1
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Magaret CA, Benkeser DC, Williamson BD, Borate BR, Carpp LN, Georgiev IS, Setliff I, Dingens AS, Simon N, Carone M, Simpkins C, Montefiori D, Alter G, Yu WH, Juraska M, Edlefsen PT, Karuna S, Mgodi NM, Edugupanti S, Gilbert PB. Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Comput Biol 2019; 15:e1006952. [PMID: 30933973 PMCID: PMC6459550 DOI: 10.1371/journal.pcbi.1006952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/11/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
The broadly neutralizing antibody (bnAb) VRC01 is being evaluated for its efficacy to prevent HIV-1 infection in the Antibody Mediated Prevention (AMP) trials. A secondary objective of AMP utilizes sieve analysis to investigate how VRC01 prevention efficacy (PE) varies with HIV-1 envelope (Env) amino acid (AA) sequence features. An exhaustive analysis that tests how PE depends on every AA feature with sufficient variation would have low statistical power. To design an adequately powered primary sieve analysis for AMP, we modeled VRC01 neutralization as a function of Env AA sequence features of 611 HIV-1 gp160 pseudoviruses from the CATNAP database, with objectives: (1) to develop models that best predict the neutralization readouts; and (2) to rank AA features by their predictive importance with classification and regression methods. The dataset was split in half, and machine learning algorithms were applied to each half, each analyzed separately using cross-validation and hold-out validation. We selected Super Learner, a nonparametric ensemble-based cross-validated learning method, for advancement to the primary sieve analysis. This method predicted the dichotomous resistance outcome of whether the IC50 neutralization titer of VRC01 for a given Env pseudovirus is right-censored (indicating resistance) with an average validated AUC of 0.868 across the two hold-out datasets. Quantitative log IC50 was predicted with an average validated R2 of 0.355. Features predicting neutralization sensitivity or resistance included 26 surface-accessible residues in the VRC01 and CD4 binding footprints, the length of gp120, the length of Env, the number of cysteines in gp120, the number of cysteines in Env, and 4 potential N-linked glycosylation sites; the top features will be advanced to the primary sieve analysis. This modeling framework may also inform the study of VRC01 in the treatment of HIV-infected persons.
Collapse
Affiliation(s)
- Craig A. Magaret
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David C. Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Williamson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bhavesh R. Borate
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adam S. Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Noah Simon
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Christopher Simpkins
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David Montefiori
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michal Juraska
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shelly Karuna
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nyaradzo M. Mgodi
- University of Zimbabwe College of Health Sciences Clinical Trials Research Centre, Harare, Zimbabwe
| | - Srilatha Edugupanti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Dingens AS, Arenz D, Weight H, Overbaugh J, Bloom JD. An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity 2019; 50:520-532.e3. [PMID: 30709739 PMCID: PMC6435357 DOI: 10.1016/j.immuni.2018.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular & Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Dana Arenz
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Haidyn Weight
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
5
|
Kumar R, Ozorowski G, Kumar V, Holden LG, Shrivastava T, Patil S, Deshpande S, Ward AB, Bhattacharya J. Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glycoprotein (Env) highly resistant to CD4-induced conformational changes. J Biol Chem 2017; 292:15849-15858. [PMID: 28743743 PMCID: PMC5612115 DOI: 10.1074/jbc.m117.803056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/22/2017] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 envelope (Env) is a glycoprotein consisting of a trimer of heterodimers containing gp120 and gp41 subunits that mediates virus entry and is a major target of broadly neutralizing antibodies (bnAbs) developed during infection in some individuals. The engagement of the HIV-1 gp120 glycoprotein to the host CD4 protein triggers conformational changes in gp120 that allow its binding to co-receptors and is necessary for virus entry to establish infection. Native-like HIV-1 Env immunogens representing distinct clades have been proposed to improve immunogenicity. In the present study, we examined the basis of resistance of an HIV-1 B/C recombinant Env (LT5.J4b12C) to non-neutralizing antibodies targeting CD4-induced Env epitopes in the presence of soluble CD4 (sCD4). Using native polyacrylamide gel shift assay and negative-stain EM, we found that the prefusion conformational state of LT5.J4b12C trimeric Env was largely unaffected in the presence of excess sCD4 with most Env trimers appearing to be in a ligand-free state. This resistance to CD4-induced conformational changes was associated with a lower affinity for CD4. Moreover, the LT5.J4b12C trimeric Env preferentially bound to the neutralizing antibodies compared with non-neutralizing antibodies. Taken together, we report on an HIV-1 B/C recombinant, native-like trimeric Env protein that is highly resistant to CD4-induced conformational changes but displays epitopes recognized by a diverse array of bnAbs. Such features make this B/C recombinant trimeric Env a useful addition to the pool of other recently identified native-like HIV-1 Env trimers suitable for use as antigenic bait for bnAb isolation, structural studies, and use as potential immunogens.
Collapse
Affiliation(s)
- Rajesh Kumar
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - Vivek Kumar
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Lauren G Holden
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - Tripti Shrivastava
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shilpa Patil
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Suprit Deshpande
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - Jayanta Bhattacharya
- From the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India, .,International AIDS Vaccine Initiative, New York, New York 10004
| |
Collapse
|
6
|
Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 2017; 91:JVI.02219-16. [PMID: 28003492 DOI: 10.1128/jvi.02219-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.
Collapse
|
7
|
Twist in the Tail: Escape from HIV Neutralising Antibodies at a Single Site Confers Broad Susceptibility to Others. EBioMedicine 2016; 12:14-15. [PMID: 27667177 PMCID: PMC5078612 DOI: 10.1016/j.ebiom.2016.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Bradley T, Trama A, Tumba N, Gray E, Lu X, Madani N, Jahanbakhsh F, Eaton A, Xia SM, Parks R, Lloyd KE, Sutherland LL, Scearce RM, Bowman CM, Barnett S, Abdool-Karim SS, Boyd SD, Melillo B, Smith AB, Sodroski J, Kepler TB, Alam SM, Gao F, Bonsignori M, Liao HX, Moody MA, Montefiori D, Santra S, Morris L, Haynes BF. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine 2016; 12:196-207. [PMID: 27612593 PMCID: PMC5078591 DOI: 10.1016/j.ebiom.2016.08.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023] Open
Abstract
Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly sensitive (tier-1) viruses or rare cases of vaccine-matched neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we isolated antibodies from an HIV-1-infected individual that targeted the gp41 membrane-proximal external region (MPER) that may have selected single-residue changes in viral variants in the MPER that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV-1 Env. Similarly, a single change in the MPER in a second virus from another infected-individual also conferred enhanced neutralization sensitivity. These gp41 single-residue changes thus transformed tier-2 viruses into tier-1 viruses that were sensitive to vaccine-elicited tier-1 neutralizing antibodies. These data demonstrate that Env amino acid changes within the MPER bnAb epitope of naturally-selected escape viruses can increase neutralization sensitivity to multiple types of neutralizing antibodies, and underscore the critical importance of the MPER for maintaining the integrity of the tier-2 HIV-1 trimer. Amino acid changes in the HIV gp41 MPER can regulate neutralization sensitivity of distal epitopes. MPER antibodies isolated early are resistant to MPER changes that enhance neutralization sensitivity. HIV gp41 MPER is critical for determining overall HIV envelope conformations.
