1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Zhao X, Hu X, Wang J, Shen M, Zhou K, Han X, Thomas M, Wang K, Wang L, Wang Z. A cross-sectional study on the understanding and attitudes toward influenza and influenza vaccines among different occupational groups in China. Hum Vaccin Immunother 2024; 20:2397214. [PMID: 39286861 PMCID: PMC11409513 DOI: 10.1080/21645515.2024.2397214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to assess the level of knowledge regarding influenza viruses and vaccines among different professional groups to investigate the reasons for vaccine hesitancy. We collected 2190 questionnaires regarding influenza vaccines in China in 2022. The respondents were categorized into the general population (GP), foreign affairs workforce population (FAWP), and veterinary workforce population (VWP) according to their job positions. Linear regression was used to assess the association between multiple factors and influenza vaccination rates. The association between work and influenza vaccination rates was also assessed by grouping different workforce populations. The vaccination rate of the GP was higher than that of the VWP (odds ratio: 1.342, 95% confidence interval: 1.025-1.853), surpassing the rates reported in previous studies. This may be attributed to heightened concerns about infectious diseases influenced by the ongoing coronavirus disease 2019 pandemic. Despite the VWP's more in-depth knowledge of the VWP on zoonotic diseases and their recognition of their importance, there was no significant difference in influenza knowledge among the three populations. This discrepancy contrasts with the observed differences in vaccination rates. Further investigation revealed that, compared with FAWP, the price of vaccines emerged as a primary influencing factor for vaccination rates (odds ratio:0.398, 95%CI; 0.280-0.564). General concerns regarding the protective effects and side effects of vaccines were also noted.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Hu
- School of Politicl Science and Public Administration, Shandong University, Qingdao, China
| | - Junyi Wang
- Department of Promotion, Linyi City Animal Husbandry Development and Promotion Center, Linyi, China
| | - Mingshuai Shen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kaifeng Zhou
- Department of Promotion, Shandong Provincial Animal Husbandry General Station, Jinan, China
| | - Xianjie Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Milton Thomas
- Department of Microbiology and immunology, University of Louisville, Louisville, Kentucky, USA
| | - Kezhou Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Li Wang
- Physical Factors Section, Occupational Diseases Hospital of Shandong First Medical University, Jinan, China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Panahipoor Javaherdehi A, Ghanbari S, Mahdavi P, Zafarani A, Razizadeh MH. The role of alveolar macrophages in viral respiratory infections and their therapeutic implications. Biochem Biophys Rep 2024; 40:101826. [PMID: 39324036 PMCID: PMC11422589 DOI: 10.1016/j.bbrep.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Alveolar macrophages are pivotal components of the lung's innate immune defense against respiratory virus infections. Their multifaceted role spans from viral clearance to modulation of immune responses, making them essential players in shaping disease outcomes. In this comprehensive review collection, we look into the intricate interplay between Alveolar macrophages and various respiratory viruses, shedding light on their dynamic contributions to immune resilience. From influenza to respiratory syncytial virus, Alveolar macrophages emerge as sentinels of the airways, actively participating in viral detection and initiating rapid antiviral responses. Their ability to recognize viral pathogens triggers a cascade of events, including cytokine and chemokine production that guides the recruitment and activation of immune effectors. Furthermore, Alveolar macrophages impact the fate of adaptive immune responses by modulating the activation of T lymphocytes and the secretion of key cytokines. These reviews encompass a range of insights, including the regulation of inflammasome activation, the influence of Alveolar macrophages on cytokine dysregulation, and their role in preventing secondary bacterial pneumonia post-infection. Collectively, they highlight the significance of Alveolar macrophages in preserving pulmonary integrity and immune homeostasis during viral challenges.
Collapse
Affiliation(s)
| | | | - Pooya Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Zafarani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
5
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
6
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Ledderose C, Valsami EA, Elevado M, Junger WG. Adenosine Triphosphate Release From Influenza-Infected Lungs Enhances Neutrophil Activation and Promotes Disease Progression. J Infect Dis 2024; 230:120-130. [PMID: 39052721 PMCID: PMC11272046 DOI: 10.1093/infdis/jiad442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP) enhances neutrophil responses, but little is known about the role of ATP in influenza infections. METHODS We used a mouse influenza model to study if ATP release is associated with neutrophil activation and disease progression. RESULTS Influenza infection increased pulmonary ATP levels 5-fold and plasma ATP levels 3-fold vs healthy mice. Adding ATP at those concentrations to blood from healthy mice primed neutrophils and enhanced CD11b and CD63 expression, CD62L shedding, and reactive oxygen species production in response to formyl peptide receptor stimulation. Influenza infection also primed neutrophils in vivo, resulting in formyl peptide receptor-induced CD11b expression and CD62L shedding up to 3 times higher than that of uninfected mice. In infected mice, large numbers of neutrophils entered the lungs. These cells were significantly more activated than the peripheral neutrophils of infected mice and pulmonary neutrophils of healthy mice. Plasma ATP levels of infected mice and influenza disease progression corresponded with the numbers and activation level of their pulmonary neutrophils. CONCLUSIONS Findings suggest that ATP release from the lungs of infected mice promotes influenza disease progression by priming peripheral neutrophils, which become strongly activated and cause pulmonary tissue damage after their recruitment to the lungs.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Friedländer MR, Gilbert MTP. How ancient RNA survives and what we can learn from it. Nat Rev Mol Cell Biol 2024; 25:417-418. [PMID: 38548931 DOI: 10.1038/s41580-024-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Affiliation(s)
- Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- University Museum, NTNU, Trondheim, Norway.
