1
|
Zoghroban HS, Ibrahim FMK, Nasef NA, Saad AE. The impact of L-citrulline on murine intestinal cell integrity, immune response, and arginine metabolism in the face of Giardia lamblia infection. Acta Trop 2022; 237:106748. [DOI: 10.1016/j.actatropica.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
2
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
3
|
Zhang X, Li X, Yu Y, Zhang X, Wang X, Zhang N, Chen M, Gong P, Li J. Giardia lamblia
regulates the production of proinflammatory cytokines through activating the NOD2–Rip2–ROS signaling pathway in mouse macrophages. Immunol Cell Biol 2022; 100:440-452. [DOI: 10.1111/imcb.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Xin Li
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Yanhui Yu
- The Second Hospital of Jilin University Changchun Jilin 130021 China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Mengge Chen
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University 5333 Xian Road Changchun Jilin 130062 China
| |
Collapse
|
4
|
Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X, Li W. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl Trop Dis 2022; 16:e0010402. [PMID: 35482821 PMCID: PMC9089906 DOI: 10.1371/journal.pntd.0010402] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/10/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.
Collapse
Affiliation(s)
- Yudan Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongwu Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Min Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuening Qin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiran Yu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huimin Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoyun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
5
|
Pu X, Li X, Cao L, Yue K, Zhao P, Wang X, Li J, Zhang X, Zhang N, Zhao Z, Liang M, Gong P. Giardia duodenalis Induces Proinflammatory Cytokine Production in Mouse Macrophages via TLR9-Mediated p38 and ERK Signaling Pathways. Front Cell Dev Biol 2021; 9:694675. [PMID: 34336841 PMCID: PMC8319647 DOI: 10.3389/fcell.2021.694675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Giardia duodenalis, also known as Giardia lamblia or Giardia intestinalis, is an important opportunistic, pathogenic, zoonotic, protozoan parasite that infects the small intestines of humans and animals, causing giardiasis. Several studies have demonstrated that innate immunity-associated Toll-like receptors (TLRs) are critical for the elimination of G. duodenalis; however, whether TLR9 has a role in innate immune responses against Giardia infection remains unknown. In the present study, various methods, including reverse transcriptase–quantitative polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, immunofluorescence, inhibitor assays, and small-interfering RNA interference, were utilized to probe the role of TLR9 in mouse macrophage-mediated defenses against G. lamblia virus (GLV)–free or GLV-containing Giardia trophozoites. The results revealed that in G. duodenalis–stimulated mouse macrophages, the secretion of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-12 p40, was enhanced, concomitant with the significant activation of TLR9, whereas silencing TLR9 attenuated the host inflammatory response. Notably, the presence of GLV exacerbated the secretion of host proinflammatory cytokines. Moreover, G. duodenalis stimulation activated multiple signaling pathways, including the nuclear factor κB p65 (NF-κB p65), p38, ERK, and AKT pathways, the latter three in a TLR9-dependent manner. Additionally, inhibiting the p38 or ERK pathway downregulated the G. duodenalis–induced inflammatory response, whereas AKT inhibition aggravated this process. Taken together, these results indicated that G. duodenalis may induce the secretion of proinflammatory cytokines by activating the p38 and ERK signaling pathways in a TLR9-dependent manner in mouse macrophages. Our in vitro findings on the mechanism underlying the TLR9-mediated host inflammatory response may help establish the foundation for an in-depth investigation of the role of TLR9 in the pathogenicity of G. duodenalis.
Collapse
Affiliation(s)
- Xudong Pu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Kaiming Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiteng Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Liang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhao P, Cao L, Wang X, Li J, Dong J, Zhang N, Li X, Li S, Sun M, Zhang X, Liang M, Pu X, Gong P. Giardia duodenalis extracellular vesicles regulate the proinflammatory immune response in mouse macrophages in vitro via the MAPK, AKT and NF-κB pathways. Parasit Vectors 2021; 14:358. [PMID: 34238339 PMCID: PMC8268305 DOI: 10.1186/s13071-021-04865-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Giardia duodenalis is an extracellular protozoan parasite that causes giardiasis in mammals. The presentation of giardiasis ranges from asymptomatic to severe diarrhea, and the World Health Organization lists it in the Neglected Diseases Initiative. Extracellular vesicles (EVs) are a key mediator of intracellular communication. Although previous studies have shown that G. intestinalis can regulate a host’s innate immune response, the role of G. intestinalis EVs (GEVs) in triggering a G. intestinalis-induced innate immune response remains to be further explored. Methods In this study, GEVs, G. intestinalis and GEVs + G. intestinalis were inoculated into macrophages, respectively. The transcription and secretion levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α), were measured using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs). The phosphorylation levels of the MAPK, AKT and NF-κB signaling pathways in GEV-stimulated mouse macrophages were examined using western blotting and immunofluorescence methods. The roles of activated pathways in the GEV-triggered inflammatory response were determined using inhibition assays, western blotting and ELISAs. Results The results showed that pretreatment with GEVs enhanced with G. intestinalis (GEVs + G. intestinalis) induced IL-1β, IL-6 and TNF-α transcription and secretion from mouse macrophages compared to stimulation with either GEVs or G. intestinalis alone. Inoculation of mouse macrophages with GEVs upregulated the phosphorylation levels of the p38 MAPK, p44/42 MAPK (Erk1/2), AKT and NF-κB signaling pathways and led to the nuclear translocation of NF-κB p65. Blocking the activated p38, Erk and NF-κB signaling pathways significantly downregulated the secretion of proinflammatory cytokines, and blocking the activated AKT signaling pathway demonstrated reverse effects. Conclusions The results of this study reveal that GEVs can enhance G. intestinalis-induced inflammatory response levels in mouse macrophages through activation of the p38, ERK and NF-κB signaling pathways. The role of GEVs in regulating host cell immune responses may provide insights into exploring the underlying mechanisms in G. intestinalis–host interactions. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04865-5.
Collapse
Affiliation(s)
- Panpan Zhao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China
| | - Lili Cao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, People's Republic of China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianhua Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingquan Dong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xin Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shan Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Min Sun
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Min Liang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xudong Pu
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
7
|
Li Z, Peirasmaki D, Svärd S, Åbrink M. Serglycin-Deficiency Causes Reduced Weight Gain and Changed Intestinal Cytokine Responses in Mice Infected With Giardia intestinalis. Front Immunol 2021; 12:677722. [PMID: 34335577 PMCID: PMC8316049 DOI: 10.3389/fimmu.2021.677722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The proteoglycan serglycin (SG) is expressed by different innate and adaptive immune cells, e.g. mast cells, macrophages, neutrophils, and cytotoxic T lymphocytes, where SG contributes to correct granule storage and extracellular activity of inflammatory mediators. Here the serglycin-deficient (SG-/-) mouse strain was used to investigate the impact of SG on intestinal immune responses during infection with the non-invasive protozoan parasite Giardia intestinalis. Young (≈11 weeks old) oral gavage-infected congenic SG-/- mice showed reduced weight gain as compared with the infected SG+/+ littermate mice and the PBS-challenged SG-/- and SG+/+ littermate mice. The infection caused no major morphological changes in the small intestine. However, a SG-independent increased goblet cell and granulocyte cell count was observed, which did not correlate with an increased myeloperoxidase or neutrophil elastase activity. Furthermore, infected mice showed increased serum IL-6 levels, with significantly reduced serum IL-6 levels in infected SG-deficient mice and decreased intestinal expression levels of IL-6 in the infected SG-deficient mice. In infected mice the qPCR analysis of alarmins, chemokines, cytokines, and nitric oxide synthases (NOS), showed that the SG-deficiency caused reduced intestinal expression levels of TNF-α and CXCL2, and increased IFN-γ, CXCL1, and NOS1 levels as compared with SG-competent mice. This study shows that SG plays a regulatory role in intestinal immune responses, reflected by changes in chemokine and cytokine expression levels and a delayed weight gain in young SG-/- mice infected with G. intestinalis.
