1
|
Marra M, Catalano A, Sinicropi MS, Ceramella J, Iacopetta D, Salpini R, Svicher V, Marsico S, Aquaro S, Pellegrino M. New Therapies and Strategies to Curb HIV Infections with a Focus on Macrophages and Reservoirs. Viruses 2024; 16:1484. [PMID: 39339960 PMCID: PMC11437459 DOI: 10.3390/v16091484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
More than 80 million people worldwide have been infected with the human immunodeficiency virus (HIV). There are now approximately 39 million individuals living with HIV/acquired immunodeficiency syndrome (AIDS). Although treatments against HIV infection are available, AIDS remains a serious disease. Combination antiretroviral therapy (cART), also known as highly active antiretroviral therapy (HAART), consists of treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. However, the increasing usage of cART is inevitably associated with the emergence of HIV drug resistance. In addition, the development of persistent cellular reservoirs of latent HIV is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Thus, several efforts are being applied to new generations of drugs, vaccines and new types of cART. In this review, we summarize the antiviral therapies used for the treatment of HIV/AIDS, both as individual agents and as combination therapies, and highlight the role of both macrophages and HIV cellular reservoirs and the most recent clinical studies related to this disease.
Collapse
Affiliation(s)
- Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Gumbs SBH, Stam AJ, Mudrikova T, Schipper PJ, Hoepelman AIM, van Ham PM, Borst AL, Hofstra LM, Gharu L, van Wyk S, Wilkinson E, de Witte LD, Wensing AMJ, Nijhuis M. Characterization of HIV variants from paired Cerebrospinal fluid and Plasma samples in primary microglia and CD4 + T-cells. J Neurovirol 2024; 30:380-392. [PMID: 38713307 PMCID: PMC11512886 DOI: 10.1007/s13365-024-01207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Despite antiretroviral therapy (ART), HIV persistence in the central nervous system (CNS) continues to cause a range of cognitive impairments in people living with HIV (PLWH). Upon disease progression, transmigrating CCR5-using T-cell tropic viruses are hypothesized to evolve into macrophage-tropic viruses in the CNS that can efficiently infect low CD4-expressing cells, such as microglia. We examined HIV-1 RNA concentration, co-receptor usage, and CSF compartmentalization in paired CSF and blood samples from 19 adults not on treatment. Full-length envelope CSF- and plasma-derived reporter viruses were generated from 3 subjects and phenotypically characterized in human primary CD4+ T-cells and primary microglia. Median HIV RNA levels were higher in plasma than in CSF (5.01 vs. 4.12 log10 cp/mL; p = 0.004), and coreceptor usage was mostly concordant for CCR5 across the paired samples (n = 17). Genetically compartmentalized CSF viral populations were detected in 2 subjects, one with and one without neurological symptoms. All viral clones could replicate in T-cells (R5 T cell-tropic). In addition, 3 CSF and 1 plasma patient-derived viral clones also had the capacity to replicate in microglia/macrophages and, therefore have an intermediate macrophage tropic phenotype. Overall, with this study, we demonstrate that in a subset of PLWH, plasma-derived viruses undergo genetic and phenotypic evolution within the CNS, indicating viral infection and replication in CNS cells. It remains to be studied whether the intermediate macrophage-tropic phenotype observed in primary microglia represents a midpoint in the evolution towards a macrophage-tropic phenotype that can efficiently replicate in microglial cells and propagate viral infection in the CNS.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Arjen J Stam
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Tania Mudrikova
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Petra M van Ham
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - LMarije Hofstra
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Stephanie van Wyk
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
4
|
Moschopoulos CD, Alford K, Antoniadou A, Vera JH. Cognitive impairment in people living with HIV: mechanisms, controversies, and future perspectives. Trends Mol Med 2024:S1471-4914(24)00163-1. [PMID: 38955654 DOI: 10.1016/j.molmed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Despite the dramatic decrease in HIV-associated neurocognitive impairment (NCI) in the combined antiretroviral treatment (cART) era, subtler neuropsychological complications remain prevalent. In this review, we discuss the changing pathophysiology of HIV-associated NCI, considering recent evidence of HIV neuropathogenesis, and the pivotal role of cART. Furthermore, we address the multifactorial nature of NCI in people living with HIV, including legacy and ongoing insults to the brain, as well as host-specific factors. We also summarize the ongoing debate about the refinement of diagnostic criteria, exploring the strengths and limitations of these recent approaches. Finally, we present current research in NCI management in people living with HIV and highlight the need for using both pharmacological and nonpharmacological pathways toward a holistic approach.
Collapse
Affiliation(s)
- Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| | - Kate Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Department of Medicine, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
5
|
Bonner X, Sondgeroth A, McCue A, Nicely N, Tripathy A, Spielvogel E, Moeser M, Ke R, Leiderman K, Joseph SB, Swanstrom R. Stoichiometry for entry and binding properties of the Env protein of R5 T cell-tropic HIV-1 and its evolutionary variant of macrophage-tropic HIV-1. mBio 2024; 15:e0032124. [PMID: 38426750 PMCID: PMC11210212 DOI: 10.1128/mbio.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle. Using data showing a dose response for infectivity based on CD4 surface density, we built a model consistent with T-tropic viruses requiring multiple CD4 molecules to mediate infection, whereas M-tropic viruses can infect cells using a single CD4 receptor molecule interaction. We also found that T-tropic viruses bound to the surface of cells with a low density of CD4 are released more slowly than M-tropic viruses which we modeled to be due to multiple interactions of the T-tropic virus with multiple CD4 molecules to allow the initial stable binding. Finally, we found that some M-tropic Env proteins, as the gp120 subunit, possess an enhanced affinity for CD4 compared with their T-tropic pair, indicating that the evolution of macrophage tropism can be reflected both in the closed Env trimer conformation on the virion surface and, in some cases, also in the open confirmation of gp120 Env. Collectively, these studies reveal differences in the stoichiometry of interaction of T-tropic and M-tropic viruses with CD4 and start to identify the basis of binding differences at the biochemical level. IMPORTANCE Human immunodeficiency virus type 1 normally targets CD4+ T cells for viral replication. When T cells are limiting, the virus can evolve to infect myeloid cells. The evolutionary step involves a change from requiring a high surface density of CD4 for entry to being able to infect cells with a low density of CD4, as is found on myeloid lineage cells such as macrophage and microglia. Viruses able to infect macrophages efficiently are most often found in the CNS late in the disease course, and such viruses may contribute to neurocognitive impairment. Here, we examine the CD4 binding properties of the viral Env protein to explore these two different entry phenotypes.
