1
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Fujikawa M, Ueda M, Maruyama K. Role of Kynurenine and Its Derivatives in the Neuroimmune System. Int J Mol Sci 2024; 25:7144. [PMID: 39000249 PMCID: PMC11241229 DOI: 10.3390/ijms25137144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.
Collapse
Affiliation(s)
- Makoto Fujikawa
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Masashi Ueda
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
3
|
Zhang CH, Jiang ZL, Meng Y, Yang WY, Zhang XY, Zhang YX, Khattak S, Ji XY, Wu DD. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic agents for liver cancer. Cell Signal 2023; 106:110628. [PMID: 36774973 DOI: 10.1016/j.cellsig.2023.110628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequent human cancer and the world's third most significant cause of cancer mortality. HCC treatment has recently improved, but its mortality continues to increase worldwide due to its extremely complicated and heterogeneous genetic abnormalities. After nitric oxide (NO) and carbon monoxide (CO), the third gas signaling molecule discovered is hydrogen sulfide (H2S), which has long been thought to be a toxic gas. However, numerous studies have proven that H2S plays many pathophysiological roles in mammals. Endogenous or exogenous H2S can decrease cell proliferation, promote apoptosis, block cell cycle, invasion and migration through various cellular signaling pathways. This review analyzes and discusses the recent literature on the function and molecular mechanism of H2S and H2S donors in HCC, so as to provide convenience for the scientific research and clinical application of H2S in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yuan Meng
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Wen-Yan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yu Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
5
|
Albóniga OE, Jiménez D, Sánchez-Conde M, Vizcarra P, Ron R, Herrera S, Martínez-Sanz J, Moreno E, Moreno S, Barbas C, Serrano-Villar S. Metabolic Snapshot of Plasma Samples Reveals New Pathways Implicated in SARS-CoV-2 Pathogenesis. J Proteome Res 2022; 21:623-634. [PMID: 35133846 DOI: 10.1021/acs.jproteome.1c00786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the scientific and human efforts to understand COVID-19, there are questions still unanswered. Variations in the metabolic reaction to SARS-CoV-2 infection could explain the striking differences in the susceptibility to infection and the risk of severe disease. Here, we used untargeted metabolomics to examine novel metabolic pathways related to SARS-CoV-2 susceptibility and COVID-19 clinical severity using capillary electrophoresis coupled to a time-of-flight mass spectrometer (CE-TOF-MS) in plasma samples. We included 27 patients with confirmed COVID-19 and 29 healthcare workers heavily exposed to SARS-CoV-2 but with low susceptibility to infection ("nonsusceptible"). We found a total of 42 metabolites of SARS-CoV-2 susceptibility or COVID-19 clinical severity. We report the discovery of new plasma biomarkers for COVID-19 that provide mechanistic explanations for the clinical consequences of SARS-CoV-2, including mitochondrial and liver dysfunction as a consequence of hypoxemia (citrulline, citric acid, and 3-aminoisobutyric acid (BAIBA)), energy production and amino acid catabolism (phenylalanine and histidine), and endothelial dysfunction and thrombosis (citrulline, asymmetric dimethylarginine (ADMA), and 2-aminobutyric acid (2-AB)), and we found interconnections between these pathways. In summary, in this first report several metabolic pathways implicated in SARS-CoV-2 susceptibility and COVID-19 clinical progression were found by CE-MS based metabolomics that could be developed as biomarkers of COVID-19.
Collapse
Affiliation(s)
- Oihane E Albóniga
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Daniel Jiménez
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Matilde Sánchez-Conde
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Pilar Vizcarra
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Raquel Ron
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Sabina Herrera
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Javier Martínez-Sanz
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Elena Moreno
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Sergio Serrano-Villar
- Servicio de Enfermedades Infecciosas, IRYCIS, Hospital Universitario Ramón y Cajal and CIBERInf, Carretera de Colmenar Viejo km 9.100, 28034 Madrid, Spain
| |
Collapse
|
6
|
Chang JD, Vaughan EE, Liu CG, Jelinski JW, Terwilliger AL, Maresso AW. Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species. Sci Rep 2021; 11:23917. [PMID: 34903830 PMCID: PMC8669014 DOI: 10.1038/s41598-021-03420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the "culinary preferences" of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.
Collapse
Affiliation(s)
- James D Chang
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ellen E Vaughan
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Carmen Gu Liu
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph W Jelinski
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Austen L Terwilliger
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W Maresso
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Thabet NM, Rashed ER, Abdel-Rafei MK, Moustafa EM. Modulation of the Nitric Oxide/BH4 Pathway Protects Against Irradiation-Induced Neuronal Damage. Neurochem Res 2021; 46:1641-1658. [PMID: 33755856 DOI: 10.1007/s11064-021-03306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The kynurenine pathway (KP, IDO/Kyn pathway) is an important metabolic pathway related to many diseases. Although cranial radiotherapy is the mainstay in metastatic tumors management, its efficacy is limited owing to the associated neuropsychiatric disorders. Sildenafil (SD) and simvastatin (SV) were reported to have antioxidant/anti-inflammatory effects and to serve as NO donor/BH4 regulator, respectively. Fluoxetine (Fx) is an FDA-approved anti-depressant agent and one of the selective serotonin reuptake inhibitor drugs (SSRI), used in neurological disorder treatment. The study objective was to investigate the role of cranial irradiation (C-IR) on KP signaling impairment and the possible intervention by SD and/or SV (as nitric oxide (NO) donor/Tetrahydrobiopterin (BH4) regulatory) on KP following C-IR-induced disruption compared with Fx (as standard drug).Herein, rats were exposed to C-IR at a single dose level of 25 Gy, then treated with sildenafil (SD) and/or simvastatin (SV), and fluoxetine (Fx) at doses of 75, 20, 10 mg/kg/day, respectively. The body weight gain and forced swimming test (FST) were used for evaluation along with the biochemical quantifications of KP intermediates and histopathological examination of cortex and hippocampus. The results indicated a significant activation of KP following C-IR as manifested by decreased Trp content and increased activities of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) with a rise in kynurenine (KYN) and quinolinic acid (QA) hippocampal contents. In addition, a state of C-IR-induced oxidative stress, inflammation, NO-pathway dysregulation and neuronal apoptosis were observed as compared to the control group. However, significant modulations were recorded after the combined administration of SD and SV than those offered by each of them alone and by Fx. The biochemical assessment results were supported by the histopathological tissue examination. It could be concluded that the co-administration of SV and SD offers a neuroprotective effect against irradiation-induced brain injury due to its NO donor/BH4 regulatory activities, anti-inflammatory and antioxidant properties that modulate IDO/KYN pathway.
