1
|
Li M, Zhao C, Shi J, Wang X, Liu Y, Zhao X, Cai G, Chu H, Wang P. Bispecific antibodies provide broad neutralization of emerging beta-coronaviruses by targeting ACE2 and viral spikes. Emerg Microbes Infect 2024; 13:2404166. [PMID: 39258934 PMCID: PMC11421165 DOI: 10.1080/22221751.2024.2404166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Human coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 have recurrently emerged as significant pathogens, causing severe respiratory illnesses and presenting challenges to monoclonal antibody therapeutics due to their rapid evolution, particularly the diverse variants of SARS-CoV-2. In this study, we utilized "Knob-into-Hole" and "IgG-scFv" technologies to engineer bispecific antibodies (bsAbs) that target both the viral receptor and spike protein, enhancing their neutralization breadth and potency. Our bsAbs, combining anti-SARS-CoV-2 or anti-MERS-CoV antibodies with an anti-ACE2 antibody, demonstrated effective neutralization across a range of SARS-CoV-2 variants, SARS-CoV and MERS-CoV in both pseudovirus and authentic virus assays. Notably, the "IgG-scFv" bsAbs format exhibited superior binding and neutralization capabilities compared to the "Knob-into-Hole" configurations. The most effective of these, "IgG-scFv" H11B11_m336, displayed exceptional neutralization potency against a panel of 24 pseudotyped Beta-Coronaviruses, with IC50 values ranging from 0.001-0.183 μg/mL. Overall, our findings underscore the potential of bsAbs as an effective strategy to meet the immediate challenges posed by existing and emerging pathogens, thereby enhancing global pandemic preparedness.
Collapse
Affiliation(s)
- Minghui Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Joseph JO, Ylade M, Daag JV, Aogo R, Crisostomo MV, Mpingabo P, Premkumar L, Deen J, Katzelnick LC. High transmission of endemic human coronaviruses before and during the COVID-19 pandemic in adolescents in Cebu, Philippines. BMC Infect Dis 2024; 24:1042. [PMID: 39333882 PMCID: PMC11430261 DOI: 10.1186/s12879-024-09672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND SARS-CoV-2, the causative agent of COVID-19, is a betacoronavirus belonging to the same genus as endemic human coronaviruses (hCoVs) OC43 and HKU1 and is distinct from alpha hCoVs 229E and NL63. In a study of adolescents in the Philippines, we evaluated seroprevalence to the hCoVs, whether pre-pandemic hCoV immunity modulated subsequent risk of SARS-CoV-2 infection, and if SARS-CoV-2 infection affected the transmission of the hCoVs. METHODS From 499 individuals screened in 2021 for SARS-CoV-2 receptor binding domain (RBD) antibodies by enzyme-linked immunosorbent assay (ELISA), we randomly selected 59 SARS-CoV-2 negative and 61 positive individuals for further serological evaluation. We measured RBD and spike antibodies to the four hCoVs and SARS-CoV-2 by ELISA in samples from the same participants collected pre-pandemic (2018-2019) and mid-pandemic (2021), before COVID-19 vaccination. RESULTS We observed over 72% seropositivity to the four hCoVs pre-pandemic. Binding antibodies increased with age to 229E and OC43, suggesting endemic circulation, while antibody levels was flat across ages for HKU1 and NL63. During the COVID-19 pandemic, antibodies increased significantly to the RBDs of OC43, NL63, and 229E and spikes of all four hCoVs in both SARS-CoV-2 negative and positive adolescents. Those aged 12-15 years old in 2021 had higher antibodies to RBD and spike of OC43, NL63, and 229E than adolescents the same age in 2019, further demonstrating intense transmission of the hCoVs during the pandemic. CONCLUSIONS We observe a limited impact of the COVID-19 pandemic on endemic hCoV transmission. This study provides insight into co-circulation of hCoVs and SARS-CoV-2.
Collapse
Affiliation(s)
- Janet O Joseph
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Ylade
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Jedas Veronica Daag
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Rosemary Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Vinna Crisostomo
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Patrick Mpingabo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Firdaus ARR, Baroroh U, Ramdani Tohari T, Hardianto A, Subroto T, Yusuf M. Computational design of scFv anti-receptor binding domain of SARS-CoV-2 spike protein based on antibody S230 anti-SARS-CoV-1. J Biomol Struct Dyn 2024; 42:22-33. [PMID: 37880854 DOI: 10.1080/07391102.2023.2265485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 10/27/2023]
Abstract
Developing therapeutics such as neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is essential to halt the Covid-19 infection. However, antibody production is expensive and relatively inaccessible to many low-income countries. Therefore, a more efficient and smaller antibody fragment, such as a single-chain variable fragment (scFv), derived from a known neutralizing antibody structure, is of interest due to the lower cost of recombinant protein production and the ability to tailor scFvs against circulating viruses. In this study, we used computational design to create an scFv based on the structure of a known neutralizing antibody, S230, for SARS-CoV-1. By analyzing the interaction of S230 with the RBD of both SARS-CoV-1 and SARS-CoV-2, five mutations were introduced to improve the binding of the scFv to the RBD of SARS-CoV-2. These mutations were Ser32Thr, Trp99Val, Asn57Val, Lys65Glu, and Tyr106Ile. Molecular dynamics simulations were used to evaluate the stability and affinity of the designed scFv. Our results showed that the designed scFv improved binding to the RBD of SARS-CoV-2 compared to the original S230, as indicated by principal component analysis, distance analysis, and MM/GBSA interaction energy. Furthermore, a positive result in a spot test lateral flow assay of the expressed scFv against the RBD indicated that the mutations did not alter the protein's structure. The designed scFv showed a negative result when tested against human serum albumin as a negative control, indicating reasonable specificity. We hope that this study will be useful in designing a specific and low-cost therapeutic agent, particularly during early outbreaks when information on neutralizing antibodies is limited.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ade R R Firdaus
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy, Sekolah Tinggi Farmasi Indonesia, Bandung, Indonesia
| | - Taufik Ramdani Tohari
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari Hardianto
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Toto Subroto
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
4
|
Jamal GA, Jahangirian E, Tarrahimofrad H. Expression, Purification, and Evaluation of Antibody Responses and Antibody-Immunogen Complex Simulation of a Designed Multi-Epitope Vaccine against SARS-COV-2. Protein Pept Lett 2024; 31:619-638. [PMID: 39162285 DOI: 10.2174/0109298665320319240809095727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The spread of the COVID-19 disease is the result of an infection caused by the SARS-CoV2 virus. Four crucial proteins, spike (S), membrane (M), nucleocapsid (N), and envelope (E) in coronaviruses have been considered to a large extent. OBJECTIVE This research aimed to express the recombinant protein of a multiepitope immunogen construct and evaluate the immunogenicity of the multiepitope vaccine that was previously designed as a candidate immunogenic against SARS-Cov-2. MATERIALS AND METHODS Plasmid pET26b was transferred to the expression host E. coli BL21 (DE3) and the recombinant protein was expressed with IPTG induction. The recombinant protein was purified by Ni-NTA column affinity chromatography, and western blotting was used to confirm it. Finally, mice were immunized with recombinant protein in three doses. Then, the interaction of the 3D structure of the vaccine with the human neutralizing antibodies3D structures (7BWJ and 7K8N) antibody was evaluated by docking and molecular dynamics simulation. RESULTS The optimized gene had a codon compatibility index of 0.96. The expression of the recombinant protein of the SARS-Cov-2 vaccine in an E. coli host led to the production of the recombinant protein with a weight of about 70 kDa with a concentration of 0.7 mg/ml. Immunization of mice with recombinant protein of SARS-Cov-2 vaccine-induced IgG serum antibody response. Statistical analysis showed that the antibody titer in comparison with the control sample has a significant difference, and the antibody titer was acceptable up to 1/256000 dilution. The simulation of vaccine binding with human antibodies by molecular dynamics showed that Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration, and H-bond as well as van der Waals energies and electrostatic of Molecular mechanics Poisson- Boltzmann surface area (MM/PBSA) analysis have stable interaction. CONCLUSION This recombinant protein can probably be used as an immunogen candidate for the development of vaccines against SARS-CoV2 in future research.