endocrine-system IMDs: HR:3.01, 95%CI:1.49-6.06; intestinal system IMDs: HR:2.07, 95%CI: 1.14-3.77). Subgroup analyses revealed that immune burden, including IMD duration and the severity of inflammation had specific effects on the IMD-ALS association. In participants with IMD duration≥10 years or CRP≥1.3mg/L or females, previous IMDs increased the risk of incident ALS; however, in participants with IMD duration <10 years or CRP<1.3mg/L or males, IMDs had no effect on incident ALS. Interpretation Our study provides evidence that previous any IMDs and endocrine-system and the intestinal-system specific IMDs are associated with an increased risk of developing ALS in females, but not in males.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Zhi Cao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
49
|
Yamano K, Sawada M, Kikuchi R, Nagataki K, Kojima W, Endo R, Kinefuchi H, Sugihara A, Fujino T, Watanabe A, Tanaka K, Hayashi G, Murakami H, Matsuda N. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J 2024; 43:754-779. [PMID: 38287189 PMCID: PMC10907724 DOI: 10.1038/s44318-024-00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Momoha Sawada
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kafu Nagataki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ryu Endo
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsushi Sugihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Watanabe
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| |
Collapse
|
50
|
Dzik KP, Flis DJ, Kaczor-Keller KB, Bytowska ZK, Karnia MJ, Ziółkowski W, Kaczor JJ. Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice. J Mol Med (Berl) 2024; 102:379-390. [PMID: 38197966 PMCID: PMC10879285 DOI: 10.1007/s00109-023-02410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls. Mice swam five times per week for 30 min. Mice were analyzed before ALS onset (70 days old), at ALS 1 disease onset (116 days old), and at the terminal stage of the disease ALS (130 days old), and compared with the corresponding ALS untrained groups and normalized to the wild-type group. Enzyme activity and protein content were analyzed in the spinal cord homogenates. The results show autophagy disruptions causing accumulation of p62 accompanied by low PGC-1α and IGF-1 content in the spinal cord of SOD1-G93A mice. Swim training triggered a neuroprotective effect, attenuation of NF-l degradation, less accumulated p62, and lower autophagy initiation. The IGF-1 pathway induces pathophysiological adaptation to maintain energy demands through anaerobic metabolism and mitochondrial protection. KEY MESSAGES: The increased protein content of p62 in the spinal cord of SOD1-G93A mice suggests that autophagic clearance and transportation are disrupted. Swim training attenuates neurofilament light destruction in the spinal cord of SOD1-G93A mice. Swim training reducing OGDH provokes suppression of ATP-consuming anabolic pathways. Swim training induces energy metabolic changes and mitochondria protection through the IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Damian Józef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Barbara Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Magdalenka, Poland
| | - Zofia Kinga Bytowska
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Wiesław Ziółkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland.
| |
Collapse
|