| |
Collapse
|
9
|
Ruscitti C, Radermecker C, Marichal T. Journey of monocytes and macrophages upon influenza A virus infection. Curr Opin Virol 2024; 66:101409. [PMID: 38564993 DOI: 10.1016/j.coviro.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Influenza A virus (IAV) infections pose a global health challenge that necessitates a comprehensive understanding of the host immune response to devise effective therapeutic interventions. As monocytes and macrophages play crucial roles in host defence, inflammation, and repair, this review explores the intricate journey of these cells during and after IAV infection. First, we highlight the dynamics and functions of lung-resident macrophage populations post-IAV. Second, we review the current knowledge of recruited monocytes and monocyte-derived cells, emphasising their roles in viral clearance, inflammation, immunomodulation, and tissue repair. Third, we shed light on the consequences of IAV-induced macrophage alterations on long-term lung immunity. We conclude by underscoring current knowledge gaps and exciting prospects for future research in unravelling the complexities of macrophage responses to respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Ruscitti
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium
| | - Coraline Radermecker
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, 1300 Wavre, Belgium.
| |
Collapse
|
10
|
Zhang Y, Chen S, Sun T, Duan G, Yang H, Feng H, Jiang W, Li D, Ji W, Zhu P, Jin Y. Abundant Neutrophil-Initiated Acute Myocardial Injury Following Coxsackievirus A6 Infection. J Infect Dis 2024; 229:1440-1450. [PMID: 37738556 DOI: 10.1093/infdis/jiad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Coxsackievirus A6 (CVA6) is currently considered as a predominant pathogen of hand, foot, and mouth disease (HFMD), and is occasionally linked to myocardial injury. We first established a mouse model of CVA6-induced myocardial injury. Next, we analyzed the immune cell phenotypes CVA6-infected mice hearts by fluorescence-activated cell sorting, and found that CVA6 led to massive neutrophils infiltration, suggesting their potential link with the occurrence of myocardial injury. We further used either αGr-1 or αLy6G antibody to deplete neutrophils, and found that neutrophil-depleted animals showed decreased cardiac enzymes, lower degree of pathology in hearts, and reduced inflammatory cytokine production compared to isotype controls. Finally, we confirmed the involvement of neutrophils in myocardial injury of clinical patients with severe HFMD. Our study suggests that excessive neutrophils contribute to myocardial injury caused by CVA6 infection, which provides new insights into myocardial injury during the development of HFMD severity and the outcome of immune cell-mediated therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
12
|
Curran SJ, Griffin EF, Ferreri LM, Kyriakis CS, Howerth EW, Perez DR, Tompkins SM. Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model. Microbiol Spectr 2024; 12:e0338623. [PMID: 38299860 PMCID: PMC10913740 DOI: 10.1128/spectrum.03386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.
Collapse
Affiliation(s)
- Shelly J. Curran
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Emily F. Griffin
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Constantinos S. Kyriakis
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| |
Collapse
|
13
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
15
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
16
|
Hsu CH, Po-Liang Chen A, Chen HP, Chan YJ. Outcomes of corticosteroid treatment in critical Ill adult patients with respiratory viruses-related community acquired pneumonia - a propensity-matched case control study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:757-765. [PMID: 36990896 DOI: 10.1016/j.jmii.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES To assess the outcomes of corticosteroid treatment in critically ill patients with respiratory virus-related community-acquired pneumonia (CAP). MATERIALS/METHODS Adult patients who were admitted to the intensive care unit and had a polymerase chain reaction-confirmed diagnosis of respiratory virus-related CAP were included. Patients with and without corticosteroid treatment during the hospital course were retrospectively compared using a propensity score-matched case-control analysis. RESULTS From January 2018 to December 2020, 194 adult patients were enrolled with 1:1 matching. The 14-day and 28-day mortality rates did not differ significantly between patients treated with and without corticosteroids (14-day mortality: 7% versus 14%, P = 0.11; 28-day mortality: 15% versus 20%, P = 0.35). However, multivariate analysis by using a Cox regression model revealed that corticosteroid treatment was an independent factor predicting decreased mortality (adjusted odds ratio, 0.46; 95% confidence interval, 0.22-0.97, P = 0.04). Subgroup analysis revealed lower 14-day and 28-day mortality rates in patients younger than 70 years treated with corticosteroids than in those not treated with corticosteroids (14-day mortality: 6% versus 23%; P = 0.01 and 28-day mortality: 12% versus 27%; P = 0.04). CONCLUSIONS Non-elderly patients with severe respiratory virus-related CAP are more likely to benefit from corticosteroid treatment than elderly patients.