Collapse
Affiliation(s)
- Xavier Bonner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amelia McCue
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan Nicely
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Karin Leiderman
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
7
|
Joseph SB, Abrahams MR, Moeser M, Tyers L, Archin NM, Council OD, Sondgeroth A, Spielvogel E, Emery A, Zhou S, Doolabh D, Ismail SD, Karim SA, Margolis DM, Pond SK, Garrett N, Swanstrom R, Williamson C. The timing of HIV-1 infection of cells that persist on therapy is not strongly influenced by replication competency or cellular tropism of the provirus. PLoS Pathog 2024; 20:e1011974. [PMID: 38422171 DOI: 10.1371/journal.ppat.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/12/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3' half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nancie M Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olivia D Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D Ismail
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| |
Collapse
|
8
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
9
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Comorbid disease in children and adolescents with perinatal HIV infection: A pilot study. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. With the increased use of combination antiretroviral therapy, the mortality of people living with HIV has decreased significantly, which has led to an increase of comorbidity and secondary HIV-related pathology in both adults and also in children and adolescents living with HIV infection. The incidence of children and adolescents with HIV infection and those in the general population varies significantly.The aim. To assess the frequency and range of chronic comorbidities in children and adolescents with perinatal HIV infection Methods. We carried out an observational study. Data on the incidence of 161 children with perinatal HIV infection registered in the Irkutsk Regional AIDS Center were copied.Results. Overall incidence of tuberculosis (18633.5 per 100 000 children), diseases of the digestive system (24844.7 per 100 000 children), diseases of the eye and adnexa (28571.4 per 100 000 children), diseases of the nervous system (18012.4 per 100 000 children), mental and behavioral disorders (13,664.6 per 100 000 children) in children with perinatal HIV infection is the higher than in children of comparable age. The overall incidence values of the endocrine system diseases, eating and metabolic disorders, diseases of the ear and mastoid process, diseases of the circulatory system, diseases of the genitourinary system, as well as congenital disorders and chromosomal disorders in children and adolescents with and without perinatal HIV infection are comparable.Conclusion. The prevalence of diseases of the circulatory, respiratory and genitourinary systems in children with perinatal HIV infection is comparable to that in the corresponding population. Prevalence of tuberculosis, anemia, diseases of the gastrointestinal tract, diseases of the eye and adnexa, diseases of the nervous system, mental and behavioral disorders is higher compared to children not exposed to HIV.
Collapse
|
12
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
13
|
AbdelMassih A, Sedky A, Shalaby A, Shalaby AF, Yasser A, Mohyeldin A, Amin B, Saleheen B, Osman D, Samuel E, Abdelfatah E, Albustami E, ElGhamry F, Khaled H, Amr H, Gaber H, Makhlouf I, Abdeldayem J, El-Beialy JW, Milad K, El Sharkawi L, Abosenna L, Safi MG, AbdelKareem M, Gaber M, Elkady M, Ihab M, AbdelRaouf N, Khaled R, Shalata R, Mahgoub R, Jamal S, El Hawary SED, ElRashidy S, El Shorbagy S, Gerges T, Kassem Y, Magdy Y, Omar Y, Shokry Y, Kamel A, Hozaien R, El-Husseiny N, El Shershaby M. From HIV to COVID-19, Molecular mechanisms of pathogens' trade-off and persistence in the community, potential targets for new drug development. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:194. [PMID: 35818410 PMCID: PMC9258762 DOI: 10.1186/s42269-022-00879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND On the staggering emergence of the Omicron variant, numerous questions arose about the evolution of virulence and transmissibility in microbes. MAIN BODY OF THE ABSTRACT The trade-off hypothesis has long speculated the exchange of virulence for the sake of superior transmissibility in a wide array of pathogens. While this certainly applies to the case of the Omicron variant, along with influenza virus, various reports have been allocated for an array of pathogens such as human immunodeficiency virus (HIV), malaria, hepatitis B virus (HBV) and tuberculosis (TB). The latter abide to another form of trade-off, the invasion-persistence trade-off. In this study, we aim to explore the molecular mechanisms and mutations of different obligate intracellular pathogens that attenuated their more morbid characters, virulence in acute infections and invasion in chronic infections. SHORT CONCLUSION Recognizing the mutations that attenuate the most morbid characters of pathogens such as virulence or persistence can help in tailoring new therapies for such pathogens. Targeting macrophage tropism of HIV by carbohydrate-binding agents, or targeting the TMPRSS2 receptors to prevent pulmonary infiltrates of COVID-19 is an example of how important is to recognize such genetic mechanisms.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Department, Pediatric Cardiology Unit, Faculty of Medicine, Cairo University Children Hospital, Cairo University, Kasr Al Ainy Street, Cairo, 12411 Egypt
| | - Abrar Sedky
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Shalaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - AlAmira-Fawzia Shalaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Yasser
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Mohyeldin
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Saleheen
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Osman
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Elaria Samuel
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Emmy Abdelfatah
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eveen Albustami
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Farida ElGhamry
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Habiba Khaled
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hana Amr
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanya Gaber
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ismail Makhlouf
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Janna Abdeldayem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Karim Milad
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila El Sharkawi
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lina Abosenna
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Madonna G. Safi
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam AbdelKareem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Gaber
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mirna Elkady
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Ihab
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nora AbdelRaouf
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rawan Khaled
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reem Shalata
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rudayna Mahgoub
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sarah Jamal
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Seif El-Din El Hawary
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shady ElRashidy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherouk El Shorbagy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tony Gerges
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yara Kassem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmeen Magdy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmin Omar
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmine Shokry
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Kamel
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rafeef Hozaien
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Cairo, Egypt
- Pixagon Graphic Design Agency, Cairo, Egypt
| | - Meryam El Shershaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Han M, Cantaloube-Ferrieu V, Xie M, Armani-Tourret M, Woottum M, Pagès JC, Colin P, Lagane B, Benichou S. HIV-1 cell-to-cell spread overcomes the virus entry block of non-macrophage-tropic strains in macrophages. PLoS Pathog 2022; 18:e1010335. [PMID: 35622876 PMCID: PMC9182568 DOI: 10.1371/journal.ppat.1010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | | | - Maorong Xie
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | | | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | - Jean-Christophe Pagès
- Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Philippe Colin
- Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
- * E-mail: (BL); (SB)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
- * E-mail: (BL); (SB)
| |
Collapse
|
15
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Abstract
Human immunodeficiency virus (HIV) remodels the cell surface of infected cells to facilitate viral dissemination and promote immune evasion. The membrane-associated viral protein U (Vpu) accessory protein encoded by HIV-1 plays a key role in this process by altering cell surface levels of multiple host proteins. Using an unbiased quantitative plasma membrane profiling approach, we previously identified CD47 as a putative host target downregulated by Vpu. CD47 is a ubiquitously expressed cell surface protein that interacts with the myeloid cell inhibitory receptor signal regulatory protein-alpha (SIRPα) to deliver a "don't-eat-me" signal, thus protecting cells from phagocytosis. In this study, we investigate whether CD47 modulation by HIV-1 Vpu might promote the susceptibility of macrophages to viral infection via phagocytosis of infected CD4+ T cells. Indeed, we find that Vpu downregulates CD47 expression on infected CD4+ T cells, leading to enhanced capture and phagocytosis by macrophages. We further provide evidence that this Vpu-dependent process allows a C-C chemokine receptor type 5 (CCR5)-tropic transmitted/founder (T/F) virus, which otherwise poorly infects macrophages in its cell-free form, to efficiently infect macrophages. Importantly, we show that HIV-1-infected cells expressing a Vpu-resistant CD47 mutant are less prone to infecting macrophages through phagocytosis. Mechanistically, Vpu forms a physical complex with CD47 through its transmembrane domain and targets the latter for lysosomal degradation. These results reveal a novel role of Vpu in modulating macrophage infection, which has important implications for HIV-1 transmission in early stages of infection and the establishment of viral reservoir. IMPORTANCE Macrophages play critical roles in human immunodeficiency virus (HIV) transmission, viral spread early in infection, and as a reservoir of virus. Selective capture and engulfment of HIV-1-infected T cells was shown to drive efficient macrophage infection, suggesting that this mechanism represents an important mode of infection notably for weakly macrophage-tropic T/F viruses. In this study, we provide insight into the signals that regulate this process. We show that the HIV-1 accessory protein viral protein U (Vpu) downregulates cell surface levels of CD47, a host protein that interacts with the inhibitory receptor signal regulatory protein-alpha (SIRPα), to deliver a "don't-eat-me" signal to macrophages. This allows for enhanced capture and phagocytosis of infected T cells by macrophages, ultimately leading to their productive infection even with transmitted/founder (T/F) virus. These findings provide new insights into the mechanisms governing the intercellular transmission of HIV-1 to macrophages with implications for the establishment of the macrophage reservoir and early HIV-1 dissemination in vivo.