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | | |
Collapse
|
5
|
Joseph JO, Ylade M, Daag JV, Aogo R, Crisostomo MV, Mpingabo P, Premkumar L, Deen J, Katzelnick L. High transmission of endemic human coronaviruses before and during the COVID-19 pandemic in adolescents in Cebu, Philippines. RESEARCH SQUARE 2023:rs.3.rs-3581033. [PMID: 38014070 PMCID: PMC10680936 DOI: 10.21203/rs.3.rs-3581033/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background SARS-CoV-2, the causative agent of COVID-19, is a betacoronavirus belonging to the same genus as endemic human coronaviruses (hCoVs) OC43 and HKU1 and is distinct from alpha hCoVs 229E and NL63. In a study of adolescents in the Philippines, we evaluated the seroprevalence to hCoVs, whether pre-pandemic hCoV immunity modulated subsequent risk of SARS-CoV-2 infection, and if SARS-CoV-2 infection affected the transmission of the hCoVs. Methods From 499 samples collected in 2021 and screened by SARS-CoV-2 receptor binding domain (RBD) enzyme-linked immunosorbent assay (ELISA), we randomly selected 59 SARS-CoV-2 negative and 61 positive individuals for further serological evaluation. We measured RBD and spike antibodies to the four hCoVs and SARS-CoV-2 by ELISA in samples from the same participants collected pre-pandemic (2018-2019) and mid-pandemic (2021), before COVID-19 vaccination. Results We observed over 72% seropositivity to the four hCoVs pre-pandemic. Binding antibodies increased with age to 229E and OC43, suggesting endemic circulation, while immunity was flat across ages for HKU1 and NL63. During the COVID-19 pandemic, antibody level increased significantly to the RBDs of OC43, NL63, and 229E and spikes of all four hCoVs in both SARS-CoV-2 negative and positive adolescents. Those aged 12-15 years old in 2021 had higher antibodies to RBD and spike of OC43, NL63, and 229E than adolescents the same age in 2019, further demonstrating intense transmission of the hCoVs during the pandemic. Conclusions We observe a limited impact of the COVID-19 pandemic on endemic hCoV transmission. This study provides insight into co-circulation of hCoVs and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines-Manila
| | | | | | | | | | | | - Jacqueline Deen
- National Institutes of Health, University of the Philippines-Manila
| | | |
Collapse
|
6
|
Martins da Silva AY, Arouche TDS, Siqueira MRS, Ramalho TC, de Faria LJG, Gester RDM, Carvalho Junior RND, Santana de Oliveira M, Neto AMDJC. SARS-CoV-2 external structures interacting with nanospheres using docking and molecular dynamics. J Biomol Struct Dyn 2023; 42:9892-9907. [PMID: 37712854 DOI: 10.1080/07391102.2023.2252930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Coronavirus is caused by the SARS-CoV-2 virus has shown rapid proliferation and scarcity of treatments with proven effectiveness. In this way, we simulated the hospitalization of carbon nanospheres, with external active sites of the SARS-CoV-2 virus (M-Pro, S-Gly and E-Pro), which can be adsorbed or inactivated when interacting with the nanospheres. The computational procedures performed in this work were developed with the SwissDock server for molecular docking and the GROMACS software for molecular dynamics, making it possible to extract relevant data on affinity energy, distance between molecules, free Gibbs energy and mean square deviation of atomic positions, surface area accessible to solvents. Molecular docking indicates that all ligands have an affinity for the receptor's active sites. The nanospheres interact favorably with all proteins, showing promising results, especially C60, which presented the best affinity energy and RMSD values for all protein macromolecules investigated. The C60 with E-Pro exhibited the highest affinity energy of -9.361 kcal/mol, demonstrating stability in both molecular docking and molecular dynamics simulations. Our RMSD calculations indicated that the nanospheres remained predominantly stable, fluctuating within a range of 2 to 3 Å. Additionally, the analysis of other structures yielded promising results that hold potential for application in other proteases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anderson Yuri Martins da Silva
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | - Tiago da Silva Arouche
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Teodorico Castro Ramalho
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Rodrigo do Monte Gester
- Institute of Exact Sciences (ICE), Federal University of the South and Southeast of Pará, Maraba, Brazil
| | - Raul Nunes de Carvalho Junior
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
- Faculty of Food Engineering ITEC, Federal University of Pará, Belém, Brazil
| | | | - Antonio Maia de Jesus Chaves Neto
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- National Professional Master's in Physics Teaching, Federal University of Pará, Belém, Brazil
- Museu Paraense Emílio Goeldi, Diretoria, Coordenação de Botânica, Rua Augusto Corrêa, Belém, Brazil
| |
Collapse
|
7
|
Kreye J, Reincke SM, Edelburg S, Jeworowski LM, Kornau HC, Trimpert J, Hombach P, Halbe S, Nölle V, Meyer M, Kattenbach S, Sánchez-Sendin E, Schmidt ML, Schwarz T, Rose R, Krumbholz A, Merz S, Adler JM, Eschke K, Abdelgawad A, Schmitz D, Sander LE, Janssen U, Corman VM, Prüss H. Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron. iScience 2023; 26:106323. [PMID: 36925720 PMCID: PMC9979625 DOI: 10.1016/j.isci.2023.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Edelburg
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Lara M Jeworowski
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Peter Hombach
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Sophia Halbe
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Martin Meyer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marie L Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
- Labor Dr. Krause & Kollegen MVZ GmbH, 24106 Kiel, Germany
| | - Sophie Merz
- IDEXX Laboratories, 70806 Kornwestheim, Germany
| | - Julia M Adler
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Kathrin Eschke
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Azza Abdelgawad
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Uwe Janssen
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Victor M Corman
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
8
|
Meyrath M, Szpakowska M, Plesseria JM, Domingues O, Langlet J, Weber B, Krüger R, Ollert M, Chevigné A. Nanoluciferase-based cell fusion assay for rapid and high-throughput assessment of SARS-CoV-2-neutralizing antibodies in patient samples. Methods Enzymol 2022; 675:351-381. [PMID: 36220277 PMCID: PMC9459433 DOI: 10.1016/bs.mie.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future.