Collapse
Affiliation(s)
- Ching-Hao Hsu
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Andrew Po-Liang Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Pai Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yu-Jiun Chan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Infection Control, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Margaroli C, Fram T, Sharma NS, Patel SB, Tipper J, Robison SW, Russell DW, Fortmann SD, Banday MM, Soto-Vazquez Y, Abdalla T, Saitornuang S, Madison MC, Leal SM, Harrod KS, Erdmann NB, Gaggar A. Interferon-dependent signaling is critical for viral clearance in airway neutrophils. JCI Insight 2023; 8:e167042. [PMID: 37071484 PMCID: PMC10322684 DOI: 10.1172/jci.insight.167042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Neutrophilic inflammation characterizes several respiratory viral infections, including COVID-19-related acute respiratory distress syndrome, although its contribution to disease pathogenesis remains poorly understood. Blood and airway immune cells from 52 patients with severe COVID-19 were phenotyped by flow cytometry. Samples and clinical data were collected at 2 separate time points to assess changes during ICU stay. Blockade of type I interferon and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) signaling was performed in vitro to determine their contribution to viral clearance in A2 neutrophils. We identified 2 neutrophil subpopulations (A1 and A2) in the airway compartment, where loss of the A2 subset correlated with increased viral burden and reduced 30-day survival. A2 neutrophils exhibited a discrete antiviral response with an increased interferon signature. Blockade of type I interferon attenuated viral clearance in A2 neutrophils and downregulated IFIT3 and key catabolic genes, demonstrating direct antiviral neutrophil function. Knockdown of IFIT3 in A2 neutrophils led to loss of IRF3 phosphorylation, with consequent reduced viral catabolism, providing the first discrete mechanism to our knowledge of type I interferon signaling in neutrophils. The identification of this neutrophil phenotype and its association with severe COVID-19 outcomes emphasizes its likely importance in other respiratory viral infections and potential for new therapeutic approaches in viral illness.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Timothy Fram
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nirmal S. Sharma
- Program in Protease and Matrix Biology
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Siddharth B. Patel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Sarah W. Robison
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
| | - Derek W. Russell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
| | | | - Mudassir M. Banday
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yixel Soto-Vazquez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
| | - Tarek Abdalla
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
| | | | - Matthew C. Madison
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
| | - Sixto M. Leal
- Department of Pathology, Division of Laboratory Medicine, and
| | | | - Nathaniel B. Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amit Gaggar
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Program in Protease and Matrix Biology
- Lung Health Center and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Susceptibility of SARS COV-2 nucleocapsid and spike proteins to reactive oxygen species and role in inflammation. Anal Biochem 2023; 670:115137. [PMID: 36997015 PMCID: PMC10050197 DOI: 10.1016/j.ab.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH7.4 and pH8.5. The Fenton's system generates various ROS (H2O2, ·OH, –OH, ·OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25–60% effect compared to albumin). In the second system, H2O2was used both as a strong oxidant and as a ROS. A similar effect was observed (30–70%); N protein approached the effect of albumin at physiological pH (∼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5–1.7- fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.