Collapse
|
17
|
Schiff AE, Linder AH, Luhembo SN, Banning S, Deymier MJ, Diefenbach TJ, Dickey AK, Tsibris AM, Balazs AB, Cho JL, Medoff BD, Walzl G, Wilkinson RJ, Burgers WA, Corleis B, Kwon DS. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci Rep 2021; 11:3890. [PMID: 33594125 PMCID: PMC7886866 DOI: 10.1038/s41598-021-82066-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alveolar macrophages (AMs) are critical for defense against airborne pathogens and AM dysfunction is thought to contribute to the increased burden of pulmonary infections observed in individuals living with HIV-1 (HIV). While HIV nucleic acids have been detected in AMs early in infection, circulating HIV during acute and chronic infection is usually CCR5 T cell-tropic (T-tropic) and enters macrophages inefficiently in vitro. The mechanism by which T-tropic viruses infect AMs remains unknown. We collected AMs by bronchoscopy performed in HIV-infected, antiretroviral therapy (ART)-naive and uninfected subjects. We found that viral constructs made with primary HIV envelope sequences isolated from both AMs and plasma were T-tropic and inefficiently infected macrophages. However, these isolates productively infected macrophages when co-cultured with HIV-infected CD4+ T cells. In addition, we provide evidence that T-tropic HIV is transmitted from infected CD4+ T cells to the AM cytosol. We conclude that AM-derived HIV isolates are T-tropic and can enter macrophages through contact with an infected CD4+ T cell, which results in productive infection of AMs. CD4+ T cell-dependent entry of HIV into AMs helps explain the presence of HIV in AMs despite inefficient cell-free infection, and may contribute to AM dysfunction in people living with HIV.
Collapse
Affiliation(s)
- Abigail E Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Shillah N Luhembo
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Stephanie Banning
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin J Deymier
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Thomas J Diefenbach
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Athe M Tsibris
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro B Balazs
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Josalyn L Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gerhard Walzl
- DST-NRF Center of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Disease, Imperial College London, London, W12 ONN, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 AT, UK
| | - Wendy A Burgers
- Wellcome Center for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, Republic of South Africa
| | - Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA.
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Isle of Riems, Germany.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Macrophage Tropism in Pathogenic HIV-1 and SIV Infections. Viruses 2020; 12:v12101077. [PMID: 32992787 PMCID: PMC7601331 DOI: 10.3390/v12101077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023] Open
Abstract
Most myeloid lineage cells express the receptor and coreceptors that make them susceptible to infection by primate lentiviruses (SIVs and HIVs). However, macrophages are the only myeloid lineage cell commonly infected by SIVs and/or HIVs. The frequency of infected macrophages varies greatly across specific host and virus combinations as well as disease states, with infection rates being greatest in pathogenic SIV infections of non-natural hosts (i.e., Asian nonhuman primates (Asian NHPs)) and late in untreated HIV-1 infection. In contrast, macrophages from natural SIV hosts (i.e., African NHPs) are largely resistant to infection due to entry and/or post-entry restriction mechanisms. These highly variable rates of macrophage infection may stem from differences in the host immune environment, entry and post-entry restriction mechanisms, the ability of a virus to adapt to efficiently infect macrophages, and the pleiotropic effects of macrophage-tropism including the ability to infect cells lacking CD4 and increased neutralization sensitivity. Questions remain about the relationship between rates of macrophage infection and viral pathogenesis, with some evidence suggesting that elevated levels of macrophage infection may contribute to greater pathogenesis in non-natural SIV hosts. Alternatively, extensive infection of macrophages may only emerge in the context of high viral loads and immunodeficiency, making it a symptom of highly pathogenic infections, not a primary driver of pathogenesis.