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Laboratoires Réunis Luxembourg, Z.A.C. Laangwiss, Junglinster, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jérémie Langlet
- Business Development Office, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Bernard Weber
- Laboratoires Réunis Luxembourg, Z.A.C. Laangwiss, Junglinster, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine (TTM), Luxembourg Institute of Health (LIH), Strassen, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg; Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Fan Y, Sun Z, Conrad F, Wen W, Zhao L, Lou J, Zhou Y, Farr-Jones S, Marks JD. Multicolor fluorescence activated cell sorting to generate humanized monoclonal antibody binding seven subtypes of BoNT/F. PLoS One 2022; 17:e0273512. [PMID: 36048906 PMCID: PMC9436041 DOI: 10.1371/journal.pone.0273512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Generating specific monoclonal antibodies (mAbs) that neutralize multiple antigen variants is challenging. Here, we present a strategy to generate mAbs that bind seven subtypes of botulinum neurotoxin serotype F (BoNT/F) that differ from each other in amino acid sequence by up to 36%. Previously, we identified 28H4, a mouse mAb with poor cross-reactivity to BoNT/F1, F3, F4, and F6 and with no detectable binding to BoNT/F2, F5, or F7. Using multicolor labeling of the different BoNT/F subtypes and fluorescence-activated cell sorting (FACS) of yeast displayed single-chain Fv (scFv) mutant libraries, 28H4 was evolved to a humanized mAb hu6F15.4 that bound each of seven BoNT/F subtypes with high affinity (KD 5.81 pM to 659.78 pM). In contrast, using single antigen FACS sorting, affinity was increased to the subtype used for sorting but with a decrease in affinity for other subtypes. None of the mAb variants showed any binding to other BoNT serotypes or to HEK293 or CHO cell lysates by flow cytometry, thus demonstrating stringent BoNT/F specificity. Multicolor FACS-mediated antibody library screening is thus proposed as a general method to generate multi-specific antibodies to protein subtypes such as toxins or species variants.
Collapse
Affiliation(s)
- Yongfeng Fan
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Zhengda Sun
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Fraser Conrad
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Weihua Wen
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Lequn Zhao
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jianlong Lou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yu Zhou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Shauna Farr-Jones
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - James D. Marks
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
10
|
Davenport BJ, Catala A, Weston SM, Johnson RM, Ardanuy J, Hammond HL, Dillen C, Frieman MB, Catalano CE, Morrison TE. Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. NPJ Vaccines 2022; 7:57. [PMID: 35618725 PMCID: PMC9135756 DOI: 10.1038/s41541-022-00481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexis Catala
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart M Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert M Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Pande K, Hollingsworth SA, Sam M, Gao Q, Singh S, Saha A, Vroom K, Ma XS, Brazell T, Gorman D, Chen SJ, Raoufi F, Bailly M, Grandy D, Sathiyamoorthy K, Zhang L, Thompson R, Cheng AC, Fayadat-Dilman L, Geierstanger BH, Kingsley LJ. Hexamerization of Anti-SARS CoV IgG1 Antibodies Improves Neutralization Capacity. Front Immunol 2022; 13:864775. [PMID: 35603164 PMCID: PMC9114490 DOI: 10.3389/fimmu.2022.864775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC50 in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface. To our knowledge, this is the first time this format has been explored for application in viral neutralization and the studies provide proof-of-concept for the use of hexamer-enhanced IgG1 molecules as potential anti-viral therapeutics.
Collapse
Affiliation(s)
- Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Tres Brazell
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Dan Gorman
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - David Grandy
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., West Point, PA, United States
| | - Rob Thompson
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | - Alan C. Cheng
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | | | | | - Laura J. Kingsley
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| |
Collapse
|
12
|
Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan YH, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol 2022; 5:342. [PMID: 35411021 PMCID: PMC9001700 DOI: 10.1038/s42003-022-03262-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-CoV protection. We previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 spike, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and binds to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is maintained against the Alpha, Delta, Gamma and Omicron variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region. Negative stain electron microscopy and a 1.74 Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs.
Collapse
Affiliation(s)
- Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Irika Sinha
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Jim Boonyaratanakornkit
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anton M Sholukh
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Vaccine Research Center, NAID, NIH, Bethesda, MD, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Shinnakasu R, Sakakibara S, Yamamoto H, Wang PH, Moriyama S, Sax N, Ono C, Yamanaka A, Adachi Y, Onodera T, Sato T, Shinkai M, Suzuki R, Matsuura Y, Hashii N, Takahashi Y, Inoue T, Yamashita K, Kurosaki T. Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses. J Exp Med 2021; 218:e20211003. [PMID: 34623376 PMCID: PMC8641255 DOI: 10.1084/jem.20211003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Po-hung Wang
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Saya Moriyama
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Atsushi Yamanaka
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yu Adachi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Noy-Porat T, Edri A, Alcalay R, Makdasi E, Gur D, Aftalion M, Evgy Y, Beth-Din A, Levy Y, Epstein E, Radinsky O, Zauberman A, Lazar S, Yitzhaki S, Marcus H, Porgador A, Rosenfeld R, Mazor O. Fc-Independent Protection from SARS-CoV-2 Infection by Recombinant Human Monoclonal Antibodies. Antibodies (Basel) 2021; 10:antib10040045. [PMID: 34842604 PMCID: PMC8628512 DOI: 10.3390/antib10040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in-vivo neutralization of SARS-CoV-2 is not yet clear, and it is of high importance to delineate the role this process plays in antibody-mediated protection. Toward this aim, we have chosen two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, MD65 and BLN1 that target distinct domains of the spike (RBD and NTD, respectively). The Fc of these antibodies was engineered to include the triple mutation N297G/S298G/T299A that eliminates glycosylation and the binding to FcγR and to the complement system activator C1q. As expected, the virus neutralization activity (in-vitro) of the engineered antibodies was retained. To study the role of Fc-mediated functions, the protective activity of these antibodies was tested against lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice, when treatment was initiated either before or two days post-exposure. Antibody treatment with both Fc-variants similarly rescued the mice from death reduced viral load and prevented signs of morbidity. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in MD65 and BLN1 antibody-mediated protection, which should aid in the future design of effective antibody-based therapies.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (A.E.); (O.R.); (A.P.)
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - David Gur
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Moshe Aftalion
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Yentl Evgy
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Yinon Levy
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (A.E.); (O.R.); (A.P.)
| | - Ayelet Zauberman
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Shirley Lazar
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Shmuel Yitzhaki
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Hadar Marcus
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (A.E.); (O.R.); (A.P.)
| | - Ronit Rosenfeld
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
- Correspondence: (R.R.); (O.M.)
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness-Ziona 7404800, Israel; (T.N.-P.); (R.A.); (E.M.); (D.G.); (M.A.); (Y.E.); (A.B.-D.); (Y.L.); (E.E.); (A.Z.); (S.L.); (S.Y.); (H.M.)