Collapse
|
19
|
Li K, McCaw JM, Cao P. Enhanced viral infectivity and reduced interferon production are associated with high pathogenicity for influenza viruses. PLoS Comput Biol 2023; 19:e1010886. [PMID: 36758109 PMCID: PMC9946260 DOI: 10.1371/journal.pcbi.1010886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Epidemiological and clinical evidence indicates that humans infected with the 1918 pandemic H1N1 influenza virus and highly pathogenic avian H5N1 influenza viruses often displayed severe lung pathology. High viral load and extensive infiltration of macrophages are the hallmarks of highly pathogenic (HP) influenza viral infections. However, it remains unclear what biological mechanisms primarily determine the observed difference in the kinetics of viral load and macrophages between HP and low pathogenic (LP) viral infections, and how the mechanistic differences are associated with viral pathogenicity. In this study, we develop a mathematical model of viral dynamics that includes the dynamics of different macrophage populations and interferon. We fit the model to in vivo kinetic data of viral load and macrophage level from BALB/c mice infected with an HP or LP strain of H1N1/H5N1 virus to estimate model parameters using Bayesian inference. Our primary finding is that HP viruses have a higher viral infection rate, a lower interferon production rate and a lower macrophage recruitment rate compared to LP viruses, which are strongly associated with more severe tissue damage (quantified by a higher percentage of epithelial cell loss). We also quantify the relative contribution of macrophages to viral clearance and find that macrophages do not play a dominant role in the direct clearance of free viruses although their role in mediating immune responses such as interferon production is crucial. Our work provides new insight into the mechanisms that convey the observed difference in viral and macrophage kinetics between HP and LP infections and establishes an improved model-fitting framework to enhance the analysis of new data on viral pathogenicity.
Collapse
Affiliation(s)
- Ke Li
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| | - James M. McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, VIC, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pengxing Cao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Luczo JM, Hamidou Soumana I, Reagin KL, Dihle P, Ghedin E, Klonowski KD, Harvill ET, Tompkins SM. Bordetella bronchiseptica-Mediated Interference Prevents Influenza A Virus Replication in the Murine Nasal Cavity. Microbiol Spectr 2023; 11:e0473522. [PMID: 36728413 PMCID: PMC10100957 DOI: 10.1128/spectrum.04735-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Colonization resistance, also known as pathogen interference, describes the ability of a colonizing microbe to interfere with the ability of an incoming microbe to establish infection, and in the case of pathogenic organisms, cause disease in a susceptible host. Furthermore, colonization-associated dysbiosis of the commensal microbiota can alter host immunocompetence and infection outcomes. Here, we investigated the role of Bordetella bronchiseptica nasal colonization and associated disruption of the nasal microbiota on the ability of influenza A virus to establish infection in the murine upper respiratory tract. Targeted sequencing of the microbial 16S rRNA gene revealed that B. bronchiseptica colonization of the nasal cavity efficiently displaced the resident commensal microbiota-the peak of this effect occurring 7 days postcolonization-and was associated with reduced influenza associated-morbidity and enhanced recovery from influenza-associated clinical disease. Anti-influenza A virus hemagglutinin-specific humoral immune responses were not affected by B. bronchiseptica colonization, although the cellular influenza PA-specific CD8+ immune responses were dampened. Notably, influenza A virus replication in the nasal cavity was negated in B. bronchiseptica-colonized mice. Collectively, this work demonstrates that B. bronchiseptica-mediated pathogen interference prevents influenza A virus replication in the murine nasal cavity. This may have direct implications for controlling influenza A virus replication in, and transmission events originating from, the upper respiratory tract. IMPORTANCE The interplay of microbial species in the upper respiratory tract is important for the ability of an incoming pathogen to establish and, in the case of pathogenic organisms, cause disease in a host. Here, we demonstrate that B. bronchiseptica efficiently colonizes and concurrently displaces the commensal nasal cavity microbiota, negating the ability of influenza A virus to establish infection. Furthermore, B. bronchiseptica colonization also reduced influenza-associated morbidity and enhanced recovery from influenza-associated disease. Collectively, this study indicates that B. bronchiseptica-mediated interference prevents influenza A virus replication in the upper respiratory tract. This result demonstrates the potential for respiratory pathogen-mediated interference to control replication and transmission dynamics of a clinically important respiratory pathogen like influenza A virus.
