1
|
Das M, Mondal S, Ghosh R, Darbar S, Roy L, Das AK, Pal D, Bhattacharya SS, Mallick AK, Kundu JK, Pal SK. A study of scarless wound healing through programmed inflammation, proliferation and maturation using a redox balancing nanogel. J Biomed Mater Res A 2024; 112:1594-1611. [PMID: 38545912 DOI: 10.1002/jbm.a.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Susmita Mondal
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | | | - Asim Kumar Mallick
- Department of Pediatrics, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
2
|
Viano ME, Baez NS, Savid-Frontera C, Baigorri RE, Dinatale B, Pacini MF, Bulfoni Balbi C, Gonzalez FB, Fozzatti L, Lidón NL, Young HA, Hodge DL, Cerban F, Stempin CC, Pérez AR, Rodriguez-Galán MC. Systemic inflammatory Th1 cytokines during Trypanosoma cruzi infection disrupt the typical anatomical cell distribution and phenotypic/functional characteristics of various cell subsets within the thymus. Microbes Infect 2024; 26:105337. [PMID: 38615883 PMCID: PMC11227410 DOI: 10.1016/j.micinf.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Maria Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | | | - Laura Fozzatti
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Nicolas Leonel Lidón
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Deborah L Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Fabio Cerban
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPREB), Facultad de Cs. Médicas de la Universidad Nacional de Rosario (UNR), Argentina
| | | |
Collapse
|
3
|
van der Geest R, Peñaloza HF, Xiong Z, Gonzalez-Ferrer S, An X, Li H, Fan H, Tabary M, Nouraie SM, Zhao Y, Zhang Y, Chen K, Alder JK, Bain WG, Lee JS. BATF2 enhances proinflammatory cytokine responses in macrophages and improves early host defense against pulmonary Klebsiella pneumoniae infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L604-L616. [PMID: 37724373 PMCID: PMC11068429 DOI: 10.1152/ajplung.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Basic leucine zipper transcription factor ATF-like 2 (BATF2) is a transcription factor that is emerging as an important regulator of the innate immune system. BATF2 is among the top upregulated genes in human alveolar macrophages treated with LPS, but the signaling pathways that induce BATF2 expression in response to Gram-negative stimuli are incompletely understood. In addition, the role of BATF2 in the host response to pulmonary infection with a Gram-negative pathogen like Klebsiella pneumoniae (Kp) is not known. We show that induction of Batf2 gene expression in macrophages in response to Kp in vitro requires TRIF and type I interferon (IFN) signaling, but not MyD88 signaling. Analysis of the impact of BATF2 deficiency on macrophage effector functions in vitro showed that BATF2 does not directly impact macrophage phagocytic uptake and intracellular killing of Kp. However, BATF2 markedly enhanced macrophage proinflammatory gene expression and Kp-induced cytokine responses. In vivo, Batf2 gene expression was elevated in lung tissue of wild-type (WT) mice 24 h after pulmonary Kp infection, and Kp-infected BATF2-deficient (Batf2-/-) mice displayed an increase in bacterial burden in the lung, spleen, and liver compared with WT mice. WT and Batf2-/- mice showed similar recruitment of leukocytes following infection, but in line with in vitro observations, proinflammatory cytokine levels in the alveolar space were reduced in Batf2-/- mice. Altogether, these results suggest that BATF2 enhances proinflammatory cytokine responses in macrophages in response to Kp and contributes to the early host defense against pulmonary Kp infection.NEW & NOTEWORTHY This study investigates the signaling pathways that mediate induction of BATF2 expression downstream of TLR4 and also the impact of BATF2 on the host defense against pulmonary Kp infection. We demonstrate that Kp-induced upregulation of BATF2 in macrophages requires TRIF and type I IFN signaling. We also show that BATF2 enhances Kp-induced macrophage cytokine responses and that BATF2 contributes to the early host defense against pulmonary Kp infection.
Collapse
Affiliation(s)
- Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Huihua Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hongye Fan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jonathan K Alder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, United States
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Acute Lung Injury Center of Excellence, Department of Medicine, Pittsburgh, Pennsylvania, United States
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Nosik M, Belikova MG, Ryzhov K, Avdoshina D, Sobkin A, Zverev V, Svitich O. Unique Profile of Proinflammatory Cytokines in Plasma of Drug-Naïve Individuals with Advanced HIV/TB Co-Infection. Viruses 2023; 15:1330. [PMID: 37376629 DOI: 10.3390/v15061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-1 infection is characterized by aberrant immune activation, and infection with M. tuberculosis by an unbalanced production of proinflammatory cytokines. The expression of these cytokines in HIV-1/TB coinfection is still understudied. Here, we aimed to compare the production of proinflammatory cytokines in drug-naive patients coinfected with HIV-1 and M. tuberculosis (HIV/TB) compared to patients with respective monoinfections. Plasma samples of patients with HIV/TB coinfection (n = 36), HIV-1 monoinfection (n = 36), and TB monoinfection (n = 35) and healthy donors (n = 36) were examined for the levels of eight proinflammatory cytokines. Their levels were significantly increased in all patient groups compared to healthy donors. At the same time, a drastic decrease in the plasma levels of IFN-γ, TNF-α, Il-1β, IL-15, and IL-17 was detected in patients with HIV/TB coinfection compared to patients with HIV-1 or TB monoinfections. The plasma levels of IL-17 characterized the TB severity: in HIV/TB-coinfected patients with disseminated TB, plasma levels of IL-17 were eight times lower than in patients with less severe TB forms (infiltrative TB or TB of intrathoracic lymph nodes; p < 0.0001). At the same time, HIV/TB-coinfected patients had increased plasma levels of IL-8, IL-12, and IL-18, with the levels of IL-8 correlating with mortality (p < 0.0001). Thus, on the contrary to the patients with HIV-1 or TB monoinfections, HIV/TB-coinfected patients had suppressed production of most of the proinflammatory cytokines associated with antimicrobial immune response, specifically of T-cells involved in the containment of both infections. At the same time, they demonstrated an expansion of proinflammatory cytokines known to originate from both hematopoietic and nonhematopoietic cells, and manifest tissue inflammation. In HIV-1/TB coinfection, this leads to the disruption of granuloma formation, contributing to bacterial dissemination and enhancing morbidity and mortality.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Maria G Belikova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
- Translational Medicine Cluster, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | | | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - Alexandr Sobkin
- Department for Treatment of TB Patients with HIV Infection, G.A. Zaharyan Moscow Tuberculosis Clinic, 125466 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| |
Collapse
|
5
|
Hajdú B, Csabai L, Márton M, Holczer M, Korcsmáros T, Kapuy O. Oscillation of Autophagy Induction under Cellular Stress and What Lies behind It, a Systems Biology Study. Int J Mol Sci 2023; 24:7671. [PMID: 37108830 PMCID: PMC10143760 DOI: 10.3390/ijms24087671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.
Collapse
Affiliation(s)
- Bence Hajdú
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Margita Márton
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol Ther 2022; 239:108189. [DOI: 10.1016/j.pharmthera.2022.108189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
|
7
|
Savid-Frontera C, Viano ME, Baez NS, Lidon NL, Fontaine Q, Young HA, Vimeux L, Donnadieu E, Rodriguez-Galan MC. Exploring the immunomodulatory role of virtual memory CD8+ T cells: Role of IFN gamma in tumor growth control. Front Immunol 2022; 13:971001. [PMID: 36330506 PMCID: PMC9623162 DOI: 10.3389/fimmu.2022.971001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Virtual memory CD8+ T cells (TVM) have been described as cells with a memory-like phenotype but without previous antigen (Ag) exposure. TVM cells have the ability to respond better to innate stimuli rather than by TCR engagement, producing large amounts of interferon gamma (IFNγ) after stimulation with interleukin (IL)-12 plus IL-18. As a result of the phenotypic similarity, TVM cells have been erroneously included in the central memory T cell subset for many years. However, they can now be discriminated via the CD49d receptor, which is up-regulated only on conventional memory T cells (TMEM) and effector T cells (TEFF) after specific cognate Ag recognition by a TCR. In this work we show that systemic expression of IL-12 plus IL-18 induced an alteration in the normal TVM vs TMEM/TEFF distribution in secondary lymphoid organs and a preferential enrichment of TVM cells in the melanoma (B16) and the pancreatic ductal adenocarcinoma (KPC) tumor models. Using our KPC bearing OT-I mouse model, we observed a significant increase in CD8+ T cell infiltrating the tumor islets after IL-12+IL-18 stimulation with a lower average speed when compared to those from control mice. This finding indicates a stronger interaction of T cells with tumor cells after cytokine stimulation. These results correlate with a significant reduction in tumor size in both tumor models in IL-12+IL-18-treated OT-I mice compared to control OT-I mice. Interestingly, the absence of IFNγ completely abolished the high antitumor capacity induced by IL-12+IL-18 expression, indicating an important role for these cytokines in early tumor growth control. Thus, our studies provide significant new information that indicates an important role of TVM cells in the immune response against cancer.