- Correspondence: (R.R.); (O.M.)
| |
Collapse
|
15
|
Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shirreff L, Ferrell DE, Bowen J, Brunette N, Kepl E, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Sprouse KR, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, Leist SR, Martinez DR, Clark M, Tisch R, O'Hagan DT, Van Der Most R, Van Voorhis WC, Corti D, McLellan JS, Kleanthous H, Sheahan TP, Smith KD, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric RS, King NP, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021; 184:5432-5447.e16. [PMID: 34619077 PMCID: PMC8440233 DOI: 10.1016/j.cell.2021.09.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Allison Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary-Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Megan A O'Connor
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lisa Shirreff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Douglas E Ferrell
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tyler Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Roland Tisch
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kelly D Smith
- UW Medicine Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| | - Deborah H Fuller
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Jesse Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Kandikattu HK, Yadavalli CS, Venkateshaiah SU, Mishra A. Vaccine efficacy in mutant SARS-CoV-2 variants. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2021; 4:1-12. [PMID: 34790972 PMCID: PMC8594908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many aspects of the SARS-CoV-2 virus remain poorly understood, including its rapid mutation and its effects on populations of different ages. The present literature of review is focused on the effectiveness of current available vaccines in view of immerging several SARS-CoV-2 variants. The most dangerous and infectious SARS-CoV-2 strain, B117, was recently discovered in the United Kingdom, and another new variant, 501.V2, was discovered in South Africa. In countries such as the United States, Japan, India, and Brazil, the variant B117 spread far more quickly than the original strain. The new SARS-CoV-2 mutations have made producing a universal and effective vaccine more difficult. SARS-CoV-2's S protein, which aids in receptor identification and membrane fusion, is a primary target for vaccine development using its mRNA or inactivated virus. Currently, in the interval of few days new more infectious SARS-CoV-2 mutant is detected, started from SARS-CoV-2 Alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), delta plus, gamma (P.1) and now variant lamda. The variant detected first in Peru and spread almost 27 countries including UK that accounts for 82% of new infections. These mutant variants are posing new challenge even to the fully vaccinated individuals and a challenge for the public health. Thus, a need to review current treatment vaccination guideline and strategy as early as possible. Reporting all new SARS-CoV-2 variants and their effectiveness in response to several available vaccines, we would like to draw the attention of health care provider, and all developed countries health care agencies including WHO to frame new guidelines for vaccination and immediate intervention to control the development of new SARS-CoV-2 variants from the third world countries by providing vaccines to the poor countries as early as possible.
Collapse
Affiliation(s)
| | | | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
17
|
Esmaeilzadeh A, Rostami S, Yeganeh PM, Tahmasebi S, Ahmadi M. Recent advances in antibody-based immunotherapy strategies for COVID-19. J Cell Biochem 2021; 122:1389-1412. [PMID: 34160093 PMCID: PMC8427040 DOI: 10.1002/jcb.30017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
The emergence of a new acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the cause of the 2019-nCOV disease (COVID-19), has caused a pandemic and a global health crisis. Rapid human-to-human transmission, even from asymptomatic individuals, has led to the quick spread of the virus worldwide, causing a wide range of clinical manifestations from cold-like symptoms to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan injury, and even death. Therefore, using rapid and accurate diagnostic methods to identify the virus and subsequently select appropriate and effective treatments can help improvement of patients and control the pandemic. So far, various treatment regimens along with prophylactic vaccines have been developed to manage COVID-19-infected patients. Among these, antibody-based therapies, including neutralizing antibodies (against different parts of the virus), polyclonal and monoclonal antibodies, plasma therapy, and high-dose intravenous immunoglobulin (IVIG) have shown promising outcomes in accelerating and improving the treatment process of patients, avoiding the viral spreading widely, and managing the pandemic. In the current review paper, different types and applications of therapeutic antibodies in the COVID-19 treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of MedicineZanjan University of Medical SciencesZanjanIran
- Immunotherapy Research and Technology GroupZanjan University of Medical SciencesZanjanIran
| | - Samaneh Rostami
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Pegah M. Yeganeh
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Safa Tahmasebi
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
18
|
Kayode AJ, Banji-Onisile FO, Olaniran AO, Okoh AI. An Overview of the Pathogenesis, Transmission, Diagnosis, and Management of Endemic Human Coronaviruses: A Reflection on the Past and Present Episodes and Possible Future Outbreaks. Pathogens 2021; 10:1108. [PMID: 34578140 PMCID: PMC8470645 DOI: 10.3390/pathogens10091108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the 2019 coronavirus pandemic caught the world by surprise in late 2019 and has held it hostage for months with an increasing number of infections and deaths. Although coronavirus was first discovered in the 1960s and was known to cause respiratory infection in humans, no information was available about the epidemic pattern of the virus until the past two decades. This review addresses the pathogenesis, transmission dynamics, diagnosis, management strategies, the pattern of the past and present events, and the possibility of future outbreaks of the endemic human coronaviruses. Several studies have described bats as presumptive natural reservoirs of coronaviruses. In essence, the identification of a diverse group of similar SARS coronaviruses in bats suggests the possibility of a future epidemic due to severe acute respiratory syndrome (SARS-like) coronaviruses originating from different reservoir hosts. The study also identified a lack of vaccines to prevent human coronavirus infections in humans in the past, however, the recent breakthrough in vaccine discovery and approval for emergency use for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 is commendable. The high rates of genomic substitution and recombination due to errors in RNA replication and the potential for independent species crossing suggest the chances of an entirely new strain evolving. Therefore, rapid research efforts should be deployed for vaccination to combat the COVID-19 pandemic and prevent a possible future outbreak. More sensitization and enlightenment on the need to adopt good personal hygiene practices, social distancing, and scientific evaluation of existing medications with promising antiviral effects against SARS-CoV-2 is required. In addition, intensive investigations to unravel and validate the possible reservoirs, the intermediate host, as well as insight into the ability of the virus to break the species barrier are needed to prevent future viral spillover and possible outbreaks.
Collapse
Affiliation(s)
- Adeoye J. Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Folasade O. Banji-Onisile
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Ademola O. Olaniran
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Department of Environmental Health Sciences, College Health Sciences, University of Sharjah, Sharjah 555588, United Arab Emirates
| |
Collapse
|
19
|
Shukla SP, Cho KB, Rustagi V, Gao X, Fu X, Zhang SX, Guo B, Udugamasooriya DG. "Molecular Masks" for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. Int J Mol Sci 2021; 22:ijms22168963. [PMID: 34445669 PMCID: PMC8396575 DOI: 10.3390/ijms22168963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Kwang Bog Cho
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Vineeta Rustagi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Xiang Gao
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Xinping Fu
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5037, USA; (X.F.); (S.X.Z.)
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5037, USA; (X.F.); (S.X.Z.)
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
- Correspondence: (B.G.); (D.G.U.)
| | - D. Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
- MD Anderson Cancer Center, Department of Cancer Systems Imaging, 1881 East Road, Houston, TX 77030-4009, USA
- Correspondence: (B.G.); (D.G.U.)
| |
Collapse
|
20
|
Li T, Cai H, Yao H, Zhou B, Zhang N, van Vlissingen MF, Kuiken T, Han W, GeurtsvanKessel CH, Gong Y, Zhao Y, Shen Q, Qin W, Tian XX, Peng C, Lai Y, Wang Y, Hutter CAJ, Kuo SM, Bao J, Liu C, Wang Y, Richard AS, Raoul H, Lan J, Seeger MA, Cong Y, Rockx B, Wong G, Bi Y, Lavillette D, Li D. A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nat Commun 2021; 12:4635. [PMID: 34330908 PMCID: PMC8324831 DOI: 10.1038/s41467-021-24905-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 μg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bingjie Zhou
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Martje Fentener van Vlissingen
- Erasmus Laboratory Animal Science Center, Erasmus University Medical Center, Rotterdam, Netherlands
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Thijs Kuiken
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Corine H GeurtsvanKessel
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yuhuan Gong
- University of CAS, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Yapei Zhao
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Quan Shen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Xiao-Xu Tian
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Shu-Ming Kuo
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Audrey S Richard
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Hervé Raoul
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Yao Cong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Barry Rockx
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| | - Yuhai Bi
- University of CAS, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China.
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.