The HIV-1 envelope protein (Env) is the primary target for neutralizing antibodies. Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly neutralization-sensitive (tier-1) or rare vaccine-matched more neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we identified changes that occurred in two HIV-1-infected individuals in the membrane proximal region of the HIV-1 Env that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV Env. These single-residue changes thus transformed tier-2 viruses into tier-1 viruses, highlighting the importance of MPER residues in maintaining neutralization-resistant virus.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ashley Trama
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Nancy Tumba
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Elin Gray
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Navid Madani
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Krissey E Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan Barnett
- Novartis Vaccines and Diagnostics, Inc., Cambridge, MA, USA
| | - Salim S Abdool-Karim
- Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Columbia University, New York, NY 10032, USA
| | | | - Bruno Melillo
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B Smith
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Sodroski
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa; Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2131, South Africa
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Yasmeen A, Ringe R, Derking R, Cupo A, Julien JP, Burton DR, Ward AB, Wilson IA, Sanders RW, Moore JP, Klasse PJ. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology 2014; 11:41. [PMID: 24884783 PMCID: PMC4067080 DOI: 10.1186/1742-4690-11-41] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022] Open
Abstract
Background The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. Results We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus. Conclusions The antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
10
|
A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 2013; 9:e1003618. [PMID: 24068931 PMCID: PMC3777863 DOI: 10.1371/journal.ppat.1003618] [Citation(s) in RCA: 756] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023] Open
Abstract
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
Collapse
|
11
|
Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J Virol 2013; 87:9873-85. [PMID: 23824824 DOI: 10.1128/jvi.01226-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.
Collapse
|
12
|
Petitdemange C, Achour A, Dispinseri S, Malet I, Sennepin A, Ho Tsong Fang R, Crouzet J, Marcelin AG, Calvez V, Scarlatti G, Debré P, Vieillard V. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion. Clin Infect Dis 2013; 57:745-55. [PMID: 23696512 DOI: 10.1093/cid/cit335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. METHODS Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. RESULTS Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. CONCLUSIONS These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.
Collapse
|
13
|
Neutralizing antibody escape during HIV-1 mother-to-child transmission involves conformational masking of distal epitopes in envelope. J Virol 2012; 86:9566-82. [PMID: 22740394 DOI: 10.1128/jvi.00953-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
HIV-1 variants transmitted to infants are often resistant to maternal neutralizing antibodies (NAbs), suggesting that they have escaped maternal NAb pressure. To define the molecular basis of NAb escape that contributes to selection of transmitted variants, we analyzed 5 viruses from 2 mother-to-child transmission pairs, in which the infant virus, but not the maternal virus, was resistant to neutralization by maternal plasma near transmission. We generated chimeric viruses between maternal and infant envelope clones obtained near transmission and examined neutralization by maternal plasma. The molecular determinants of NAb escape were distinct, even when comparing two maternal variants to the transmitted infant virus within one pair, in which insertions in V4 of gp120 and substitutions in HR2 of gp41 conferred neutralization resistance. In another pair, deletions and substitutions in V1 to V3 conferred resistance, but neither V1/V2 nor V3 alone was sufficient. Although the sequence determinants of escape were distinct, all of them involved modifications of potential N-linked glycosylation sites. None of the regions that mediated escape were major linear targets of maternal NAbs because corresponding peptides failed to compete for neutralization. Instead, these regions disrupted multiple distal epitopes targeted by HIV-1-specific monoclonal antibodies, suggesting that escape from maternal NAbs occurred through conformational masking of distal epitopes. This strategy likely allows HIV-1 to utilize relatively limited changes in the envelope to preserve the ability to infect a new host while simultaneously evading multiple NAb specificities present in maternal plasma.
Collapse
|
14
|
Ringe R, Bhattacharya J. Association of enhanced HIV-1 neutralization by a single Y681H substitution in gp41 with increased gp120-CD4 interaction and macrophage infectivity. PLoS One 2012; 7:e37157. [PMID: 22606344 PMCID: PMC3351407 DOI: 10.1371/journal.pone.0037157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/14/2012] [Indexed: 11/18/2022] Open
Abstract
HIV-1 variants that show unusual sensitivity to autologous antibodies due to presence of critical neutralization signatures would likely contribute towards rational envelope based HIV-1 vaccine design. In the present study, we found that presence of a naturally occurring H681 in gp41 membrane proximal external region (MPER) of a clade C envelope (Env) obtained from a recently infected Indian patient conferred increased sensitivity to autologous and heterologous plasma antibodies. Furthermore, Env-pseudotyped viruses expressing H681 showed increased sensitivity to soluble CD4, b12 and 4E10 monoclonal antibodies both in related and unrelated Envs and was corroborated with increased Env susceptibility and binding to cellular CD4 as well as with prolonged exposure of MPER epitopes. The increased gp120-CD4 interaction was further associated with relative exposure of CD4-induced epitopes and macrophage infectivity. In summary, our data indicate that Y681H substitution exposes neutralizing epitopes in CD4bs and MPER towards comprehensive interference in HIV-1 entry.
Collapse
Affiliation(s)
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, Indian Council of Medical Research, Bhosari, Pune, India
- * E-mail:
| |
Collapse
|
15
|
Gavrilov BK, Rogers K, Fernandez-Sainz IJ, Holinka LG, Borca MV, Risatti GR. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 2011; 420:135-45. [DOI: 10.1016/j.virol.2011.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022]
|
16
|
Lovelace E, Xu H, Blish CA, Strong R, Overbaugh J. The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology 2011; 421:235-44. [PMID: 22029936 DOI: 10.1016/j.virol.2011.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
The detailed interactions between antibodies and the HIV-1 envelope protein that lead to neutralization are not well defined. Here, we show that several conservative substitutions in the envelope gp41 led to a ~100 fold increase in neutralization sensitivity to monoclonal antibodies (MAbs) that target gp41: 4E10 and 2F5. Substitution at position 675 alone did not impact neutralization susceptibility to MAbs that recognize more distal sites in gp120 (b12, VRC01, PG9). However, changes at position 675 in conjunction with Thr to Ala at position 569 increased the neutralization sensitivity to all gp41 and gp120 MAbs and plasma, in some cases by more than 1000-fold. Interestingly, the T569A change had a dramatic effect on b12 binding, but no effect on neutralization sensitivity. This finding suggests that antibody neutralization may occur through a multi-step pathway that includes distinct changes in envelope conformation that may affect binding but not neutralization susceptibility.
Collapse
Affiliation(s)
- Erica Lovelace
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
17
|
Selection with a peptide fusion inhibitor corresponding to the first heptad repeat of HIV-1 gp41 identifies two genetic pathways conferring cross-resistance to peptide fusion inhibitors corresponding to the first and second heptad repeats (HR1 and HR2) of gp41. J Virol 2011; 85:12929-38. [PMID: 21994458 DOI: 10.1128/jvi.05391-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We generated four HIV-1 cultures that are resistant to a peptide fusion inhibitor corresponding to the first heptad repeat of gp41 in order to study mechanisms of resistance and gain insights into envelope glycoprotein-mediated membrane fusion. Two genetic pathways emerged that were defined by acquisition of a specific mutation in either the first or second heptad repeat region of gp41 (HR1 or the HR2, respectively). Each pathway was enriched in mutations that clustered in either HR2 and V3 or in HR1 and residues in or near CD4 contact sites. The gp41 mutations in both pathways not only accounted for resistance to the selecting HR1 peptide but also conferred cross-resistance to HR2 peptide fusion inhibitors and enhanced the stability of the six-helix bundle formed by the self-assembly of HR1 and HR2. The gp120 mutations alone enhanced fusion but did not appear to directly contribute to resistance. The implications of these findings for resistance mechanisms and regulation of envelope-mediated fusion are discussed.
Collapse
|
18
|
Gnanakaran S, Daniels MG, Bhattacharya T, Lapedes AS, Sethi A, Li M, Tang H, Greene K, Gao H, Haynes BF, Cohen MS, Shaw GM, Seaman MS, Kumar A, Gao F, Montefiori DC, Korber B. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS Comput Biol 2010; 6:e1000955. [PMID: 20949103 PMCID: PMC2951345 DOI: 10.1371/journal.pcbi.1000955] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022] Open
Abstract
A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.