Collapse
Affiliation(s)
- Constanza Savid-Frontera
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia S. Baez
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas L. Lidon
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Quentin Fontaine
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Lene Vimeux
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Maria Cecilia Rodriguez-Galan
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Maria Cecilia Rodriguez-Galan,
| |
Collapse
|
8
|
Feng H, Zhao X, Xie J, Bai X, Fu W, Chen H, Tang H, Wang X, Dong C. Pathogen-associated T follicular helper cell plasticity is critical in anti-viral immunity. SCIENCE CHINA LIFE SCIENCES 2022; 65:1075-1090. [DOI: 10.1007/s11427-021-2055-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 01/12/2023]
|
9
|
Luberto L, Neroni B, Gandini O, Fiscarelli EV, Salvatori G, Roscilli G, Marra E. Genetic Vaccination as a Flexible Tool to Overcome the Immunological Complexity of Invasive Fungal Infections. Front Microbiol 2021; 12:789774. [PMID: 34975811 PMCID: PMC8715041 DOI: 10.3389/fmicb.2021.789774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has highlighted genetic vaccination as a powerful and cost-effective tool to counteract infectious diseases. Invasive fungal infections (IFI) remain a major challenge among immune compromised patients, particularly those undergoing allogeneic hematopoietic bone marrow transplantation (HSCT) or solid organ transplant (SOT) both presenting high morbidity and mortality rates. Candidiasis and Aspergillosis are the major fungal infections among these patients and the failure of current antifungal therapies call for new therapeutic aids. Vaccination represents a valid alternative, and proof of concept of the efficacy of this approach has been provided at clinical level. This review will analyze current understanding of antifungal immunology, with a particular focus on genetic vaccination as a suitable strategy to counteract these diseases.
Collapse
Affiliation(s)
- Laura Luberto
- Takis s.r.l., Rome, Italy
- *Correspondence: Laura Luberto,
| | - Bruna Neroni
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
10
|
Maldonado-García JL, Pérez-Sánchez G, Becerril Villanueva E, Alvarez-Herrera S, Pavón L, Gutiérrez-Ospina G, López-Santiago R, Maldonado-Tapia JO, Pérez-Tapia SM, Moreno-Lafont MC. Behavioral and Neurochemical Shifts at the Hippocampus and Frontal Cortex Are Associated to Peripheral Inflammation in Balb/c Mice Infected with Brucella abortus 2308. Microorganisms 2021; 9:microorganisms9091937. [PMID: 34576830 PMCID: PMC8470318 DOI: 10.3390/microorganisms9091937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonosis affecting 50,000,000 people annually. Most patients progress to a chronic phase of the disease in which neuropsychiatric symptoms upsurge. The biological processes underlying the progression of these symptoms are yet unclear. Peripheral inflammation mounted against Brucella may condition neurochemical shifts and hence unchained neuropsychiatric disorders. Our work aimed at establishing whether neurological, behavioral, and neurochemical disarrays are circumstantially linked to peripheral inflammation uprise secondary to Brucella abortus 2308 infections. We then evaluated, in control and Brucella-infected mice, skeletal muscle strength, movement coordination, and balance and motivation, as well as dopamine, epinephrine, norepinephrine, and serotonin availability in the cerebellum, frontal cortex, and hippocampus. Serum levels of proinflammatory cytokines and corticosterone in vehicle-injected and -infected mice were also estimated. All estimates were gathered at the infection acute and chronic phases. Our results showed that infected mice displayed motor disabilities, muscular weakness, and reduced motivation correlated with neurochemical and peripheral immunological disturbances that tended to decrease after 21 days of infection. The present observations support that disturbed peripheral inflammation and the related neurochemical disruption might lead to mood disorders in infected mice. Future experiments must be aimed at establishing causal links and to explore whether similar concepts might explain neurological and mood disorders in humans affected by brucellosis.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Enrique Becerril Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (J.L.M.-G.); (G.P.-S.); (E.B.V.); (S.A.-H.)
- Correspondence: (L.P.); (M.C.M.-L.); Tel.: +52-5541-605082 (L.P.); +52-5729-6300 (ext. 62368) (M.C.M.-L.)
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Rubén López-Santiago
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Jesús Octavio Maldonado-Tapia
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Martha C. Moreno-Lafont
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.L.-S.); (J.O.M.-T.)
- Correspondence: (L.P.); (M.C.M.-L.); Tel.: +52-5541-605082 (L.P.); +52-5729-6300 (ext. 62368) (M.C.M.-L.)
| |
Collapse
|
11
|
Mehrpouya-Bahrami P, Moriarty AK, De Melo P, Keeter WC, Alakhras NS, Nelson AS, Hoover M, Barrios MS, Nadler JL, Serezani CH, Kaplan MH, Galkina EV. STAT4 is expressed in neutrophils and promotes antimicrobial immunity. JCI Insight 2021; 6:e141326. [PMID: 34138758 PMCID: PMC8410094 DOI: 10.1172/jci.insight.141326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/03/2021] [Indexed: 01/27/2023] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is expressed in hematopoietic cells and plays a key role in the differentiation of T helper 1 cells. Although STAT4 is required for immunity to intracellular pathogens, the T cell-independent protective mechanisms of STAT4 are not clearly defined. In this report, we demonstrate that STAT4-deficient mice were acutely sensitive to methicillin-resistant Staphylococcus aureus (MRSA) infection. We show that STAT4 was expressed in neutrophils and activated by IL-12 via a JAK2-dependent pathway. We demonstrate that STAT4 was required for multiple neutrophil functions, including IL-12-induced ROS production, chemotaxis, and production of the neutrophil extracellular traps. Importantly, myeloid-specific and neutrophil-specific deletion of STAT4 resulted in enhanced susceptibility to MRSA, demonstrating the key role of STAT4 in the in vivo function of these cells. Thus, these studies identify STAT4 as an essential regulator of neutrophil functions and a component of innate immune responses in vivo.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Alina K. Moriarty
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Paulo De Melo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Coles Keeter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Nada S. Alakhras
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Andrew S. Nelson
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Madeline Hoover
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria S. Barrios
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Departments of Medicine and Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - C. Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
12
|
Cellular and Molecular Response of Macrophages THP-1 during Co-Culture with Inactive Trichophyton rubrum Conidia. J Fungi (Basel) 2020; 6:jof6040363. [PMID: 33322794 PMCID: PMC7770574 DOI: 10.3390/jof6040363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Trichophyton rubrum is causing an increasing number of invasive infections, especially in immunocompromised and diabetic patients. The fungal invasive infectious process is complex and has not yet been fully elucidated. Therefore, this study aimed to understand the cellular and molecular mechanisms during the interaction of macrophages and T. rubrum. For this purpose, we used a co-culture of previously germinated and heat-inactivated T. rubrum conidia placed in contact with human macrophages cell line THP-1 for 24 h. This interaction led to a higher level of release of interleukins IL-6, IL-2, nuclear factor kappa beta (NF-κB) and an increase in reactive oxygen species (ROS) production, demonstrating the cellular defense by macrophages against dead fungal elements. Cell viability assays showed that 70% of macrophages remained viable during co-culture. Human microRNA expression is involved in fungal infection and may modulate the immune response. Thus, the macrophage expression profile of microRNAs during co-culture revealed the modulation of 83 microRNAs, with repression of 33 microRNAs and induction of 50 microRNAs. These data were analyzed using bioinformatics analysis programs and the modulation of the expression of some microRNAs was validated by qRT-PCR. In silico analysis showed that the target genes of these microRNAs are related to the inflammatory response, oxidative stress, apoptosis, drug resistance, and cell proliferation.