- Pasteurien College, Soochow University, Jiangsu, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
21
|
Kumavath R, Barh D, Andrade BS, Imchen M, Aburjaile FF, Ch A, Rodrigues DLN, Tiwari S, Alzahrani KJ, Góes-Neto A, Weener ME, Ghosh P, Azevedo V. The Spike of SARS-CoV-2: Uniqueness and Applications. Front Immunol 2021; 12:663912. [PMID: 34305894 PMCID: PMC8297464 DOI: 10.3389/fimmu.2021.663912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
The Spike (S) protein of the SARS-CoV-2 virus is critical for its ability to attach and fuse into the host cells, leading to infection, and transmission. In this review, we have initially performed a meta-analysis of keywords associated with the S protein to frame the outline of important research findings and directions related to it. Based on this outline, we have reviewed the structure, uniqueness, and origin of the S protein of SARS-CoV-2. Furthermore, the interactions of the Spike protein with host and its implications in COVID-19 pathogenesis, as well as drug and vaccine development, are discussed. We have also summarized the recent advances in detection methods using S protein-based RT-PCR, ELISA, point-of-care lateral flow immunoassay, and graphene-based field-effect transistor (FET) biosensors. Finally, we have also discussed the emerging Spike mutants and the efficacy of the Spike-based vaccines against those strains. Overall, we have covered most of the recent advances on the SARS-CoV-2 Spike protein and its possible implications in countering this virus.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Flavia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Athira Ch
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Diego Lucas Neres Rodrigues
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Scheid JF, Barnes CO, Eraslan B, Hudak A, Keeffe JR, Cosimi LA, Brown EM, Muecksch F, Weisblum Y, Zhang S, Delorey T, Woolley AE, Ghantous F, Park SM, Phillips D, Tusi B, Huey-Tubman KE, Cohen AA, Gnanapragasam PNP, Rzasa K, Hatziioanno T, Durney MA, Gu X, Tada T, Landau NR, West AP, Rozenblatt-Rosen O, Seaman MS, Baden LR, Graham DB, Deguine J, Bieniasz PD, Regev A, Hung D, Bjorkman PJ, Xavier RJ. B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 2021; 184:3205-3221.e24. [PMID: 34015271 PMCID: PMC8064835 DOI: 10.1016/j.cell.2021.04.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/metabolism
- Antigen-Antibody Reactions
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- COVID-19/pathology
- COVID-19/virology
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Gene Expression Profiling
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Protein Domains/immunology
- Protein Multimerization
- Protein Structure, Quaternary
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/metabolism
- Sequence Analysis, RNA
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Johannes F Scheid
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Basak Eraslan
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Andrew Hudak
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lisa A Cosimi
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric M Brown
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Frauke Muecksch
- Laboratory of Molecular Virology, The Rockefeller University, New York, NY 10065, USA
| | - Yiska Weisblum
- Laboratory of Molecular Virology, The Rockefeller University, New York, NY 10065, USA
| | - Shuting Zhang
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Toni Delorey
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ann E Woolley
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sung-Moo Park
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Devan Phillips
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Betsabeh Tusi
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Kara Rzasa
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Theodora Hatziioanno
- Laboratory of Molecular Virology, The Rockefeller University, New York, NY 10065, USA
| | - Michael A Durney
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Xiebin Gu
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel B Graham
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Paul D Bieniasz
- Laboratory of Molecular Virology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Deborah Hung
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ramnik J Xavier
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Heffron AS, McIlwain SJ, Amjadi MF, Baker DA, Khullar S, Armbrust T, Halfmann PJ, Kawaoka Y, Sethi AK, Palmenberg AC, Shelef MA, O’Connor DH, Ong IM. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biol 2021; 19:e3001265. [PMID: 34143766 PMCID: PMC8245122 DOI: 10.1371/journal.pbio.3001265] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/30/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023] Open
Abstract
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maya F. Amjadi
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tammy Armbrust
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ajay K. Sethi
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann C. Palmenberg
- Department of Biochemistry, Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 2021; 28:478-486. [PMID: 33981021 DOI: 10.1038/s41594-021-00596-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
Three highly pathogenic β-coronaviruses have crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. To evaluate the possibility of identifying antibodies with broad neutralizing activity, we isolated a monoclonal antibody, termed B6, that cross-reacts with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses. B6 broadly neutralizes entry of pseudotyped viruses from lineages A and C, but not from lineage B, and the latter includes SARS-CoV and SARS-CoV-2. Cryo-EM, X-ray crystallography and membrane fusion assays reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery. The data indicate that antibody binding sterically interferes with the spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages, along with a proof of concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-β-coronavirus vaccine.
Collapse
|
25
|
Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi‐Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F, Shoja Z. Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol 2021; 31:e2183. [PMID: 33594794 PMCID: PMC7646037 DOI: 10.1002/rmv.2183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection. The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Genome, Viral/immunology
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics
- Patient Safety
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
Collapse
Affiliation(s)
- Arash Arashkia
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Somayeh Jalilvand
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nasir Mohajel
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Atefeh Afchangi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Mostafa Salehi‐Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | | | - Tahmineh Jalali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab)Pasteur Institute of IranTehranIran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and DevelopmentProduction and Research ComplexPasteur Institute of IranTehranIran
| | - Farzin Roohvand
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | - Zabihollah Shoja
- Department of Molecular VirologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
26
|
Mohamed Khosroshahi L, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol 2021; 93:107364. [PMID: 33486333 PMCID: PMC7784533 DOI: 10.1016/j.intimp.2020.107364] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infection which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a "public health emergency of international concern" (PHEIC). The infection is highly contagious, has a high mortality rate, and its pathophysiology remains poorly understood. Pulmonary inflammation with substantial lung damage together with generalized immune dysregulation are major components of COVID-19 pathogenesis. The former component, lung damage, seems to be at least in part a consequence of immune dysregulation. Indeed, studies have revealed that immune alteration is not merely an association, as it might occur in systemic infections, but, very likely, the core pathogenic element of COVID-19. In addition, precise management of immune response in COVID-19, i.e. enhancing anti-viral immunity while inhibiting systemic inflammation, may be key to successful treatment. Herein, we have reviewed current evidence related to different aspects of COVID-19 immunology, including innate and adaptive immune responses against the virus and mechanisms of virus-induced immune dysregulation. Considering that current antiviral therapies are chiefly experimental, strategies to do immunotherapy for the management of disease have also been reviewed. Understanding immunology of COVID-19 is important in developing effective therapies as well as diagnostic, and prophylactic strategies for this disease.