Collapse
Affiliation(s)
- Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang, China.,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dimitra Peirasmaki
- SciLifeLab, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- SciLifeLab, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Pomegranate Peel Extract Is a Potential Alternative Therapeutic for Giardiasis. Antibiotics (Basel) 2021; 10:antibiotics10060705. [PMID: 34208266 PMCID: PMC8230894 DOI: 10.3390/antibiotics10060705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Giardiasis is a major diarrheal disease affecting approximately 2.5 million children annually in developing countries. Several studies have reported the resistance of Giardia lamblia (G. lamblia) to multiple drugs. Therefore, identifying an effective drug for giardiasis is a necessity. This study examined the antiparasitic effect of Punica granatum (pomegranate) and evaluated its therapeutic efficacy in rats infected with G. lamblia. In vitro study showed high efficacy of pomegranate peel ethanolic extract in killing G. lamblia cysts as demonstrated by eosin vital staining. We showed that treating infected rats with pomegranate extract resulted in a marked reduction in the mean number of G. lamblia cysts and trophozoites in feces and intestine respectively. Interestingly, the number of G. lamblia trophozoites and cysts were significantly lower in the pomegranate extract-treated group compared to the metronidazole-positive control group. Moreover, pomegranate extract treatment significantly induced nitric oxide (NO) and reduced serum IL-6 and TNF-α, compared to infected untreated rats. Histological and scanning electron microscopy (SEM) examination of the jejunum and duodenum of pomegranate extract-treated animals confirmed the antiparasitic effect of the extract, and demonstrated the restoration of villi structure with reduction of villi atrophy, decreased infiltration of lymphocytes, and protection of intestinal cells from apoptotic cell death. In conclusion, our data show that the pomegranate peel extract is effective in controlling G. lamblia infections, which suggests that it could be a viable treatment option for giardiasis.
Collapse
|
9
|
A Complementary Herbal Product for Controlling Giardiasis. Antibiotics (Basel) 2021; 10:antibiotics10050477. [PMID: 33919165 PMCID: PMC8143091 DOI: 10.3390/antibiotics10050477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Giardiasis is an intestinal protozoal disease caused by Giardia lamblia. The disease became a global health issue due to development of resistance to commonly used drugs. Since many plant-derived products have been used to treat many parasitic infestations, we aimed to assess the therapeutic utility of Artemisia annua (A. annua) for giardiasis. We showed that NO production was significantly reduced whereas serum levels of IL-6, IFN-γ, and TNF-α were elevated in infected hamsters compared to uninfected ones. Additionally, infection resulted in increased numbers of intraepithelial lymphocytes and reduced villi heights, goblet cell numbers, and muscularis externa thickness. We also showed that inducible NO synthase (iNOS) and caspase-3 were elevated in the intestine of infected animals. However, treatment with A. annua significantly reduced the intestinal trophozoite counts and IEL numbers, serum IL-6, IFN-γ, and TNF-α, while increasing NO and restoring villi heights, GC numbers, and ME thickness. Moreover, A. annua treatment resulted in lower levels of caspase-3, which indicates a protective effect from apoptotic cell death. Interestingly, A. annua therapeutic effects are comparable to metronidazole. In conclusion, our results show that A. annua extract is effective in alleviating infection-induced intestinal inflammation and pathological effects, which implies its potential therapeutic utility in controlling giardiasis.
Collapse
|
10
|
Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Front Microbiol 2021; 11:618106. [PMID: 33510729 PMCID: PMC7835142 DOI: 10.3389/fmicb.2020.618106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration of the intestinal microbiome by enteropathogens is commonly associated with gastrointestinal diseases and disorders and has far-reaching consequences for overall health. Significant advances have been made in understanding the role of microbial dysbiosis during intestinal infections, including infection with the protozoan parasite Giardia duodenalis, one of the most prevalent gut protozoa. Altered species composition and diversity, functional changes in the commensal microbiota, and changes to intestinal bacterial biofilm structure have all been demonstrated during the course of Giardia infection and have been implicated in Giardia pathogenesis. Conversely, the gut microbiota has been found to regulate parasite colonization and establishment and plays a critical role in immune modulation during mono and polymicrobial infections. These disruptions to the commensal microbiome may contribute to a number of acute, chronic, and post-infectious clinical manifestations of giardiasis and may account for variations in disease presentation within and between infected populations. This review discusses recent advances in characterizing Giardia-induced bacterial dysbiosis in the gut and the roles of dysbiosis in Giardia pathogenesis.
Collapse
Affiliation(s)
- Elena Fekete
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Affan Siddiq
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
The Chymase Mouse Mast Cell Protease-4 Regulates Intestinal Cytokine Expression in Mature Adult Mice Infected with Giardia intestinalis. Cells 2020; 9:cells9040925. [PMID: 32283818 PMCID: PMC7226739 DOI: 10.3390/cells9040925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mast cells have been shown to affect the control of infections with the protozoan parasite Giardia intestinalis. Recently, we demonstrated that Giardia excretory-secretory proteins inhibited the activity of the connective tissue mast cell-specific protease chymase. To study the potential role of the chymase mouse mast cell protease (mMCP)-4 during infections with Giardia, mMCP-4+/+ and mMCP-4−/− littermate mice were gavage-infected with G. intestinalis trophozoites of the human assemblage B isolate GS. No significant changes in weight gain was observed in infected young (≈10 weeks old) mMCP-4−/− and mMCP-4+/+ littermate mice. In contrast, infections of mature adult mice (>18 weeks old) caused significant weight loss as compared to uninfected control mice. We detected a more rapid weight loss in mMCP-4−/− mice as compared to littermate mMCP-4+/+ mice. Submucosal mast cell and granulocyte counts in jejunum increased in the infected adult mMCP-4−/− and mMCP-4+/+ mice. This increase was correlated with an augmented intestinal trypsin-like and chymotrypsin-like activity, but the myeloperoxidase activity was constant. Infected mice showed a significantly lower intestinal neutrophil elastase (NE) activity, and in vitro, soluble Giardia proteins inhibited human recombinant NE. Serum levels of IL-6 were significantly increased eight and 13 days post infection (dpi), while intestinal IL-6 levels showed a trend to significant increase 8 dpi. Strikingly, the lack of mMCP-4 resulted in significantly less intestinal transcriptional upregulation of IL-6, TNF-α, IL-25, CXCL2, IL-2, IL-4, IL-5, and IL-10 in the Giardia-infected mature adult mice, suggesting that chymase may play a regulatory role in intestinal cytokine responses.