Collapse
|
19
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK, Gisslén M, Spudich S, Menezes P, Robertson K, Archin N, Kashuba A, Eron JJ, Price RW, Swanstrom R. Human Immunodeficiency Virus Type 1 RNA Detected in the Central Nervous System (CNS) After Years of Suppressive Antiretroviral Therapy Can Originate from a Replicating CNS Reservoir or Clonally Expanded Cells. Clin Infect Dis 2020; 69:1345-1352. [PMID: 30561541 DOI: 10.1093/cid/ciy1066] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) populations are detected in cerebrospinal fluid (CSF) of some people on suppressive antiretroviral therapy (ART). Detailed analysis of these populations may reveal whether they are produced by central nervous system (CNS) reservoirs. METHODS We performed a study of 101 asymptomatic participants on stable ART. HIV-1 RNA concentrations were cross-sectionally measured in CSF and plasma. In participants with CSF HIV-1 RNA concentrations sufficient for analysis, viral populations were genetically and phenotypically characterized over multiple time points. RESULTS For 6% of participants (6 of 101), the concentration of HIV-1 RNA in their CSF was ≥0.5 log copies/mL above that of plasma (ie, CSF escape). We generated viral envelope sequences from CSF of 3 participants. One had a persistent CSF escape population that was macrophage-tropic, partially drug resistant, genetically diverse, and closely related to a minor macrophage-tropic lineage present in the blood prior to viral suppression and enriched for after ART. Two participants (1 suppressed and 1 not) had transient CSF escape populations that were R5 T cell-tropic with little genetic diversity. CONCLUSIONS Extensive analysis of viral populations in 1 participant revealed that CSF escape was from a persistently replicating population, likely in macrophages/microglia, present in the CNS over 3 years of ART. CSF escape in 2 other participants was likely produced by trafficking and transient expansion of infected T cells in the CNS. Our results show that CNS reservoirs can persist during ART and that CSF escape is not exclusively produced by replicating CNS reservoirs.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Maryland
| | - Laura P Kincer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Maryland
| | - Natalie M Bowman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Chris Evans
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Michael J Vinikoor
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Christopher K Lippincott
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Prema Menezes
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland.,University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco
| | - Kevin Robertson
- Department of Neurology, University of North Carolina at Chapel Hill, San Francisco
| | - Nancie Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland
| | - Angela Kashuba
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, San Francisco
| | - Joseph J Eron
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Maryland.,University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco
| | - Richard W Price
- Department of Neurology, University of California, San Francisco
| | - Ronald Swanstrom
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, San Francisco.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| |
Collapse
|
21
|
Guvenc F, Kaul R, Gray-Owen SD. Intimate Relations: Molecular and Immunologic Interactions Between Neisseria gonorrhoeae and HIV-1. Front Microbiol 2020; 11:1299. [PMID: 32582133 PMCID: PMC7284112 DOI: 10.3389/fmicb.2020.01299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
While the global incidence of human immunodeficiency virus (HIV-1) remains well above UNAIDS targets, sexual transmission HIV is surprisingly inefficient. A variety of host, viral and environmental factors can either increase HIV-1 shedding in the infected partner and/or increase mucosal susceptibility of the HIV-1 uninfected partner. Clinical and epidemiological studies have clearly established that Neisseria gonorrhoeae substantially enhances HIV-1 transmission, despite it not being an ulcerative infection. This review will consider findings from molecular, immunologic and clinical studies that have focused on each of these two human-restricted pathogens, in order to develop an integrative model that describes how gonococci can both increase mucosal shedding of HIV-1 from a co-infected person and facilitate virus establishment in a susceptible host.
Collapse
Affiliation(s)
- Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Adewumi OM, Dukhovlinova E, Shehu NY, Zhou S, Council OD, Akanbi MO, Taiwo B, Ogunniyi A, Robertson K, Kanyama C, Hosseinipour MC, Swanstrom R. HIV-1 Central Nervous System Compartmentalization and Cytokine Interplay in Non-Subtype B HIV-1 Infections in Nigeria and Malawi. AIDS Res Hum Retroviruses 2020; 36:490-500. [PMID: 31914800 DOI: 10.1089/aid.2019.0245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 compartmentalization in the central nervous system (CNS) and its contribution to neurological disease have been well documented. Previous studies were conducted among people infected with subtypes B or C where CNS compartmentalization has been observed when comparing viral sequences in the blood to virus in cerebrospinal fluid (CSF). However, little is known about CNS compartmentalization in other HIV-1 subtypes. Using a deep sequencing approach with Primer ID, we conducted a cross-sectional study among Nigerian and Malawian HIV-1 cohorts with or without fungal Cryptococcus infection diagnosed as cryptococcal meningitis (CM) to determine the extent of CSF/CNS compartmentalization with CM. Paired plasma and CSF samples from 45 participants were also analyzed for cytokine/chemokine levels. Viral populations comparing virus in the blood and the CSF ranged from compartmentalized to equilibrated, including minor or partial compartmentalization or clonal amplification of a single viral sequence. The frequency of compartmentalized viral populations in the blood and CSF was similar between the CM- and CM+ participants. We confirmed the potential to see compartmentalization with subtype C infection and have also documented CNS compartmentalization of an HIV-1 subtype G infection. Cytokine profiles indicated a proinflammatory environment, especially within the CSF/CNS. However, sCD163 was suppressed in the CSF in the presence of CM, perhaps due to elevated levels of IL-4, which were also a feature of the cytokine profile, showing a distinct cytokine profile with CM.
Collapse
Affiliation(s)
- Olubusuyi Moses Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Infectious Disease Institute, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elena Dukhovlinova
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan Y. Shehu
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Olivia D. Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maxwell O. Akanbi
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
- Health Sciences Integrated PhD Program, Center for Education in Health Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Babafemi Taiwo
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kevin Robertson
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cecilia Kanyama
- UNC Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Mina C. Hosseinipour
- UNC Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Ventura JD, Beloor J, Allen E, Zhang T, Haugh KA, Uchil PD, Ochsenbauer C, Kieffer C, Kumar P, Hope TJ, Mothes W. Longitudinal bioluminescent imaging of HIV-1 infection during antiretroviral therapy and treatment interruption in humanized mice. PLoS Pathog 2019; 15:e1008161. [PMID: 31805155 PMCID: PMC6917343 DOI: 10.1371/journal.ppat.1008161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
Non-invasive bioluminescent imaging (NIBLI) of HIV-1 infection dynamics allows for real-time monitoring of viral spread and the localization of infected cell populations in living animals. In this report, we describe full-length replication-competent GFP and Nanoluciferase (Nluc) expressing HIV-1 reporter viruses from two clinical transmitted / founder (T/F) strains: TRJO.c and Q23.BG505. By infecting humanized mice with these HIV-1 T/F reporter viruses, we were able to directly monitor longitudinal viral spread at whole-animal resolution via NIBLI at a sensitivity of as few as 30-50 infected cells. Bioluminescent signal strongly correlated with HIV-1 infection and responded proportionally to virus suppression in vivo in animals treated daily with a combination antiretroviral therapy (cART) regimen. Longitudinal NIBLI following cART withdrawal visualized tissue-sites that harbored virus during infection recrudescence. Notably, we observed rebounding infection in the same lymphoid tissues where infection was first observed prior to ART treatment. Our work demonstrates the utility of our system for studying in vivo viral infection dynamics and identifying infected tissue regions for subsequent analyses.