Collapse
Affiliation(s)
- Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Enas Mahmoud Moustafa
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22041921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
|
9
|
Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, Yao D, Zhang Y. Modulation of Crustacean Innate Immune Response by Amino Acids and Their Metabolites: Inferences From Other Species. Front Immunol 2020; 11:574721. [PMID: 33224140 PMCID: PMC7674553 DOI: 10.3389/fimmu.2020.574721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally, but disease outbreaks and pathogenic infections have hampered production in the last two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly defend and protect themselves using their innate immune system. The immune system derives energy and metabolites from nutrients, with amino acids constituting one such source. A growing number of studies have shown that amino acids and their metabolites are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as well as in the activation of immune related signaling pathways, reduction of inflammatory response and regulation of oxidative stress. Key enzymes in amino acid metabolism have also been implicated in the regulation of the immune system. Here, we reviewed the role played by amino acids and their metabolites in immune-modulation in crustaceans. Information is inferred from mammals and fish where none exists for crustaceans. Research themes are identified and the relevant research gaps highlighted for further studies.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
10
|
Beas AO, Gordon PB, Prentiss CL, Olsen CP, Kukurugya MA, Bennett BD, Parkhurst SM, Gottschling DE. Independent regulation of age associated fat accumulation and longevity. Nat Commun 2020; 11:2790. [PMID: 32493904 PMCID: PMC7270101 DOI: 10.1038/s41467-020-16358-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/23/2020] [Indexed: 01/12/2023] Open
Abstract
Age-dependent changes in metabolism can manifest as cellular lipid accumulation, but how this accumulation is regulated or impacts longevity is poorly understood. We find that Saccharomyces cerevisiae accumulate lipid droplets (LDs) during aging. We also find that over-expressing BNA2, the first Biosynthesis of NAD+ (kynurenine) pathway gene, reduces LD accumulation during aging and extends lifespan. Mechanistically, this LD accumulation during aging is not linked to NAD+ levels, but is anti-correlated with metabolites of the shikimate and aromatic amino acid biosynthesis (SA) pathways (upstream of BNA2), which produce tryptophan (the Bna2p substrate). We provide evidence that over-expressed BNA2 skews glycolytic flux from LDs towards the SA-BNA pathways, effectively reducing LDs. Importantly, we find that accumulation of LDs does not shorten lifespan, but does protect aged cells against stress. Our findings reveal how lipid accumulation impacts longevity, and how aging cell metabolism can be rewired to modulate lipid accumulation independently from longevity. Age-associated metabolic changes include lipid accumulation. Here, the authors show that with replicative aging yeast accumulate lipid droplets which protect cells from cold stress and can be modulated through Biosynthesis of NAD+ 2 (BNA2).
Collapse
Affiliation(s)
- Anthony O Beas
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Patricia B Gordon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Clara L Prentiss
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carissa Perez Olsen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, 60 Prescott St, Worcester, MA, 01605, USA
| | - Matthew A Kukurugya
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
11
|
Dos Santos LM, Commodaro AG, Vasquez ARR, Kohlhoff M, de Paula Guerra DA, Coimbra RS, Martins-Filho OA, Teixeira-Carvalho A, Rizzo LV, Vieira LQ, Serra HM. Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii. Parasite Immunol 2020; 42:e12720. [PMID: 32275066 DOI: 10.1111/pim.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. AIMS In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. METHODS AND RESULTS Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. CONCLUSION Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.
Collapse
Affiliation(s)
- Liliane M Dos Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alessandra G Commodaro
- Departmento de Oftalmologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Alicia R R Vasquez
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | - Roney S Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | | | - Luiz V Rizzo
- Instituto Israelita de Pesquisa e Ensino, São Paulo, Brazil
| | - Leda Q Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Horacio M Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
12
|
Badawy AAB. Kynurenine pathway and human systems. Exp Gerontol 2019; 129:110770. [PMID: 31704347 DOI: 10.1016/j.exger.2019.110770] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/30/2023]
Abstract
The essential amino acid L-tryptophan (Trp) appears to play an important role in aging by acting as a general regulator of protein homeostasis. The major route of Trp degradation, the kynurenine pathway (KP), produces a range of biologically active metabolites that can impact or be impacted by a variety of body systems, including the endocrine, haemopoietic, immune, intermediary metabolism and neuronal systems, with the end product of the KP, NAD+, being essential for vital cellular processes. An account of the pathway, its regulation and functions is presented in relation to body systems with a summary of previous studies of the impact of aging on the pathway enzymes and metabolites. A low-grade inflammatory environment characterized by elevation of cytokines and other immune modulators and consequent disturbances in KP activity develops with aging. The multifactorial nature of the aging process necessitates assessment of factors determining the progression of this mild dysfunction to age-related diseases and developing strategies aimed at arresting and reversing this progression.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
13
|
Spekker-Bosker K, Ufermann CM, Oldenburg M, Däubener W, Eller SK. Interplay between IDO1 and iNOS in human retinal pigment epithelial cells. Med Microbiol Immunol 2019; 208:811-824. [PMID: 31267172 PMCID: PMC6817751 DOI: 10.1007/s00430-019-00627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Human retinal pigment epithelial (hRPE) cells form a selectively permeable monolayer between the neural retina and the highly permeable choroidal vessels. Thus, hRPE cells bear important regulatory functions and are potential targets of pathogens in vivo. Endogenous bacterial endophthalmitis (EBE) is frequently caused by infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus). Upon microbial infection, interferon gamma (IFN-γ), a major cytokine of the adaptive immune response, induces a broad spectrum of effector molecules, such as the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase-1 (IDO1). We stimulated human RPE (hRPE) cells in vitro with proinflammatory cytokines and analyzed the expression levels and enzymatic activities of IDO1 and inducible nitric oxide synthase (iNOS), another antimicrobial effector molecule. The antimicrobial capacity was analyzed in infection experiments using S. aureus and Toxoplasma gondii (T. gondii). Our aim was to characterize the particular importance of IDO1 and iNOS during EBE. We found that an IFN-γ stimulation of hPRE cells induced the expression of IDO1, which inhibited the growth of T. gondii and S. aureus. A co-stimulation with IFN-γ, interleukin-1 beta, and tumor necrosis factor alpha induced a strong expression of iNOS. The iNOS-derived nitric oxide production was dependent on cell-culture conditions; however, it could not cause antimicrobial effects. iNOS did not act synergistically with IDO1. Instead, iNOS activity inhibited IDO1-mediated tryptophan degradation and bacteriostasis. This effect was reversible by the addition of the iNOS inhibitor NG-monomethyl-l-arginine. In conclusion, iNOS mediates anti-inflammatory effects in hRPE cells stimulated with high amounts of IFN-γ together with tumor necrosis factor alpha and Interleukin-1 beta and prevents potential IDO1-dependent tissue damage.