Collapse
Affiliation(s)
- S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Marcus G. Daniels
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Alan S. Lapedes
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anurag Sethi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ming Li
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Haili Tang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Myron S. Cohen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - George M. Shaw
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Amit Kumar
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
19
|
Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. Proc Natl Acad Sci U S A 2009; 106:5318-23. [PMID: 19289833 DOI: 10.1073/pnas.0811713106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the mechanism of resistance of a HIV type 1 (HIV-1) R5 primary isolate, D1/85.16, to the small molecule CCR5 inhibitor, vicriviroc (VVC). Unlike other viruses resistant to this class of compound, D1/85.16 lacks sequence changes in the V3 region of the gp120 surface glycoprotein. Inspection of env sequences from D1/85.16 compared with those derived from the parental, inhibitor-sensitive virus, CC1/85, revealed a cluster of 3 conservative changes in the fusion peptide (FP) of the gp41 transmembrane glycoprotein that tracked with the resistance phenotype. Studies with engineered Env-chimeric and point-substituted viruses confirmed that these 3 FP residues were substantially responsible for VVC resistance without altering coreceptor usage, as assessed in both peripheral blood mononuclear cells and the TZM-bl cell line. VVC resistance is manifested differently in the 2 cell types, and there are assay-dependent complexities to the dose-response curves for the engineered resistant viruses. To explain them, we created a model for resistance and generated theoretical VVC inhibition curves that closely mimic the experimental data for the resistant viruses. The basis for the model is the existence of distinct forms of CCR5, with varying affinities for small molecule CCR5 inhibitors that are presumed to be present in different proportions on different cell types, and are used selectively by resistant HIV-1 variants when ligated with an inhibitor. Together, the experimental results and theoretical model may help understand how HIV-1 uses CCR5 to enter target cells under various conditions.
Collapse
|
20
|
Enhancing exposure of HIV-1 neutralization epitopes through mutations in gp41. PLoS Med 2008; 5:e9. [PMID: 18177204 PMCID: PMC2174964 DOI: 10.1371/journal.pmed.0050009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/20/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env) variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes. METHODS AND FINDINGS Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41) of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced neutralization sensitivity exceeded 1,000-fold in several cases. CONCLUSIONS Two amino acid mutations within gp41 were identified that expose multiple discontinuous neutralization epitopes on diverse HIV-1 Env proteins. These exposed epitopes were shielded on the unmodified viral Env proteins, and several of the exposed epitopes encompass desired target regions for protective antibodies. Env proteins containing these modifications could act as a scaffold for presentation of such conserved domains, and may aid in developing methods to target antibodies to such regions.
Collapse
|
21
|
Dey AK, David KB, Ray N, Ketas TJ, Klasse PJ, Doms RW, Moore JP. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus. Virology 2007; 372:187-200. [PMID: 18031785 DOI: 10.1016/j.virol.2007.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/01/2007] [Accepted: 10/16/2007] [Indexed: 01/07/2023]
Abstract
The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B.
Collapse
Affiliation(s)
- Antu K Dey
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The third variable region, V3, of the gp120 surface envelope glycoprotein is an approximately 35-residue-long, frequently glycosylated, highly variable, disulfide-bonded structure that has a major influence on HIV-1 tropism. Thus the sequence of V3, directly or indirectly, can determine which coreceptor (CCR5 or CXCR4) is used to trigger the fusion potential of the Env complex, and hence which cells the virus can infect. V3 also influences HIV-1's sensitivity to, and ability to escape from, entry inhibitors that are being developed as antiviral drugs. For some strains, V3 is a prominent target for HIV-1 neutralizing antibodies (NAbs); indeed, for many years it was considered to be the "principal neutralization determinant" (PND). Some efforts to use V3 as a vaccine target continue to this day, despite disappointing progress over more than a decade. Recent findings on the structure, function, antigenicity, and immunogenicity of V3 cast new doubts on the value of this vaccine approach. Here, we review recent advances in the understanding of V3 as a determinant of viral tropism, and discuss how this new knowledge may inform the development of HIV-1 drugs and vaccines.
Collapse
Affiliation(s)
- Oliver Hartley
- Department of Structural Biology and Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | | | | | | |
Collapse
|
23
|
McCaffrey RA, Saunders C, Hensel M, Stamatatos L. N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J Virol 2004; 78:3279-95. [PMID: 15016849 PMCID: PMC371088 DOI: 10.1128/jvi.78.7.3279-3295.2004] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined how asparagine-linked glycans within and adjacent to the V3 loop (C2 and C3 regions) and within the immunologically silent face (V4, C4, and V5 regions) of the human immunodeficiency virus (HIV) SF612 envelope affect the viral phenotype. Five of seven potential glycosylation sites are utilized when the virus is grown in human peripheral blood mononuclear cells, with the nonutilized sites lying within the V4 loop. Elimination of glycans within and adjacent to the V3 loop renders SF162 more susceptible to neutralization by polyclonal HIV(+)-positive and simian/human immunodeficiency virus-positive sera and by monoclonal antibodies (MAbs) recognizing the V3 loop, the CD4- and CCR5-binding sites, and the extracellular region of gp41. Importantly, our studies also indicate that glycans located within the immunologically silent face of gp120, specifically the C4 and V5 regions, also conferred on SF162 resistance to neutralization by anti-V3 loop, anti-CD4 binding site, and anti-gp41 MAbs but not by antibodies targeting the coreceptor binding site. We also observed that the amino acid composition of the V4 region contributes to the neutralization phenotype of SF162 by anti-V3 loop and anti-CD4 binding site MAbs. Collectively, our data support the proposal that the glycosylation and structure of the immunologically silent face of the HIV envelope plays an important role in defining the neutralization phenotype of HIV type 1.
Collapse
Affiliation(s)
- Ruth A McCaffrey
- Seattle Biomedical Research Institute. Department of Pathobiology, University of Washington, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
24
|
Bouma P, Leavitt M, Zhang PF, Sidorov IA, Dimitrov DS, Quinnan GV. Multiple interactions across the surface of the gp120 core structure determine the global neutralization resistance phenotype of human immunodeficiency virus type 1. J Virol 2003; 77:8061-71. [PMID: 12829845 PMCID: PMC161940 DOI: 10.1128/jvi.77.14.8061-8071.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Resistance to neutralization is an important characteristic of primary isolates of human immunodeficiency virus type 1 (HIV-1) that relates to the potential for successful vaccination to prevent infection and use of immunotherapeutics for treatment of established infection. In order to further elucidate mechanisms responsible for neutralization resistance, we studied the molecular mechanisms that determine the resistance of the primary virus isolate of the strain HIV-1 MN to neutralization by soluble CD4 (sCD4). As is the case for the global neutralization resistance phenotype, sCD4 resistance depended upon sequences in the amino-terminal heptad repeat region of gp41 (HR1), as well as on multiple functional interactions within the envelope complex. The functional interactions that determined the resistance included interactions between the variable loop 1 and 2 (V1/V2) region and sequences in or near the CD4 binding site (CD4bs) and with the V3 loop. Additionally, the V3 loop region was found to interact functionally with sequences in the outer domain of gp120, distant from the CD4bs and coreceptor-binding site, as well as with a residue thought to be located centrally in the coreceptor-binding site. These and previous results provide the basis for a model by which functional signals that determine the neutralization resistance, high-infectivity phenotype depend upon interactions occurring across the surface of the gp120 core structure and involving variable loop structures and gp41. This model should be useful in efforts to define epitopes that may be important for primary virus neutralization.