Collapse
|
13
|
Nash RJ, Bartholomew B, Penkova YB, Rotondo D, Yamasaka F, Stafford GP, Jenkinson SF, Fleet GWJ. Iminosugar idoBR1 Isolated from Cucumber Cucumis sativus Reduces Inflammatory Activity. ACS OMEGA 2020; 5:16263-16271. [PMID: 32656449 PMCID: PMC7346245 DOI: 10.1021/acsomega.0c02092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 05/17/2023]
Abstract
Cucumbers have been anecdotally claimed to have anti-inflammatory activity for a long time, but the active principle was not identified. idoBR1, (2R,3R,4R,5S)-3,4,5-trihydroxypiperidine-2-carboxylic acid, is an iminosugar amino acid isolated from fruits of certain cucumbers, Cucumis sativus (Cucurbitaceae). It has no chromophore and analytically behaves like an amino acid making detection and identification difficult. It has anti-inflammatory activity reducing lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) in THP-1 cells and ex vivo human blood. It showed selective inhibition of human α-l-iduronidase and sialidases from both bacteria (Tannerella forsythia) and human THP-1 cells. idoBR1 and cucumber extract reduced the binding of hyaluronic acid (HA) to CD44 in LPS-stimulated THP-1 cells and may function as an anti-inflammatory agent by inhibiting induced sialidase involved in the production of functionally active HA adhesive CD44. Similar to the related iminosugars, idoBR1 is excreted unchanged in urine following consumption. Its importance in the diet should be further evaluated.
Collapse
Affiliation(s)
- Robert J. Nash
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
- . Phone: +44 1970 823200. Fax: +44 1970 823209
| | | | - Yana B. Penkova
- PhytoQuest
Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K.
| | - Dino Rotondo
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Fernanda Yamasaka
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Graham P. Stafford
- Integrated
BioSciences, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K.
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - George W. J. Fleet
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
14
|
Kazeminasab S, Emamalizadeh B, Jouyban A, Shoja MM, Khoubnasabjafari M. Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomark Med 2020; 14:1047-1063. [PMID: 32940079 DOI: 10.2217/bmm-2020-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers provide important diagnostic and prognostic information on heterogeneous diseases such as chronic obstructive pulmonary disease (COPD). However, finding a suitable specimen for clinical analysis of biomarkers for COPD is challenging. Exhaled breath condensate (EBC) sampling is noninvasive, rapid, cost-effective and easily repeatable. EBC sampling has also provided recent progress in the identification of biological macromolecules, such as lipids, proteins and DNA in EBC samples, which has increased its utility for clinical scientists. In this article, we review applications involving EBC sampling for the analysis of COPD biomarkers and discuss its future potential.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| |
Collapse
|
15
|
Paryuni AD, Indarjulianto S, Widyarini S. Dermatophytosis in companion animals: A review. Vet World 2020; 13:1174-1181. [PMID: 32801570 PMCID: PMC7396343 DOI: 10.14202/vetworld.2020.1174-1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
Dermatophytosis, a zoonotic disease, is caused by fungi of three main genera, namely, Micropsorum, Trichophyton, and Epidermophyton. Specific lesions of dermatophyte infections are localized in the face, legs, and/or tail. Skin lesions in infected animals demonstrate localized alopecia, erythema, and crust, which are more commonly known as ringworm. Factors that affect dermatophytosis include the dermatophyte species; virulence factors of the agent; and the immune status, age, and sex of the host. High levels of cortisol and pro-inflammatory cytokines have also been reported to play an important role in dermatophyte infection. This review aims to explore and understand factors that affect dermatophyte infection with an emphasis on the prevalence, clinical signs, pathogenesis, immune response, and the roles of cortisol and cytokines in companion animals infected by a dermatophyte.
Collapse
Affiliation(s)
- Alsi Dara Paryuni
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Soedarmanto Indarjulianto
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sitarina Widyarini
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
16
|
Posch W, Wilflingseder D, Lass-Flörl C. Immunotherapy as an Antifungal Strategy in Immune Compromised Hosts. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
IFIs cause high morbidity and mortality in the immunocompromised host worldwide. Although highly effective, conventional antifungal chemotherapy faces new challenges due to late diagnosis and increasing numbers of drug-resistant fungal strains. Thus, antifungal immunotherapy represents a viable treatment option, and recent advances in the field are summarized in this review.
Recent Findings
Antifungal immunotherapies include application of immune cells as well as the administration of cytokines, growth factors, and antibodies. Novel strategies to treat IFIs in the immunocompromised host target intracellular signaling pathways using SMTs such as checkpoint inhibitors.
Summary
Studies using cytokines or chemokines exerted a potential adjuvant role to conventional antifungal therapy, but issues on toxicity for some agents have to be resolved. Cell-based immunotherapies are very labor-intense and costly, but NK cell transfer and CAR T cell therapy provide exciting strategies to combat IFIs. Antibody-mediated protection and checkpoint inhibition are additional novel immunotherapeutic approaches.
Collapse
|
17
|
Khader SA, Thirunavukkarasu S. The Tale of IL-12 and IL-23: A Paradigm Shift. THE JOURNAL OF IMMUNOLOGY 2019; 202:629-630. [PMID: 30670577 DOI: 10.4049/jimmunol.1801603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
18
|
Amin AH, Bughdadi FA, Abo-Zaid MA, Ismail AH, El-Agamy SA, Alqahtani A, El-Sayyad HIH, Rezk BM, Ramadan MF. Immunomodulatory effect of papaya (Carica papaya) pulp and seed extracts as a potential natural treatment for bacterial stress. J Food Biochem 2019; 43:e13050. [PMID: 31571245 DOI: 10.1111/jfbc.13050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The current study evaluated the immunomodulatory effects of Carica papaya pulp and seeds methanol (MeOH) extracts on mice infected with Listeria monocytogenes. Gas chromatography-mass spectrometry analysis identified 10 active constituents in C. papaya seed MeOH extract and 10 compounds in C. papaya pulp MeOH extract. The experimental animals were divided into negative control (G1) group, positive control (G2) group, pulp extract treated (G3) group, and seed extract treated (G4) group. After infection of animals (G2, G3, and G4), treatments were started for 3 weeks. Estimation of the immunological parameters showed a marked decrease in IgM levels and an increase in IgG levels in the treated groups (G3 and G4) compared with those in G2. The proinflammatory cytokines (IL-10, IL-12, IL-1β, IL-6, and TGF-β1) were decreased in the treated groups (G3 and G4) compared with those in G2. Nitric oxide levels were also decreased, and the percentages of phagocytosis increased compared with those of G2. The results demonstrated the immunomodulatory and anti-inflammatory effects of C. papaya pulp and seeds MeOH extracts. PRACTICAL APPLICATIONS: Based on the antioxidant and antibacterial activities exhibited by the pulp and seed MeOH extracts investigated in this study, Carica papaya might be considered as a natural source of phytochemicals that could be utilized in novel foods and pharmaceuticals. Further investigation are needed to identify and purify compounds that might be responsible for the observed effects.