Collapse
Affiliation(s)
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
27
|
Walls AC, Miranda MC, Pham MN, Schäfer A, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shireff L, Ferrell DE, Brunette N, Kepl E, Bowen J, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, O'Hagan DT, Van Der Most R, Van Voorhis WC, McLellan JS, Kleanthous H, Sheahan TP, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric R, King N, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.15.435528. [PMID: 33758839 PMCID: PMC7986998 DOI: 10.1101/2021.03.15.435528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Allison Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary-Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Megan A O'Connor
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lisa Shireff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Douglas E Ferrell
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tyler Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Deborah H Fuller
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Jesse Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Neil King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Verma J, Subbarao N. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Arch Virol 2021; 166:697-714. [PMID: 33483791 PMCID: PMC7821988 DOI: 10.1007/s00705-021-04961-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 01/24/2023]
Abstract
Coronaviruses are the paradigm of emerging 21st century zoonotic viruses, triggering numerous outbreaks and a severe global health crisis. The current COVID-19 pandemic caused by SARS-CoV-2 has affected more than 51 million people across the globe as of 12 November 2020. The crown-like spikes on the surface of the virion are the unique structural feature of viruses in the family Coronaviridae. The spike (S) protein adopts distinct conformations while mediating entry of the virus into the host. This multifunctional protein mediates the entry process by recognizing its receptor on the host cell, followed by the fusion of the viral membrane with the host cell membrane. This review article focuses on the structural and functional comparison of S proteins of the human betacoronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we review the current state of knowledge about receptor recognition, the membrane fusion mechanism, structural epitopes, and glycosylation sites of the S proteins of these viruses. We further discuss various vaccines and other therapeutics such as monoclonal antibodies, peptides, and small molecules based on the S protein of these three viruses.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Rosenfeld R, Noy-Porat T, Mechaly A, Makdasi E, Levy Y, Alcalay R, Falach R, Aftalion M, Epstein E, Gur D, Chitlaru T, Vitner EB, Melamed S, Politi B, Zauberman A, Lazar S, Beth-Din A, Evgy Y, Yitzhaki S, Shapira SC, Israely T, Mazor O. Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nat Commun 2021; 12:944. [PMID: 33574228 PMCID: PMC7878817 DOI: 10.1038/s41467-021-21239-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterize and further evaluate the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection, while administration of the MD65 antibody as late as 3 days after exposure rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data demonstrate the therapeutic value of human monoclonal antibodies as a life-saving treatment for severe COVID-19 infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- COVID-19/immunology
- Chlorocebus aethiops
- Female
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Lung/pathology
- Lung/virology
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- SARS-CoV-2/classification
- SARS-CoV-2/physiology
- Seroconversion
- Vero Cells
- Viral Load
- COVID-19 Drug Treatment
- Mice
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Tal Noy-Porat
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adva Mechaly
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levy
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Einat B Vitner
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Shirley Lazar
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yentl Evgy
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shmuel Yitzhaki
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Tomer Israely
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
30
|
Kumar P, Sah AK, Tripathi G, Kashyap A, Tripathi A, Rao R, Mishra PC, Mallick K, Husain A, Kashyap MK. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem 2021; 476:553-574. [PMID: 33029696 PMCID: PMC7539757 DOI: 10.1007/s11010-020-03924-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.
Collapse
Affiliation(s)
- Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Prabhu C Mishra
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Koustav Mallick
- National Liver Disease Biobank, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research, Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research, Bhopal, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India.
| |
Collapse
|
31
|
Zhou D, Tian X, Qi R, Peng C, Zhang W. Identification of 22 N-glycosites on spike glycoprotein of SARS-CoV-2 and accessible surface glycopeptide motifs: Implications for vaccination and antibody therapeutics. Glycobiology 2021; 31:69-80. [PMID: 32518941 PMCID: PMC7313968 DOI: 10.1093/glycob/cwaa052] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.
Collapse
Affiliation(s)
- Dapeng Zhou
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China.,Shanghai Pudong New Area Mental Health Center affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 333 Haike Road, Shanghai 201210, China
| | - Ruibing Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, 518 Ziyue Road, Shanghai 200241, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 333 Haike Road, Shanghai 201210, China
| | - Wen Zhang
- Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, 200433 Gongwei Road, Shanghai, China.,Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
32
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
33
|
Heffron AS, McIlwain SJ, Amjadi MF, Baker DA, Khullar S, Sethi AK, Palmenberg AC, Shelef MA, O'Connor DH, Ong IM. The landscape of antibody binding in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.10.334292. [PMID: 33052349 PMCID: PMC7553183 DOI: 10.1101/2020.10.10.334292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which one epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the six other known human CoVs. We also confirm reactivity against four of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to nine SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.
Collapse
|
34
|
Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton O, Bowen J, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Structural basis for broad coronavirus neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.12.29.424482. [PMID: 33398277 PMCID: PMC7781312 DOI: 10.1101/2020.12.29.424482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three highly pathogenic β-coronaviruses crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. SARS-CoV-2 has infected more than 64 million people worldwide, claimed over 1.4 million lives and is responsible for the ongoing COVID-19 pandemic. We isolated a monoclonal antibody, termed B6, cross-reacting with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses, and broadly inhibiting entry of pseudotyped viruses from two coronavirus lineages. Cryo-electron microscopy and X-ray crystallography characterization reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery and indicate that antibody binding sterically interferes with spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages along with proof-of-concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - M. Alexandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leah Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Oliver Acton
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Chunyan Wang
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Xiaoli Xiong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Benjamin G. Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrew T. McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
Thakur N, Conceicao C, Isaacs A, Human S, Modhiran N, McLean RK, Pedrera M, Tan TK, Rijal P, Townsend A, Taylor G, Young PR, Watterson D, Chappell KJ, Graham SP, Bailey D. Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell-cell fusion. J Gen Virol 2021; 102:jgv001506. [PMID: 33054904 PMCID: PMC8116787 DOI: 10.1099/jgv.0.001506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ariel Isaacs
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Stacey Human
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Naphak Modhiran
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Rebecca K McLean
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Paul R Young
- University of Queensland, Brisbane, Queensland 4071, Australia
| | | | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
36
|
Tabll AA, Shahein YE, Omran MM, Elnakib MM, Ragheb AA, Amer KE. A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection. Hum Antibodies 2021; 29:179-191. [PMID: 33998533 DOI: 10.3233/hab-200441] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The harmful COVID-19 pandemic caused by the SARS-CoV-2 coronavirus imposes the scientific community to develop or find conventional curative drugs, protective vaccines, or passive immune strategies rapidly and efficiently. Passive immunity is based on recovering hyper-immune plasma from convalescent patients, or monoclonal antibodies with elevated titer of neutralizing antibodies with high antiviral activity, that have potential for both treatment and prevention. In this review, we focused on researching the potentiality of monoclonal antibodies for the prevention and treatment of COVID-19 infection. Our research review includes antibody-based immunotherapy, using human monoclonal antibodies targeting SARS-CoV-2 viral protein regions, specifically the spike protein regions, and using hyper-immune plasma from convalescent COVID-19 patients, in which monoclonal antibodies act as immunotherapy for the cytokine storm syndrome associated with the COVID-19 infection. In addition, we will demonstrate the role of the monoclonal antibodies in the development of candidate vaccines for SARS-CoV-2. Moreover, the recent progress of the diagnostic mouse monoclonal antibodies' role will be highlighted, as an accurate and rapid diagnostic assay, in the antigen detection of SARS-CoV-2. In brief, the monoclonal antibodies are the potential counter measures that may control SARS-CoV-2, which causes COVID-19 disease, through immunotherapy and vaccine development, as well as viral detection.
Collapse
Affiliation(s)
- Ashraf A Tabll
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed M Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mostafa M Elnakib
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ameera A Ragheb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Khaled E Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
37
|
Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Curr Med Sci 2021; 41:1052-1064. [PMID: 34935114 PMCID: PMC8692081 DOI: 10.1007/s11596-021-2470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.