Collapse
Affiliation(s)
- Peter Bouma
- Division of Tropical Public Health, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
25
|
Purdy A, Case L, Duvall M, Overstrom-Coleman M, Monnier N, Chervonsky A, Golovkina T. Unique resistance of I/LnJ mice to a retrovirus is due to sustained interferon gamma-dependent production of virus-neutralizing antibodies. J Exp Med 2003; 197:233-43. [PMID: 12538662 PMCID: PMC2193815 DOI: 10.1084/jem.20021499] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Revised: 12/11/2002] [Accepted: 12/11/2002] [Indexed: 11/16/2022] Open
Abstract
Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-gamma production, because I/LnJ mice with targeted deletion of the INF-gamma gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-gamma-dependent humoral immune response.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Cross Reactions
- Female
- Genetic Variation
- Immunoglobulin G/biosynthesis
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Knockout
- Milk/virology
- Neutralization Tests
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Retroviridae Infections/virology
- Superantigens/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Alexandra Purdy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Beaumont T, van Nuenen A, Broersen S, Blattner WA, Lukashov VV, Schuitemaker H. Reversal of human immunodeficiency virus type 1 IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker with a progressive clinical course. J Virol 2001; 75:2246-52. [PMID: 11160728 PMCID: PMC114808 DOI: 10.1128/jvi.75.5.2246-2252.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of humoral immunity in controlling human immunodeficiency virus type 1 (HIV-1) is still controversial. The resistance of primary HIV-1 variants to neutralization by antibodies, sera from HIV-1-infected patients, and soluble CD4 protein has been suggested to be a prerequisite for the virus to establish persistence in vivo. To further test this hypothesis, we studied the neutralization sensitivity of two IIIB/LAV variants that were isolated from a laboratory worker who accidentally was infected with the T-cell-line-adapted neutralization-sensitive IIIB isolate. Compared to the original virus in the inoculum, the reisolated viruses showed an increased resistance to neutralization over time. The ratio of nonsynonymous to synonymous nucleotide substitutions in the envelope gene pointed to strong positive selection. The emergence of neutralization-resistant HIV preceded disease development in this laboratory worker. Our results imply that the neutralization resistance of primary HIV may indeed be considered an escape mechanism from humoral immune control.
Collapse
Affiliation(s)
- T Beaumont
- Department of Clinical Viro-Immunology, CLB Sanquin, and Laboratory for Experimental and Clinical Immunology, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Cheng-Mayer C, Brown A, Harouse J, Luciw PA, Mayer AJ. Selection for neutralization resistance of the simian/human immunodeficiency virus SHIVSF33A variant in vivo by virtue of sequence changes in the extracellular envelope glycoprotein that modify N-linked glycosylation. J Virol 1999; 73:5294-300. [PMID: 10364275 PMCID: PMC112584 DOI: 10.1128/jvi.73.7.5294-5300.1999] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported on the in vivo adaptation of an infectious molecular simian/human immunodeficiency virus (SHIV) clone, SHIVSF33, into a pathogenic biologic viral variant, designated SHIVSF33A. In the present study, we show that SHIVSF33A is resistant to neutralization by human immunodeficiency virus (HIV) and SHIV antisera. Multiple amino acid substitutions accumulated over time throughout the env gene of SHIVSF33A; some of them coincided with the acquisition of the neutralization resistance of the virus. Of interest are changes that resulted in the removal, repositioning, and addition of potential glycosylation sites within the V1, V2, and V3 regions of envelope gp120. To determine whether potential glycosylation changes within these principal neutralization domains of HIV type 1 formed the basis for the resistance to serum neutralization of SHIVSF33A, mutant viruses were generated on the backbone of parental SHIVSF33 and tested for their neutralization sensitivity. The mutations generated did not alter the in vitro replication kinetics or cytopathicity of the mutant viruses in T-cell lines. However, the removal of a potential glycosylation site in the V1 domain or the creation of such a site in the V3 domain did allow the virus to escape serum neutralization antibodies that recognized parental SHIVSF33. The combination of the V1 and V3 mutations conferred an additive effect on neutralization resistance over that of the single mutations. Taken together, these data suggest that (i) SHIV variants with changes in the Env SU can be selected in vivo primarily by virtue of their ability to escape neutralizing antibody recognition and (ii) carbohydrates play an important role in conferring neutralization escape, possibly by altering the structure of envelope gp120 or by shielding principal neutralization sites.
Collapse
Affiliation(s)
- C Cheng-Mayer
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
28
|
Park EJ, Quinnan GV. Both neutralization resistance and high infectivity phenotypes are caused by mutations of interacting residues in the human immunodeficiency virus type 1 gp41 leucine zipper and the gp120 receptor- and coreceptor-binding domains. J Virol 1999; 73:5707-13. [PMID: 10364321 PMCID: PMC112630 DOI: 10.1128/jvi.73.7.5707-5713.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralization resistance of human immunodeficiency virus type 1 (HIV-1) is a major impediment to vaccine development. We have found that residues of HIV-1 MN strain in the C terminus of gp120 and the leucine zipper (LZ) region of gp41 viral envelope proteins interact cooperatively to determine neutralization resistance and modulate infectivity. Further, results demonstrate that this interaction, by which regions of gp120 are assembled onto the LZ, involves amino acid residues intimately related to those which participate in the binding of the envelope to its receptor and coreceptor. Variations in this critical assembly structure determine the concordant, interdependent evolution of increased infectivity efficiency and neutralization resistance phenotypes of the envelopes. The results elucidate important structure-function relationships among epitopes that are important targets of vaccine development.
Collapse
Affiliation(s)
- E J Park
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
29
|
Zhang PF, Chen X, Fu DW, Margolick JB, Quinnan GV. Primary virus envelope cross-reactivity of the broadening neutralizing antibody response during early chronic human immunodeficiency virus type 1 infection. J Virol 1999; 73:5225-30. [PMID: 10233993 PMCID: PMC112575 DOI: 10.1128/jvi.73.6.5225-5230.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test the hypothesis that changing neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1) during chronic infection were a response to emergence of neutralization escape mutants, we cloned expressed and characterized envelope clones from patients in the Multicenter AIDS Cohort Study (MACS). Pseudotyped HIV-1 envelope clones obtained from differing time points were assessed for sensitivity to neutralization by using sera from different times from the same and different patients. Clones from early and late time points during chronic infection had similar neutralization sensitivity, and neutralizing antibody responses cross-reacted with early, late, and heterologous envelopes. The potential for broadly effective HIV-1 immunization is supported.
Collapse
Affiliation(s)
- P F Zhang
- Department of Preventive Medicine and Biometrics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
30
|
Wilson CC, Brown RC, Korber BT, Wilkes BM, Ruhl DJ, Sakamoto D, Kunstman K, Luzuriaga K, Hanson IC, Widmayer SM, Wiznia A, Clapp S, Ammann AJ, Koup RA, Wolinsky SM, Walker BD. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the ariel project for the prevention of transmission of HIV from mother to infant. J Virol 1999; 73:3975-85. [PMID: 10196293 PMCID: PMC104176 DOI: 10.1128/jvi.73.5.3975-3985.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Host immunologic factors, including human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL), are thought to contribute to the control of HIV type 1 (HIV-1) replication and thus delay disease progression in infected individuals. Host immunologic factors are also likely to influence perinatal transmission of HIV-1 from infected mother to infant. In this study, the potential role of CTL in modulating HIV-1 transmission from mother to infant was examined in 11 HIV-1-infected mothers, 3 of whom transmitted virus to their offspring. Frequencies of HIV-1-specific human leukocyte antigen class I-restricted CTL responses and viral epitope amino acid sequence variation were determined in the mothers and their infected infants. Maternal HIV-1-specific CTL clones were derived from each of the HIV-1-infected pregnant women. Amino acid substitutions within the targeted CTL epitopes were more frequently identified in transmitting mothers than in nontransmitting mothers, and immune escape from CTL recognition was detected in all three transmitting mothers but in only one of eight nontransmitting mothers. The majority of viral sequences obtained from the HIV-1-infected infant blood samples were susceptible to maternal CTL. These findings demonstrate that epitope amino acid sequence variation and escape from CTL recognition occur more frequently in mothers that transmit HIV-1 to their infants than in those who do not. However, the transmitted virus can be a CTL susceptible form, suggesting inadequate in vivo immune control.