Collapse
|
12
|
Fink MY, Maloney J, Keselman A, Li E, Menegas S, Staniorski C, Singer SM. Proliferation of Resident Macrophages Is Dispensable for Protection during Giardia duodenalis Infections. Immunohorizons 2019; 3:412-421. [PMID: 31455692 PMCID: PMC7033283 DOI: 10.4049/immunohorizons.1900041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Infection with the intestinal parasite Giardia duodenalis is one of the most common causes of diarrheal disease in the world. Previous work has demonstrated that the cells and mechanisms of the adaptive immune system are critical for clearance of this parasite. However, the innate system has not been as well studied in the context of Giardia infection. We have previously demonstrated that Giardia infection leads to the accumulation of a population of CD11b+, F4/80+, ARG1+, and NOS2+ macrophages in the small intestinal lamina propria. In this report, we sought to identify the accumulation mechanism of duodenal macrophages during Giardia infection and to determine if these cells were essential to the induction of protective Giardia immunity. We show that F4/80+, CD11b+, CD11cint, CX3CR1+, MHC class II+, Ly6C−, ARG1+, and NOS2+ macrophages accumulate in the small intestine during infections in mice. Consistent with this resident macrophage phenotype, macrophage accumulation does not require CCR2, and the macrophages incorporate EdU, indicating in situ proliferation rather than the recruitment of monocytes. Depletion of macrophages using anti-CSF1R did not impact parasite clearance nor development of regulatory T cell or Th17 cellular responses, suggesting that these macrophages are dispensable for protective Giardia immunity.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Jenny Maloney
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Samantha Menegas
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057
| |
Collapse
|
13
|
Singer SM, Fink MY, Angelova VV. Recent insights into innate and adaptive immune responses to Giardia. ADVANCES IN PARASITOLOGY 2019; 106:171-208. [PMID: 31630758 DOI: 10.1016/bs.apar.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infection with Giardia produces a wide range of clinical outcomes. Acutely infected patients may have no overt symptoms or suffer from severe cramps, diarrhea, nausea and even urticaria. Recently, post-infectious irritable bowel syndrome and chronic fatigue syndrome have been identified as long-term sequelae of giardiasis. Frequently, recurrent and chronic Giardia infection is considered a major contributor to stunting in children from low and middle income countries. Perhaps the most unusual outcome of infection with Giardia is the apparent reduced risk of developing moderate-to-severe diarrhea due to other enteric infections which has been noted in several recent studies. The goal of understanding immune responses against Giardia is therefore to identify protective mechanisms which could become targets for vaccine development, but also to identify mechanisms whereby infections lead to these other diverse outcomes. Giardia induces a robust adaptive immune response in both humans and animals. It has been known for many years that there is production of large amounts of parasite-specific IgA following infection and that CD4+ T cell responses contribute to this IgA production and control of the infection. In the past decade, there have been advances in our understanding of the non-antibody effector mechanisms used by the host to fight Giardia infections, in particular the importance of the cytokine interleukin (IL)-17 in orchestrating these responses. There have also been major advances in understanding how the innate response to Giardia infection is initiated and how it contributes to the development of adaptive immunity. Finally, there here have been significant increases in our knowledge of how the resident microbial community influences the immune response and how these responses contribute to the development of some of the symptoms of giardiasis. In this article, we will focus on data generated in the last 10 years and how it has advanced our knowledge about this important parasitic disease.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States.
| | - Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Vanessa V Angelova
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
14
|
Lee HY, Park EA, Lee KJ, Lee KH, Park SJ. Increased Innate Lymphoid Cell 3 and IL-17 Production in Mouse Lamina Propria Stimulated with Giardia lamblia. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:225-232. [PMID: 31284344 PMCID: PMC6616171 DOI: 10.3347/kjp.2019.57.3.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, IL-1β, and interferon-γ was increased, whereas levels of IL-13, IL-5, and IL22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun-Ah Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyung-Jo Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Immune response markers in sera of children infected with Giardia duodenalis AI and AII subassemblages. Immunobiology 2019; 224:595-603. [PMID: 30962033 DOI: 10.1016/j.imbio.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
In this study, we evaluated serum markers of immune responses in children infected with G. duodenalis and compared them with the characterized parasite isolates. The reactivity indexes (RI) of IgG (1.503 ± 0.819) and IgA (2.308 ± 1.935) antibodies were significantly higher (P < 0.001) in infected children than in non-infected children. There were also statistically significantly higher serum levels (P < 0.05) of IFN-γ (393.10 ± 983.90 pg/mL) as well as serum (30.03 ± 10.92 μmol/L) and saliva nitric oxid derivatives (NOx) (192.4 ± 151.2 μmol/L) in children infected with G. duodenalis compared to the group of non-parasitized children (127.4 ± 274.30 pg/mL; 25.82 ± 7.74 μmol/L and 122.5 ± 105.90 μmol/L, respectively). Regarding the characterized genetic variants of G. duodenalis and the immune response profiles, no differences were observed in terms of antibody reactivity or levels of serum cytokine and NOx among children infected with AI or AII subassemblages. The elevated levels of IFN-γ and NOx indicate that G. duodenalis intestinal infection in humans induces a cellular immune response detectable at the systemic level. Moreover, no significant differences in the antibody reactivity profile or the cytokine and NOx production in the sera of children infected with AI or AII G. duodenalis variants were observed, suggesting that subtypes of the parasite do not influence the immune response profile.
Collapse
|
16
|
Liu J, Fu Z, Hellman L, Svärd SG. Cleavage specificity of recombinant Giardia intestinalis cysteine proteases: Degradation of immunoglobulins and defensins. Mol Biochem Parasitol 2019; 227:29-38. [DOI: 10.1016/j.molbiopara.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
|
17
|
Li L, Li X, Li G, Gong P, Zhang X, Yang Z, Yang J, Li J. Mouse macrophages capture and kill Giardia lamblia by means of releasing extracellular trap. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:206-212. [PMID: 30048699 DOI: 10.1016/j.dci.2018.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/21/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Giardia lamblia is one of the most prevalent parasites residing in the duodenum of human and many other mammals throughout the world which is transmitted via ingested cysts through contaminated food or water. The severity of disease may depend on multiple parasite and host factors. Commonly, children and immunologically compromised persons like AIDS patient exhibit severe diarrhea, malabsorption and weight loss, however, there are also some infected people who are asymptomatic or only exhibit mild clinical symptoms and can shed the Giardia cysts in the environment. Although many studies have indicated that the innate immune system is important for Giardia defense, however, whether the innate immune responses such extracellular traps (ETs) could be induced by G. lamblia is still unclear. In recent years, macrophage extracellular traps (METs) have been described as an effective defense mechanism against invading microorganisms. In the present study, the formation of METs triggered by G. lamblia trophozoites was investigated. The formation of METs induced by G. lamblia trophozoites of mouse macrophage was observed with Scanning Electron Microscopy (SEM). The main components DNA, H3 histone and MPO were confirmed by Sytox orange staining, DNase1 digestion, immunofluorescence staining and fluorescence confocal microscopy. Inhibitor assays suggested that G. lamblia trophozoites triggered METs formation through ERK1/2 and p38 MAPK signal pathways and was Store-operated Ca2+ entry (SOCE) dependent. In addition, the process of METs formation triggered by G. lamblia trophozoites was also time and dose-dependent. Furthermore, the production of Reactive Oxygen Species (ROS) in macrophages stimulated with G. lamblia trophozoites significantly increased whereas no significant changes were observed about LDH activity.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Guojiang Li
- Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Ju Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China; Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China.
| |
Collapse
|
18
|
Giardia duodenalis in the UK: current knowledge of risk factors and public health implications. Parasitology 2018; 146:413-424. [PMID: 30318029 DOI: 10.1017/s0031182018001683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Giardia duodenalis is a ubiquitous flagellated protozoan parasite known to cause giardiasis throughout the world. Potential transmission vehicles for this zoonotic parasite are both water and food sources. As such consumption of water contaminated by feces, or food sources washed in contaminated water containing parasite cysts, may result in outbreaks. This creates local public health risks which can potentially cause widespread infection and long-term post-infection sequelae. This paper provides an up-to-date overview of G. duodenalis assemblages, sub-assemblages, hosts and locations identified. It also summarizes knowledge of potential infection/transmission routes covering water, food, person-to-person infection and zoonotic transmission from livestock and companion animals. Public health implications focused within the UK, based on epidemiological data, are discussed and recommendations for essential Giardia developments are highlighted.