Collapse
Affiliation(s)
- Katrin Spekker-Bosker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Christoph-Martin Ufermann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Maike Oldenburg
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Silvia Kathrin Eller
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Yang D, Li T, Li Y, Zhang S, Li W, Liang H, Xing Z, Du L, He J, Kuang C, Yang Q. H 2S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:88. [PMID: 30777103 PMCID: PMC6380069 DOI: 10.1186/s13046-019-1083-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
Abstract
Background Over-expression and over-activation of immunosuppressive enzyme indoleamine 2, 3 -dioxygenase 1 (IDO1) is a key mechanism of cancer immune escape. However, the regulation of IDO1 has not been fully studied. The relation between hydrogen sulfide (H2S) and IDO1 is unclear. Methods The influences of endogenous and exogenous H2S on the expression of IDO1, iNOS and NF-κB and STAT3 signaling proteins were investigated using qPCR or western blot, and the production of nitric oxide (NO) was analyzed by nitrate/nitrite assay in Cse−/− mice and MCF-7 and SGC-7901 cells. The effect of H2S on IDO1 activity was investigated by HPLC and in-vitro enzymatic assay. The effect of H2S on tryptophan metabolism was tested by luciferase reporter assay in MCF-7 and SGC-7901 cells. The correlation between H2S-generating enzyme CSE and IDO1 was investigated by immunostaining and heatmaps analysis in clinical specimens and tissue arrays of hepatocellular carcinoma (HCC) patients. The immunotherapeutic effects of H2S on H22 HCC-bearing mice were investigated. Results Using Cse−/− mice, we found that H2S deficiency increased IDO1 expression and activity, stimulated NF-κB and STAT3 pathways and decreased the expression of NO-generating enzyme Inos. Using IDO1-expressing MCF-7 and SGC-7901 cells, we found that exogenous H2S inhibited IDO1 expression by blocking STAT3 and NF-κB pathways, and decreased IDO1 activity via H2S/NO crosstalk, and combinedly decreased the tryptophan metabolism. The negative correlation between H2S-generating enzyme CSE and IDO1 was further validated in clinical specimens and tissue arrays of HCC patients. Additionally, H2S donors effectively restricted the tumor development in H22 HCC-bearing mice via downregulating IDO1 expression, inducing T-effector cells and inhibiting MDSCs. Conclusions Thus, H2S, as a novel negative regulator of IDO1, shows encouraging antitumor immunotherapeutic effects and represents a novel therapeutic target in cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1083-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Tianqi Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yinlong Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Weirui Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Lisha Du
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jinchao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Chunxiang Kuang
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
15
|
hCMV-Mediated Immune Escape Mechanisms Favor Pathogen Growth and Disturb the Immune Privilege of the Eye. Int J Mol Sci 2019; 20:ijms20040858. [PMID: 30781494 PMCID: PMC6413209 DOI: 10.3390/ijms20040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Human retinal pigment epithelial (hRPE) cells are important for the establishment and maintenance of the immune privilege of the eye. They function as target cells for human cytomegalovirus (hCMV), but are able to restrict viral replication. hCMV causes opportunistic posterior uveitis such as retinitis and chorioretinitis. Both mainly occur in severely immunocompromised patients and rarely manifest in immunocompetent individuals. In this study, hRPE cells were infected with hCMV in vitro and activated with proinflammatory cytokines. The enzymatic activities of indoleamine 2,3-dioxygenase-1 (IDO1) and inducible nitric oxide synthase (iNOS) were determined. The antimicrobial capacity of both molecules was analyzed in co-infection experiments using Staphylococcus aureus (S. aureus) and Toxoplasmagondii (T. gondii), causing uveitis in patients. We show that an hCMV infection of hRPE cells blocks IDO1 and iNOS mediated antimicrobial defense mechanisms necessary for the control of S. aureus and T. gondii. hCMV also inhibits immune suppressive effector mechanisms in hRPE. The interferon gamma-induced IDO1 dependent immune regulation was severely blocked, as detected by the loss of T cell inhibition. We conclude that an active hCMV infection in the eye might favor the replication of pathogens causing co-infections in immunosuppressed individuals. An hCMV caused blockade of IDO1 might weaken the eye’s immune privilege and favor the development of post-infectious autoimmune uveitis.
Collapse
|
16
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
17
|
Inducible Nitric Oxide Synthase Is a Key Host Factor for Toxoplasma GRA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. mBio 2018; 9:mBio.01738-18. [PMID: 30301855 PMCID: PMC6178625 DOI: 10.1128/mbio.01738-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although Toxoplasma virulence mechanisms targeting gamma interferon (IFN-γ)-induced cell-autonomous antiparasitic immunity have been extensively characterized in mice, the virulence mechanisms in humans remain uncertain, partly because cell-autonomous immune responses against Toxoplasma differ markedly between mice and humans. Despite the identification of inducible nitric oxide synthase (iNOS) as an anti-Toxoplasma host factor in mice, here we show that iNOS in humans is a pro-Toxoplasma host factor that promotes the growth of the parasite. The GRA15 Toxoplasma effector-dependent disarmament of IFN-γ-induced parasite growth inhibition was evident when parasite-infected monocytes were cocultured with hepatocytes. Interleukin-1β (IL-1β), produced from monocytes in a manner dependent on GRA15 and the host's NLRP3 inflammasome, combined with IFN-γ to strongly stimulate iNOS expression in hepatocytes; this dramatically reduced the levels of indole 2,3-dioxygenase 1 (IDO1), a critically important IFN-γ-inducible anti-Toxoplasma protein in humans, thus allowing parasite growth. Taking the data together, Toxoplasma utilizes human iNOS to antagonize IFN-γ-induced IDO1-mediated cell-autonomous immunity via its GRA15 virulence factor.IMPORTANCE Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Gamma interferon (IFN-γ) is produced in the host to inhibit the proliferation of this parasite and eventually cause its death. Unlike mouse disease models, which involve well-characterized virulence strategies that are used by Toxoplasma to suppress IFN-γ-dependent immunity, the strategies used by Toxoplasma in humans remain unclear. Here, we show that GRA15, a Toxoplasma effector protein, suppresses the IFN-γ-induced indole-2,3-dioxygenase 1-dependent antiparasite immune response in human cells. Because NLRP3-dependent production of IL-1β and nitric oxide (NO) in Toxoplasma-infected human cells is involved in the GRA15-dependent virulence mechanism, blocking NO or IL-1β production in the host could represent a novel therapeutic approach for treating human toxoplasmosis.
Collapse
|
18
|
Staurengo-Ferrari L, Trevelin SC, Fattori V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande R, Fukada SY, Teixeira MM, Cunha TM, Liew FY, Oliveira RD, Louzada-Junior P, Cunha FQ, Alves-Filho JC, Verri WA. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol 2018; 9:962. [PMID: 29867945 PMCID: PMC5968393 DOI: 10.3389/fimmu.2018.00962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 μl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (−/−) and interferon-γ (IFN-γ)−/− mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2−/− bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Silvia C Trevelin
- Cardiovascular Division, British Heart Foundation Centre, King's College London, London, United Kingdom.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Fattori
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniele C Nascimento
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Florêncio Figueiredo
- Laboratory of Pathology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Centre, Londrina State University, Londrina, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rene D Oliveira
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
19
|
Expression and regulation of immune-modulatory enzyme indoleamine 2,3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation. Oncotarget 2018; 7:57606-57617. [PMID: 27613847 PMCID: PMC5295376 DOI: 10.18632/oncotarget.11586] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 12/16/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) catalyzes the degradation of tryptophan, which plays a critical role in immune suppression through regulating the production of a series of metabolites that are generally referred to as kynurenines. It has become increasingly clear that epithelial cells (ECs) play an active role in maintaining lung homeostasis by modulating the function of immune cells via producing cytokines, chemokines, and anti-microbial mediators. In this study we assessed the regulation of IDO activity and expression in human primary ECs and EC lines under steady state conditions and in response to bacterial and allergenic stimuli. We also investigated the potential immune modulatory functions of IDO expression in human airway ECs. Our data clearly show that airway ECs produce IDO, which is down-regulated in response to allergens and TLR ligands while up-regulated in response to IFN-γ. Using gene silencing, we further demonstrate that IDO plays a key role in the EC-mediated suppression of antigen-specific and polyclonal proliferation of T cells. Interestingly, our data also show that ECs lose their inhibitory effect on T cell activation in response to different TLR agonists mimicking bacterial or viral infections. In conclusion, our work provides an understanding of how IDO is regulated in ECs as well as demonstrates that “resting” ECs can suppress T cell activation in an IDO dependent manner. These data provide new insight into how ECs, through the production of IDO, can influence downstream innate and adaptive responses as part of their function in maintaining immune homeostasis in the airways.
Collapse
|
20
|
Hornyák L, Dobos N, Koncz G, Karányi Z, Páll D, Szabó Z, Halmos G, Székvölgyi L. The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy. Front Immunol 2018; 9:151. [PMID: 29445380 PMCID: PMC5797779 DOI: 10.3389/fimmu.2018.00151] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 01/03/2023] Open
Abstract
Tumors are composed of abnormally transformed cell types and tissues that differ from normal tissues in their genetic and epigenetic makeup, metabolism, and immunology. Molecular compounds that modulate the immune response against neoplasms offer promising new strategies to combat cancer. Inhibitors targeting the indoleamine-2,3-dioxygenase 1 enzyme (IDO1) represent one of the most potent therapeutic opportunities to inhibit tumor growth. Herein, we assess the biochemical role of IDO1 in tumor metabolism and immune surveillance, and review current diagnostic and therapeutic approaches that are intended to increase the effectiveness of immunotherapies against highly aggressive and difficult-to-treat IDO-expressing cancers.