Collapse
Affiliation(s)
- Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | | | - Katie L. Reagin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Preston Dihle
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Eric T. Harvill
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, Georgia, USA
| |
Collapse
|
21
|
Neumann G, Kawaoka Y. Which Virus Will Cause the Next Pandemic? Viruses 2023; 15:199. [PMID: 36680238 PMCID: PMC9864092 DOI: 10.3390/v15010199] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
One of the most pressing and consequential problems in infectious disease research is to better understand the potential of viruses to cause a pandemic, or, in simple terms, determine which virus will cause the next pandemic. We here define pandemics as WHO-declared pandemics, or disease outbreaks commonly referred to as pandemics that predate the WHO pandemic framework. Despite extensive research in the field of infectious diseases in recent decades, all pandemics have found us unprepared, with enormous losses of human lives, tremendous costs for public health, and vast and potentially long-lasting economic losses. Here, we discuss viruses that may cause a pandemic in the future.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
- Department of Virology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
22
|
Yau E, Yang L, Chen Y, Umstead TM, Atkins H, Katz ZE, Yewdell JW, Gandhi CK, Halstead ES, Chroneos ZC. Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Front Immunol 2023; 14:919800. [PMID: 36960051 PMCID: PMC10028185 DOI: 10.3389/fimmu.2023.919800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNβ expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Linlin Yang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yan Chen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, PA, Hershey, United States
| | - Zoe E. Katz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Chintan K. Gandhi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - E. Scott Halstead
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Zissis C. Chroneos,
| |
Collapse
|
23
|
Cen M, Ouyang W, Lin X, Du X, Hu H, Lu H, Zhang W, Xia J, Qin X, Xu F. FBXO6 regulates the antiviral immune responses via mediating alveolar macrophages survival. J Med Virol 2023; 95:e28203. [PMID: 36217277 PMCID: PMC10092588 DOI: 10.1002/jmv.28203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Inducing early apoptosis in alveolar macrophages is one of the strategies influenza A virus (IAV) evolved to subvert host immunity. Correspondingly, the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 is reported to interact with virus polymerase basic protein 1-frame 2 (PB1-F2) accessory protein to counteract virus-induced apoptosis. Herein, we report that one of the F-box proteins, FBXO6, promotes proteasomal degradation of NLRX1, and thus facilitates IAV-induced alveolar macrophages apoptosis and modulates both macrophage survival and type I interferon (IFN) signaling. We observed that FBXO6-deficient mice infected with IAV exhibited decreased pulmonary viral replication, alleviated inflammatory-associated pulmonary dysfunction, and less mortality. Analysis of the lungs of IAV-infected mice revealed markedly reduced leukocyte recruitment but enhanced production of type I IFN in Fbxo6-/- mice. Furthermore, increased type I IFN production and decreased viral replication were recapitulated in FBXO6 knockdown macrophages and associated with reduced apoptosis. Through gain- and loss-of-function studies, we found lung resident macrophages but not bone marrow-derived macrophages play a key role in the differences FBXO6 signaling pathway brings in the antiviral immune response. In further investigation, we identified that FBXO6 interacted with and promoted the proteasomal degradation of NLRX1. Together, our results demonstrate that FBXO6 negatively regulates immunity against IAV infection by enhancing the degradation of NLRX1 and thus impairs the survival of alveolar macrophages and antiviral immunity of the host.
Collapse
Affiliation(s)
- Mengyuan Cen
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Respiratory MedicineNingbo First HospitalNingboChina
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaohong Du
- Institute of Clinical Medicine ResearchSuzhou Science and Technology Town HospitalSuzhouChina
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huidan Lu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaofeng Qin
- Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
25
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
26
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
27
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
28
|
Park J, Legaspi SLF, Schwartzman LM, Gygli SM, Sheng ZM, Freeman AD, Matthews LM, Xiao Y, Ramuta MD, Batchenkova NA, Qi L, Rosas LA, Williams SL, Scherler K, Gouzoulis M, Bellayr I, Morens DM, Walters KA, Memoli MJ, Kash JC, Taubenberger JK. An inactivated multivalent influenza A virus vaccine is broadly protective in mice and ferrets. Sci Transl Med 2022; 14:eabo2167. [PMID: 35857640 PMCID: PMC11022527 DOI: 10.1126/scitranslmed.abo2167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four β-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.
Collapse
Affiliation(s)
- Jaekeun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M. Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian M. Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley D. Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lex M. Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell D. Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia A. Batchenkova
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian Bellayr
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
30
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
31
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
32
|
Kolter J, Henneke P, Groß O, Kierdorf K, Prinz M, Graf L, Schwemmle M. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur J Immunol 2022; 52:1419-1430. [PMID: 35551651 DOI: 10.1002/eji.202149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.