Collapse
|
19
|
Muñoz-Cruz S, Gomez-García A, Matadamas-Martínez F, Alvarado-Torres JA, Meza-Cervantez P, Arriaga-Pizano L, Yépez-Mulia L. Giardia lamblia: identification of molecules that contribute to direct mast cell activation. Parasitol Res 2018; 117:2555-2567. [DOI: 10.1007/s00436-018-5944-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
|
20
|
Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination. Infect Immun 2018; 86:IAI.00773-17. [PMID: 29555679 DOI: 10.1128/iai.00773-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/10/2018] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate Giardia infections, with gerbils (Meriones unguiculatus) being the most valuable model due to their high susceptibility to Giardia infection, abundant shedding of cysts, and pathophysiological alterations and signs of disease similar to those observed in humans. Here, we report cytokine and antibody profiles both during the course of Giardia infection in gerbils and after immunization with a novel oral vaccine comprising a mixture of purified variant-specific surface proteins (VSPs). Transcript levels of representative cytokines of different immune profiles as well as macro- and microtissue alterations were assessed in Peyer's patches, mesenteric lymph nodes, and spleens. During infection, cytokine responses showed a biphasic profile: an early induction of Th1 (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, and tumor necrosis factor [TNF]), Th17 (IL-17), and Th2 (IL-4) cytokines, together with intestinal alterations typical of inflammation, followed by a shift toward a predominant Th2 (IL-5) response, likely associated with a counterregulatory mechanism. Conversely, immunization with an oral vaccine comprising the entire repertoire of VSPs specifically showed high levels of IL-17, IL-6, IL-4, and IL-5, without obvious signs of inflammation. Both immunized and infected animals developed local (intestinal secretory IgA [S-IgA]) and systemic (serum IgG) humoral immune responses against VSPs; however, only infected animals showed evident signs of giardiasis. This is the first comprehensive report of cytokine expression and anti-Giardia antibody production during infection and VSP vaccination in gerbils, a reliable model of the human disease.
Collapse
|
21
|
Li X, Zhang X, Gong P, Xia F, Li L, Yang Z, Li J. TLR2 -/- Mice Display Decreased Severity of Giardiasis via Enhanced Proinflammatory Cytokines Production Dependent on AKT Signal Pathway. Front Immunol 2017; 8:1186. [PMID: 28979269 PMCID: PMC5611375 DOI: 10.3389/fimmu.2017.01186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 02/05/2023] Open
Abstract
Giardia infection is one of the most common causes of waterborne diarrheal disease in a wide array of mammalian hosts, including humans globally. Although numerous studies have indicated that adaptive immune responses are important for Giardia defense, however, whether the host innate immune system such as TLRs recognizes Giardia remains poorly understood. TLR2 plays a crucial role in pathogen recognition, innate immunity activation, and the eventual pathogen elimination. In this study, we investigated the role of TLR2 as a non-protective inflammatory response on controlling the severity of giardiasis. RT-PCR analysis suggested that TLR2 expression was increased in vitro. We demonstrated that Giardia lamblia-induced cytokines expression by the activation of p38 and ERK pathways via TLR2. Interestingly, the expression of IL-12 p40, TNF-α, and IL-6, but not IFN-γ, was enhanced in TLR2-blocked and TLR2−/− mouse macrophages exposed to G. lamblia trophozoites compared with wild-type (WT) mouse macrophages. Further analysis demonstrated that G. lamblia trophozoites reduced cytokines secretion by activating AKT pathway in WT mouse macrophages. Immunohistochemical staining in G. lamblia cysts infected TLR2−/− and WT mice showed that TLR2 was highly expressed in duodenum in infected WT mice. Also, infected TLR2−/− and AKT-blocked mice showed an increased production of IL-12 p40 and IFN-γ compared with infected WT mice at the early stage during infection. Interestingly, infected TLR2−/− and AKT-blocked mice displayed a decreased parasite burden, an increased weight gain rate, and short parasite persistence. Histological morphometry showed shortened villus length, hyperplastic crypt and decreased ratio of villus height/crypt depth in infected WT mice compared with in infected TLR2−/− and AKT-blocked mice. Together, our results suggested that TLR2 deficiency leads to alleviation of giardiasis and reduction of parasite burden through the promotion of proinflammatory cytokines production. For the first time, our results demonstrated that TLR2 played a negative role in host defense against Giardia.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feifei Xia
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
22
|
Fink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol 2017; 33:901-913. [PMID: 28830665 DOI: 10.1016/j.pt.2017.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Giardia lamblia is one of the most common infectious protozoans in the world. Giardia rarely causes severe life-threatening diarrhea, and may even have a slight protective effect in this regard, but it is a major contributor to malnutrition and growth faltering in children in the developing world. Giardia infection also appears to be a significant risk factor for postinfectious irritable bowel and chronic fatigue syndromes. In this review we highlight recent work focused on the impact of giardiasis and the mechanisms that contribute to the various outcomes of this infection, including changes in the composition of the microbiota, activation of immune responses, and immunopathology.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
23
|
Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, Donowitz J, Thomas-Beckett RV, Rogala A, Carroll IM, Singer SM, Papin J, Swann JR, Guerrant RL. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog 2017; 13:e1006471. [PMID: 28750066 PMCID: PMC5549954 DOI: 10.1371/journal.ppat.1006471] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
Diverse enteropathogen exposures associate with childhood malnutrition. To
elucidate mechanistic pathways whereby enteric microbes interact during
malnutrition, we used protein deficiency in mice to develop a new model of
co-enteropathogen enteropathy. Focusing on common enteropathogens in
malnourished children, Giardia lamblia and enteroaggregative
Escherichia coli (EAEC), we provide new insights into
intersecting pathogen-specific mechanisms that enhance malnutrition. We show for
the first time that during protein malnutrition, the intestinal microbiota
permits persistent Giardia colonization and simultaneously
contributes to growth impairment. Despite signals of intestinal injury, such as
IL1α, Giardia-infected mice lack pro-inflammatory intestinal
responses, similar to endemic pediatric Giardia infections.
Rather, Giardia perturbs microbial host co-metabolites of
proteolysis during growth impairment, whereas host nicotinamide utilization
adaptations that correspond with growth recovery increase. EAEC promotes
intestinal inflammation and markers of myeloid cell activation. During
co-infection, intestinal inflammatory signaling and cellular recruitment
responses to EAEC are preserved together with a
Giardia-mediated diminishment in myeloid cell activation.
Conversely, EAEC extinguishes markers of host energy expenditure regulatory
responses to Giardia, as host metabolic adaptations appear
exhausted. Integrating immunologic and metabolic profiles during co-pathogen
infection and malnutrition, we develop a working mechanistic model of how
cumulative diet-induced and pathogen-triggered microbial perturbations result in
an increasingly wasted host. Malnourished children are exposed to multiple sequential, and oftentimes,
persistent enteropathogens. Intestinal microbial disruption and inflammation are
known to contribute to the pathogenesis of malnutrition, but how co-pathogens
interact with each other, with the resident microbiota, or with the host to
alter these pathways is unknown. Using a new model of enteric co-infection with
Giardia lamblia and enteroaggregative Escherichia
coli in mice fed a protein deficient diet, we identify host growth
and intestinal immune responses that are differentially mediated by
pathogen-microbe interactions, including parasite-mediated changes in intestinal
microbial host co-metabolism, and altered immune responses during co-infection.