Collapse
Affiliation(s)
- C C Wilson
- AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Quinnan GV, Zhang PF, Fu DW, Dong M, Alter HJ. Expression and characterization of HIV type 1 envelope protein associated with a broadly reactive neutralizing antibody response. AIDS Res Hum Retroviruses 1999; 15:561-70. [PMID: 10221533 DOI: 10.1089/088922299311088] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied envelope protein from a donor with nonprogressive HIV-1 infection whose serum contains broadly cross-reactive, primary virus NA. DNA was extracted from lymphocytes, which had been collected approximately 6 and 12 months prior to the time of collection of the cross-reactive serum, and env genes were synthesized, cloned, expressed on pseudoviruses, and phenotyped in NA assays. Two clones from each time point had identical V3 region nucleotide sequences, utilized CCR5 but not CXCR4 for cell entry, and had similar reactivities with reference sera. Analysis of the full nucleotide sequence of one clone (R2) demonstrated it to be subtype B and have normal predicted glycosylation. R2 pseudovirus was compared with others expressing env genes of various clades for neutralization by sera from U.S. donors (presumed or known subtype B infections), and from individuals infected with subtypes A, C, D, E, and F viruses. Neutralization by the U.S. sera of R2 and other clade B pseudoviruses was low to moderate, although R2 was uniquely neutralized by all. R2 was neutralized by 3/3, 3/3, 2/5, 5/8, and 3/4 clade A, C, D, E, and F sera, respectively. R2 and a clade E pseudovirus were neutralized by largely complementary groups of sera, potentially defining two antigenic subgroups of HIV-1. The results suggest that the epitope(s) that induced the cross-clade reactive NA in donor 2 may be expressed on the R2 envelope.
Collapse
Affiliation(s)
- G V Quinnan
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
32
|
Nara PL. Deceptive imprinting: insights into mechanisms of immune evasion and vaccine development. ADVANCES IN VETERINARY MEDICINE 1999; 41:115-34. [PMID: 9890013 DOI: 10.1016/s0065-3519(99)80012-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- P L Nara
- Biological Mimetics Inc., Frederick, Maryland 21702, USA
| |
Collapse
|
33
|
Cavacini LA, Emes CL, Wisnewski AV, Power J, Lewis G, Montefiori D, Posner MR. Functional and molecular characterization of human monoclonal antibody reactive with the immunodominant region of HIV type 1 glycoprotein 41. AIDS Res Hum Retroviruses 1998; 14:1271-80. [PMID: 9764911 DOI: 10.1089/aid.1998.14.1271] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunoreactivity, functional activity, and molecular features of a human monoclonal antibody (HMAb), F240, from an HIV-1-infected individual have been studied. Flow cytometric analysis demonstrated that F240 is reactive with cells infected with a broad range of laboratory isolates but not with uninfected cells. Reactivity of F240 is greatly enhanced by preincubation of infected cells with soluble CD4, and to a much lesser extent, with F105, an HMAb reactive with the CD4-binding site of gp120. This enhancement is temperature dependent, with maximum enhancement observed at 37 degrees C, and suggests that the F240 epitope may be more accessible after gp120 has bound to CD4 in vivo. Immunoblot analysis reveals antigen specificity of F240 for gp41 or its precursor gp160. F240 specificity is mapped to the immunodominant region of the gp41 ectodomain by Pepscan analysis. This epitope has been implicated in eliciting nonprotective antibodies that enhance infection in the presence of complement. Consistent with this, F240 failed to neutralize laboratory isolates and enhanced viral infection in a complement-dependent manner. The F240 VH demonstrates extensive somatic mutations compared with the product of its closest homologous germline gene VH3-3.11. Most amino acid substitutions occur in CDR2, characteristic of an antigen-driven response, and in FR3, a phenomenon observed in other anti-HIV-1 envelope HMAbs. Primary structure analysis of the F240 heavy chain revealed strong homology in the CDR domains to an HMAb (3D6) reactive with the same gp41 region, which suggests that these HMAbs could define a potential human antibody clonotype.
Collapse
Affiliation(s)
- L A Cavacini
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Valli PJ, Lukashov VV, Heeney JL, Goudsmit J. Shortening of the symptom-free period in rhesus macaques is associated with decreasing nonsynonymous variation in the env variable regions of simian immunodeficiency virus SIVsm during passage. J Virol 1998; 72:7494-500. [PMID: 9696846 PMCID: PMC109987 DOI: 10.1128/jvi.72.9.7494-7500.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During six blood passages of simian immunodeficiency virus SIVsm in rhesus macaques, the asymptomatic period shortened from 18 months to 1 month. To study SIVsm envelope gene (env) evolution during passage in rhesus macaques, the C1 to CD4 binding regions of multiple clones were sequenced at seroconversion and again at death. The env variation found during adaptation was almost completely confined to the variable regions. Intrasample sequence variation among clones at seroconversion was lower than the variation among clones at death. Intrasample variation among clones from a single time point as well as intersample variation decreased during the passage. In the variable regions, the mean number of intrasample nonsynonymous nucleotide substitutions decreased from the first passage (5.26 x 10(-2) +/- 0.6 x 10(-2) per site) to the fifth passage (2.24 x 10(-2) +/- 0.4 x 10(-2) per site), whereas in the constant regions, the mean number of intrasample nonsynonymous nucleotide substitutions differed less between the first and fifth passages (1. 14 x 10(-2) +/- 0.27 x 10(-2) and 0.80 x 10(-2) +/- 0.24 x 10(-2) per site). Shortening of the asymptomatic period coincided with a rise in the Ks/Ka ratio (ratio between the number of synonymous [Ks] and the number of nonsynonymous [Ka] substitutions) from 1.080 in passage one to 1.428 in passage five and mimicked the difference seen in the intrahost evolution between asymptomatic and fast-progressing individuals infected with human immunodeficiency virus type 1. The distribution of nonsynonymous substitutions was biphasic, with most of the adaptation of env variable regions occurring in the first three passages. This phase, in which the symptom-free period fell to 4 months, was followed by a plateau phase of apparently reduced adaptation. Analysis of codon usage revealed decreased codon redundancy in the variable regions. Overall, the results suggested a biphasic pattern of adaptation and evolution, with extremely rapid selection in the first three passages followed by an equilibrium or stabilization of the variation between env clones at different time points in passages four to six.