Collapse
Affiliation(s)
- Lilla Hornyák
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Dobos
- Department of Biopharmacy, Faculty of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Páll
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Activated neuro-oxidative and neuro-nitrosative pathways at the end of term are associated with inflammation and physio-somatic and depression symptoms, while predicting outcome characteristics in mother and baby. J Affect Disord 2017; 223:49-58. [PMID: 28719808 DOI: 10.1016/j.jad.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/17/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To examine oxidative & nitrosative stress (O&NS) biomarkers at the end of term in relation to perinatal affective symptoms, neuro-immune biomarkers and pregnancy-related outcome variables. METHODS We measured plasma advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical trapping antioxidant parameter (TRAP), -sulfhydryl (-SH), peroxides (LOOH) and paraoxonase (PON)1 activity in pregnant women with and without prenatal depression and non-pregnant controls. RESULTS Pregnancy is accompanied by significantly increased AOPP and NOx, and lowered TRAP, -SH and LOOH. Increased O&NS and lowered LOOH and -SH levels are associated with prenatal depressive and physio-somatic symptoms (fatigue, pain, dyspepsia, gastro-intestinal symptoms). Increased AOPP and NOx are significantly associated with lowered -SH, TRAP and zinc, and with increased haptoglobin and C-reactive protein levels. Increased O&NS and lowered TRAP and PON 1 activity, at the end of term predict mother (e.g. hyperpigmentation, labor duration, caesarian section, cord length, breast milk flow) and baby (e.g. sleep and feeding problems) outcome characteristics. CONCLUSIONS Pregnancy is accompanied by interrelated signs of O&NS, lowered antioxidant defenses and activated neuro-immune pathways. Increased O&NS at the end of term is associated with perinatal depressive and physio-somatic symptoms and may predict obstetric and behavioral complications in mother and baby.
Collapse
|
22
|
Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Anderson G, Carvalho AF, Duleu S, Geffard M, Maes M. IgM-mediated autoimmune responses to oxidative specific epitopes, but not nitrosylated adducts, are significantly decreased in pregnancy: association with bacterial translocation, perinatal and lifetime major depression and the tryptophan catabolite (TRYCAT) pathway. Metab Brain Dis 2017; 32:1571-1583. [PMID: 28600633 DOI: 10.1007/s11011-017-0040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023]
Abstract
Immunoglubulin (Ig)M responses directed to oxidative specific epitopes (OSEs) and nitric oxide (NO)-adducts are significantly associated with major depression and physio-somatic symptoms. End of term serum IgM responses to OSEs and NO-adducts were assayed in pregnant women with (n = 24) and without prenatal depression (n = 25) as well as in 24 non-pregnant women. Associations of IgM/IgA responses to Gram-negative gut commensal bacteria (leaky gut index) and IgA/IgM responses to tryptophan catabolites (TRYCATs) were analyzed. IgM responses to OSEs, but not NO-adducts, were significantly reduced at the end of term. There were no significant associations between IgM responses to OSEs and perinatal depression, whilst IgM responses to NO-adducts, especially NO-cysteinyl, were significantly associated with a lifetime major depression. IgM responses to OSEs and NO-cysteinyl were significantly associated with IgA/IgM responses to Gram-negative bacteria, especially Morganella morganii, Klebsiella pneumoniae and Citrobacter koseri. IgM responses to NO-adducts and OSEs, especially malondialdehyde and myristic acid, and C-reactive protein (CRP) were inversely associated with TRYCAT pathway activity, whilst a lifetime depression and Pseudomonas putida were positively associated. The attenuation of natural IgM-mediated responses to OSEs at the end of term may indicate lowered activity of this part of the compensatory (anti-)inflammatory reflex system and may be partly explained by lowered bacterial translocation. Increased IgM responses to NO-cysteinyl is a biomarker of lifetime depression and may be induced by bacterial translocation. Natural IgM-mediated autoimmune responses, increased nitrosylation and higher CRP levels may have negative regulatory effects on the TRYCAT pathway.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Michel Geffard
- Research Department, IDRPHT, Talence, France
- GEMAC, Lieu-Dit Berganton, Saint Jean d'Illac, France
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.
- Revitalis, Waalre, The Netherlands.
- IMPACT Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
23
|
Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox Properties of Tryptophan Metabolism and the Concept of Tryptophan Use in Pregnancy. Int J Mol Sci 2017; 18:E1595. [PMID: 28737706 PMCID: PMC5536082 DOI: 10.3390/ijms18071595] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
During pregnancy, tryptophan (Trp) is required for several purposes, and Trp metabolism varies over time in the mother and fetus. Increased oxidative stress (OS) with high metabolic, energy and oxygen demands during normal pregnancy or in pregnancy-associated disorders has been reported. Taking the antioxidant properties of Trp and its metabolites into consideration, we made four hypotheses. First, the use of Trp and its metabolites is optional based on their antioxidant properties during pregnancy. Second, dynamic Trp metabolism is an accommodation mechanism in response to OS. Third, regulation of Trp metabolism could be used to control/attenuate OS according to variations in Trp metabolism during pregnancy. Fourth, OS-mediated injury could be alleviated by regulation of Trp metabolism in pregnancy-associated disorders. Future studies in normal/abnormal pregnancies and in associated disorders should include measurements of free Trp, total Trp, Trp metabolites, and activities of Trp-degrading enzymes in plasma. Abnormal pregnancies and some associated disorders may be associated with disordered Trp metabolism related to OS. Mounting evidence suggests that the investigation of the use of Trp and its metabolites in pregnancy will be meanful.
Collapse
Affiliation(s)
- Kang Xu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Hongnan Liu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Miaomiao Bai
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Jing Gao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Xin Wu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Yulong Yin
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
24
|
de Araújo EF, Feriotti C, Galdino NADL, Preite NW, Calich VLG, Loures FV. The IDO-AhR Axis Controls Th17/Treg Immunity in a Pulmonary Model of Fungal Infection. Front Immunol 2017; 8:880. [PMID: 28791025 PMCID: PMC5523665 DOI: 10.3389/fimmu.2017.00880] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-β signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1β, TGF-β, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-β, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nycolas Willian Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Ye QX, Xu LH, Shi PJ, Xia T, Fang JP. Indoleamine 2,3-dioxygenase and inducible nitric oxide synthase mediate immune tolerance induced by CTLA4Ig and anti-CD154 hematopoietic stem cell transplantation in a sensitized mouse model. Exp Ther Med 2017; 14:1884-1891. [PMID: 28962099 PMCID: PMC5609130 DOI: 10.3892/etm.2017.4722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated protein 4 immunoglobulin (CTLA4Ig) and anti-cluster of differentiation 154 (anti-CD154) are able to block B7/CD28 and CD40/CD154 co-stimulatory signals in T cells. Additionally, they promote hematopoietic stem cell transplantation (HSCT) in sensitized recipients and are able to induce immune tolerance and complete hematopoietic reconstitution. Indoleamine 2, 3-dioxygenase (IDO) and nitric oxide (NO) have been implicated in T cell immune tolerance. The aim of the present report was to study the in vivo tolerogenic mechanisms by which CTLA4Ig and anti-CD154 induce transplantation survival in mice receiving HSCT. BALB/c mice were sensitized via splenocyte transfusion and pretreated with CTLA4Ig plus anti-CD154 on day-7. IDO and inducible nitric oxide synthase (iNOS) inhibitors were applied on days-7 to 0 and the mice were divided into 4 groups (n=10) and injected with IDO every other day. The mice were sacrificed on day 0, and splenocytes were separated to identify CD11c+ antigen-presenting cells, which were subsequently assessed for IDO expression and activity. The concentration of NO was tested using a nitrate reductase kit. Following the acceptance of allogeneic HSCT, mice were tested for homing and engraftment, as well as survival rate. Application of the IDO inhibitor increased the concentration of NO, whereas a decrease in NO resulted in increased IDO activity. Immune tolerance was abrogated in the presence of both IDO and iNOS inhibitors, whereas this effect was not observed with either compound alone. CTLA4Ig and anti-CD154 may induce immune tolerance by affecting the activity of IDO and iNOS. This tolerance was abrogated in the presence of both IDO and iNOS inhibitors. A cross-regulatory pathway was observed between the IDO and NO pathways, in which the inhibition of IDO stimulated the iNOS pathway and vice versa.