Collapse
Affiliation(s)
- Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Natural Sciences, Southern University at New Orleans, New Orleans, Louisiana
| | - Faisal A Bughdadi
- Biology Department, University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Ahmed H Ismail
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Sherif A El-Agamy
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Alaa Alqahtani
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Bashir Mahmoud Rezk
- Department of Natural Sciences, Southern University at New Orleans, New Orleans, Louisiana
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
20
|
Islam M, Kalita T, Saikia AK, Begum A, Baruah V, Singh N, Borkotoky R, Bose S. Significance of RANTES-CCR5 axis and linked downstream immunomodulation in Dengue pathogenesis: A study from Guwahati, India. J Med Virol 2019; 91:2066-2073. [PMID: 31368534 DOI: 10.1002/jmv.25561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/27/2019] [Indexed: 11/09/2022]
Abstract
We aimed to evaluate the significance of the RANTES-CCR5 axis and resulting immunomodulatory status in Dengue pathogenesis involving a Guwahati, India based population where Dengue cases have increased alarmingly. An increased CC-chemokine receptor type 5 (CCR5) messenger RNA expression and CCR5 positive cell count profile was observed in Dengue cases, the highest being in severe cases. CCR5 ligand RANTES expression was significantly decreased in Dengue cases and inversely correlated with Dengue viremia fold change in severe cases. Monocytes are involved in Dengue virus homing and replication. Its levels and activation profile were higher in Dengue cases. A hyper Th1-biased immunomodulatory profile with upregulated tumor necrosis factor-α levels, and downregulated expression of antiviral cytokine interferon-γ and key regulatory Th2 anti-inflammatory cytokine interleukin 10 was observed in severe Dengue cases compared with mild Dengue cases and controls. The results, therefore, suggest the significance of RANTES-CCR5 axis deregulation and resulting altered immunomodulation in Dengue pathogenesis, and holds prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Mafidul Islam
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Trishna Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Anjan K Saikia
- Gastroenterology and Hepatology, GNRC Hospital, Guwahati, Assam, India
| | - Anjuma Begum
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Vargab Baruah
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Nidhi Singh
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Raktim Borkotoky
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
21
|
Kumar S, Devi S, Sood S, Kapila S, Narayan K, Shandilya S. Antibiotic resistance and virulence genes in nisin‐resistantEnterococcus faecalisisolated from raw buffalo milk modulate the innate functions of rat macrophages. J Appl Microbiol 2019; 127:897-910. [DOI: 10.1111/jam.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S. Kumar
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Devi
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S.K. Sood
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Kapila
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - K.S. Narayan
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Shandilya
- Department of Medicine III University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
22
|
Assessment of chemokine and cytokine signatures in patients with dengue infection: A hospital-based study in Kolkata, India. Acta Trop 2019; 190:73-79. [PMID: 30395811 DOI: 10.1016/j.actatropica.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023]
Abstract
Dengue fever is an acute viral infection transmitted by arthropods but may evolve to severe clinical manifestations. Descriptions of the role of circulating immune modulators such as cytokines or chemokines in dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from West Bengal, eastern India, with respect to clinical profile and pro-inflammatory and inflammatory cytokines. We evaluated the profile of both inflammatory and anti-inflammatory cytokines (IFNγ, IL6, IL10, IL12 and TGFβ) and chemokines (IL8, CXCL9, CXCL10 and RANTES) in 100 hospitalized NS1/IgM confirmed Dengue patients during the epidemic in West Bengal during 2017. Additionally, all necessary blood investigations of the study subjects were performed. The patients mostly hailed from Kolkata, followed by Nadia, 24 Parganas (North and South), Murshidabad and Midnapore. The most common presentations apart from fever and bodyache were gastrointestinal symptoms. An elevated levels of cytokines IL6 and IL10 chemokine IL8 and CXCL10 along with decreased RANTES were found in the patients with Severe Dengue as compared to mild forms of dengue (p < 0.0001) during 3-6 days of infections. A significant association was obtained between most of cytokine and increased SGPT, haematocrit, albumin and decreased platelet count, whereas a negative correlation with the level of RANTES to haematocrit (r=-0.220 with p = 0.029) was found in severe dengue cases with altered liver function parameters. This is the first study demonstrating cytokine and chemokine association with dengue severity from the eastern part of India. Taken together, this study demonstrated that the altered expression levels of IL6, IL10, IL8, CXCL10 and RANTES had significant associations with dengue severity parameters.
Collapse
|
23
|
Baez NS, Cerbán F, Savid-Frontera C, Hodge DL, Tosello J, Acosta-Rodriguez E, Almada L, Gruppi A, Viano ME, Young HA, Rodriguez-Galan MC. Thymic expression of IL-4 and IL-15 after systemic inflammatory or infectious Th1 disease processes induce the acquisition of "innate" characteristics during CD8+ T cell development. PLoS Pathog 2019; 15:e1007456. [PMID: 30608984 PMCID: PMC6319713 DOI: 10.1371/journal.ppat.1007456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/05/2018] [Indexed: 01/28/2023] Open
Abstract
Innate CD8+ T cells express a memory-like phenotype and demonstrate a strong cytotoxic capacity that is critical during the early phase of the host response to certain bacterial and viral infections. These cells arise in the thymus and depend on IL-4 and IL-15 for their development. Even though innate CD8+ T cells exist in the thymus of WT mice in low numbers, they are highly enriched in KO mice that lack certain kinases, leading to an increase in IL-4 production by thymic NKT cells. Our work describes that in C57BL/6 WT mice undergoing a Th1 biased infectious disease, the thymus experiences an enrichment of single positive CD8 (SP8) thymocytes that share all the established phenotypical and functional characteristics of innate CD8+ T cells. Moreover, through in vivo experiments, we demonstrate a significant increase in survival and a lower parasitemia in mice adoptively transferred with SP8 thymocytes from OT I—T. cruzi-infected mice, demonstrating that innate CD8+ thymocytes are able to protect against a lethal T. cruzi infection in an Ag-independent manner. Interestingly, we obtained similar results when using thymocytes from systemic IL-12 + IL-18-treated mice. This data indicates that cytokines triggered during the acute stage of a Th1 infectious process induce thymic production of IL-4 along with IL-15 expression resulting in an adequate niche for development of innate CD8+ T cells as early as the double positive (DP) stage. Our data demonstrate that the thymus can sense systemic inflammatory situations and alter its conventional CD8 developmental pathway when a rapid innate immune response is required to control different types of pathogens. Murine innate CD8+ T cells demonstrate strong cytotoxic capacity during the early phase of certain bacterial and viral infections. Such cells have been reported to be present in both mice and humans but many questions remain as to their differentiation and maturation process. Innate CD8+ T cells arise in the thymus and depend on IL-4 and IL-15 for their development. A description of the cellular and molecular mechanisms involved during their thymic development has been obtained from KO mice that lack kinases and transcription factors important for TCR signaling. In these mice, SP8 thymocytes with an innate phenotype are highly enriched over the conventional SP8 cells. Our work describes, for the first time, that in WT mice, thymic IL-4 and IL-15 expression triggered by Th1 infectious processes induce an adequate niche for development of innate rather than conventional CD8+ T cells. Our data show that the thymus is able to sense a systemic inflammatory response (probably mediated by systemic IL-12 and IL-18 production) and alter its ontogeny when pathogen control is needed.
Collapse
Affiliation(s)
- Natalia S. Baez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabio Cerbán
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jimena Tosello
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva Acosta-Rodriguez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Maria Cecilia Rodriguez-Galan
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
24
|
Che Mat NF, Siddiqui S, Mehta D, Seaver K, Banete A, Alothaimeen T, Gee K, Basta S. Lymphocytic choriomeningitis virus infection of dendritic cells interferes with TLR-induced IL-12/IL-23 cytokine production in an IL-10 independent manner. Cytokine 2018; 108:105-114. [PMID: 29602153 DOI: 10.1016/j.cyto.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 02/25/2018] [Accepted: 03/15/2018] [Indexed: 11/25/2022]
Abstract
Dendritic cells produce IL-12 and IL-23 in response to viral and bacterial infection and these cytokines are responsible for successful pathogen clearance. How sequential viral and bacterial infections affect the production of IL-12 and IL-23 is currently not known. Our study demonstrates that in dendritic cells infected with Lymphocytic choriomeningitis virus (LCMV), TLR activation with bacterial PAMPs resulted in reduced IL-12 and IL-23 expression compared to non-infected cells. Furthermore, expression of other proinflammatory cytokines, TNF-α and IL-6, were not inhibited under these conditions. We discovered that TLR-induced phosphorylation of p38 was significantly inhibited in LCMV-infected cells. We detected enhanced expression of suppressor of cytokine signalling (SOCS)-3 and IL-10. Yet, neutralizing IL-10 did not restore IL-12/IL-23 expression. Taken together, these results show that virus infection interferes with the magnitude of TLR-mediated inflammatory responses by repressing specific cytokine expression.