Collapse
Affiliation(s)
- John D. Ventura
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jagadish Beloor
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Edward Allen
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Tongyu Zhang
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Kelsey A. Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States of America
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Collin Kieffer
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Priti Kumar
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Thomas J. Hope
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
25
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
HIV-1 Envelope Glycoprotein Amino Acids Signatures Associated with Clade B Transmitted/Founder and Recent Viruses. Viruses 2019; 11:v11111012. [PMID: 31683782 PMCID: PMC6893788 DOI: 10.3390/v11111012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/29/2019] [Indexed: 12/01/2022] Open
Abstract
Background: HIV-1 transmitted/founder viruses (TF) are selected during the acute phase of infection from a multitude of virions present during transmission. They possess the capacity to establish infection and viral dissemination in a new host. Deciphering the discrete genetic determinant of infectivity in their envelope may provide clues for vaccine design. Methods: One hundred twenty-six clade B HIV-1 consensus envelope sequences from untreated acute and early infected individuals were compared to 105 sequences obtained from chronically infected individuals using next generation sequencing and molecular analyses. Results: We identified an envelope amino acid signature associated with TF viruses. They are more likely to have an isoleucine (I) in position 841 instead of an arginine (R). This mutation of R to I (R841I) in the gp41 cytoplasmic tail (gp41CT), specifically in lentivirus lytic peptides segment 1 (LLP-1), is significantly enriched compared to chronic viruses (OR = 0.2, 95% CI (0.09, 0.44), p = 0.00001). Conversely, a mutation of lysine (K) to isoleucine (I) located in position six (K6I) of the envelope signal peptide was selected by chronic viruses and compared to TF (OR = 3.26, 95% CI (1.76–6.02), p = 0.0001). Conclusions: The highly conserved gp41 CT_ LLP-1 domain plays a major role in virus replication in mediating intracellular traffic and Env incorporation into virions in interacting with encoded matrix protein. The presence of an isoleucine in gp41 in the TF viruses’ envelope may sustain its role in the successful establishment of infection during the acute stage.
Collapse
|
27
|
Balcom EF, Roda WC, Cohen EA, Li MY, Power C. HIV-1 persistence in the central nervous system: viral and host determinants during antiretroviral therapy. Curr Opin Virol 2019; 38:54-62. [PMID: 31390580 DOI: 10.1016/j.coviro.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Despite remarkable therapeutic advances in the past two decades, the elimination of human immunodeficiency virus type 1 (HIV-1) from latent reservoirs constitutes a major barrier to eradication and preventing neurological disease associated with HIV/AIDS. Invasion of the central nervous system (CNS) by HIV-1 occurs early in infection, leading to viral infection and productive persistence in brain macrophage-like cells (BMCs) including resident microglia and infiltrating macrophages. HIV-1 persistence in the brain and chronic neuroinflammation occur despite effective treatment with antiretroviral therapy (ART). This review examines the evidence from clinical studies, in vivo and in vitro models for HIV-1 CNS persistence, as well as therapeutic considerations in targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- E F Balcom
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - W C Roda
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - E A Cohen
- Departments of Microbiology and Immunology, University of Montreal, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - M Y Li
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - C Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
30
|
Council OD, Joseph SB. Evolution of Host Target Cell Specificity During HIV-1 Infection. Curr HIV Res 2019; 16:13-20. [PMID: 29268687 DOI: 10.2174/1570162x16666171222105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many details of HIV-1 molecular virology have been translated into lifesaving antiviral drugs. Yet, we have an incomplete understanding of the cells in which HIV-1 replicates in untreated individuals and persists in during antiretroviral therapy. METHODS In this review we discuss how viral entry phenotypes have been characterized and the insights they have revealed about the target cells supporting HIV-1 replication. In addition, we will examine whether some HIV-1 variants have the ability to enter cells lacking CD4 (such as astrocytes) and the role that trans-infection plays in HIV-1 replication. RESULTS HIV-1 entry into a target cell is determined by whether the viral receptor (CD4) and the coreceptor (CCR5 or CXCR4) are expressed on that cell. Sustained HIV-1 replication in a cell type can produce viral lineages that are tuned to the CD4 density and coreceptor expressed on those cells; a fact that allows us to use Env protein entry phenotypes to infer information about the cells in which a viral lineage has been replicating and adapting. CONCLUSION We now recognize that HIV-1 variants can be divided into three classes representing the primary target cells of HIV-1; R5 T cell-tropic variants that are adapted to entering memory CD4+ T cells, X4 T cell-tropic variants that are adapted to entering naïve CD4+ T cells and Mtropic variants that are adapted to entering macrophages and possibly other cells that express low levels of CD4. While much progress has been made, the relative contribution that infection of different cell subsets makes to viral pathogenesis and persistence is still being unraveled.
Collapse
Affiliation(s)
- Olivia D Council
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Ances BM, Letendre SL. CROI 2019: neurologic complications of HIV disease. TOPICS IN ANTIVIRAL MEDICINE 2019; 27:26-33. [PMID: 31137000 PMCID: PMC6550359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Investigators reported many new neuroHIV research findings at the 2019 Conference on Retroviruses and Opportunistic Infections (CROI). These findings included confirmation that HIV-associated neurocognitive disorder (HAND) remains common with an increasingly recognized role for comorbidities (eg, obesity) and neurodegenerative conditions (eg, Alzheimer's disease), especially as persons living with HIV (PLWH) advance into their seventh decade of life and beyond. HAND is increasingly recognized as a heterogeneous disorder that differs between individuals (eg, by sex) in the trajectory of specific neurocognitive abilities (eg, executive functioning). A more recent focus at this year's conference was toxicity of combination antiretroviral therapy: neurocognitive performance and neuroimaging data from several studies were presented but did not consistently support that integrase strand transfer inhibitors are associated with worse neurologic outcomes. Neuroimaging studies found that white matter changes reflect a combination of the effects of HIV and comorbidities (including cerebrovascular small vessel disease) and best correlate with blood markers of inflammation. The pathogenesis of HIV in the central nervous system (CNS) was the focus of a plenary lecture and numerous presentations on HIV compartmentalization in the CNS and cerebrospinal fluid viral escape. Novel findings were also presented on associations between HIV-associated neurologic complications and glycomics, neuron-derived exosomes, and DNA methylation in monocytes. This summary will review findings from CROI and identify new research and clinical opportunities.