Collapse
Affiliation(s)
- Qi-Xiang Ye
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Lv-Hong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Pei-Jie Shi
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ting Xia
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
26
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 665] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
27
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
28
|
Cortés J, Alvarez C, Santana P, Torres E, Mercado L. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:73-78. [PMID: 27370975 DOI: 10.1016/j.dci.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing.
Collapse
Affiliation(s)
- Jimena Cortés
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudio Alvarez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Paula Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Elisa Torres
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
29
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
30
|
Badawy AAB. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 2015; 35:e00261. [PMID: 26381576 PMCID: PMC4626867 DOI: 10.1042/bsr20150197] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
Tryptophan (Trp) requirements in pregnancy are several-fold: (1) the need for increased protein synthesis by mother and for fetal growth and development; (2) serotonin (5-HT) for signalling pathways; (3) kynurenic acid (KA) for neuronal protection; (4) quinolinic acid (QA) for NAD(+) synthesis (5) other kynurenines (Ks) for suppressing fetal rejection. These goals could not be achieved if maternal plasma [Trp] is depleted. Although plasma total (free + albumin-bound) Trp is decreased in pregnancy, free Trp is elevated. The above requirements are best expressed in terms of a Trp utilization concept. Briefly, Trp is utilized as follows: (1) In early and mid-pregnancy, emphasis is on increased maternal Trp availability to meet the demand for protein synthesis and fetal development, most probably mediated by maternal liver Trp 2,3-dioxygenase (TDO) inhibition by progesterone and oestrogens. (2) In mid- and late pregnancy, Trp availability is maintained and enhanced by the release of albumin-bound Trp by albumin depletion and non-esterified fatty acid (NEFA) elevation, leading to increased flux of Trp down the K pathway to elevate immunosuppressive Ks. An excessive release of free Trp could undermine pregnancy by abolishing T-cell suppression by Ks. Detailed assessment of parameters of Trp metabolism and disposition and related measures (free and total Trp, albumin, NEFA, K and its metabolites and pro- and anti-inflammatory cytokines in maternal blood and, where appropriate, placental and fetal material) in normal and abnormal pregnancies may establish missing gaps in our knowledge of the Trp status in pregnancy and help identify appropriate intervention strategies.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K.
| |
Collapse
|
31
|
Board-Davies E, Moses R, Sloan A, Stephens P, Davies LC. Oral Mucosal Lamina Propria-Progenitor Cells Exert Antibacterial Properties via the Secretion of Osteoprotegerin and Haptoglobin. Stem Cells Transl Med 2015; 4:1283-93. [PMID: 26378260 DOI: 10.5966/sctm.2015-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The oral cavity possesses a diverse microflora, yet recurrent infections within healthy individuals are rare. Wound healing within the buccal mucosa is preferential, potentially because of the presence of oral mucosal lamina propria-progenitor cells (OMLP-PCs). In addition to their multipotency, OMLP-PCs demonstrate potent immunosuppressive properties. The present study investigated whether OMLP-PCs possess antibacterial properties, directly interacting with microorganisms and contributing to the maintenance of a balanced oral microflora. Gram-positive and -negative bacteria were cocultured with OMLP-PCs, buccal mucosal fibroblasts, or their respective conditioned media (CM). Bacterial growth was significantly inhibited when cocultured with OMLP-PCs or their CM. No antibacterial activity was apparent within the fibroblasts. Analysis of the OMLP-PC CM indicated constitutive secretion of osteoprotegerin (OPG) and haptoglobin (Hp). Exposure of the bacteria to OPG or Hp demonstrated their differential antibacterial properties, with neutralization/blocking studies confirming that the growth of Gram-positive bacteria was partially restored by neutralizing OPG within OMLP-PC CM; blocking Hp restored the growth of Gram-negative bacteria. The present study demonstrates, for the first time, the broad-spectrum antibacterial properties of OMLP-PCs. We report the direct and constitutive antibacterial nature of OMLP-PCs, with retention of this effect within the CM suggesting a role for soluble factors such as OPG and Hp. Knowledge of the immunomodulatory and antibacterial properties of these cells could potentially be exploited in the development of novel cell- or soluble factor-based therapeutics for the treatment of infectious diseases such as pneumonia or ailments such as chronic nonhealing wounds. SIGNIFICANCE Oral mucosal lamina propria-progenitor cells (OMLP-PCs) are a cell source with known immunomodulatory properties. The present report demonstrates the novel finding that OMLP-PCs possess potent antibacterial properties, halting the growth of Gram-positive and -negative bacteria through the secretion of soluble factors. OMLP-PCs constitutively secrete osteoprotegerin (OPG) and haptoglobin (Hp) at levels high enough to exert antibacterial action. OPG, a glycoprotein not previously known to be antibacterial, can suppress Gram-positive bacterial growth. Hp is only active against Gram-negative microorganisms. These findings indicate that OMLP-PCs could offer great potential in the development of novel cell- or soluble factor-based therapies for the treatment of infectious illness, such as bacterial pneumonia, through systemic infusion and of chronic wounds through local administration.
Collapse
Affiliation(s)
- Emma Board-Davies
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Rachael Moses
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Alastair Sloan
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Phil Stephens
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Lindsay C Davies
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom Centre for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
33
|
Szabó E, Fajka-Boja R, Kriston-Pál É, Hornung Á, Makra I, Kudlik G, Uher F, Katona RL, Monostori É, Czibula Á. Licensing by Inflammatory Cytokines Abolishes Heterogeneity of Immunosuppressive Function of Mesenchymal Stem Cell Population. Stem Cells Dev 2015; 24:2171-80. [PMID: 26153898 DOI: 10.1089/scd.2014.0581] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When mesenchymal stem cells (MSCs) are used for therapy of immunological pathologies, they get into an inflammatory environment, altering the effectiveness of the treatment. To establish the impact of environmental inflammatory factors on MSCs' immunofunction in the mirror of intrinsic heterogeneity of mouse MSC population, individual MSC clones were generated and characterized. Adipogenic but not osteogenic differentiation and pro-angiogenic activity of five independent MSC cell lines were similar. Regarding osteogenic differentiation, clones MSC3 and MSC6 exhibited poorer capacity than MSC2, MSC4, and MSC5. To study the immunosuppressive heterogeneity, in vitro and in vivo experiments have been carried out using T-cell proliferation assay and delayed-type hypersensitivity (DTH) response, respectively. A remarkable difference was found between the clones in their ability to inhibit T-cell proliferation in the following order: MSC2≥MSC5>MSC4>MSC3 >> MSC6. Nevertheless, the differences between the immunosuppressive activities of the individual clones disappeared on pretreatment of the cells with pro-inflammatory cytokines, a procedure called licensing. Stimulation of all clones with IFN-γ and TNF-α resulted in elevation of their inhibitory capability to a similar level. Nitric oxide (NO) and prostaglandin E2 (PGE2) were identified as major mediators of immunofunction of the MSC clones. The earlier findings were also supported by in vivo results. Without licensing, MSC2 inhibited DTH response, while MSC6 did not affect DTH response. In contrast, prestimulation of MSC6 with inflammatory cytokines resulted in strong suppression by this clone as well. Here, we have showed that MSC population is functionally heterogeneous in terms of immunosuppressive function; however, this variability is largely reduced under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Enikő Szabó
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Roberta Fajka-Boja
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Kriston-Pál
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos Hornung
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Ildikó Makra
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyöngyi Kudlik
- 2 Stem Cell Biology Unit, National Blood Service , Budapest, Hungary
| | - Ferenc Uher
- 2 Stem Cell Biology Unit, National Blood Service , Budapest, Hungary
| | - Róbert László Katona
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Monostori
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Czibula
- 1 Institute of Genetics, Biological Research Centre , Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
34
|
Lysophosphatidylcholine exacerbates Leishmania major-dendritic cell infection through interleukin-10 and a burst in arginase1 and indoleamine 2,3-dioxygenase activities. Int Immunopharmacol 2015; 25:1-9. [DOI: 10.1016/j.intimp.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/01/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
|
35
|
Jackson CL, Lucas JS, Walker WT, Owen H, Premadeva I, Lackie PM. Neuronal NOS localises to human airway cilia. Nitric Oxide 2014; 44:3-7. [PMID: 25460324 DOI: 10.1016/j.niox.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. METHODS AND RESULTS Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. CONCLUSIONS We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function.