Collapse
Affiliation(s)
- Julia Kolter
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Wu TH, Hsieh SC, Li TH, Lu CH, Liao HT, Shen CY, Li KJ, Wu CH, Kuo YM, Tsai CY, Yu CL. Molecular Basis for Paradoxical Activities of Polymorphonuclear Neutrophils in Inflammation/Anti-Inflammation, Bactericide/Autoimmunity, Pro-Cancer/Anticancer, and Antiviral Infection/SARS-CoV-II-Induced Immunothrombotic Dysregulation. Biomedicines 2022; 10:biomedicines10040773. [PMID: 35453523 PMCID: PMC9032061 DOI: 10.3390/biomedicines10040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cells in the circulation. These cells act as the fast and powerful defenders against environmental pathogenic microbes to protect the body. In addition, these innate inflammatory cells can produce a number of cytokines/chemokines/growth factors for actively participating in the immune network and immune homeostasis. Many novel biological functions including mitogen-induced cell-mediated cytotoxicity (MICC) and antibody-dependent cell-mediated cytotoxicity (ADCC), exocytosis of microvesicles (ectosomes and exosomes), trogocytosis (plasma membrane exchange) and release of neutrophil extracellular traps (NETs) have been successively discovered. Furthermore, recent investigations unveiled that PMNs act as a double-edged sword to exhibit paradoxical activities on pro-inflammation/anti-inflammation, antibacteria/autoimmunity, pro-cancer/anticancer, antiviral infection/COVID-19-induced immunothrombotic dysregulation. The NETs released from PMNs are believed to play a pivotal role in these paradoxical activities, especially in the cytokine storm and immunothrombotic dysregulation in the recent SARS-CoV-2 pandemic. In this review, we would like to discuss in detail the molecular basis for these strange activities of PMNs.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Tsu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Shin Kong Wu Ho Shi Hospital, Taipei 11101, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
34
|
Varghese PM, Kishore U, Rajkumari R. Human C1q Regulates Influenza A Virus Infection and Inflammatory Response via Its Globular Domain. Int J Mol Sci 2022; 23:3045. [PMID: 35328462 PMCID: PMC8949502 DOI: 10.3390/ijms23063045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
The Influenza A virus (IAV) is a severe respiratory pathogen. C1q is the first subcomponent of the complement system's classical pathway. C1q is composed of 18 polypeptide chains. Each of these chains contains a collagen-like region located at the N terminus, and a C-terminal globular head region organized as a heterotrimeric structure (ghA, ghB and ghC). This study was aimed at investigating the complement activation-independent modulation by C1q and its individual recombinant globular heads against IAV infection. The interaction of C1q and its recombinant globular heads with IAV and its purified glycoproteins was examined using direct ELISA and far-Western blotting analysis. The effect of the complement proteins on IAV replication kinetics and immune modulation was assessed by qPCR. The IAV entry inhibitory properties of C1q and its recombinant globular heads were confirmed using cell binding and luciferase reporter assays. C1q bound IAV virions via HA, NA and M1 IAV proteins, and suppressed replication in H1N1, while promoting replication in H3N2-infected A549 cells. C1q treatment further triggered an anti-inflammatory response in H1N1 and pro-inflammatory response in H3N2-infected cells as evident from differential expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Furthermore, C1q treatment was found to reduce luciferase reporter activity of MDCK cells transfected with H1N1 pseudotyped lentiviral particles, indicative of an entry inhibitory role of C1q against infectivity of IAV. These data appear to demonstrate the complement-independent subtype specific modulation of IAV infection by locally produced C1q.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
35
|
Yasui F, Matsumoto Y, Yamamoto N, Sanada T, Honda T, Munakata T, Itoh Y, Kohara M. Infection with the SARS-CoV-2 B.1.351 variant is lethal in aged BALB/c mice. Sci Rep 2022; 12:4150. [PMID: 35264719 PMCID: PMC8907250 DOI: 10.1038/s41598-022-08104-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Models of animals that are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can usefully evaluate the efficacy of vaccines and therapeutics. In this study, we demonstrate that infection with the SARS-CoV-2 B.1.351 variant (TY8-612 strain) induces bodyweight loss and inflammatory cytokine/chemokine production in wild-type laboratory mice (BALB/c and C57BL/6 J mice). Furthermore, compared to their counterparts, BALB/c mice had a higher viral load in their lungs and worse symptoms. Importantly, infecting aged BALB/c mice (older than 6 months) with the TY8-612 strain elicited a massive and sustained production of multiple pro-inflammatory cytokines/chemokines and led to universal mortality. These results indicated that the SARS-CoV-2 B.1.351 variant-infected mice exhibited symptoms ranging from mild to fatal depending on their strain and age. Our data provide insights into the pathogenesis of SARS-CoV-2 and may be useful in developing prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| |
Collapse
|
36
|
Snyder ME, Bondonese A, Craig A, Popescu I, Morrell MR, Myerburg MM, Iasella CJ, Lendermon E, Pilweski J, Johnson B, Kilaru S, Zhang Y, Trejo Bittar HE, Wang X, Sanchez PG, Lakkis F, McDyer J. Rate of recipient-derived alveolar macrophage development and major histocompatibility complex cross-decoration after lung transplantation in humans. Am J Transplant 2022; 22:574-587. [PMID: 34431221 PMCID: PMC9161707 DOI: 10.1111/ajt.16812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 02/03/2023]
Abstract
Alveolar macrophages (AM) play critical roles in lung tissue homeostasis, host defense, and modulating lung injury. The rate of AM turnover (donor AM replacement by circulating monocytes) after transplantation has been incompletely characterized. Furthermore, the anatomic pattern of recipient-derived lung macrophages repopulation has not been reported, nor has their ability to accumulate and present donor major histocompatibility complex (a process we refer to as MHC cross-decoration). We longitudinally characterized the myeloid content of bronchoalveolar lavage (BAL) and biopsy specimens of lung transplant recipients and found a biphasic rate in AM turnover in the allograft, with a rapid turnover perioperatively, accelerated by both the type of induction immunosuppression and the presence of primary graft dysfunction. We found that recipient myeloid cells with cell surface AM phenotype repopulated the lung in a disorganized pattern, comprised mainly of large clusters of cells. Finally, we show that recipient AM take up and present donor peptide-MHC complexes yet are not able to independently induce an in vitro alloreactive response by circulating recipient T cells.