Collapse
Affiliation(s)
- P J Valli
- Department of Human Retrovirology, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Park EJ, Vujcic LK, Anand R, Theodore TS, Quinnan GV. Mutations in both gp120 and gp41 are responsible for the broad neutralization resistance of variant human immunodeficiency virus type 1 MN to antibodies directed at V3 and non-V3 epitopes. J Virol 1998; 72:7099-107. [PMID: 9696803 PMCID: PMC109931 DOI: 10.1128/jvi.72.9.7099-7107.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 06/01/1998] [Indexed: 11/20/2022] Open
Abstract
The escape of human immunodeficiency virus type 1 from effects of neutralizing antibodies was studied by using neutralization-resistant (NR) variants generated by growing the neutralization-sensitive (NS) wild-type MN virus in the presence of human serum with neutralizing antibodies, more than 99% of which were directed at the V3 region of gp120. The variants obtained had broad neutralization resistance to human sera, without limitation with respect to the V3 specificity of the sera. The molecular basis for the resistance was evaluated with molecularly cloned viruses, as well as with pseudoviruses expressing envelope glycoproteins of the NS and NR phenotypes. Nucleotide sequence analyses comparing NS and NR clones revealed a number of polymorphisms, including six in the V1/V2 region, two in C4/V5 of gp120, three in the leucine zipper (LZ) domain of gp41, and two in the second external putative alpha-helix region of gp41. A series of chimeras from NS and NR env genes was constructed, and each was presented on pseudoviruses to locate the domain(s) which conferred the phenotypic changes. The neutralization phenotypes of the chimeric clones were found to be dependent on mutations in both the C4/V5 region of gp120 and the LZ region of gp41. Additionally, interaction between mutations in gp120 and gp41 was demonstrated in that a chimeric env gene consisting of a gp120 coding sequence from an NS clone and a gp41 sequence from an NR clone yielded a pseudovirus with minimal infectivity. The possible significance of predicted amino acid changes in these domains is discussed. The results indicate that polyvalent antibodies predominantly directed against V3 can induce NR through selection for mutations that alter interactions of other domains in the envelope complex.
Collapse
Affiliation(s)
- E J Park
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
36
|
Quinnan GV, Zhang PF, Fu DW, Dong M, Margolick JB. Evolution of neutralizing antibody response against HIV type 1 virions and pseudovirions in multicenter AIDS cohort study participants. AIDS Res Hum Retroviruses 1998; 14:939-49. [PMID: 9686640 DOI: 10.1089/aid.1998.14.939] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in neutralizing antibody (NA) titers in stored sera collected over 5 years from 10 participants in the Multicenter AIDS Cohort Study (MACS) were evaluated. The participants were HIV-1 infected on enrollment in the MACS, and remained AIDS free during the 5-year study interval. Seven viruses derived from molecular clones were used in NA assays; five of the viruses were T tropic (NL4-3, ALA1, NY5, SF2, and Z2Z6) and two were M tropic [AD8 and NL(SF162)]. In addition, pseudoviruses (PVs) were constructed that expressed envelope genes from NL4-3, ALA1, AD8, and SF162 and from primary viruses from two MACS participants (PV-9 and PV-10). There was significant correlation between NA titers obtained in four of five virus/PV comparisons, while the SF162 PV was more sensitive to NA than the corresponding virus. Comparable changes in NA titers were detected using viruses and PVs. Fourfold or greater increases in NA titers were noted in each of the participants, involving recognition of one to five of the nine strains tested. In some patients these NA titer changes appeared as discrete episodes of immune responses, while in others there may have been either multiple episodes or continuous evolution of the NA responses. The data indicate that changes in NA specificity occur during HIV-1 infection, which may result from the occurrence of neutralization escape mutation. The use of PVs for the study of phenotypic characteristics of envelope glycoproteins should facilitate the study of neutralization escape mutation in HIV-1 infection.
Collapse
Affiliation(s)
- G V Quinnan
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
37
|
Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, Gershoni J, Robinson J, Moore J, Sodroski J. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998; 72:4694-703. [PMID: 9573233 PMCID: PMC109994 DOI: 10.1128/jvi.72.6.4694-4703.1998] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.
Collapse
Affiliation(s)
- N Sullivan
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valli PJ, Goudsmit J. Structured-tree topology and adaptive evolution of the simian immunodeficiency virus SIVsm envelope during serial passage in rhesus macaques according to likelihood mapping and quartet puzzling. J Virol 1998; 72:3673-83. [PMID: 9557648 PMCID: PMC109588 DOI: 10.1128/jvi.72.5.3673-3683.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Species-specific strains of simian immunodeficiency virus (SIV) are nonpathogenic in African primates. The SIV strain most closely related to human immunodeficiency virus type 2 (HIV-2) is SIVsm, the strain specific to the sooty mangabey (Cercocebus atys). Infection of Asian primates with SIV causes AIDS and allows the study of the adaptive evolution of a lentivirus to replicate efficiently in a new host, providing a useful animal model of HIV infection and AIDS in humans. Serial passage of SIVsm from sooty mangabeys in rhesus macaques drastically shortened the time of disease progression from 1.5 years to 1 month as the retrovirus adapted to these Asian hosts. In the present study we analyzed the quasispecies nature of the SIVsm envelope gene (env) during serial population passage in rhesus macaques. We asked ourselves if phylogenetic evidence could be provided for the structured topology of the SIVsm env tree and subsequently for the adaptive evolution of SIVsm env. Likelihood mapping showed that phylogenetic reconstruction of the passage was possible because a high percentage of the sequence data had a "tree-like" form. Subsequently, quartet puzzling was used and produced a phylogeny with a structure parallel to the known infection history. The adaptation of SIVsm to Asian rhesus macaques appears to be an ordered process in which the env evolves in a tree-like manner, particularly in its constant regions.
Collapse
Affiliation(s)
- P J Valli
- Department of Human Retrovirology, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
39
|
Geffin RB, Scott GB, Melenwick M, Hutto C, Lai S, Boots LJ, McKenna PM, Kessler JA, Conley AJ. Association of antibody reactivity to ELDKWA, a glycoprotein 41 neutralization epitope, with disease progression in children perinatally infected with HIV type 1. AIDS Res Hum Retroviruses 1998; 14:579-90. [PMID: 9591712 DOI: 10.1089/aid.1998.14.579] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The association between antibody reactivity to the neutralizing epitope ELDKWA in the transmembrane glycoprotein gp41 and disease progression was investigated in 29 children perinatally infected with HIV-1. Levels of antibody reactivity to this epitope, measured over time, were associated with absolute CD4+ lymphocyte numbers and disease status, and inversely associated with the levels of acid-dissociated p24 antigen in the plasma. Early virus isolates from 10 of 12 children with no detectable antibody reactivity to this epitope were sequenced. Only three contained sequences that differed from the consensus, indicating that this epitope is well conserved in this population. None of these three children developed antibodies to the autologous sequences, indicating that at least 80% of children with negative antibody reactivity to this epitope were true nonresponders. Together, these results indicate that the ELDKWA determinant could be an important component in the formulation of a vaccine or for immunotherapeutic approaches to HIV-1 infection.
Collapse
Affiliation(s)
- R B Geffin
- Department of Pediatrics, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lukashov VV, Kuiken CL, Goudsmit J. Intrahost human immunodeficiency virus type 1 evolution is related to length of the immunocompetent period. J Virol 1995; 69:6911-6. [PMID: 7474108 PMCID: PMC189608 DOI: 10.1128/jvi.69.11.6911-6916.1995] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The antigenic diversity threshold theory predicts that antigenic sites of human immunodeficiency virus type 1, such as the V3 region of the external glycoprotein gp120, evolve more rapidly during the symptom-free period in individuals progressing to AIDS than in those who remain asymptomatic for a long time. To test this hypothesis, genomic RNA sequences were obtained from the sera of 44 individuals at seroconversion and 5 years later. The mean number of nonsynonymous nucleotide substitutions in the V3 region of the viruses circulating in 31 nonprogressors (1.1 x 10(-2) +/- 0.1 x 10(-2) per site per year) was higher than the corresponding value for 13 progressors (0.66 x 10(-2) +/- 0.1 x 10(-2) per site per year) (P < 0.01), while no difference between the mean numbers of synonymous substitutions in the two groups was seen (0.37 x 10(-2) +/- 0.1 x 10(-2) and 0.51 x 10(-2) +/- 0.2 x 10(-2) per site per year for nonprogressors and progressors, respectively; P > 0.1). The mean ratios of synonymous nucleotide p distance to nonsynonymous p distance were 0.35 for nonprogressors and 0.62 for progressors. The number of nonsynonymous substitutions was not associated with virus load or virus phenotype, which are established predictors of disease progression, but correlated strongly with the duration of the immunocompetent period (r2 = 0.41; P = 0.001). This indicates that there is no causative relationship between intrahost evolution and CD4+ cell decline. Our data suggest that intrahost evolution in human immunodeficiency virus type 1 infection is driven by selective forces, the strength of which is related to the duration of the immunocompetent period.