Our data model how early life cumulative enteropathogen exposures progressively
disrupt intestinal immunity and host metabolism during crucial developmental
periods. Furthermore, studies in this co-infection model reveal new insights
into environmental and microbial determinants of pathogenicity for presently
common, but poorly understood enteropathogens like Giardia
lamblia, that may not conform to existing paradigms of microbial
pathogenesis based on single pathogen-designed models.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jordi Mayneris-Perxachs
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Glynis L. Kolling
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jeffery Donowitz
- Division of Pediatric Infectious Diseases, Children’s Hospital of
Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
of America
| | - Rose Viguna Thomas-Beckett
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
| | - Allison Rogala
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Ian M. Carroll
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC, United
States of America
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| |
Collapse
|
24
|
Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 2017; 96:131-142. [DOI: 10.1016/j.ejcb.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
|
25
|
Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes Infect 2016; 18:687-695. [PMID: 27401766 DOI: 10.1016/j.micinf.2016.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 11/23/2022]
Abstract
The genetic basis of the ultimate clinical outcomes of human giardiasis has been the subject of numerous investigations. We previously demonstrated roles for both host and parasite factors in determining the outcome of enteric infection in a murine model of Giardia duodenalis infection. In the current study, fecal and serum specimens from healthy controls and human subjects infected with the intestinal parasite G. duodenalis were assessed. Using a semi-nested PCR method, clinical isolates were genetically characterized based on the gdh and tpi loci, and the phylogenetic trees were constructed. Using a sandwich ELISA method, the serum levels of representative TH1 and TH2 cytokines were measured in infected human subjects and healthy controls. Here we showed that symptomatic human giardiasis was characterized by significantly elevated serum levels of the TH1 cytokine IFN-γ compared to healthy controls, whereas asymptomatic human subjects and healthy controls had comparable levels of serum IFN-γ. Further analyses showed that human subjects infected with G. duodenalis genotype AI had significantly elevated levels of serum IFN-γ and IL-10, but not IL-5, whereas human subjects infected with AII had similar levels of those cytokines compared to healthy controls. These data demonstrate roles for both host and parasite factors in the determination of the outcome of enteric infections and may further broaden our understanding of host-parasite interaction during enteric protozoal infections.
Collapse
|
26
|
Li E, Tako EA, Singer SM. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control. Infect Immun 2016; 84:1092-1099. [PMID: 26831470 PMCID: PMC4807472 DOI: 10.1128/iai.00074-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, butex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control.
Collapse
Affiliation(s)
- Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ernest A Tako
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
27
|
Di Genova BM, Tonelli RR. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses. Front Microbiol 2016; 7:256. [PMID: 26973630 PMCID: PMC4776161 DOI: 10.3389/fmicb.2016.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia e Imunologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Renata R Tonelli
- Departamento de Microbiologia e Imunologia, Universidade Federal de São PauloSão Paulo, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| |
Collapse
|
28
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Miyamoto Y, Eckmann L. Drug Development Against the Major Diarrhea-Causing Parasites of the Small Intestine, Cryptosporidium and Giardia. Front Microbiol 2015; 6:1208. [PMID: 26635732 PMCID: PMC4652082 DOI: 10.3389/fmicb.2015.01208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrheal diseases are among the leading causes of morbidity and mortality in the world, particularly among young children. A limited number of infectious agents account for most of these illnesses, raising the hope that advances in the treatment and prevention of these infections can have global health impact. The two most important parasitic causes of diarrheal disease are Cryptosporidium and Giardia. Both parasites infect predominantly the small intestine and colonize the lumen and epithelial surface, but do not invade deeper mucosal layers. This review discusses the therapeutic challenges, current treatment options, and drug development efforts against cryptosporidiosis and giardiasis. The goals of drug development against Cryptosporidium and Giardia are different. For Cryptosporidium, only one moderately effective drug (nitazoxanide) is available, so novel classes of more effective drugs are a high priority. Furthermore, new genetic technology to identify potential drug targets and better assays for functional evaluation of these targets throughout the parasite life cycle are needed for advancing anticryptosporidial drug design. By comparison, for Giardia, several classes of drugs with good efficacy exist, but dosing regimens are suboptimal and emerging resistance begins to threaten clinical utility. Consequently, improvements in potency and dosing, and the ability to overcome existing and prevent new forms of drug resistance are priorities in antigiardial drug development. Current work on new drugs against both infections has revealed promising strategies and new drug leads. However, the primary challenge for further drug development is the underlying economics, as both parasitic infections are considered Neglected Diseases with low funding priority and limited commercial interest. If a new urgency in medical progress against these infections can be raised at national funding agencies or philanthropic organizations, meaningful and timely progress is possible in treating and possibly preventing cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| | - Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| |
Collapse
|
30
|
|
31
|
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences againstGiardia lamblia. Parasite Immunol 2015; 37:394-406. [DOI: 10.1111/pim.12210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- G. Lopez-Romero
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - J. Quintero
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| | - H. Astiazarán-García
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - C. Velazquez
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| |
Collapse
|
32
|
Dann SM, Manthey CF, Le C, Miyamoto Y, Gima L, Abrahim A, Cao AT, Hanson EM, Kolls JK, Raz E, Cong Y, Eckmann L. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Exp Parasitol 2015; 156:68-78. [PMID: 26071205 DOI: 10.1016/j.exppara.2015.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including β-defensin 1 and resistin-like molecule β. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia.
Collapse
Affiliation(s)
- Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Carolin F Manthey
- Department of Medicine, University of California, San Diego, CA, USA
| | - Christine Le
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, CA, USA
| | - Lauren Gima
- Department of Medicine, University of California, San Diego, CA, USA
| | - Andrew Abrahim
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elaine M Hanson
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
33
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|
34
|
Abeywardena H, Jex AR, Gasser RB. A perspective on Cryptosporidium and Giardia, with an emphasis on bovines and recent epidemiological findings. ADVANCES IN PARASITOLOGY 2015; 88:243-301. [PMID: 25911369 PMCID: PMC7103119 DOI: 10.1016/bs.apar.2015.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptosporidium and Giardia are two common aetiological agents of infectious enteritis in humans and animals worldwide. These parasitic protists are usually transmitted by the faecal-oral route, following the ingestion of infective stages (oocysts or cysts). An essential component of the control of these parasitic infections, from a public health perspective, is an understanding of the sources and routes of transmission in different geographical regions. Bovines are considered potential sources of infection for humans, because species and genotypes of Cryptosporidium and Giardia infecting humans have also been isolated from cattle in molecular parasitological studies. However, species and genotypes of Cryptosporidium and Giardia of bovids, and the extent of zoonotic transmission in different geographical regions in the world, are still relatively poorly understood. The purpose of this article is to (1) provide a brief background on Cryptosporidium and Giardia, (2) review some key aspects of the molecular epidemiology of cryptosporidiosis and giardiasis in animals, with an emphasis on bovines, (3) summarize research of Cryptosporidium and Giardia from cattle and water buffaloes in parts of Australasia and Sri Lanka, considering public health aspects and (4) provide a perspective on future avenues of study. Recent studies reinforce that bovines harbour Cryptosporidium and Giardia that likely pose a human health risk and highlight the need for future investigations of the biology, population genetics and transmission dynamics of Cryptosporidium and Giardia in cattle, water buffaloes and other ruminants in different geographical regions, the fate and transport of infective stages following their release into the environment, as well as for improved strategies for the control and prevention of cryptosporidiosis and giardiasis, guided by molecular epidemiological studies.