Collapse
Affiliation(s)
- Claire L Jackson
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Jane S Lucas
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Woolf T Walker
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Holly Owen
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Irnthu Premadeva
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter M Lackie
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
36
|
Coutinho LG, Christen S, Bellac CL, Fontes FL, Souza FRSD, Grandgirard D, Leib SL, Agnez-Lima LF. The kynurenine pathway is involved in bacterial meningitis. J Neuroinflammation 2014; 11:169. [PMID: 25274277 PMCID: PMC4189685 DOI: 10.1186/s12974-014-0169-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial meningitis (BM) is characterized by an intense host inflammatory reaction, which contributes to the development of brain damage and neuronal sequelae. Activation of the kynurenine (KYN) pathway (KP) has been reported in various neurological diseases as a consequence of inflammation. Previously, the KP was shown to be activated in animal models of BM, and the association of the SNP AADAT + 401C/T (kynurenine aminotransferase II - KAT II) with the host immune response to BM has been described. The aim of this study was to investigate the involvement of the KP during BM in humans by assessing the concentrations of KYN metabolites in the cerebrospinal fluid (CSF) of BM patients and their relationship with the inflammatory response compared to aseptic meningitis (AM) and non-meningitis (NM) groups. METHODS The concentrations of tryptophan (TRP), KYN, kynurenic acid (KYNA) and anthranilic acid (AA) were assessed by HPLC from CSF samples of patients hospitalized in the Giselda Trigueiro Hospital in Natal (Rio Grande do Norte, Brazil). The KYN/TRP ratio was used as an index of indoleamine 2,3-dioxygenase (IDO) activity, and cytokines were measured using a multiplex cytokine assay. The KYNA level was also analyzed in relation to AADAT + 401C/T genotypes. RESULTS In CSF from patients with BM, elevated levels of KYN, KYNA, AA, IDO activity and cytokines were observed. The cytokines INF-γ and IL-1Ra showed a positive correlation with IDO activity, and TNF-α and IL-10 were positively correlated with KYN and KYNA, respectively. Furthermore, the highest levels of KYNA were associated with the AADAT + 401 C/T variant allele. CONCLUSION This study suggests a downward modulatory effect of the KP on CSF inflammation during BM.
Collapse
|
37
|
Chacko A, Barker CJ, Beagley KW, Hodson MP, Plan MR, Timms P, Huston WM. Increased sensitivity to tryptophan bioavailability is a positive adaptation by the human strains of Chlamydia pneumoniae. Mol Microbiol 2014; 93:797-813. [PMID: 24989637 DOI: 10.1111/mmi.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 11/30/2022]
Abstract
One of the most significant activities induced by interferon-gamma against intracellular pathogens is the induction of IDO (indoleamine 2,3-dioxygenase) expression, which subsequently results in the depletion of tryptophan. We tested the hypothesis that human strains of Chlamydia pneumoniae are more sensitive to tryptophan limitation than animal C. pneumoniae strains. The human strains were significantly more sensitive to IFN-γ than the animal strains in a lung epithelia cell model (BEAS-2B), with exposure to 1 U ml(-1) IFN-γ resulting in complete loss of infectious yield of human strains, compared to the animal strains where reductions in infectious progeny were around 3.5-4.0 log. Strikingly, the IFN-γ induced loss of ability to form infectious progeny production was completely rescued by removal of the IFN-γ and addition of exogenous tryptophan for the human strains, but not the animal strains. In fact, a human heart strain was more capable of entering a non-infectious, viable persistent stage when exposed to IFN-γ and was also more effectively rescued, compared to a human respiratory strain. Exquisite susceptibility to IFN-γ, specifically due to tryptophan availability appears to be a core adaptation of the human C. pneumoniae strains, which may reflect the chronic nature of their infections in this host.
Collapse
Affiliation(s)
- Anu Chacko
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.
Collapse
|
39
|
Niño-Castro A, Abdullah Z, Popov A, Thabet Y, Beyer M, Knolle P, Domann E, Chakraborty T, Schmidt SV, Schultze JL. The IDO1-induced kynurenines play a major role in the antimicrobial effect of human myeloid cells against Listeria monocytogenes. Innate Immun 2013; 20:401-11. [PMID: 23940074 DOI: 10.1177/1753425913496442] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Induction of indoleamine 2,3-dioxygenase (IDO1) is an established cellular response to infection with numerous pathogens. Several mechanisms, such as IDO1-mediated tryptophan (Trp) depletion, but also accumulation of Trp catabolites, have been associated with the antimicrobial effects of IDO(+) cells. Recent findings of IDO1 as an immunoinhibitory and signaling molecule extended these previous observations. Using infection of professional phagocytes with Listeria monocytogenes (L.m.) as a model, we illustrate that IDO1 induction is a species-specific event observed in human, but not murine myeloid, cells. Knockdown and inhibition experiments indicate that IDO1 enzymatic activity is required for the anti-L.m. effect. Surprisingly, the IDO1-mediated antimicrobial effect is less prominent when Trp is depleted, but can be significantly amplified by tryptophan excess, leading to increased accumulation of catabolites that promote enhanced bactericidal activity. We observed a pathogen-specific pattern with kynurenine and 3-hydroxy-kynurenine being most potent against L.m., but not against other bacteria. Hence, apparent discrepant findings concerning IDO1-mediated antimicrobial mechanisms can be reconciled by a model of species and pathogen-specificity of IDO1 function. Our findings highlight the necessity to consider species- and pathogen-specific aspects of host-pathogen interactions when elucidating the individual role of antimicrobial proteins such as IDO1.