Collapse
Affiliation(s)
- Mark E. Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania,Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna Bondonese
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iulia Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew R. Morrell
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Carlo J. Iasella
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Joseph Pilweski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bruce Johnson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silpa Kilaru
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Xingan Wang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pablo G. Sanchez
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fadi Lakkis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
38
|
Sakuma R, Morita N, Tanaka Y, Koide N, Komatsu T. Sendai virus C protein affects macrophage function, which plays a critical role in modulating disease severity during Sendai virus infection in mice. Microbiol Immunol 2021; 66:124-134. [PMID: 34859490 DOI: 10.1111/1348-0421.12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Sendai virus (SeV) accessory protein C limits the generation of double-stranded RNAs, defective interfering RNAs, or both, during viral transcription and replication, thereby limiting interferon-β production. Our recent in vitro analyses on murine macrophage cell lines demonstrated that this protein also contributes to restricting macrophage function, including the production of nitric oxide (NO) and inflammatory cytokines in addition to interferon-β, in infected macrophages. This study showed that depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in recombinant C gene-knockout SeV (SeV∆C)-infected mice, but did not modulate disease severity in wild-type SeV-infected mice. Furthermore, the severe disease observed in macrophage-depleted, SeV∆C-infected mice was associated with exacerbated virus replication in the lungs, leading to severe airway inflammation and pulmonary edema, indicating lung injury. These results suggested that the antimacrophage activity of SeV C protein might play a critical role in modulating lung injury and associated diseases caused by SeV.
Collapse
Affiliation(s)
- Ryusuke Sakuma
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yukie Tanaka
- Department of Molecular Biology and Chemistry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| |
Collapse
|
39
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
40
|
Chen YY, Huang CT, Li SW, Pan YJ, Lin TL, Huang YY, Li TH, Yang YC, Gong YN, Hsieh YC. Bacterial factors required for Streptococcus pneumoniae coinfection with influenza A virus. J Biomed Sci 2021; 28:60. [PMID: 34452635 PMCID: PMC8395381 DOI: 10.1186/s12929-021-00756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yu Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hsuan Li
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan.
| |
Collapse
|
41
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
42
|
Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021; 12:688946. [PMID: 34366882 PMCID: PMC8339726 DOI: 10.3389/fphys.2021.688946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca K Masanetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Zhou A, Dong X, Liu M, Tang B. Comprehensive Transcriptomic Analysis Identifies Novel Antiviral Factors Against Influenza A Virus Infection. Front Immunol 2021; 12:632798. [PMID: 34367124 PMCID: PMC8337049 DOI: 10.3389/fimmu.2021.632798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) has a higher genetic variation, leading to the poor efficiency of traditional vaccine and antiviral strategies targeting viral proteins. Therefore, developing broad-spectrum antiviral treatments is particularly important. Host responses to IAV infection provide a promising approach to identify antiviral factors involved in virus infection as potential molecular drug targets. In this study, in order to better illustrate the molecular mechanism of host responses to IAV and develop broad-spectrum antiviral drugs, we systematically analyzed mRNA expression profiles of host genes in a variety of human cells, including transformed and primary epithelial cells infected with different subtypes of IAV by mining 35 microarray datasets from the GEO database. The transcriptomic results showed that IAV infection resulted in the difference in expression of amounts of host genes in all cell types, especially those genes participating in immune defense and antiviral response. In addition, following the criteria of P<0.05 and |logFC|≥1.5, we found that some difference expression genes were overlapped in different cell types under IAV infection via integrative gene network analysis. IFI6, IFIT2, ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might act as key antiviral factors in alveolar basal epithelial cells against IAV infection, while BATF2, CXCL10, IFI44L, IL6, and OAS2 played important roles in airway epithelial cells in response to different subtypes of IAV infection. Additionally, we also revealed that some overlaps (BATF2, IFI44L, IFI44, HERC5, CXCL10, OAS2, IFIT3, USP18, OAS1, IFIT2) were commonly upregulated in human primary epithelial cells infected with high or low pathogenicity IAV. Moreover, there were similar defense responses activated by IAV infection, including the interferon-regulated signaling pathway in different phagocyte types, although the differentially expressed genes in different phagocyte types showed a great difference. Taken together, our findings will help better understand the fundamental patterns of molecular responses induced by highly or lowly pathogenic IAV, and the overlapped genes upregulated by IAV in different cell types may act as early detection markers or broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Ao Zhou