Collapse
|
38
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020. [PMID: 33160446 DOI: 10.1016/j.cell.2020.https:/doi.org/10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020; 183:1367-1382.e17. [PMID: 33160446 PMCID: PMC7604136 DOI: 10.1016/j.cell.2020.10.043] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, Deveau LM, Yockachonis TJ, Herbert AS, Battles MB, O’Brien CM, Brown ME, Geoghegan JC, Belk J, Peng L, Yang L, Scobey TD, Burton DR, Nemazee D, Dye JM, Voss JE, Gunn BM, McLellan JS, Baric RS, Gralinski LE, Walker LM. An Engineered Antibody with Broad Protective Efficacy in Murine Models of SARS and COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.17.385500. [PMID: 33236009 PMCID: PMC7685319 DOI: 10.1101/2020.11.17.385500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. Here, we employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with remarkable potency. Structural and biochemical studies demonstrate that ADG-2 employs a unique angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In murine models of SARS-CoV and SARS-CoV-2 infection, passive transfer of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate for the treatment and prevention of SARS-CoV-2 and future emerging SARS-like CoVs.
Collapse
Affiliation(s)
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Thomas J. Yockachonis
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | | | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | | | | | | | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trevor D. Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - James E. Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura M. Walker
- Adimab LLC, Lebanon, NH 03766, USA
- Adagio Therapeutics, Inc., Waltham, MA 02451, USA
| |
Collapse
|
41
|
Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, Acton OJ, Jaconi S, Guarino B, Minola A, Zatta F, Sprugasci N, Bassi J, Peter A, De Marco A, Nix JC, Mele F, Jovic S, Rodriguez BF, Gupta SV, Jin F, Piumatti G, Lo Presti G, Pellanda AF, Biggiogero M, Tarkowski M, Pizzuto MS, Cameroni E, Havenar-Daughton C, Smithey M, Hong D, Lepori V, Albanese E, Ceschi A, Bernasconi E, Elzi L, Ferrari P, Garzoni C, Riva A, Snell G, Sallusto F, Fink K, Virgin HW, Lanzavecchia A, Corti D, Veesler D. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020; 183:1024-1042.e21. [PMID: 32991844 PMCID: PMC7494283 DOI: 10.1016/j.cell.2020.09.037] [Citation(s) in RCA: 1033] [Impact Index Per Article: 206.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigen-Antibody Reactions
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- Betacoronavirus/metabolism
- Binding Sites
- COVID-19
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Epitope Mapping/methods
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin M/blood
- Immunoglobulin M/immunology
- Kinetics
- Molecular Dynamics Simulation
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Domains/immunology
- Protein Structure, Quaternary
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Luca Piccoli
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, 75015 Paris, France
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Dora Pinto
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Oliver J Acton
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Stefano Jaconi
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Andrea Minola
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jessica Bassi
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessia Peter
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Anna De Marco
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Feng Jin
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Giovanni Piumatti
- Division of Primary Care, Geneva University Hospitals, 1205 Geneva, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Giorgia Lo Presti
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | | | - Maira Biggiogero
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Maciej Tarkowski
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Matteo S Pizzuto
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | | | - David Hong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Emiliano Albanese
- Institute of Public Health, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Civico and Ospedale Italiano, 6900 Lugano, Switzerland
| | - Luigia Elzi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, Ospedale Regionale Bellinzona e Valli and Ospedale Regionale, 6600 Locarno, Switzerland
| | - Paolo Ferrari
- Department of Nephrology, Ospedale Civico Lugano, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Katja Fink
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Davide Corti
- Humabs BioMed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Ghorbani M, Brooks BR, Klauda JB. Critical Sequence Hotspots for Binding of Novel Coronavirus to Angiotensin Converter Enzyme as Evaluated by Molecular Simulations. J Phys Chem B 2020; 124:10034-10047. [PMID: 33112147 PMCID: PMC7605337 DOI: 10.1021/acs.jpcb.0c05994] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The novel coronavirus (nCOV-2019) outbreak has put the world on edge, causing millions of cases and hundreds of thousands of deaths all around the world, as of June 2020, let alone the societal and economic impacts of the crisis. The spike protein of nCOV-2019 resides on the virion's surface mediating coronavirus entry into host cells by binding its receptor binding domain (RBD) to the host cell surface receptor protein, angiotensin converter enzyme (ACE2). Our goal is to provide a detailed structural mechanism of how nCOV-2019 recognizes and establishes contacts with ACE2 and its difference with an earlier severe acute respiratory syndrome coronavirus (SARS-COV) in 2002 via extensive molecular dynamics (MD) simulations. Numerous mutations have been identified in the RBD of nCOV-2019 strains isolated from humans in different parts of the world. In this study, we investigated the effect of these mutations as well as other Ala-scanning mutations on the stability of the RBD/ACE2 complex. It is found that most of the naturally occurring mutations to the RBD either slightly strengthen or have the same binding affinity to ACE2 as the wild-type nCOV-2019. This means that the virus had sufficient binding affinity to its receptor at the beginning of the crisis. This also has implications for any vaccine design endeavors since these mutations could act as antibody escape mutants. Furthermore, in silico Ala-scanning and long-timescale MD simulations highlight the crucial role of the residues at the interface of RBD and ACE2 that may be used as potential pharmacophores for any drug development endeavors. From an evolutional perspective, this study also identifies how the virus has evolved from its predecessor SARS-COV and how it could further evolve to become even more infectious.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
43
|
Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc 2020; 15:3699-3715. [PMID: 32978602 DOI: 10.1038/s41596-020-0394-5] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
Abstract
Pseudotyped viruses are useful virological tools because of their safety and versatility. On the basis of a vesicular stomatitis virus (VSV) pseudotyped virus production system, we developed a pseudotyped virus-based neutralization assay against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in biosafety level 2 facilities. Compared with the binding antibody test, the neutralization assay could discriminate the protective agents from the antibody family. This protocol includes production and titration of the SARS-CoV-2 S pseudotyped virus and the neutralization assay based on it. Various types of samples targeting virus attachment and entry could be evaluated for their potency, including serum samples derived from animals and humans, monoclonal antibodies and fusion inhibitors (peptides or small molecules). If the pseudotyped virus stock has been prepared in advance, it will take 2 days to get the potency data for the candidate samples. Experience in handling cells is needed before implementing this protocol.
Collapse
Affiliation(s)
- Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.,Wuhan Institute of Biological Products, Wuhan, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Huan Hao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Huan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Qiyu Sun
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.
| | - Miao Xu
- Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China. .,Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends Immunol 2020; 41:1006-1022. [PMID: 33041212 PMCID: PMC7498231 DOI: 10.1016/j.it.2020.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The 2019 coronavirus pandemic remains a major public health concern. Neutralizing antibodies (nAbs) represent a cutting-edge antiviral strategy. We focus here on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV, and discuss current progress in antibody research against rampant SARS-CoV-2 infections. We provide a perspective on the mechanisms of SARS-CoV-2-derived nAbs, comparing these with existing SARS-CoV-derived antibodies. We offer insight into how these antibodies cross-react and cross-neutralize by analyzing available structures of spike (S) glycoprotein-antibody complexes. We also propose ways of adopting antibody-based strategies - such as cocktail antibody therapeutics against SARS-CoV-2 - to overcome the possible resistance of currently identified mutants and mitigate possible antibody-dependent enhancement (ADE) pathologies. This review provides a platform for the progression of antibody and vaccine design against SARS-CoV-2, and possibly against future coronavirus pandemics.