Collapse
Affiliation(s)
- Harshanie Abeywardena
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Maloney J, Keselman A, Li E, Singer SM. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection. Microbes Infect 2015; 17:462-7. [PMID: 25797399 DOI: 10.1016/j.micinf.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.
Collapse
Affiliation(s)
- Jenny Maloney
- Georgetown University, Dept. of Biology, 37th and O Sts NW Reiss 406, Washington DC 20057, USA.
| | - Aleksander Keselman
- Georgetown University, Dept. of Biology, 37th and O Sts NW Reiss 406, Washington DC 20057, USA.
| | - Erqiu Li
- Georgetown University, Dept. of Biology, 37th and O Sts NW Reiss 406, Washington DC 20057, USA.
| | - Steven M Singer
- Georgetown University, Dept. of Biology, 37th and O Sts NW Reiss 406, Washington DC 20057, USA.
| |
Collapse
|
36
|
Lee HY, Kim J, Noh HJ, Kim HP, Park SJ. Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs. Parasite Immunol 2015; 36:627-46. [PMID: 24871487 DOI: 10.1111/pim.12119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/23/2014] [Indexed: 11/28/2022]
Abstract
Much remains unknown about the mammalian immune response to Giardia lamblia, a protozoan pathogen that causes diarrhoeal outbreaks. We fractionated protein extracts of G. lamblia trophozoites by Viva-spin centrifugation, DEAE ion exchange and gel filtration chromatography. Resultant fractions were screened for antigenic molecules by western blots analysis using anti-G. lamblia antibodies (Abs), resulting in identification of G. lamblia binding immunoglobulin protein (GlBiP). Maturation of mouse dendritic cells (DCs) in response to recombinant GlBiP (rGlBiP) was detected by increased expression of surface molecules such as CD80, CD86 and MHC class II; these mature DCs, produced pro-inflammatory cytokines (TNF-α, IL-12 and IL-6). Especially, the truncated rGlBiP containing the heat-shock protein 70 domain-induced cytokine production from mouse DCs. rGlBiP-induced DC activation was initiated by TLR4 in a MyD88-dependent way and occurred through activation of p38 and ERK1/2 MAPKs as well as increased activity of NF-κB and AP-1. Moreover, CD4(+) T cells stimulated with rGlBiP-treated DCs produced high levels of IL-2 and IFN-γ. Together, our results suggest that GlBiP contributes to maturation of DCs via activation of TLR4-MyD88-p38, ERK1/2 MAPK, NF-κB and AP-1.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
37
|
Heyworth MF. Immunological aspects of Giardia infections. ACTA ACUST UNITED AC 2014; 21:55. [PMID: 25347704 PMCID: PMC4209855 DOI: 10.1051/parasite/2014056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/16/2014] [Indexed: 11/14/2022]
Abstract
Immunodeficiency, particularly antibody deficiency, predisposes to increased intensity and persistence of Giardia infections. Giardia-infected immunocompetent hosts produce serum and intestinal antibodies against Giardia trophozoites. The number of Giardia muris trophozoites, in mice with G. muris infection, is reduced by intra-duodenal administration of anti-G. muris antibody. Giardia intestinalis antigens that are recognised by human anti-trophozoite antibodies include variable (variant-specific) and invariant proteins. Nitric oxide (NO) appears to contribute to host clearance of Giardia trophozoites. Arginine is a precursor of NO and is metabolised by Giardia trophozoites, possibly reducing its availability for generation of NO by the host. Work with mice suggests that T lymphocytes and interleukin-6 (IL-6) contribute to clearance of Giardia infection via mechanisms independent of antibodies.
Collapse
Affiliation(s)
- Martin F Heyworth
- Research Service, Department of Veterans Affairs (VA) Medical Center, Philadelphia, PA 19104, USA - Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Cotton JA, Motta JP, Schenck LP, Hirota SA, Beck PL, Buret AG. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue. PLoS One 2014; 9:e109087. [PMID: 25289678 PMCID: PMC4188619 DOI: 10.1371/journal.pone.0109087] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn’s disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment.
Collapse
Affiliation(s)
- James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - L. Patrick Schenck
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon A. Hirota
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Immunology, Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul L. Beck
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
39
|
Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha. Infect Immun 2014; 82:3333-40. [PMID: 24866800 DOI: 10.1128/iai.01536-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The protozoan parasite Giardia duodenalis (Giardia lamblia) is one of the most commonly found intestinal pathogens in mammals, including humans. In the current study, a Giardia muris-mouse model was used to analyze cytokine transcription patterns and histological changes in intestinal tissue at different time points during infection in C57BL/6 mice. Since earlier work revealed the upregulation of peroxisome proliferator-activated receptors (PPARs) in Giardia-infected calves, a second aim was to investigate the potential activation of PPARs in the intestines of infected mice. The most important observation in all mice was a strong upregulation of il17a starting around 1 week postinfection. The significance of interleukin 17A (IL-17A) in orchestrating a protective immune response was further demonstrated in an infection trial or experiment using IL-17 receptor A (IL-17RA) knockout (KO) mice: whereas in wild-type (WT) mice, cyst secretion dropped significantly after 3 weeks of infection, the IL-17RA KO mice were unable to clear the infection. Analysis of the intestinal response further indicated peroxisome proliferator-activated receptor alpha (PPARα) induction soon after the initial contact with the parasite, as characterized by the transcriptional upregulation of ppara itself and several downstream target genes such as pltp and cpt1. Overall, PPARα did not seem to have any influence on the immune response against G. muris, since PPARα KO animals expressed il-17a and could clear the infection similar to WT controls. In conclusion, this study shows for the first time the importance of IL-17 production in the clearance of a G. muris infection together with an early induction of PPARα. The effect of the latter, however, is still unclear.
Collapse
|
40
|
Grit GH, Devriendt B, Van Coppernolle S, Geurden T, Hope J, Vercruysse J, Cox E, Geldhof P, Claerebout E. Giardia duodenalis stimulates partial maturation of bovine dendritic cells associated with altered cytokine secretion and induction of T-cell proliferation. Parasite Immunol 2014; 36:157-69. [PMID: 24372144 DOI: 10.1111/pim.12095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023]
Abstract
Giardia duodenalis is an important intestinal parasite in animals and humans. The role of dendritic cells (DC) in the initiation of the immune response against G. duodenalis is poorly documented. The aim of this study was to test the hypothesis that G. duodenalis interferes with bovine DC function. Therefore, the effect of trophozoites and excretion/secretion products on bovine monocyte-derived dendritic cells (MoDC) was investigated. We assessed MoDC maturation and cytokine production of G. duodenalis-stimulated MoDC and the ability of these MoDC to take up antigen and induce lymphocyte proliferation. Little or no upregulation of maturation markers CD40 and CD80 was measured, but MHCII expression was increased after stimulation with low parasite concentrations. A dose-dependent decrease in ovalbumin uptake was observed in G. duodenalis-stimulated MoDC. In addition, stimulated MoDC induced proliferation of CD3(-) , γδ-T-cells and TCRαβ(+) CD4(+) and CD8(+) T-cells. Increased transcription of TGF-β was shown in CD4(+) T cells, and increased TNF-α, TGF-β, IL-10 and IL-4 were seen in γδ-T-cells. We found no evidence that G. duodenalis has a regulatory or inhibitory effect on bovine MoDC. MoDC stimulated with G. duodenalis are functionally active and able to induce proliferation of T cells that produce both pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- G H Grit
- Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Transcriptomic analysis of the host response to Giardia duodenalis infection reveals redundant mechanisms for parasite control. mBio 2013; 4:e00660-13. [PMID: 24194537 PMCID: PMC3892777 DOI: 10.1128/mbio.00660-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The immune system has numerous mechanisms that it can use to combat pathogens and eliminate infections. Nevertheless, studies of immune responses often focus on single pathways required for protective responses. We applied microarray analysis of RNA in order to investigate the types of immune responses produced against infection with the intestinal pathogen Giardia duodenalis. Infection with G. duodenalis is one of the most common causes of diarrheal disease in the world. While several potential antiparasitic effector mechanisms, including complement lysis, nitric oxide (NO), and α-defensin peptides, have been shown to inhibit parasite growth or kill Giardia in vitro, studies in vivo have thus far shown clear roles only for antibody and mast cell responses in parasite control. A total of 96 transcripts were identified as being upregulated or repressed more than 2-fold in the small intestine 10 days following infection. Microarray data were validated using quantitative PCR. The most abundant category of transcripts was antibody genes, while the most highly induced transcripts were all mast cell proteases. Among the other induced transcripts was matrix metalloprotease 7 (Mmp7), the protease responsible for production of mature α-defensins in mice. While infections in Mmp7-deficient mice showed only a small increase in parasite numbers, combined genetic deletion of Mmp7 and inducible nitric oxide synthase (iNOS, Nos2) or pharmacological blockade of iNOS in Mmp7-deficient mice resulted in significant increases in parasite loads following infection. Thus, α-defensins and NO are redundant mechanisms for control of Giardia infections in vivo. The immune system has multiple weapons which it uses to help control infections. Many infections result in activation of several of these response mechanisms, but it is not always clear which responses actually contribute to control of the pathogen and which are bystander effects. This study used the intestinal parasite Giardia duodenalis to examine the redundancy in immune responses during infections in mice. Our results showed that at least four distinct mechanisms are activated following infections. Furthermore, by blocking two pathways at the same time, we showed that both mechanisms contribute to control of the infection, whereas blocking single responses showed no or minimal effect in these cases.