Collapse
Affiliation(s)
- V V Lukashov
- Human Retrovirus Laboratory, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Hogervorst E, de Jong J, van Wijk A, Bakker M, Valk M, Nara P, Goudsmit J. Insertion of primary syncytium-inducing (SI) and non-SI envelope V3 loops in human immunodeficiency virus type 1 (HIV-1) LAI reduces neutralization sensitivity to autologous, but not heterologous, HIV-1 antibodies. J Virol 1995; 69:6342-51. [PMID: 7666535 PMCID: PMC189533 DOI: 10.1128/jvi.69.10.6342-6351.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of the study was to investigate the influence of V3 loops from naturally occurring viruses on the neutralization sensitivity of a molecularly cloned virus. A selection of well-defined syncytium-inducing (SI) and non-SI V3 loops of a single human immunodeficiency virus type 1-infected individual (H594) and the V3 regions of two SI laboratory strains were inserted in an infectious molecular clone of human immunodeficiency type 1 LAI. Neutralization was performed with a heterologous serum pool and autologous patient serum, using the virus reduction neutralization assay and peripheral blood lymphocytes as target cells. High sensitivity of the chimeric viruses containing the laboratory strain V3 regions to neutralization by H594 sequential sera as well as the heterologous serum pool was found. A statistically significant correlation between the sensitivities of these viruses was seen. In contrast, insertion of the primary isolate NSI and SI envelope V3 loops significantly reduced the neutralization by autologous serum but not by the heterologous serum pool. No correlation was found between the neutralization of the viruses with laboratory strain-derived V3 regions and the viruses with primary isolate V3 domains. We conclude that heterologous antibodies are able to neutralize infectious molecular clones with V3 loops of both SI and NSI viruses, regardless of whether they originated from laboratory strains or primary isolates. However, serum of patient H594 discriminated between the two types of viruses and showed reduced neutralization of the viruses with the autologous NSI and SI primary isolate V3 loops. These results indicated that the neutralization sensitivity of the viruses depended on the capacity of the V3 region to influence the conformation of the virus envelope. These V3-dependent conformational changes partially explain the neutralization sensitivity of laboratory strains and the relative neutralization resistance of primary isolates.
Collapse
Affiliation(s)
- E Hogervorst
- Human Retrovirus Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Javaherian K, Zuchowski L, Clark FT. Alanine substitution of two arginines in amino terminus of V3 of SIV disrupts CD4 binding whereas a similar replacement of two amino acids, lysine and arginine, in the carboxyl half of V3 prevents binding of a neutralizing monoclonal antibody. AIDS Res Hum Retroviruses 1995; 11:1101-5. [PMID: 8554907 DOI: 10.1089/aid.1995.11.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A series of amino acid substitutions were carried out in the V3 loop of SIV gp120 to investigate their effects on binding of the envelope to CD4 and neutralizing monoclonal antibodies. Alanine replacement of two adjacent arginines at the amino terminus of V3 resulted in a molecule that bound neither sCD4 nor conformation-dependent neutralizing monoclonal KK5 and KK9. A similar substitution of two amino acids, lysine and arginine, in the carboxyl half of V3 disrupted binding to KK9 without affecting CD4 binding. Removal of V3 from the envelope gave rise to a molecule that was not secreted. These data suggest a close linkage between V3 and CD4 binding domains of gp120, although neutralizing antibodies directed to V3 do not block binding of gp120 to CD4. We propose that differences in the modes of interactions of the V3 disulfide loops with CD4 in SIV and HIV may be responsible for the observed different neutralizing properties of the two V3 loops.
Collapse
Affiliation(s)
- K Javaherian
- Repligen Corporation, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
43
|
|
44
|
Neurath AR, Strick N, Lin K, Jiang S. Multifaceted consequences of anti-gp41 monoclonal antibody 2F5 binding to HIV type 1 virions. AIDS Res Hum Retroviruses 1995; 11:687-96. [PMID: 7576928 DOI: 10.1089/aid.1995.11.687] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A human monoclonal antibody (MAb) (2F5) neutralizing a variety of laboratory strains and clinical isolates of the human immunodeficiency virus type 1 (HIV-1) and binding to an epitope of the envelope glycoprotein gp41 encompassing the amino acid sequence ELDKWA has been described (Muster T et al., J Virol 1993;67:6642-6647). It was suggested that an immunogen eliciting virus-neutralizing antibodies having a specificity similar to that of MAb 2F5 should be considered as a component of HIV-1 vaccines. Efforts in this direction would benefit from understanding the mechanism whereby MAb 2F5 neutralizes the infectivity of HIV-1. The segment of gp41 encompassing residues ELDKWA has so far not been directly implicated in initiation of infection by HIV-1, suggesting that MAb 2F5 might affect other sites on HIV-1 envelope glycoproteins playing a role in virus entry into target cells. We provide here evidence that MAb 2F5 binding to HIV-1 virus particles decreases the accessibility or conformation of the gp41 fusion domain and of gp120 domains, including the binding site for the CD4 cell receptor. These apparently indirect consequences of MAb 2F5 binding to HIV-1 are likely to account for or contribute to the virus-neutralizing activity of this MAb.
Collapse
Affiliation(s)
- A R Neurath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021, USA
| | | | | | | |
Collapse
|
45
|
Cook RF, Berger SL, Rushlow KE, McManus JM, Cook SJ, Harrold S, Raabe ML, Montelaro RC, Issel CJ. Enhanced sensitivity to neutralizing antibodies in a variant of equine infectious anemia virus is linked to amino acid substitutions in the surface unit envelope glycoprotein. J Virol 1995; 69:1493-9. [PMID: 7853482 PMCID: PMC188739 DOI: 10.1128/jvi.69.3.1493-1499.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Serial passage of the prototype (PR) cell-adapted Wyoming strain of equine infectious anemia virus (EIAV) in fetal donkey dermal (FDD) rather than fetal horse (designated fetal equine kidney [FEK]) cell cultures resulted in the generation of a variant virus strain which produced accelerated cytopathic effects in FDD cells and was 100- to 1,000-fold more sensitive to neutralizing antibodies than its parent. This neutralization-sensitive variant was designated the FDD strain. Although there were differences in glycosylation between the PR and FDD strains, passage of the FDD virus in FEK cells did not reduce its sensitivity to neutralizing antibody. Nucleotide sequencing of the region encoding the surface unit (SU) protein from the FDD strain revealed nine amino acid substitutions compared with the PR strain. Two of these substitutions resulted in changes in the polarity of charge, four caused the introduction of a charged residue, and three had no net change in charge. Nucleotide sequence analysis was extended to the region of the FDD virus genome encoding the extracellular domain of the transmembrane envelope glycoprotein (TM). Unlike the situation with the FDD virus coding region, there were minor variations in nucleotide sequence between individual molecular clones containing this region of the TM gene. Although each clone contained three nucleotide substitutions compared with the PR strain, only one of these was common to all, and this did not affect the amino acid content. Of the remaining two nucleotide substitutions, only one resulted in an amino acid change, and in each case, this change appeared to be conservative. To determine if amino acid substitutions in the SU protein of FDD cell-grown viruses were responsible for the enhanced sensitivity to neutralizing antibodies, chimeric viruses were constructed by using an infectious molecular clone of EIAV. These chimeric viruses contained all of the amino acid substitutions found in the FDD virus strain and were significantly more sensitive to neutralizing antibodies than viruses from the parental (PR) molecular clone. These results demonstrated that sensitivity to neutralizing antibodies in EIAV can be conferred by amino acid residues in the SU protein. However, such amino acid substitutions were not sufficient to enhance cytopathogenicity, as the chimeric viruses did not cause excessive degenererative effects in FDD cells, as was observed with the parental FDD virus strain.