Collapse
Affiliation(s)
- Beau M. Ances
- Daniel J Brennan Professor In Neurology at Washington University School of Medicine In St. Louis In St. Louis, Missouri
| | - Scott L. Letendre
- Send correspondence to Scott L. Letendre, MD, Professor of Medicine and Psychiatry, University of California San Diego, 220 Dickinson Street, Suite A, San Diego, CA 92103, or
| |
Collapse
|
32
|
Doi N, Yokoyama M, Koma T, Kotani O, Sato H, Adachi A, Nomaguchi M. Concomitant Enhancement of HIV-1 Replication Potential and Neutralization-Resistance in Concert With Three Adaptive Mutations in Env V1/C2/C4 Domains. Front Microbiol 2019; 10:2. [PMID: 30705669 PMCID: PMC6344430 DOI: 10.3389/fmicb.2019.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 Env protein functions in the entry process and is the target of neutralizing antibodies. Its intrinsically high mutation rate is certainly one of driving forces for persistence/survival in hosts. For optimal replication in various environments, HIV-1 Env must continue to adapt and evolve through balancing sometimes incompatible function, replication fitness, and neutralization sensitivity. We have previously reported that adapted viruses emerge in repeated and prolonged cultures of cells originally infected with a macaque-tropic HIV-1NL4-3 derivative. We have also shown that the adapted viral clones exhibit enhanced growth potentials both in macaque PBMCs and individuals, and that three single-amino acid mutations are present in their Env V1/C2/C4 domains. In this study, we investigated how lab-adapted and highly neutralization-sensitive HIV-1NL4-3 adapts its Env to macaque cells with strongly replication-restrictive nature for HIV-1. While a single and two mutations gave a significantly enhanced replication phenotype in a macaque cell line and also in human cell lines that stably express either human CD4 or macaque CD4, the virus simultaneously carrying the three adaptive mutations always grew best. Entry kinetics of parental and triple mutant viruses were similar, whereas the mutant was significantly more readily inhibited for its infectivity by soluble CD4 than parental virus. Furthermore, molecular dynamics simulations of the Env ectodomain (gp120 and gp41 ectodomain) bound with CD4 suggest that the three mutations increase binding affinity of Env for CD4 in solution. Thus, it is quite likely that the affinity for CD4 of the mutant Env is enhanced relative to the parental Env. Neutralization sensitivity of the triple mutant to CD4 binding site antibodies was not significantly different from that of parental virus, whereas the mutant exhibited a considerably higher resistance against neutralization by a CD4-induced epitope antibody and Env trimer-targeting V1/V2 antibodies. These results suggest that the three adaptive mutations cooperatively promote viral growth via increased CD4 affinity, and also that they enhance viral resistance to several neutralization antibodies by changing the Env-trimer conformation. In total, we have verified here an HIV-1 adaptation pathway in host cells and individuals involving Env derived from a lab-adapted and highly neutralization-sensitive clone.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Osamu Kotani
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|
33
|
Colin P, Zhou Z, Staropoli I, Garcia-Perez J, Gasser R, Armani-Tourret M, Benureau Y, Gonzalez N, Jin J, Connell BJ, Raymond S, Delobel P, Izopet J, Lortat-Jacob H, Alcami J, Arenzana-Seisdedos F, Brelot A, Lagane B. CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathog 2018; 14:e1007432. [PMID: 30521629 PMCID: PMC6283471 DOI: 10.1371/journal.ppat.1007432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.
Collapse
Affiliation(s)
- Philippe Colin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, France
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | | | - Romain Gasser
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Marie Armani-Tourret
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Jin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bridgette J. Connell
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Stéphanie Raymond
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Pierre Delobel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Hugues Lortat-Jacob
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Anne Brelot
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bernard Lagane
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
34
|
HIV Cerebrospinal Fluid Escape and Neurocognitive Pathology in the Era of Combined Antiretroviral Therapy: What Lies Beneath the Tip of the Iceberg in Sub-Saharan Africa? Brain Sci 2018; 8:brainsci8100190. [PMID: 30347806 PMCID: PMC6211092 DOI: 10.3390/brainsci8100190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Neurocognitive impairment remains an important HIV-associated comorbidity despite combination antiretroviral therapy (ART). Since the advent of ART, the spectrum of HIV-associated neurocognitive disorder (HAND) has shifted from the most severe form to milder forms. Independent replication of HIV in the central nervous system despite ART, so-called cerebrospinal fluid (CSF) escape is now recognised in the context of individuals with a reconstituted immune system. This review describes the global prevalence and clinical spectrum of CSF escape, it role in the pathogenesis of HAND and current advances in the diagnosis and management. It highlights gaps in knowledge in sub-Saharan Africa where the HIV burden is greatest and discusses the implications for this region in the context of the global HIV treatment scale up.
Collapse
|
35
|
Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep 2018; 21:141-153. [PMID: 28978468 DOI: 10.1016/j.celrep.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophages are heterogeneous immune cells with distinct origins, phenotypes, functions, and tissue localization. Their susceptibility to HIV-1 is subject to variations from permissiveness to resistance, owing in part to regulatory microRNAs. Here, we used RNA sequencing (RNA-seq) to examine the expression of >400 microRNAs in productively infected and bystander cells of HIV-1-exposed macrophage cultures. Two microRNAs upregulated in bystander macrophages, miR-221 and miR-222, were identified as negative regulators of CD4 expression and CD4-mediated HIV-1 entry. Both microRNAs were enhanced by tumor necrosis factor alpha (TNF-α), an inhibitor of CD4 expression. MiR-221/miR-222 inhibitors recovered HIV-1 entry in TNF-α-treated macrophages by enhancing CD4 expression and increased HIV-1 replication and spread in macrophages by countering TNF-α-enhanced miR-221/miR-222 expression in bystander cells. In line with these findings, HIV-1-resistant intestinal myeloid cells express higher levels of miR-221 than peripheral blood monocytes. Thus, miR-221/miR-222 act as effectors of the antiviral host response activated during macrophage infection that restrict HIV-1 entry.
Collapse
|
36
|
Joseph SB, Swanstrom R. The evolution of HIV-1 entry phenotypes as a guide to changing target cells. J Leukoc Biol 2018; 103:421-431. [PMID: 29389021 DOI: 10.1002/jlb.2ri0517-200r] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022] Open
Abstract
Through a twist of fate the most common form of HIV-1, as defined by entry phenotype, was not appreciated until recently. The entry phenotype is closely linked to the target cell and thus to virus-host interactions and pathogenesis. The most abundant form of HIV-1 uses CCR5 as the coreceptor and requires a high density of CD4 for efficient entry, defining its target cell as the CD4+ memory T cell. This is the transmitted form of the virus, the form that is found in the blood, and the form that rebounds from the latent reservoir. When CD4+/CCR5+ T cells become limiting the virus evolves to use alternative target cells to support viral replication. In the CNS, the virus can evolve to use a cell that displays only a low density of CD4, while maintaining the use of CCR5 as the coreceptor. When this evolutionary variant evolves, it must be sustaining its replication in either macrophages or microglial cells, which display only a low density of CD4 relative to that on T cells. In the blood and lymphoid system, the major switch late in disease is from T cells expressing CD4 and CCR5 to T cells expressing CD4 and CXCR4, with a change in coreceptor specificity. Thus the virus responds in two different ways to different environments when its preferred target cell becomes limiting.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
van Zyl G, Bale MJ, Kearney MF. HIV evolution and diversity in ART-treated patients. Retrovirology 2018; 15:14. [PMID: 29378595 PMCID: PMC5789667 DOI: 10.1186/s12977-018-0395-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Characterizing HIV genetic diversity and evolution during antiretroviral therapy (ART) provides insights into the mechanisms that maintain the viral reservoir during ART. This review describes common methods used to obtain and analyze intra-patient HIV sequence data, the accumulation of diversity prior to ART and how it is affected by suppressive ART, the debate on viral replication and evolution in the presence of ART, HIV compartmentalization across various tissues, and mechanisms for the emergence of drug resistance. It also describes how CD4+ T cells that were likely infected with latent proviruses prior to initiating treatment can proliferate before and during ART, providing a renewable source of infected cells despite therapy. Some expanded cell clones carry intact and replication-competent proviruses with a small fraction of the clonal siblings being transcriptionally active and a source for residual viremia on ART. Such cells may also be the source for viral rebound after interrupting ART. The identical viral sequences observed for many years in both the plasma and infected cells of patients on long-term ART are likely due to the proliferation of infected cells both prior to and during treatment. Studies on HIV diversity may reveal targets that can be exploited in efforts to eradicate or control the infection without ART.