Collapse
Affiliation(s)
- Nor Fazila Che Mat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sarah Siddiqui
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Divya Mehta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
25
|
Babu PP, Kumar PS, Mohan A, Kumar BS, Sarma PVGK. Novel mutations in the exon 5, intron 2 and 3' UTR regions of IL-12B gene were observed in clinically proven tuberculosis patients of south India. Cytokine 2017; 99:50-58. [PMID: 28697396 DOI: 10.1016/j.cyto.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Interleukin-12 (IL-12) is formed by the interaction of IL-12p35 and IL-12p40 expressed independently from IL-12A and IL-12B genes. This interleukin plays prominent role in the T-helper type-1 (Th1) response against intracellular pathogens. Variations in IL-12B gene causes disruption of various activities one of them is suppression of Th1 response and is one of the characteristic features observed in patients with active tuberculosis. Hence, in the present study IL-12B gene status was evaluated in 50 new sputum smear-positive pulmonary tuberculosis patients (NSP-PTB) as identified by Ziehl-Nielsen (ZN) staining and 50 apparently healthy control subjects (HCS) who were sputum smear-negative. The sequence analysis showed novel missense mutations p.Ser205Ile, p.Leu206Glu, p.Pro207Ser, p.Glu209Lys, p.Val210Ser, p.(Ser205_Cys327delinsIleGlu) and p.(Lys217_Leu218delinsIle) were found in exon 5 of the IL-12B gene in nine patients resulting formation of inactive IL-12 and three patients showed novel frame shift mutations p.(Asn222Leufs∗23) in exon 5 of causing the formation of truncated protein. Several mutations were noted in intron 2 of the IL-12B gene in 5 patients and in 13 patients mutations were observed in 3' UTR region. All together 30/50 patients (60%) showed mutations in IL-12B gene. Decreased levels of interferon-gamma (IFN-γ) and IL-12 as determined by ELISA and flow cytometry were observed in the peripheral blood mononuclear cell culture supernatants in TB patients having mutations compared with control subjects. Further, in silico analysis revealed due to frame shift mutations in exon 5 at Asn222 resulted in deletion of functional fibronectin type-III (FN3) domain which leads to formation of inactive IL-12 in these patients.
Collapse
Affiliation(s)
- Pallipamu Prakash Babu
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517507, India
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517507, India
| | - Alladi Mohan
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517507, India
| | - Bhattaram Siddhartha Kumar
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517507, India
| | | |
Collapse
|
26
|
Thamacharoensuk T, Taweechotipatr M, Kajikawa A, Okada S, Tanasupawat S. Induction of cellular immunity interleukin-12, antiproliferative effect, and related probiotic properties of lactic acid bacteria isolated in Thailand. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Wöchtl B, Gunzer F, Gerner W, Gasse H, Koch M, Bagó Z, Ganter M, Weissenböck H, Dinhopl N, Coldewey SM, von Altrock A, Waldmann KH, Saalmüller A, Zimmermann K, Steinmann J, Kehrmann J, Klein-Hitpass L, Blom J, Ehricht R, Engelmann I, Hennig-Pauka I. Comparison of clinical and immunological findings in gnotobiotic piglets infected with Escherichia coli O104:H4 outbreak strain and EHEC O157:H7. Gut Pathog 2017; 9:30. [PMID: 28559930 PMCID: PMC5445466 DOI: 10.1186/s13099-017-0179-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022] Open
Abstract
Background Shiga toxin (Stx) producing Escherichia coli (E. coli) (STEC) is the most frequent cause of diarrhoea-positive haemolytic uraemic syndrome (D + HUS) in humans. In 2011, a huge outbreak with an STEC O104:H4 strain in Germany highlighted the limited possibilities for causative treatment of this syndrome. The responsible STEC strain was found to combine Stx production with adherence mechanisms normally found in enteroaggregative E. coli (EAEC). Pathotypes of E. coli evolve and can exhibit different adhesion mechanisms. It has been shown previously that neonatal gnotobiotic piglets are susceptible for infection with STEC, such as STEC O157:H7 as well as for EAEC, which are considered to be the phylogenetic origin of E. coli O104:H4. This study was designed to characterise the host response to infection with the STEC O104:H4 outbreak strain in comparison to an STEC O157:H7 isolate by evaluating clinical parameters (scoring) and markers of organ dysfunction (biochemistry), as well as immunological (flow cytometry, assessment of cytokines/chemokines and acute phase proteins) and histological alterations (light- and electron microscopy) in a gnotobiotic piglet model of haemolytic uraemic syndrome. Results We observed severe clinical symptoms, such as diarrhoea, dehydration and neurological disorders as well as attaching-and-effacing lesions (A/E) in the colon in STEC O157:H7 infected piglets. In contrast, STEC O104:H4 challenged animals exhibited only mild clinical symptoms including diarrhoea and dehydration and HUS-specific/severe histopathological, haematological and biochemical alterations were only inconsistently presented by individual piglets. A specific adherence phenotype of STEC O104:H4 could not be observed. Flow cytometric analyses of lymphocytes derived from infected animals revealed an increase of natural killer cells (NK cells) during the course of infection revealing a potential role of this subset in the anti-bacterial activity in STEC disease. Conclusions Unexpectedly, E. coli O104:H4 infection caused only mild symptoms and minor changes in histology and blood parameters in piglets. Outcome of the infection trial does not reflect E. coli O104:H4 associated human disease as observed during the outbreak in 2011. The potential role of cells of the innate immune system for STEC related disease pathogenesis should be further elucidated.
Collapse
Affiliation(s)
- Bettina Wöchtl
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | - Florian Gunzer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | - Hagen Gasse
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control Mödling, Austrian Agency for Health and Food Safety, Robert-Koch-Gasse 17, 2340 Mödling, Austria
| | - Martin Ganter
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Herbert Weissenböck
- Institute for Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | - Nora Dinhopl
- Institute for Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | - Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany.,Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, Albert-Einstein-Strasse 10, 07745 Jena, Germany
| | - Alexandra von Altrock
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| | | | - Jörg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Medical Faculty, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Löbstedter Straße 103-105, 07749 Jena, Germany
| | - Ines Engelmann
- Alere Technologies GmbH, Löbstedter Straße 103-105, 07749 Jena, Germany
| | - Isabel Hennig-Pauka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1220 Vienna, Austria
| |
Collapse
|
28
|
Ravikumar S, Win MS, Chai LYA. Optimizing Outcomes in Immunocompromised Hosts: Understanding the Role of Immunotherapy in Invasive Fungal Diseases. Front Microbiol 2015; 6:1322. [PMID: 26635780 PMCID: PMC4660869 DOI: 10.3389/fmicb.2015.01322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
A major global concern is the emergence and spread of systemic life-threatening fungal infections in critically ill patients. The increase in invasive fungal infections, caused most commonly by Candida and Aspergillus species, occurs in patients with impaired defenses due to a number of reasons such as underlying disease, the use of chemotherapeutic and immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts, burns, neutropenia and HIV infection. The high morbidity and mortality associated with these infections is compounded by the limited therapeutic options and the emergence of drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal drug development needs to be explored. Here, we review the potential anti-fungal targets for patient-centered therapies and immune-enhancing strategies for the prevention and treatment of invasive fungal diseases.
Collapse
Affiliation(s)
- Sharada Ravikumar
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Mar Soe Win
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| |
Collapse
|
29
|
Chivero ET, Bhattarai N, McLinden JH, Xiang J, Stapleton JT. Human Pegivirus (HPgV; formerly known as GBV-C) inhibits IL-12 dependent natural killer cell function. Virology 2015; 485:116-27. [PMID: 26245365 DOI: 10.1016/j.virol.2015.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
Human Pegivirus (HPgV, formally GB virus C) infects lymphocytes and NK cells in vivo, and infection is associated with reduced T cell and NK cell activation in HIV-infected individuals. The mechanism by which HPgV inhibits NK cell activation has not been assessed. Following IL-12 stimulation, IFNγ expression was lower in HIV-HPgV co-infected subjects compared to HIV mono-infected subjects (p=0.02). In addition, HPgV positive human sera, extracellular vesicles containing E2 protein, recombinant E2 protein and synthetic E2 peptides containing a predicted Tyk2 interacting motif inhibited NK cell IL-12-mediated IFNγ release. E2 protein also inhibited Tyk2 activation following IL-12 stimulation. In contrast, cytolytic NK cell function was not altered by HPgV. Inhibition of NK cell-induced proinflammatory/antiviral cytokines may contribute to both HPgV persistence and reduced immune activation during HIV-coinfection. Understanding mechanisms by which HPgV alters immune activation may contribute towards novel immunomodulatory therapies to treat HIV and inflammatory diseases.