Collapse
|
42
|
Bartelt LA, Roche J, Kolling G, Bolick D, Noronha F, Naylor C, Hoffman P, Warren C, Singer S, Guerrant R. Persistent G. lamblia impairs growth in a murine malnutrition model. J Clin Invest 2013; 123:2672-84. [PMID: 23728173 PMCID: PMC3668820 DOI: 10.1172/jci67294] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022] Open
Abstract
Giardia lamblia infections are nearly universal among children in low-income countries and are syndemic with the triumvirate of malnutrition, diarrhea, and developmental growth delays. Amidst the morass of early childhood enteropathogen exposures in these populations, G. lamblia–specific associations with persistent diarrhea, cognitive deficits, stunting, and nutrient deficiencies have demonstrated conflicting results, placing endemic pediatric giardiasis in a state of equipoise. Many infections in endemic settings appear to be asymptomatic/ subclinical, further contributing to uncertainty regarding a causal link between G. lamblia infection and developmental delay. We used G. lamblia H3 cyst infection in a weaned mouse model of malnutrition to demonstrate that persistent giardiasis leads to epithelial cell apoptosis and crypt hyperplasia. Infection was associated with a Th2-biased inflammatory response and impaired growth. Malnutrition accentuated the severity of these growth decrements. Faltering malnourished mice exhibited impaired compensatory responses following infection and demonstrated an absence of crypt hyperplasia and subsequently blunted villus architecture. Concomitantly, severe malnutrition prevented increases in B220+ cells in the lamina propria as well as mucosal Il4 and Il5 mRNA in response to infection. These findings add insight into the potential role of G. lamblia as a "stunting" pathogen and suggest that, similarly, malnourished children may be at increased risk of G. lamblia– potentiated growth decrements.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Probiotic Lactobacillus rhamnosus GG modulates the mucosal immune response in Giardia intestinalis-infected BALB/c mice. Dig Dis Sci 2013; 58:1218-25. [PMID: 23263901 DOI: 10.1007/s10620-012-2503-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/20/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND Gut homeostasis can be altered by the oral administration of health-promoting microorganisms, namely probiotics that are known to reinforce the host immune response. AIM The aim of this study was to elucidate the immunomodulatory effect of orally administered probiotic Lactobacillus rhamnosus GG (LGG) in Giardia-infected mice. METHODS BALB/c mice were fed orally with probiotic LGG either 7 days prior to or simultaneously with the challenge dose of Giardia trophozoites. The administration of the probiotic was continued for 25 days, and immunomodulatory potentials in terms of secretory immunoglobulin A (IgA) levels, CD8+ and CD4+ T lymphocytes, and expression of pro-inflammatory [tumor necrosis factor-alpha, interferon-gamma (INF-γ)] and anti-inflammatory cytokines [interleukin (IL)-4, IL-6, IL-10] were studied. RESULTS Oral feeding of LGG prior to or simultaneously with the test dose of Giardia seems to have modulated both arms (humoral and cellular) of the mucosal immune system since a significant increase in the levels of specific secretory IgA antibody, IgA+ cells, and CD4+ T lymphocytes were observed in contrast with the decreased percentage of cytotoxic CD8+ T lymphocytes. The stimulated mucosal immune response in probiotic fed Giardia-infected mice was further correlated with the enhanced levels of anti-inflammatory cytokines IL-6 and IL-10 and reduced levels of pro-inflammatory cytokine INF-γ. CONCLUSIONS This is the first study to show that oral administration of the effective probiotic LGG to Giardia infected mice could be used as a bacterio-therapy that restores the normal gut microflora and modulates the mucosal immune response.
Collapse
|
44
|
Lee HY, Hyung S, Lee NY, Yong TS, Han SH, Park SJ. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1. Parasite Immunol 2012; 34:183-98. [PMID: 22224945 DOI: 10.1111/j.1365-3024.2012.01354.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Kamda JD, Nash TE, Singer SM. Giardia duodenalis: dendritic cell defects in IL-6 deficient mice contribute to susceptibility to intestinal infection. Exp Parasitol 2012; 130:288-91. [PMID: 22248985 DOI: 10.1016/j.exppara.2012.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/23/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-6 is important in numerous infections. IL-6 can promote T cell survival and differentiation toward Th17 cells, as well as B cell proliferation and differentiation to plasma cells. Giardia duodenalis is a protozoan parasite that replicates in the lumen of the small intestine in humans and many other mammals resulting in diarrhea, cramps and developmental delays in children. IL-6 is required for control of this infection, but it is unclear what its role is or which cells are required to produce this cytokine to generate efficient immunity. We have analyzed infections in a series of chimeric mice in which specific cell types lacked the ability to produce IL-6 in order to determine which sources of IL-6 played an important role in controlling this infection. Analysis of bone marrow chimeras indicate that radiation-sensitive, bone-marrow derived cells must produce IL-6. T cell chimeras show that T cell production of IL-6 is not required. Finally, by transferring dendritic cells from wild-type mice into IL-6 deficient recipients, we show that dendritic cell defects are responsible for the inability of IL-6 deficient mice to respond to Giardia challenge.