Collapse
Affiliation(s)
- R F Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington 40546
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pincus SH, Tolstikov VV. Anti-human immunodeficiency virus immunoconjugates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:205-47. [PMID: 7748796 DOI: 10.1016/s1054-3589(08)61014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S H Pincus
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
47
|
Vicenzi E, Dimitrov DS, Engelman A, Migone TS, Purcell DF, Leonard J, Englund G, Martin MA. An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences. J Virol 1994; 68:7879-90. [PMID: 7966578 PMCID: PMC237250 DOI: 10.1128/jvi.68.12.7879-7890.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonoverlapping deletions that eliminated the 5' (HIV-1US/603del), middle (HIV-1U5/206del), and 3' (HIV-1U5/604del) thirds of the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) were studied for their effects on virus replication (transient transfection of HeLa cells) and infectivity (T-cell lines and peripheral blood mononuclear cells). All three mutants exhibited a wild-type phenotype in directing the production and release of virus particles from transfected HeLa cells. In infectivity assays, HIV-1U5/206del was usually indistinguishable from wild-type virus whereas HIV-1U%/603del was unable to infect human peripheral blood mononuclear cells or MT4 and CEM cells. Investigations of HIV-1U5/603del particles revealed a packaging defect resulting in a 10-fold reduction of encapsidated genomic RNA. The HIV-1U5/604del mutant either was noninfectious or exhibited delayed infection kinetics, depending on the cell type and multiplicity of infection. Quantitative competitive PCR indicated that HIV-1U5/604del synthesized normal amounts of viral DNA in newly infected cells. During the course of a long-term infectivity assay, a revertant of the HIV-1U5/604del mutant that displayed rapid infection kinetics emerged. Nucleotide sequence analysis indicated that the original 26-nucleotide deletion present in HIV-1U5/604del had been extended an additional 19 nucleotides in the revertant virus. Characterization of the HIV-1U5/604del mutant LTR in in vitro integration reactions revealed defective 3' processing and strand transfer activities that were partially restored when the revertant LTR substrate was used, suggesting that the reversion corrected a similar defect in the mutant virus.
Collapse
Affiliation(s)
- E Vicenzi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91:9770-4. [PMID: 7937889 PMCID: PMC44898 DOI: 10.1073/pnas.91.21.9770] [Citation(s) in RCA: 756] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To define the role of the human immunodeficiency virus type 1 (HIV-1) envelope proteins in virus infection, a series of peptides were synthesized based on various regions of the HIV-1 transmembrane protein gp41. One of these peptides, DP-178, corresponding to a region predictive of alpha-helical secondary structure (residues 643-678 of the HIV-1LAI isolate), has been identified as a potent antiviral agent. This peptide consistently blocked 100% of virus-mediated cell-cell fusion at < 5 ng/ml (IC90 approximately 1.5 ng/ml) and gave an approximately 10 times reduction in infectious titer of cell-free virus at approximately 80 ng/ml. The inhibitory activity was observed at peptide concentrations approximately 10(4) to 10(5) times lower than those at which cytotoxicity and cytostasis were detected. Peptide-mediated inhibition is HIV-1 specific in that approximately 10(2) to 10(3) times more peptide was required for inhibition of a human immunodeficiency virus type 2 isolate. Further experiments showed that DP-178 exhibited antiviral activity against both prototypic and primary HIV-1 isolates. As shown by PCR analysis of newly synthesized proviral DNA, DP-178 blocks an early step in the virus life cycle prior to reverse transcription. Finally, we discuss possible mechanisms by which DP-178 may exert its inhibitory activity.
Collapse
Affiliation(s)
- C T Wild
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
49
|
Abstract
Neutralizing antibodies in primate lentivirus infections closely parallel the pathogenic process. Fast progression to disease is concomitant with lack of neutralizing antibodies to autologous virus. Slow or no progression to disease is linked with production of neutralizing antibodies to autologous virus. Moreover, there is evidence from the monkey model that the extent to which neutralizing antibodies cross-react may also be linked with the pathogenic process. Accordingly, slow progression to disease is associated with the capacity to neutralize several isolates and, conversely, fast progressors neutralize single autologous isolates, if any at all. In humans, transmission of HIV-1 from mother to child occurs more frequently in absence of autologous and/or heterologous neutralizing antibodies to primary isolates. Thus there is evidence that virus neutralization-perhaps in concert with the biological properties of the virus-is an important factor in primate lentivirus pathogenesis and transmission. Open questions are i) the extent of heterologous neutralization in slow or nonprogressor HIV-1- and HIV-2-infected individuals, ii) role of neutralizing antibodies in sexual transmission, and iii) what governs the specificity, broad or narrow, of the neutralizing antibody response in different hosts. If we can answer these questions we may be able to design preventive measures against HIV infection and/or disease. Studies on the interaction of virus and immune system in the infected host may therefore not only teach us about the pathogenetic process, but also help in developing an HIV vaccine.
Collapse
Affiliation(s)
- E M Fenyö
- Department of Microbiology and Tumorbiology, MTC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
50
|
Schreiber M, Petersen H, Wachsmuth C, Müller H, Hufert FT, Schmitz H. Antibodies of symptomatic human immunodeficiency virus type 1-infected individuals are directed to the V3 domain of noninfectious and not of infectious virions present in autologous serum. J Virol 1994; 68:3908-16. [PMID: 8189527 PMCID: PMC236896 DOI: 10.1128/jvi.68.6.3908-3916.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The present study was designed to determine the antibody specificity for the human immunodeficiency virus type 1 (HIV-1) V3 domains of infectious and noninfectious virions present in the serum of AIDS patients. To accomplish this, HIV-1 was isolated in the presence of autologous antibodies from the serum samples of six AIDS patients in HIV-1-negative donor peripheral blood mononuclear cells by short-term cultivation. The isolated virus, defined as the infectious cell-free virus (iCFV), was characterized by sequence analysis of the proviral DNA coding for the third hypervariable (V3) region of the external glycoprotein gp120. This was carried out by amplifying and cloning the V3 region. In all six cases studied, 20 randomly selected V3 clones derived from the proviral DNA of the iCFV, 20 clones from patient cell-free virus, and 20 clones from cell-integrated virus were sequenced to study the distribution and frequency of the intrapatient virus population. The number of major virus variants in the six patients ranged from three to nine. The various V3 sequences found in the AIDS patients showed the typical amino acid pattern of the syncytium-inducing and non-syncytium-inducing viral phenotypes characteristic for the late stage of infection. However, only one patient-specific iCFV variant was detected within the 20 V3 clones analyzed per virus isolation. For the six patients a total of 34 V3-loop variants, either iCFV or non-iCFV, was observed. All 34 V3-loop sequences were expressed as glutathione-S-transferase fusion proteins (V3-GST). The autologous antibody response to the V3-GST fusion proteins was studied by Western immunoblot analysis. A strong antibody response to almost all non-iCFV V3-GST proteins was found in the sera of the six patients. In contrast, the autologous antibody response to the six iCFV V3 loops was undetectable (in four patients) or very faint (in two patients) compared with that to the non-iCFV V3 loops. Five of the six iCFV loops showed positively charged amino acids at positions strongly associated with the syncytium-inducing phenotype. These findings suggest that our in vitro isolation system selects for virions which are not recognized by V3-specific antibodies and are infectious both in vitro and in vivo.
Collapse
Affiliation(s)
- M Schreiber
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|