Collapse
Affiliation(s)
- Gert van Zyl
- Division of Medical Virology, Stellenbosch University and NHLS Tygerberg, Cape Town, South Africa
| | - Michael J Bale
- HIV Dynamic and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA
| | - Mary F Kearney
- HIV Dynamic and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disease is the most active topic for neuroAIDS investigations at present. Although impairment is mild in patients successfully treated with modern antiviral regimens, it remains an ongoing problem for HIV patients. It is important to update the emerging research concerning HIV-associated neurocognitive disease. RECENT FINDINGS The virus enters the brain during acute infection, with evidence for abnormal functioning that may occur early and often persists. Direct relationships with ongoing viral infection continue to be monitored, but chronic inflammation often associated with monocytes and macrophages appears to be the most likely driver of cognitive dysfunction. Appreciation for cerebrovascular disease as a significant comorbidity that is associated with cognitive deficits is increasing. Neuroimaging is actively being developed to address detection and measurement of changes in the brain. Optimal combined antiretroviral treatment therapy has vastly improved neurologic outcomes, but so far has not been demonstrated to reverse the remaining mild impairment. Inflammatory and vascular mechanisms of cerebral dysfunction may need to be addressed to achieve better outcomes. SUMMARY Ongoing research is required to improve neurological outcomes for persons living with HIV. It is likely that interventions beyond antiviral approaches will be required to control or reverse HIV-associated neurocognitive disease.
Collapse
|
39
|
Wilmshurst JM, Hammond CK, Donald K, Hoare J, Cohen K, Eley B. NeuroAIDS in children. HANDBOOK OF CLINICAL NEUROLOGY 2018; 152:99-116. [PMID: 29604987 DOI: 10.1016/b978-0-444-63849-6.00008-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) enters the central nervous system compartment within the first few weeks of systemic HIV infection and may cause a spectrum of neurologic complications. Without combination antiretroviral therapy (cART), 50-90% of all HIV-infected infants and children develop some form of neuroAIDS. Of the estimated 2.3 million children less than 15 years of age who were living in sub-Saharan Africa at the end of 2014, only 30% were receiving cART, suggesting that there is a large burden of neuroAIDS among HIV-infected children in sub-Saharan Africa. There is complex interplay between the disease process itself, the child's immune reaction to the disease, the secondary complications, the side-effects of antiretroviral drugs, and inadequate antiretroviral drug uptake into the central nervous system. In addition there is the layering effect from the multiple socioeconomic challenges for children living in low- and middle-income countries. Adolescents may manifest with a range of neurocognitive sequelae from mild neurocognitive disorder through to severe neurocognitive impairment. Neuroimaging studies on white-matter tracts have identified dysfunction, especially in the frontostriatal networks needed for executive function. Psychiatric symptoms of depression, attention deficit hyperactivity disorder, and behavioral problems are also commonly reported in this age group. Antiretroviral drugs may cause treatment-limiting neurologic and neuropsychiatric adverse reactions. The following chapter addresses the neurologic complications known to be, and suspected of being, associated with HIV infection in children and adolescents.
Collapse
Affiliation(s)
- Jo M Wilmshurst
- Department of Paediatrics, Red Cross War Memorial Children's Hospital, Cape Town, South Africa.
| | - Charles K Hammond
- Department of Paediatrics, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Kirsty Donald
- Department of Paediatrics, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Brian Eley
- Department of Infectious Diseases, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| |
Collapse
|
40
|
Lodge R, Gilmore JC, Ferreira Barbosa JA, Lombard-Vadnais F, Cohen ÉA. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells. Viruses 2017; 10:v10010013. [PMID: 29301198 PMCID: PMC5795426 DOI: 10.3390/v10010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.
Collapse
Affiliation(s)
- Robert Lodge
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Julian C. Gilmore
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Jérémy A. Ferreira Barbosa
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Félix Lombard-Vadnais
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-987-5804
| |
Collapse
|
41
|
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 2017; 8:1693. [PMID: 29259605 PMCID: PMC5723290 DOI: 10.3389/fimmu.2017.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV) has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.
Collapse
Affiliation(s)
- Kristen M. Merino
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Elizabeth S. Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington LA, United States
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| |
Collapse
|
42
|
Identification of Emerging Macrophage-Tropic HIV-1 R5 Variants in Brain Tissue of AIDS Patients without Severe Neurological Complications. J Virol 2017; 91:JVI.00755-17. [PMID: 28768859 DOI: 10.1128/jvi.00755-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
Untreated HIV-positive (HIV-1+) individuals frequently suffer from HIV-associated neurocognitive disorders (HAND), with about 30% of AIDS patients suffering severe HIV-associated dementias (HADs). Antiretroviral therapy has greatly reduced the incidence of HAND and HAD. However, there is a continuing problem of milder neurocognitive impairments in treated HIV+ patients that may be increasing with long-term therapy. In the present study, we investigated whether envelope (env) genes could be amplified from proviral DNA or RNA derived from brain tissue of 12 individuals with normal neurology or minor neurological conditions (N/MC individuals). The tropism and characteristics of the brain-derived Envs were then investigated and compared to those of Envs derived from immune tissue. We showed that (i) macrophage-tropic R5 Envs could be detected in the brain tissue of 4/12 N/MC individuals, (ii) macrophage-tropic Envs in brain tissue formed compartmentalized clusters distinct from non-macrophage-tropic (non-mac-tropic) Envs recovered from the spleen or brain, (iii) the evidence was consistent with active viral expression by macrophage-tropic variants in the brain tissue of some individuals, and (iv) Envs from immune tissue of the N/MC individuals were nearly all tightly non-mac-tropic, contrasting with previous data for neuro-AIDS patients where immune tissue Envs mediated a range of macrophage infectivities, from background levels to modest infection, with a small number of Envs from some patients mediating high macrophage infection levels. In summary, the data presented here show that compartmentalized and active macrophage-tropic HIV-1 variants are present in the brain tissue of individuals before neurological disease becomes overt or serious.IMPORTANCE The detection of highly compartmentalized macrophage-tropic R5 Envs in the brain tissue of HIV patients without serious neurological disease is consistent with their emergence from a viral population already established there, perhaps from early disease. The detection of active macrophage-tropic virus expression, and probably replication, indicates that antiretroviral drugs with optimal penetration through the blood-brain barrier should be considered even for patients without neurological disease (neuro-disease). Finally, our data are consistent with the brain forming a sanctuary site for latent virus and low-level viral replication in the absence of neuro-disease.