Collapse
Affiliation(s)
- Ernest T Chivero
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary program in Molecular and Cellular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Nirjal Bhattarai
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - James H McLinden
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jinhua Xiang
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary program in Molecular and Cellular Biology, The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Choi M, Ju J, Suh JS, Park KY, Kim KH. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages. Prev Nutr Food Sci 2015; 20:83-7. [PMID: 26175994 PMCID: PMC4500520 DOI: 10.3746/pnf.2015.20.2.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.
Collapse
Affiliation(s)
- Myungwon Choi
- Department of Microbiology, Kosin University College of Medicine, Busan 602-702, Korea
| | - Jaehyun Ju
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Jae Soo Suh
- Department of Food and Nutrition, Kosin University, Busan 606-701, Korea
| | - Kun-Young Park
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Kwang Hyuk Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 602-702, Korea
| |
Collapse
|
31
|
Echinococcus multilocularis infection in the field vole (Microtus agrestis): an ecological model for studies on transmission dynamics. Parasitol Res 2015; 114:1703-9. [DOI: 10.1007/s00436-015-4355-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022]
|
32
|
Santiago K, Bomfim GF, Criado PR, Almeida SR. Monocyte-derived dendritic cells from patients with dermatophytosis restrict the growth of Trichophyton rubrum and induce CD4-T cell activation. PLoS One 2014; 9:e110879. [PMID: 25372145 PMCID: PMC4220947 DOI: 10.1371/journal.pone.0110879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 12/21/2022] Open
Abstract
Dermatophytes are the most common agents of superficial mycoses that are caused by mold fungi. Trichophyton rubrum is the most common pathogen causing dermatophytosis. The immunology of dermatophytosis is currently poorly understood. Recently, our group investigated the interaction of T. rubrum conidia with peritoneal mouse macrophages. We found that macrophages phagocytose T. rubrum conidia resulted in a down-modulation of class II major histocompatibility complex (MHC) antigens and in the expression of co-stimulatory molecules. Furthermore, it induced the production of IL-10, and T. rubrum conidia differentiated into hyphae that grew and killed the macrophages after 8 hrs of culture. This work demonstrated that dendritic cells (DCs) and macrophages, from patients or normal individuals, avidly interact with pathogenic fungus T. rubrum. The dermatophyte has two major receptors on human monocyte-derived DC: DC-SIGN and mannose receptor. In contrast macrophage has only mannose receptor that participates in the phagocytosis or bound process. Another striking aspect of this study is that unlike macrophages that permit rapid growth of T. rubrum, human DC inhibited the growth and induces Th activation. The ability of DC from patients to interact and kill T. rubrum and to present Ags to T cells suggests that DC may play an important role in the host response to T. rubrum infection by coordinating the development of cellular immune response.
Collapse
Affiliation(s)
- Karla Santiago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Facholi Bomfim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Ricardo Criado
- Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogerio Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Zhang L, Zhang BC, Hu YH. Rock bream (Oplegnathus fasciatus) IL-12p40: identification, expression, and effect on bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2014; 39:312-320. [PMID: 24875010 DOI: 10.1016/j.fsi.2014.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
IL-12p40, also called IL-12β, is a subunit of the proinflammatory cytokines interleukin (IL)-12 and IL-23. In teleost, IL-12p40 homologues have been identified in several species, however, the biological function of fish IL-12p40 is essentially unknown. In this work, we reported the identification and analysis of an IL-12p40, OfIL-12p40, from rock bream (Oplegnathus fasciatus). OfIL-12p40 is composed of 361 amino acids and possesses a conserved IL-12p40 domain and a WSxWS signature motif characteristic of known IL-12p40. Constitutive expression of OfIL-12p40 occurred in multiple tissues and was highest in kidney. Experimental infection with bacterial pathogen upregulated the expression of OfIL-12p40 in kidney and spleen in a time-dependent manner. Purified recombinant OfIL-12p40 (rOfIL-12p40) stimulated the respiratory burst activity of peripheral blood leukocytes in a dose-dependent manner. rOfIL-12p40 also enhanced the resistance of rock bream against bacterial infection and upregulated the expression of innate immune genes in kidney. Taken together, these results indicate that OfIL-12p40 possesses cytokine-like property and plays a role in immune defense against bacterial infection.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Cun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Hua Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
34
|
Mathew S, Bartels J, Banerjee I, Vodovotz Y. Global sensitivity analysis of a mathematical model of acute inflammation identifies nonlinear dependence of cumulative tissue damage on host interleukin-6 responses. J Theor Biol 2014; 358:132-48. [PMID: 24909493 DOI: 10.1016/j.jtbi.2014.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the ODE model for different levels of simulated LPS challenges using a global sensitivity approach called Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient parametric Monte Carlo samples to generate the variance-based Sobol' global sensitivity indices, and found that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak representing healthy response and the higher peak representing sustained inflammation. Damage was minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6 resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the NO-mediated anti-inflammatory responses. These observations suggest that the host's health status during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory stimulus, on the host's propensity to produce IL-6, and on NO-mediated downstream responses.
Collapse
Affiliation(s)
- Shibin Mathew
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yoram Vodovotz
- Immunetrics, Inc., Pittsburgh, PA 15203, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
35
|
Boyoglu-Barnum S, Gaston KA, Todd SO, Boyoglu C, Chirkova T, Barnum TR, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 2013; 87:10955-67. [PMID: 23885067 PMCID: PMC3807296 DOI: 10.1128/jvi.01164-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelsey A. Gaston
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sean O. Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cemil Boyoglu
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas R. Barnum
- University of Georgia Odum School of Ecology, Athens, Georgia, USA
| | - Patricia Jorquera
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Lia M. Haynes
- Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia, USA
| | - Ralph A. Tripp
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Chung Y, Yamazaki T, Kim BS, Zhang Y, Reynolds JM, Martinez GJ, Chang SH, Lim H, Birkenbach M, Dong C. Epstein Barr virus-induced 3 (EBI3) together with IL-12 negatively regulates T helper 17-mediated immunity to Listeria monocytogenes infection. PLoS Pathog 2013; 9:e1003628. [PMID: 24068935 PMCID: PMC3777861 DOI: 10.1371/journal.ppat.1003628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
Although the protective functions by T helper 17 (Th17) cytokines against extracellular bacterial and fungal infection have been well documented, their importance against intracellular bacterial infection remains unclear. Here, we investigated the contribution of Th17 responses to host defense against intracellular bacteria Listeria monocytogenes and found that Th17 cell generation was suppressed in this model. Unexpectedly, mice lacking both p35 and EBI3 cleared L. monocytogenes as efficiently as wild-type mice, whereas p35-deficient mice failed to do so. Furthermore, both innate cells and pathogen-specific T cells from double-deficient mice produced significantly higher IL-17 and IL-22 compared to wild-type mice. The bacterial burden in the liver of double-deficient mice treated with anti-IL-17 was significantly increased compared to those receiving a control Ab. Transfer of Th17 cells specific for listeriolysin O as well as administration of IL-17 and IL-22 significantly suppressed bacterial growth in p35-deficient mice, indicating the critical contribution of Th17 responses to host defense against the intracellular pathogen in the absence of IL-12 and proper Th1 responses. Our findings unveil a novel immune evasion mechanism whereby the intracellular bacteria exploit IL-27EBI3 to suppress Th17-mediated protective immunity.