Collapse
Affiliation(s)
- Andrea Niño-Castro
- 1Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Copland IB, Garcia MA, Waller EK, Roback JD, Galipeau J. The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy. Biomaterials 2013; 34:7840-50. [PMID: 23891515 DOI: 10.1016/j.biomaterials.2013.06.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/26/2013] [Indexed: 01/15/2023]
Abstract
Human platelet lysate (PL) represents an attractive alternative to fetal bovine serum (FBS) for the ex vivo expansion of human mesenchymal stromal cells (MSCs). However, there is controversy whether MSCs propagated in unfractionated PL retain their immunosuppressive properties. Since fibrinogen can be a major component of PL, we hypothesized that the fibrinogen content in PL negatively affects the suppressor function of MSCs. Pools of outdated plateletpheresis products underwent a double freeze-thaw centrifugation and filtration to produce unfractionated platelet lysates (uPL), followed by a temperature controlled clotting procedure to produce a fibrinogen depleted platelet lysate (fdPL). Fibrinogen depletion affected neither the mitogenic properties of PL or growth factor content, however fdPL was less prone to develop precipitate over time. Functionally, fibrinogen interacted directly with MSCs, dose dependently increased IL-6, IL-8 and MCP-1 protein production, and compromised the ability of MSCs to up-regulate indoleamine dioxygenase (IDO), as well as, mitigate T-cell proliferation. Similarly uPL expanded MSCs showed a reduced capability of inducing IDO and suppressing T-cell proliferation compared to FBS expanded MSCs. Replacing uPL with fdPL largely restored the immune modulating effects of MSCs. Together these data suggest that fibrinogen negatively affects the immunomodulatory functions of MSCs and fdPL can serve as non-xenogenic mitogenic supplement for expansion of clinical grade MSCs for immune modulation.
Collapse
Affiliation(s)
- Ian B Copland
- Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
41
|
Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, Rupp J, Däubener W. Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions. PLoS One 2013; 8:e63301. [PMID: 23675474 PMCID: PMC3652816 DOI: 10.1371/journal.pone.0063301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses. On the other hand, it has been observed that IDO has immunoregulatory functions as it efficiently controls the activation and survival of T-cells. Although these important effects have been analysed in much detail, they have been observed in vitro using cells cultured in the presence of 20% O2 (normoxia). Such high oxygen concentrations are not present in vivo especially within infected and inflamed tissues. We therefore analysed IDO-mediated effects under lower oxygen concentrations in vitro and observed that the function of IDO is substantially impaired in tumour cells as well as in native cells. Hypoxia led to reduced IDO expression and as a result to reduced production of kynurenine, the downstream product of tryptophan degradation. Consequently, effector functions of IDO were abrogated under hypoxic conditions: in different human cell lines such as tumour cells (glioblastoma, HeLa) but also in native cells (human foreskin fibroblasts; HFF) IDO lost the capacity to inhibit the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) or viruses (herpes simplex virus type 1). Additionally, IDO could no longer efficiently control the proliferation of T-cells that have been co-cultured with IDO expressing HFF cells in vitro. In conclusion, the potent antimicrobial as well as immunoregulatory functions of IDO were substantially impaired under hypoxic conditions that pathophysiologically occurs in vivo.
Collapse
Affiliation(s)
- Silvia K. Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Ebel
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eric Keil
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Claudia Woite
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim F. Ernst
- Institute for Molecular Mycology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anika E. Benzin
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
- Medical Clinic III/UK-SH, Campus Lübeck, Lübeck, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
42
|
Schmidt SK, Siepmann S, Kuhlmann K, Meyer HE, Metzger S, Pudelko S, Leineweber M, Däubener W. Influence of tryptophan contained in 1-Methyl-Tryptophan on antimicrobial and immunoregulatory functions of indoleamine 2,3-dioxygenase. PLoS One 2012; 7:e44797. [PMID: 23028625 PMCID: PMC3441469 DOI: 10.1371/journal.pone.0044797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been identified as an important antimicrobial and immunoregulatory effector molecule essential for the establishment of tolerance by regulating local tryptophan (Trp) concentrations. On the other hand, the immunosuppressive capacity of IDO can have detrimental effects for the host as it can lead to deleterious alterations of the immune response by promoting tolerance to some types of tumors. To suppress this disadvantageous IDO effect, the competitive inhibitor 1-Methyl-Tryptophan (1-MT) is being tested in clinical trials. However, it remains inconclusive which stereoisomer of 1-MT is the more effective inhibitor of IDO-mediated immunosuppression. While IDO enzyme activity is more efficiently inhibited by 1-L-MT in cell-free or in vitro settings, 1-D-MT is superior to 1-L-MT in the enhancement of anti-tumor responses in vivo. Here, we present new data showing that commercially available 1-L-MT lots contain tryptophan in amounts sufficient to compensate for the IDO-mediated tryptophan depletion in vitro. The addition of 1-L-MT abrogated IDO-mediated antimicrobial effects and permitted the growth of the tryptophan-auxotroph microorganisms Staphylococcus aureus and Toxoplasma gondii. Consistent with this, the tryptophan within 1-L-MT lots was sufficient to antagonize IDO-mediated inhibition of T cell responses. Mass spectrometry (MS) analysis revealed not only tryptophan within 1-L-MT, but also the incorporation of this tryptophan in bacterial and human proteins that were generated in the presence of 1-L-MT in otherwise tryptophan-free conditions. In summary, these data reveal that tryptophan within 1-L-MT can affect the results of in vitro studies in an L-stereospecific and IDO-independent way.
Collapse
Affiliation(s)
- Silvia K Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Holoshitz J, De Almeida DE, Ling S. A role for calreticulin in the pathogenesis of rheumatoid arthritis. Ann N Y Acad Sci 2010; 1209:91-8. [PMID: 20958321 DOI: 10.1111/j.1749-6632.2010.05745.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calreticulin (CRT) plays a role in the clearance of dying cells and has been implicated in autoimmunity. Recent evidence indicates that cell surface CRT (csCRT) acts as a signal transducing receptor for the rheumatoid arthritis (RA) shared epitope (SE). The SE binding site on CRT has been mapped to amino acid residues 217-223 in the P-domain. Upon interaction with dendritic cells (DCs), the SE activates potent immune regulatory events. In CD8α(+) DCs, which express higher abundance of csCRT, the SE inhibits the tolerogenic enzyme indoleamine 2,3 dioxygenase with resultant inhibition of regulatory T (Treg) cell differentiation. In CD8α(-) DCs, the SE ligand increases secretion of IL-6 and IL-23 and facilitates generation of Th17 cells, a T cell subset known to play a role in autoimmunity. On the basis of these recent findings, we discuss the possibility that the csCRT may play a pathogenic role in RA by transducing SE-activated Th17-polarizing signals.
Collapse
Affiliation(s)
- Joseph Holoshitz
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
44
|
Primary murine microglia are resistant to nitric oxide inhibition of indoleamine 2,3-dioxygenase. Brain Behav Immun 2010; 24:1249-53. [PMID: 20451602 PMCID: PMC2948631 DOI: 10.1016/j.bbi.2010.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 01/03/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an intracellular heme-containing enzyme that is activated by proinflammatory cytokines, including interferon-γ (IFNγ), and metabolizes tryptophan along the kynurenine pathway. Activation of murine macrophages induces not only IDO but also nitric oxide synthase (iNOS), and the ensuing production of nitric oxide (NO) inhibits IDO. To determine the sensitivity of primary cultures of murine microglia to NO, microglia were stimulated with recombinant murine IFNγ (1 ng/ml) and lipopolysaccharide (LPS) (10 ng/ml). This combination of IFNγ+LPS synergized to produce maximal amounts of nitrite as early as 16h. Steady-state mRNAs for both iNOS and IDO were significantly increased by IFNγ+LPS at 4h post-treatment, followed by an increase in IDO enzymatic activity at 24h. Murine microglia (>95% CD11b(+)) were pretreated with the iNOS inhibitor, L-NIL hydrochloride, at a dose (30 μM) that completely abrogated production of nitrite. L-NIL had no effect on IDO mRNA at 4h or IDO enzymatic activity at 24h following stimulation with IFNγ+LPS. These data establish that IDO regulation in murine microglia is not restrained by NO, thereby permitting the accumulation of kynurenine and its downstream metabolites in the central nervous system.