Collapse
|
43
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
44
|
Probing the compartmentalization of HIV-1 in the central nervous system through its neutralization properties. PLoS One 2017; 12:e0181680. [PMID: 28841647 PMCID: PMC5571919 DOI: 10.1371/journal.pone.0181680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022] Open
Abstract
Compartmentalization of HIV-1 has been observed in the cerebrospinal fluid (CSF) of patients at different clinical stages. Considering the low permeability of the blood-brain barrier, we wondered if a reduced selective pressure by neutralizing antibodies (NAb) in the central nervous system (CNS) could favor the evolution of NAb-sensitive viruses in this compartment. Single genome amplification (SGA) was used to sequence full-length HIV-1 envelope variants (453 sequences) from paired CSF and blood plasma samples in 9 subjects infected by HIV variants of various clades and suffering from diverse neurologic disorders. Dynamics of viral evolution were evaluated with a bayesian coalescent approach for individuals with longitudinal samples. Pseudotyped viruses expressing envelope glycoproteins variants representative of the quasi-species present in each compartment were generated, and their sensitivity to autologous neutralization, broadly neutralizing antibodies (bNAbs) and entry inhibitors was assessed. Significant compartmentalization of HIV populations between blood and CSF were detected in 5 out of 9 subjects. Some of the previously described genetic determinants for compartmentalization in the CNS were observed regardless of the HIV-1 clade. There was no difference of sensitivity to autologous neutralization between blood- and CSF-variants, even for subjects with compartmentalization, suggesting that selective pressure by autologous NAb is not the main driver of HIV evolution in the CNS. However, we observed major differences of sensitivity to sCD4 or to at least one bNAb targeting either the N160-V1V2 site, the N332-V3 site or the CD4bs, between blood- and CSF-variants in all cases. In particular, HIV-1 variants present in the CSF were more resistant to bNAbs than their blood counterpart in some cases. Considering the possible migration from CSF to blood, the CNS could be a reservoir of bNAb resistant viruses, an observation that should be considered for immunotherapeutic approaches.
Collapse
|
45
|
Abstract
The surface envelope protein of any virus is major determinant of the host cell that is infected and as a result a major determinant of viral pathogenesis. Retroviruses have a single surface protein named Env. It is a trimer of heterodimers and is responsible for binding to the host cell receptor and mediating fusion between the viral and host membranes. In this review we will discuss the history of the discovery of the avian leukosis virus (ALV) and human immunodeficiency virus type 1 (HIV-1) Env proteins and their receptor specificity, comparing the many differences but having some similarities. Much of the progress in these fields has relied on viral genetics and genetic polymorphisms in the host population. A special feature of HIV-1 is that its persistent infection in its human host, to the point of depleting its favorite target cells, allows the virus to evolve new entry phenotypes to expand its host range into several new cell types. This variety of entry phenotypes has led to confusion in the field leading to the major form of entry phenotype of HIV-1 being overlooked until recently. Thus an important part of this story is the description and naming of the most abundant entry form of the virus: R5 T cell-tropic HIV-1.
Collapse
|
46
|
Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, Zagordi O, Oberle C, Duenas-Decamp MJ, Clapham PR, Metzner KJ, Günthard HF, Trkola A. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog 2017; 13:e1006255. [PMID: 28264054 PMCID: PMC5354460 DOI: 10.1371/journal.ppat.1006255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.
Collapse
Affiliation(s)
- David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinna Oberle
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karin J. Metzner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB, Spearman P. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog 2017; 13:e1006181. [PMID: 28129379 PMCID: PMC5298340 DOI: 10.1371/journal.ppat.1006181] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophage, but can be reproduced through the exogenous addition of non-infectious virus-like particles or infectious virions to macrophage cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages were readily targeted by the addition of ganglioside-containing virus-like particles to the extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides from viral particles prevented particle uptake into the VCC and resulted in substantial reductions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC formation was required for efficient trans-infection of autologous T cells. Our results help to define the nature of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery, and that this compartment can readily transmit virus to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs. T lymphocytes and macrophages are the two major cell types involved in HIV replication and transmission events. When a T cell is infected, virus particles assemble and bud from the plasma membrane of the cell. In contrast, infected macrophages develop an intracellular collection of viruses termed the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we show that VCC formation does not actually require infection of the macrophage, but can be reproduced through the addition of virus-like particles or infectious virions to macrophages. HIV-1 particles were captured by the cell surface carbohydrate-binding protein Siglec-1, followed by co-migration of Siglec-1 and captured viral particles to the VCC. Depletion of Siglec-1 from the macrophage prevented VCC formation, and inhibited the ability of infected macrophages to transmit HIV to T cells. Our results help to define the origin of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Jason E. Hammonds
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Neal Beeman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lingmei Ding
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sarah Takushi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwanth C. Francis
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jaang-Jiun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections. J Virol 2016; 90:7596-606. [PMID: 27307568 DOI: 10.1128/jvi.00672-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus.
Collapse
|
49
|
Huot N, Rascle P, Garcia-Tellez T, Jacquelin B, Müller-Trutwin M. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 2016; 19:37-44. [PMID: 27447445 DOI: 10.1016/j.coviro.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
HIV-1/SIVmac infections deeply disturb innate host responses. Most studies have focused on the impact on dendritic cells and NK cells. A few but insufficient data are available on other innate immune cell types, such as neutrophils. It has been shown that innate lymphoid cells are depleted early and irreversibly during SIVmac/HIV-1 infections. Studies in natural hosts of SIV have contributed to pinpoint that early control of inflammation is crucial. In natural hosts, plasmacytoid dendritic cells, myeloid dendritic cells and NK cells are depleted during acute infection but return to normal levels by the end of acute infection. We summarize here the similarities and differences of various types of innate immune responses in natural hosts compared to pathogenic HIV/SIV mac infections.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France; Vaccine Research Institute, Créteil, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France
| | | | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
50
|
Abstract
Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.
Collapse
|