Collapse
Affiliation(s)
- Joel D Kamda
- Department of Biology, Georgetown University, 37th and O Sts., NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
46
|
Hagel I, Cabrera M, Puccio F, Santaella C, Buvat E, Infante B, Zabala M, Cordero R, Di Prisco MC. Co-infection with Ascaris lumbricoides modulates protective immune responses against Giardia duodenalis in school Venezuelan rural children. Acta Trop 2011; 117:189-95. [PMID: 21172297 DOI: 10.1016/j.actatropica.2010.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/28/2010] [Accepted: 12/03/2010] [Indexed: 01/24/2023]
Abstract
We evaluated the effect of Ascaris lumbricoides on Giardia duodenalis infection and TH1/TH2 type immune mechanisms toward this parasite in 251 rural parasitized and 70 urban non-parasitized school children. The children were classified according to light (0-5000 eggs/g faeces) or moderate (>5001-50,000 eggs/g faeces) A. lumbricoides infection. Anti G. duodenalis skin hyper-reactivity, IgE, IgG, IL-13, IFN γ, IL6 and IL-10 levels were compared among G. duodenalis infected and non-infected children according to light or moderate A. lumbricoides infection. It was found that 62% of the A. lumbricoides moderately infected children were co-infected by G. duodenalis compared to 45% of the lightly infected group. After treatment, 42% of the A. lumbricoides moderately group were infected with G. duodenalis compared to 11% of their lightly counterparts, being A. lumbricoides IL-10 levels higher (p<0.0001) in the moderately infected group. In the A. lumbricoides lightly parasitized children, G. duodenalis infection was associated to a significant increase (p<0.005) of the levels of G. duodenalis IL-13, IFN-γ, IL-6, IgE, IgG and skin test hyper reactivity. In contrast, there was no effect of G. duodenalis infection in the elevation of these parameters among the A. lumbricoides moderately parasitized group, being those levels similarly lower as those observed in the control group. Inverse correlations were found between the levels of anti G duodenalis antibodies, skin test hyper-reactivity and cytokines with the intensity of A. lumbricoides infection (p>0.0001) and A. lumbricoides IL-10 levels (p>0.0001), suggesting that co-infection with A. lumbricoides may affect both TH1 and TH2 type immunity against G. duodenalis that may play an important role in the susceptibility to the infection after chemotherapy in children from endemic areas.
Collapse
Affiliation(s)
- I Hagel
- Instituto de Biomedicina, Universidad Central de Venezuela, Ministerio de Salud, Venezuela.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Solaymani-Mohammadi S, Singer SM. Giardia duodenalis: the double-edged sword of immune responses in giardiasis. Exp Parasitol 2010; 126:292-7. [PMID: 20599999 DOI: 10.1016/j.exppara.2010.06.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 05/06/2010] [Accepted: 06/11/2010] [Indexed: 12/15/2022]
Abstract
Giardiasis is one of the most common intestinal protozoan infections worldwide. The etiological agent, Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis), is a flagellated, binucleated protozoan parasite which infects a wide array of mammalian hosts (Adam, 2001). The symptoms of giardiasis include abdominal cramps, nausea, and acute or chronic diarrhea, with malabsorption and failure of children to thrive occurring in both sub-clinical and symptomatic disease (Thompson et al., 1993). Infections are transmitted by cysts which are excreted in the feces of infected humans and animals. Human giardiasis is distributed worldwide, with rates of detection between 2-5% in the developed world and 20-30% in the developing nations (Farthing, 1994). There is significant variation in the outcome of Giardia infections. Most infections are self-limiting, although re-infection is common in endemic areas and chronic infections also occur. Moreover, some individuals suffer from severe cramps, nausea and diarrhea while others escape these overt symptoms. This review will describe recent advances in parasite genetics and host immunity that are helping to shed light on this variability.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Department of Biology and Center for Infectious Disease, Reiss Science Building, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
48
|
Muñoz-Cruz S, Gómez-García A, Millán-Ibarra J, Giono-Cerezo S, Yépez-Mulia L. Giardia lamblia: interleukin 6 and tumor necrosis factor-alpha release from mast cells induced through an Ig-independent pathway. Exp Parasitol 2010; 126:298-303. [PMID: 20600000 DOI: 10.1016/j.exppara.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/19/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Giardia lamblia is a common cause of both acute and chronic diarrheal disease in humans worldwide. It has been shown that mast cells, IL-6 and TNF-alpha are substantially involved in the early control of G. lamblia infection in mice. However, no studies have yet been reported concerning the interaction between mast cell and Giardia, as well as the mast cells mediators generated in response to Giardia infection. In this study we demonstrated the direct activation of mast cells by G. lamblia live trophozoites or trophozoite-derived antigens followed by an increase in tryptase expression and a significant release of the preformed mediator histamine. In addition, parasite derived antigens increased TNF-alpha and de novo synthesized cytokine IL-6, at the mRNA and protein level. These results strongly suggest that mast cells might be an important source not only of IL-6 but also of TNF-alpha during Giardia infection, playing an important role in the outcome of the infection.
Collapse
Affiliation(s)
- Samira Muñoz-Cruz
- Unidad de Investigación Médica de Enfermedades Infecciosas y Parasitarias, IMSS, Mexico
| | | | | | | | | |
Collapse
|
49
|
Taherkhani H, Hajilooi M, Fallah M, Khyabanchi O, Haidari M. Gene polymorphism in transforming growth factor-beta codon 10 is associated with susceptibility to Giardiasis. Int J Immunogenet 2009; 36:345-9. [PMID: 19703231 DOI: 10.1111/j.1744-313x.2009.00873.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Secretory immunoglobulin A (S-IgA) antibodies have a central role in anti-Giardial defence. It has been demonstrated that transforming growth factor-beta1 (TGF-beta1) stimulates B lymphocytes to produce and secrete S-IgA. We sought to determine the association between TGF-beta1 polymorphism (T+869C) with susceptibility to Giardiasis. The TGF-beta1 genotypes and levels of salivary (S-IgA) were analysed in individuals with Giardiasis (97 symptomatic and 57 asymptomatic) and controls (n = 92). Individuals with symptomatic Giardiasis had the lowest levels of S-IgA compared to individuals in asymptomatic Giardiasis and control groups (97%, 73% and 43%, <1 g L(-1), respectively, P = 0.002). The frequency of allele C and CC genotypes of TGF-beta1 polymorphism was significantly higher among symptomatic patients than asymptomatic and control groups. Logistic regression analysis demonstrated that the individuals homozygous for allele C of TGF-beta1 had a significantly higher risk for symptomatic Giardiasis with odds ratio of 2.76 (95% CI: 3.88, 1.71, P = 0.007). Among the participants with TT genotype per cent of individuals with S-IgA level of more than 1 g L(-1) was almost twice the percentage in CC genotype individuals (14% versus 7% respectively P = 0.01). Our data suggest that CC genotype of TGF-beta1 polymorphism at codon 10 is associated with occurrence of Giardiasis.
Collapse
Affiliation(s)
- H Taherkhani
- Medical Parasitology Department, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | |
Collapse
|
50
|
IFN-gamma, IL-5, IL-6 and IgE in patients infected with Giardia intestinalis. Folia Histochem Cytobiol 2009; 47:93-7. [PMID: 19419945 DOI: 10.2478/v10042-009-0013-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune system, its cellular and humoral response, is engaged by the host organism to fight against parasitic infections. The study group consisted of 90 patients (58 women and 32 men), aged 18-72 years, infected with G. intestinalis. The diagnosis was established based on laboratory investigations (stool examination, choloscopy, GSA-65). Blood for analysis was collected before (G1), and 2 weeks (G2) and 2 months (G3) after antiparasitic treatment. Control group consisted of 40 healthy subjects (22 women and 18 men), aged 20-45 years. The concentrations of IgE were assayed using a set of VIDAS (bioMerieux) and the concentrations of IL-5, IL-6, IFN-gamma were determined using a set of Quantikine human (R&D Systems). It was revealed that in giardiosis the concentrations of IgE and IL-5 in blood serum were twice as high, the concentration of IL-6 was two and a half times higher and the concentration of IFN-gamma was almost four times higher as compared to healthy controls.
Collapse
|