Collapse
|
45
|
Goodarzi P, Mahdavi F, Mirzaei R, Hasanvand H, Sholeh M, Zamani F, Sohrabi M, Tabibzadeh A, Jeda AS, Niya MHK, Keyvani H, Karampoor S. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int Immunopharmacol 2020; 88:106885. [PMID: 32795893 PMCID: PMC7414363 DOI: 10.1016/j.intimp.2020.106885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
The SARS-CoV-2 virus is an etiological agent of pandemic COVID-19, which spreads rapidly worldwide. No proven effective therapies currently exist for this virus, and efforts to develop antiviral strategies for the treatment of COVID-19 are underway. The rapidly increasing understanding of SARS-CoV-2 virology provides a notable number of possible immunological procedures and drug targets. However, gaps remain in our understanding of the pathogenesis of COVID-19. In this review, we describe the latest information in the context of immunological approaches and emerging current antiviral strategies for COVID-19 treatment.
Collapse
Affiliation(s)
- Pedram Goodarzi
- Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamze Hasanvand
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masodreza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Kumar P, Sah AK, Tripathi G, Kashyap A, Tripathi A, Rao R, Mishra PC, Mallick K, Husain A, Kashyap MK. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem 2020. [PMID: 33029696 DOI: 10.1007/s11010-020-03924-2,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.
Collapse
Affiliation(s)
- Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Prabhu C Mishra
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Koustav Mallick
- National Liver Disease Biobank, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research, Bhopal, India.,Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research, Bhopal, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India.
| |
Collapse
|
47
|
Hussain A, Hasan A, Nejadi Babadaei MM, Bloukh SH, Chowdhury MEH, Sharifi M, Haghighat S, Falahati M. Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies. Biomed Pharmacother 2020; 130:110559. [PMID: 32768882 PMCID: PMC7395593 DOI: 10.1016/j.biopha.2020.110559] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
As the number of people infected with the newly identified 2019 novel coronavirus (SARS-CoV2) is continuously increasing every day, development of potential therapeutic platforms is vital. Based on the comparatively high similarity of receptor-binding domain (RBD) in SARS-CoV2 and SARS-CoV, it seems crucial to assay the cross-reactivity of anti-SARS-CoV monoclonal antibodies (mAbs) with SARS-CoV2 spike (S)-protein. Indeed, developing mAbs targeting SARS-CoV2 S-protein RBD could show novel applications for rapid and sensitive development of potential epitope-specific vaccines (ESV). Herein, we present an overview on the discovery of new CoV followed by some explanation on the SARS-CoV2 S-protein RBD site. Furthermore, we surveyed the novel therapeutic mAbs for targeting S-protein RBD such as S230, 80R, F26G18, F26G19, CR3014, CR3022, M396, and S230.15. Afterwards, the mechanism of interaction of RBD and different mAbs were explained and it was suggested that one of the SARS-CoV-specific human mAbs, namely CR3022, could show the highest binding affinity with SARS-CoV2 S-protein RBD. Finally, some ongoing challenges and future prospects for rapid and sensitive advancement of therapeutic mAbs targeting S-protein RBD were discussed. In conclusion, it may be proposed that this review may pave the way for recognition of RBD and different mAbs to develop potential therapeutic ESV.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Antigen-Antibody Reactions
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Betacoronavirus/immunology
- Binding Sites, Antibody
- COVID-19
- COVID-19 Vaccines
- Coronavirus/chemistry
- Coronavirus/immunology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Epitopes/immunology
- Humans
- Models, Molecular
- Pandemics
- Phylogeny
- Pneumonia, Viral/immunology
- Protein Binding
- Protein Conformation
- Protein Domains
- SARS-CoV-2
- Sequence Alignment
- Sequence Homology, Amino Acid
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | | | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
48
|
Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, West A, Yount BL, Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 2020; 586:560-566. [PMID: 32854108 PMCID: PMC8034761 DOI: 10.1038/s41586-020-2708-8] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.
Collapse
MESH Headings
- Aging/immunology
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/drug therapy
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Humans
- Interferon-alpha/administration & dosage
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Interferons/administration & dosage
- Interferons/pharmacology
- Interferons/therapeutic use
- Interleukins/administration & dosage
- Interleukins/pharmacology
- Interleukins/therapeutic use
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Molecular
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Huang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Jeffrey S Glenn
- Departments of Medicine and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
49
|
Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH, Leist SR, Schäfer A, Nakajima N, Takahashi K, Lee RE, Mascenik TM, Edwards CE, Tse LV, Boucher RC, Randell SH, Suzuki T, Gralinski LE, Kawaoka Y, Baric RS. SARS-CoV-2 D614G Variant Exhibits Enhanced Replication ex vivo and Earlier Transmission in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.28.317685. [PMID: 33024969 PMCID: PMC7536872 DOI: 10.1101/2020.09.28.317685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The D614G substitution in the S protein is most prevalent SARS-CoV-2 strain circulating globally, but its effects in viral pathogenesis and transmission remain unclear. We engineered SARS-CoV-2 variants harboring the D614G substitution with or without nanoluciferase. The D614G variant replicates more efficiency in primary human proximal airway epithelial cells and is more fit than wildtype (WT) virus in competition studies. With similar morphology to the WT virion, the D614G virus is also more sensitive to SARS-CoV-2 neutralizing antibodies. Infection of human ACE2 transgenic mice and Syrian hamsters with the WT or D614G viruses produced similar titers in respiratory tissue and pulmonary disease. However, the D614G variant exhibited significantly faster droplet transmission between hamsters than the WT virus, early after infection. Our study demonstrated the SARS-CoV2 D614G substitution enhances infectivity, replication fitness, and early transmission.
Collapse
Affiliation(s)
- Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rhianna E. Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa M. Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E. Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, Borgert BA, Moreno CA, Solomon BD, Trimmer-Smith L, Etienne V, Rodriguez-Barraquer I, Lessler J, Salje H, Burke DS, Wesolowski A, Cummings DAT. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 2020; 11:4704. [PMID: 32943637 PMCID: PMC7499300 DOI: 10.1038/s41467-020-18450-4] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023] Open
Abstract
Many public health responses and modeled scenarios for COVID-19 outbreaks caused by SARS-CoV-2 assume that infection results in an immune response that protects individuals from future infections or illness for some amount of time. The presence or absence of protective immunity due to infection or vaccination (when available) will affect future transmission and illness severity. Here, we review the scientific literature on antibody immunity to coronaviruses, including SARS-CoV-2 as well as the related SARS-CoV, MERS-CoV and endemic human coronaviruses (HCoVs). We reviewed 2,452 abstracts and identified 491 manuscripts relevant to 5 areas of focus: 1) antibody kinetics, 2) correlates of protection, 3) immunopathogenesis, 4) antigenic diversity and cross-reactivity, and 5) population seroprevalence. While further studies of SARS-CoV-2 are necessary to determine immune responses, evidence from other coronaviruses can provide clues and guide future research.
Collapse
Affiliation(s)
- Angkana T Huang
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bernardo Garcia-Carreras
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Matt D T Hitchings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Bingyi Yang
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Leah C Katzelnick
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Susan M Rattigan
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Brooke A Borgert
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Carlos A Moreno
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Benjamin D Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke Trimmer-Smith
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Veronique Etienne
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Comparative, Diagnostic & Population Medicine, University of Florida, Gainesville, FL, USA
| | | | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Henrik Salje
- Department of Biology, University of Florida, Gainesville, FL, USA
- Department of Genetics, University of Cambridge, Cambridge, UK
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Donald S Burke
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|