Collapse
Affiliation(s)
- Yeonseok Chung
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tomohide Yamazaki
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Byung-Seok Kim
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yongliang Zhang
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joseph M. Reynolds
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gustavo J. Martinez
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Seon Hee Chang
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hoyong Lim
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Mark Birkenbach
- Department of Medicine, Section of Rheumatology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Chen Dong
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
37
|
Abstract
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15201, USA
| | | |
Collapse
|
38
|
Pikman R, Ben-Ami R. Immune modulators as adjuncts for the prevention and treatment of invasive fungal infections. Immunotherapy 2013; 4:1869-82. [PMID: 23240754 DOI: 10.2217/imt.12.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Invasive fungal diseases are increasingly important opportunistic infections that are intimately linked to immune-suppression in the context of cytotoxic treatment of neoplastic diseases, stem cell and solid-organ transplantation, and primary immune deficiencies. Mortality rates remain high despite the availability of novel antifungals that are both safe and highly active in vitro, suggesting that clinical outcomes may be improved through modulation of host immunity. Ongoing advances in our knowledge of fungal-host interactions facilitate rational design of novel immunotherapeutics. Thus, antifungal immunotherapy now includes age-old interventions such as granulocyte and immunoglobulin transfusions, as well as promising experimental techniques such as antifungal vaccines and adoptive immunotherapy. To realize the potential of these rapidly evolving technologies, transition from the bench to clinical-phase studies must occur at a more rapid pace.
Collapse
Affiliation(s)
- Regina Pikman
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center & Sackler School of Medicine, 6 Weizman, Tel Aviv 64239, Israel
| | | |
Collapse
|
39
|
Vanherberghen M, Bureau F, Peters IR, Day MJ, Lynch A, Fievez L, Billen F, Clercx C, Peeters D. Cytokine and transcription factor expression by Aspergillus fumigatus-stimulated peripheral blood mononuclear cells in dogs with sino-nasal aspergillosis. Vet Immunol Immunopathol 2013; 154:111-20. [PMID: 23759303 DOI: 10.1016/j.vetimm.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 01/22/2023]
Abstract
The causal agent of sino-nasal aspergillosis is usually Aspergillus fumigatus, which is a saprophytic and ubiquitous fungus that causes a severe rhinosinusitis in apparent healthy dogs. Affected dogs do not have systemic immuno-suppression. It has been shown previously that dogs affected by this disease have local over-expression of interleukin (IL)-10 and Th1 cytokines in nasal mucosal tissue. The aim of the present study was to assess the response of peripheral blood mononuclear cells (PBMC) from affected and unaffected dogs to antigen-specific stimulation with heat-inactivated Aspergillus spp. conidia, by quantifying gene expression for specific Th1, Th2, Th17 and Treg cytokines and their related transcription factors. Quantification of IL-4 and IFN-γ protein in culture supernatant was performed by enzyme-linked immunosorbent assay (ELISA). PBMC from dogs with SNA produced adequate mRNA encoding IFN-γ and IFN-γ protein. The expression of IL-17A mRNA was significantly greater in PBMC of affected compared with unaffected dogs. The amount of IL-10 mRNA in PBMC from affected dogs decreased after antigen-specific challenge. These results suggest that the incapacity of affected dogs to clear these fungal infections is not related to a defect in Th1 immunity or to an overwhelming regulatory reaction, but rather to an uncontrolled pro-inflammatory reaction driven by Th17 cells.
Collapse
Affiliation(s)
- M Vanherberghen
- Companion Animal Clinical Sciences, University of Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chytilová M, Mudroňová D, Nemcová R, Gancarčíková S, Buleca V, Koščová J, Tkáčiková L. Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum - Biocenol™ LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Res Vet Sci 2013; 95:103-9. [PMID: 23465779 DOI: 10.1016/j.rvsc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine the immune response after preventive administration of flax-seed oil (rich in n-3 PUFAs) or probiotic strain Lactobacillus plantarum - Biocenol™ LP96 or their combination in the jejunum of ETEC-challenged gnotobiotic pigs. Subsequently, gene expression of selected cytokines, phagocytic activity of leukocytes from peripheral blood and percentage of CD2(+), CD4(+), CD8(+) and CD4(+)CD25(+) lymphocytes in jejunal mucosa were evaluated. Our results showed that combined treatment down-regulates IL-1α and IL-8 gene expression, up-regulates IFN-γ and tends to regulate inflammation induced by ETEC through cytokine IL-10. In general, changes in cytokine gene expression correlated with the proportions of immune cells isolated from the same part of the jejunal mucosa. Results indicate that probiotic L. plantarum in combination with flax-seed oil rich in n-3 PUFAs has anti-inflammatory properties, stimulates Th1-mediated cell immunity and phagocytosis, and tends to regulate the inflammatory response induced by ETEC.
Collapse
Affiliation(s)
- M Chytilová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Hodge DL, Reynolds D, Cerbán FM, Correa SG, Baez N, Young HA, Rodriguez-Galan MC. MCP-1/CCR2 interactions direct migration of peripheral B and T lymphocytes to the thymus during acute infectious/inflammatory processes. Eur J Immunol 2012; 42:2644-54. [PMID: 22740067 PMCID: PMC3781587 DOI: 10.1002/eji.201242408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/09/2023]
Abstract
Mature lymphocyte immigration into the thymus has been documented in mouse, rat, and pig models, and highly increases when cells acquire an activated phenotype. Entrance of peripheral B and T cells into the thymus has been described in healthy and pathological situations. However, it has not been proposed that leukocyte recirculation to the thymus could be a common feature occurring during the early phase of a Th1 inflammatory/infectious process when a large number of peripheral cells acquire an activated phenotype and the cellularity of the thymus is seriously compromised. The data we present here demonstrate that in well-established Th1 models triggered by different types of immunogens, for example, LPS treatment (a bacterial product), Candida albicans infection (a fungus), and after Trypanosoma cruzi infection (a parasite), a large number of mature peripheral B and T cells enter the thymus. This effect is dependent on, but not exclusive of, the available space in the thymus. Our data also demonstrate that MCP-1/CCR2 (where MCP-1 is monocyte chemoattractant protein-1) interaction is responsible for the infiltration of peripheral cells to the thymus in these Th1-inflammatory/infectious situations. Finally, systemic expression of IL-12 and IL-18 produced during the inflammatory process is ultimately responsible for these migratory events.
Collapse
Affiliation(s)
- Deborah L. Hodge
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, NIH, Frederick MD 21702-1201 USA
| | - Della Reynolds
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, NIH, Frederick MD 21702-1201 USA
| | - Fabio M. Cerbán
- Inmunología. CIBICI-CONICET. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvia G. Correa
- Inmunología. CIBICI-CONICET. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Baez
- Inmunología. CIBICI-CONICET. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, NIH, Frederick MD 21702-1201 USA
| | | |
Collapse
|
42
|
Vanham G, Van Gulck E. Can immunotherapy be useful as a "functional cure" for infection with Human Immunodeficiency Virus-1? Retrovirology 2012; 9:72. [PMID: 22958464 PMCID: PMC3472319 DOI: 10.1186/1742-4690-9-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens.This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells.Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.
Collapse
Affiliation(s)
- Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerpen, Antwerpen, Belgium
| | - Ellen Van Gulck
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Present address: Community of Research Excellence and Advanced Technology (C.R.E.A.Te), Division of Janssen, Beerse, Belgium
| |
Collapse
|
43
|
Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012; 2012:690643. [PMID: 22851815 PMCID: PMC3407661 DOI: 10.1155/2012/690643] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 02/08/2023] Open
Abstract
Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.
Collapse
|
44
|
Abstract
The development of an infection involves interplay between the host's immune system and the virulence of the infecting microorganism. The traditional treatment of an infection involves antimicrobial chemotherapy to kill the organism. The use of immunotherapies in infections includes treatment options that modulate the immune response and can lead to control of infections. These therapies are expected to become more important therapeutic options with the increase in infections due to multidrug-resistant organisms and the increasing number of immunocompromised patients.