Collapse
|
45
|
Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc Natl Acad Sci U S A 2010; 107:19502-7. [PMID: 20974954 DOI: 10.1073/pnas.1008178107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN-γ has an important role in the adaptive immune response against intracellular pathogens. In urogenital tract (UGT) infections with the obligate intracellular pathogen Chlamydia trachomatis, IFN-γ-mediated control of chlamydial growth implies the JAK-STAT signaling cascades and subsequent induction of the indoleamine 2,3-dioxygenase (IDO). As oxygen concentrations in the UGT are low under physiological conditions (O(2) < 5%) and further decrease during an inflammatory process, we wondered whether antibacterial properties of IFN-γ are maintained under hypoxic conditions. Using primary cells that were isolated from human fallopian tubes and an ex vivo human fallopian tube model (HFTM), we found that even high IFN-γ concentrations (200 units/mL) were not sufficient to limit growth of C. trachomatis under hypoxia. Reduced antibacterial activity of IFN-γ under hypoxia was restricted to the urogenital serovars D and L(2), but was not observed with the ocular serovar A. Impaired effectiveness of IFN-γ on chlamydial growth under hypoxia was accompanied by reduced phosphorylation of Stat-1 on Tyr701 and diminished IDO activity. This study shows that IFN-γ effector functions on intracellular C. trachomatis depend on the environmental oxygen supply, which could explain inadequate bacterial clearance and subsequent chronic infections eventually occurring in the UGT of women.
Collapse
|
46
|
De Almeida DE, Ling S, Pi X, Hartmann-Scruggs AM, Pumpens P, Holoshitz J. Immune dysregulation by the rheumatoid arthritis shared epitope. THE JOURNAL OF IMMUNOLOGY 2010; 185:1927-34. [PMID: 20592276 DOI: 10.4049/jimmunol.0904002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is closely associated with HLA-DRB1 alleles that code a five-amino acid sequence motif in positions 70-74 of the HLA-DRbeta-chain, called the shared epitope (SE). The mechanistic basis of SE-RA association is unknown. We recently found that the SE functions as an allele-specific signal-transducing ligand that activates an NO-mediated pathway in other cells. To better understand the role of the SE in the immune system, we examined its effect on T cell polarization in mice. In CD11c(+)CD8(+) dendritic cells (DCs), the SE inhibited the enzymatic activity of indoleamine 2,3 dioxygenase, a key enzyme in immune tolerance and T cell regulation, whereas in CD11c(+)CD8(-) DCs, the ligand activated robust production of IL-6. When SE-activated DCs were cocultured with CD4(+) T cells, the differentiation of Foxp3(+) T regulatory cells was suppressed, whereas Th17 cells were expanded. The polarizing effects could be seen with SE(+) synthetic peptides, but even more so when the SE was in its natural tridimensional conformation as part of HLA-DR tetrameric proteins. In vivo administration of the SE ligand resulted in a greater abundance of Th17 cells in the draining lymph nodes and increased IL-17 production by splenocytes. Thus, we conclude that the SE acts as a potent immune-stimulatory ligand that can polarize T cell differentiation toward Th17 cells, a T cell subset that was recently implicated in the pathogenesis of autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Denise E De Almeida
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
47
|
Palafox D, Llorente L, Alberú J, Torres-Machorro A, Camorlinga N, Rodríguez C, Granados J. The role of indoleamine 2,3 dioxygenase in the induction of immune tolerance in organ transplantation. Transplant Rev (Orlando) 2010; 24:160-5. [PMID: 20541386 DOI: 10.1016/j.trre.2010.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
Abstract
The aim of this review is to present current information on transplantation research regarding the role of indoleamine 2,3 dioxygenase in immune regulation. We present the basic mechanisms by which the enzyme is expressed, followed by tryptophan catabolism that leads to midg1 phase arrest and apoptosis. Other effects proposed, although not yet completely proven and generally accepted, include T-cell development suppression, secretion of regulatory cytokines such as IL10, and generation of new T regulatory cells. Clinical studies are being performed worldwide; thus, our goal is to focus on the clinical potential relevance of the enzyme rather than a presentation on a molecular basis so that health care providers concerning transplantation are aware of this promising field in immunology and therapeutics. We do emphasize the fact that information regarding the role of indoleamine 2,3 dioxygenase in human beings is still scarce.
Collapse
Affiliation(s)
- Damian Palafox
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F., México
| | | | | | | | | | | | | |
Collapse
|
48
|
Pallotta MT, Orabona C, Volpi C, Grohmann U, Puccetti P, Fallarino F. Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). Int J Tryptophan Res 2010; 3:91-7. [PMID: 22084591 PMCID: PMC3195250 DOI: 10.4137/ijtr.s3971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) catalyzes the initial and rate-limiting step of tryptophan catabolism in a specific pathway, resulting in a series of extracellular messengers collectively known as kynurenines. IDO has been recognized as an authentic regulator of immunity not only in mammalian pregnancy, but also in infection, autoimmunity, inflammation, allergy, transplantation, and neoplasia. Its suppressive effects are mostly mediated by dendritic cells (DCs) and involve tryptophan deprivation and/or production of kynurenines, which act on IDO-negative DCs as well as CD4+ and CD8+ T cells. We have found that mouse IDO contains two tyrosine residues within two distinct putative immunoreceptor tyrosine-based inhibitory motifs, VPY115CEL and LLY253EGV. We have also found that Suppressor of Cytokine Signaling 3 (SOCS3)—known to interact with phosphotyrosine-containing peptides and be selectively induced by interleukin 6 (IL-6)—binds mouse IDO, recruits the ECS (Elongin-Cullin-SOCS) E3 ligase, and targets the IDO/SOCS3 complex for proteasomal degradation. This event underlies the ability of IL-6 to convert otherwise tolerogenic, IDO-competent DCs into immunogenic cells. Thus onset of immunity in response to antigen within an early inflammatory context demands that IDO be degraded in tolerogenic DCs. These studies support the finding that IDO is regulated by proteasomal degradation in response to immunogenic and inflammatory stimuli.
Collapse
Affiliation(s)
- Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Tan PH, Bharath AK. Manipulation of indoleamine 2,3 dioxygenase; a novel therapeutic target for treatment of diseases. Expert Opin Ther Targets 2010; 13:987-1012. [PMID: 19534572 DOI: 10.1517/14728220903018940] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The discovery of indoleamine 2,3-dioxygenase (IDO) as a modulator for the maintenance of fetomaternal immuno-privileged state has been heralded as a significant step in further defining the role of IDO in immunobiology. IDO is an IFN-inducible, intracellular enzyme that catalyzes the initial and rate-limiting step in the degradation of the essential amino acid, tryptophan. It has been suggested that IDO has the capacity to regulate the immune system via two discrete mechanisms; firstly the deprivation of tryptophan, which is essential for T cell proliferation and via the cytotoxic effects of tryptophan metabolites on T(H)1 cell survival. METHODS The sources of information used to prepare the paper are published work on Pubmed/Medline. In this review, we examine the therapeutic role of modulating IDO activity a variety of disease states including tumour tolerance, chronic infection, transplant rejection, autoimmunity and asthma. We propose that IDO represents a novel therapeutic target for the treatment of these diseases. We also explore the diverse strategies which are being employed, either to augment or to inhibit IDO activity in order to modify various disease processes. The limitations associated with these strategies are also scrutinized.
Collapse
Affiliation(s)
- P H Tan
- Oxford University, John Radcliffe Hospital, Nuffield Department of Surgery, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
50
|
Stefanska J, Sokolowska M, Sarniak A, Wlodarczyk A, Doniec Z, Nowak D, Pawliczak R. Apocynin decreases hydrogen peroxide and nirtate concentrations in exhaled breath in healthy subjects. Pulm Pharmacol Ther 2010; 23:48-54. [DOI: 10.1016/j.pupt.2009.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 07/03/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|