Collapse
Affiliation(s)
- Vivek Kak
- Allegiance Health, 1100 East Michigan Avenue, #305, Jackson, MI 49201, USA.
| | | | | | | |
Collapse
|
45
|
Thegerström J, Jönsson B, Brudin L, Olsen B, Wold AE, Ernerudh J, Friman V. Mycobacterium avium subsp. avium and subsp. hominissuis give different cytokine responses after in vitro stimulation of human blood mononuclear cells. PLoS One 2012; 7:e34391. [PMID: 22506018 PMCID: PMC3323604 DOI: 10.1371/journal.pone.0034391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 03/02/2012] [Indexed: 12/11/2022] Open
Abstract
Background Mycobacterium avium is the principal etiologic agent of non-tuberculous lymphadenitis in children. It is also a known pathogen for birds and other animals. Genetic typing of M. avium isolates has led to a proposal to expand the set of subspecies to include M. avium subsp. hominissuis. Isolates associated with disease in humans belong to this subspecies. Methodology/Principal Findings Peripheral blood mononuclear cells from six healthy blood donors were stimulated in vitro with ten isolates of M. avium avium and 11 isolates of M. avium hominissuis followed by multiplex bead array quantification of cytokines in supernatants. M. avium hominissuis isolates induced significantly more IL-10 and significantly less IL-12p70, TNF, IFN-γ and IL-17 when compared to M. avium avium isolates. All strains induced high levels of IL-17, but had very low levels of IL-12p70. Conclusion/Significance The strong association between M. avium subsp. hominissuis and disease in humans and the clear differences in the human immune response to M. avium subsp. hominissuis compared to M. avium subsp. avium isolates, as demonstrated in this study, suggest that genetic differences between M. avium isolates play an important role in the pathogenicity in humans.
Collapse
Affiliation(s)
- Johanna Thegerström
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Dang Z, Yagi K, Oku Y, Kouguchi H, Kajino K, Matsumoto J, Nakao R, Wakaguri H, Toyoda A, Yin H, Sugimoto C. A pilot study on developing mucosal vaccine against alveolar echinococcosis (AE) using recombinant tetraspanin 3: Vaccine efficacy and immunology. PLoS Negl Trop Dis 2012; 6:e1570. [PMID: 22479658 PMCID: PMC3313938 DOI: 10.1371/journal.pntd.0001570] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background We have previously evaluated the vaccine efficacies of seven tetraspanins of Echinococcus multilocularis (Em-TSP1–7) against alveolar echinococcosis (AE) by subcutaneous (s.c.) administration with Freund's adjuvant. Over 85% of liver cyst lesion number reductions (CLNR) were achieved by recombinant Em-TSP1 (rEm-TSP1) and -TSP3 (rEm-TSP3). However, to develop an efficient and safe human vaccine, the efficacy of TSP mucosal vaccines must be thoroughly evaluated. Methodology/Principal Findings rEm-TSP1 and -TSP3 along with nontoxic CpG ODN (CpG oligodeoxynucleotides) adjuvant were intranasally (i.n.) immunized to BALB/c mice and their vaccine efficacies were evaluated by counting liver CLNR (experiment I). 37.1% (p<0.05) and 62.1% (p<0.001) of CLNR were achieved by these two proteins, respectively. To study the protection-associated immune responses induced by rEm-TSP3 via different immunization routes (i.n. administration with CpG or s.c. immunization with Freund's adjuvant), the systemic and mucosal antibody responses were detected by ELISA (experiment II). S.c. and i.n. administration of rEm-TSP3 achieved 81.9% (p<0.001) and 62.8% (p<0.01) CLNR in the liver, respectively. Both the immunization routes evoked strong serum IgG, IgG1 and IgG2α responses; i.n. immunization induced significantly higher IgA responses in nasal cavity and intestine compared with s.c. immunization (p<0.001). Both immunization routes induced extremely strong liver IgA antibody responses (p<0.001). The Th1 and Th2 cell responses were assessed by examining the IgG1/IgG2α ratio at two and three weeks post-immunization. S.c. immunization resulted in a reduction in the IgG1/IgG2α ratio (Th1 tendency), whereas i.n. immunization caused a shift from Th1 to Th2. Moreover, immunohistochemistry showed that Em-TSP1 and -TSP3 were extensively located on the surface of E. multilocularis cysts, protoscoleces and adult worms with additional expression of Em-TSP3 in the inner part of protoscoleces and oncospheres. Conclusions Our study indicated that i.n. administration of rEm-TSP3 with CpG is able to induce both systemic and local immune responses and thus provides significant protection against AE. Humans and rodents become infected with E. multilocularis by oral ingesting of the eggs, which then develop into cysts in the liver and progress an endless proliferation. Untreated AE has a fatality rate of >90% in humans. Tetraspanins have been identified in Schistosoma and showed potential as the prospective vaccine candidates. In our recent study, we first identified seven tetraspanins in E. multilocularis and evaluated their protective efficacies as vaccines against AE when subcutaneously administered to BALB/c mice. Mucosal immunization of protective proteins is able to induce strong local and systemic immune responses, which might play a crucial role in protecting humans against E. multilocularis infection via the intestine, blood and liver. We focused on Em-TSP3, which achieved significant vaccine efficacy via both s.c. and i.n. routes. The adjuvanticity of nontoxic CpG OND as i.n. vaccine adjuvant was evaluated. The widespread expression of Em-TSP3 in all the developmental stages of E. multilocularis, and the strong local and systemic immune responses evoked by i.n. administration of rEm-TSP3 with CpG OND adjuvant suggest that this study might open the way for developing efficient, nontoxic human mucosal vaccines against AE.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Echinococcosis
- Echinococcosis, Hepatic/prevention & control
- Echinococcus multilocularis/isolation & purification
- Enzyme-Linked Immunosorbent Assay
- Freund's Adjuvant/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/blood
- Intestinal Mucosa/immunology
- Liver/parasitology
- Male
- Mice
- Mice, Inbred BALB C
- Nasal Mucosa/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Pilot Projects
- Tetraspanins/genetics
- Tetraspanins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Zhisheng Dang
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Kinpei Yagi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Yuzaburo Oku
- Parasitology Laboratory, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hirokazu Kouguchi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Kiichi Kajino
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Matsumoto
- Laboratory of Medical Zoology, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryo Nakao
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Wakaguri
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
47
|
Turner AK, Begon M, Jackson JA, Paterson S. Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 2012; 21:1632-46. [PMID: 22364125 DOI: 10.1111/j.1365-294x.2012.05501.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
48
|
Cabral-Marques O, Arslanian C, Ramos RN, Morato M, Schimke L, Soeiro Pereira PV, Jancar S, Ferreira JF, Weber CW, Kuntze G, Rosario-Filho NA, Costa Carvalho BT, Bergami-Santos PC, Hackett MJ, Ochs HD, Torgerson TR, Barbuto JAM, Condino-Neto A. Dendritic cells from X-linked hyper-IgM patients present impaired responses to Candida albicans and Paracoccidioides brasiliensis. J Allergy Clin Immunol 2011; 129:778-86. [PMID: 22154528 DOI: 10.1016/j.jaci.2011.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/11/2011] [Accepted: 10/11/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. OBJECTIVE To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. METHODS DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T(H)) 17 cells, and production of IFN-γ, TGF-β, IL-4, IL-5, and IL-17. RESULTS Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-γ production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T(H)2 pattern response. CONCLUSION Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 2011; 7:e1002343. [PMID: 22039363 PMCID: PMC3197692 DOI: 10.1371/journal.pgen.1002343] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
50
|
Foster N, Berndt A, Lalmanach AC, Methner U, Pasquali P, Rychlik I, Velge P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option? Res Vet Sci 2011; 93:7-12. [PMID: 22015261 DOI: 10.1016/j.rvsc.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/08/2011] [Accepted: 05/24/2011] [Indexed: 01/22/2023]
Abstract
There is increasing evidence that activation of innate immunity, in animals and man, by live vaccines, sub-unit vaccines or synthetic or non-synthetic stimulants can induce a profound and rapidly induced resistance to pathogens, including infectious agents that are unrelated to the stimulating antigen or agent. We review the evidence for this phenomenon and present the proposition that this approach might be used to stimulate immunity during the life of the animal when susceptibility to infection is high and when normal vaccination procedures may be inappropriate.
Collapse
Affiliation(s)
- N Foster
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|