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.,Basic Medical College, Southwest Medical University, Luzhou, China
| | - Xia Dong
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengyun Liu
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bin Tang
- Basic Medical College, Southwest Medical University, Luzhou, China.,Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, China
| |
Collapse
|
44
|
Bohaud C, Johansen MD, Jorgensen C, Kremer L, Ipseiz N, Djouad F. The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707856. [PMID: 34335621 PMCID: PMC8317995 DOI: 10.3389/fimmu.2021.707856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
45
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
46
|
Reif T, Dyckhoff G, Hohenberger R, Kolbe CC, Gruell H, Klein F, Latz E, Stolp B, Fackler OT. Contact-dependent inhibition of HIV-1 replication in ex vivo human tonsil cultures by polymorphonuclear neutrophils. CELL REPORTS MEDICINE 2021; 2:100317. [PMID: 34195682 PMCID: PMC8233696 DOI: 10.1016/j.xcrm.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Polymorphonuclear neutrophils (PMNs), the most abundant white blood cells, are recruited rapidly to sites of infection to exert potent anti-microbial activity. Information regarding their role in infection with human immunodeficiency virus (HIV) is limited. Here we report that addition of PMNs to HIV-infected cultures of human tonsil tissue or peripheral blood mononuclear cells causes immediate and long-lasting suppression of HIV-1 spread and virus-induced depletion of CD4 T cells. This inhibition of HIV-1 spread strictly requires PMN contact with infected cells and is not mediated by soluble factors. 2-Photon (2PM) imaging visualized contacts of PMNs with HIV-1-infected CD4 T cells in tonsil tissue that do not result in lysis or uptake of infected cells. The anti-HIV activity of PMNs also does not involve degranulation, formation of neutrophil extracellular traps, or integrin-dependent cell communication. These results reveal that PMNs efficiently blunt HIV-1 replication in primary target cells and tissue by an unconventional mechanism. PMNs blunt HIV-1 spread and CD4 T cell depletion in HIV-infected human tonsils Suppression of HIV-1 replication by PMNs requires cell-cell contacts PMNs do not affect HIV via effector functions such as NETosis or degranulation PMNs exert unconventional antiviral activity
Collapse
Affiliation(s)
- Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Alkhatip AAAMM, Kamel MG, Hamza MK, Farag EM, Yassin HM, Elayashy M, Naguib AA, Wagih M, Abd-Elhay FAE, Algameel HZ, Yousef MA, Purcell A, Helmy M. The diagnostic and prognostic role of neutrophil-to-lymphocyte ratio in COVID-19: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:505-514. [PMID: 33840351 PMCID: PMC8074650 DOI: 10.1080/14737159.2021.1915773] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Background: The world urgently requires surrogate markers to diagnose COVID-19 and predict its progression. The severity is not easily predicted via currently used biomarkers. Critical COVID-19 patients need to be screened for hyperinflammation to improve mortality but expensive cytokine measurement is not routinely conducted in most laboratories. The neutrophil-to-lymphocyte ratio (NLR) is a novel biomarker in patients with various diseases. We evaluated the diagnostic and prognostic accuracy of the NLR in COVID-19 patients.Methods: We searched for relevant articles in seven databases. The quantitative analysis was conducted if at least two studies were evaluating the NLR role in COVID-19.Results: We included 8,120 individuals, including 7,482 COVID-19 patients, from 32 articles. Patients with COVID-19 had significantly higher levels of NLR compared to negative individuals. Advanced COVID-19 stages had significantly higher levels of NLR than earlier stages.Expert Opinion: We found significantly higher levels of NLR in advanced stages compared to earlier stages of COVID-19 with good accuracy to diagnose and predict the disease outcome, especially mortality prediction. A close evaluation of critical SARS-CoV-2 patients and efficient early management are essential measures to decrease mortality. NLR could help in assessing the resource allocation in severe COVID-19 patients even in restricted settings.
Collapse
Affiliation(s)
- Ahmed Abdelaal Ahmed Mahmoud M. Alkhatip
- Department of Anaesthesia, Birmingham Children’s Hospital, Birmingham, UK
- Department of Anaesthesia, Beni-Suef University Hospital and Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | | | - Ehab Mohamed Farag
- Department of Anaesthesia, Beni-Suef University Hospital and Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hany Mahmoud Yassin
- Department of Anaesthesia, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed Elayashy
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Ahmed Naguib
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Wagih
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Andrew Purcell
- Department of Anaesthesia, Beaumont Hospital, Dublin, Ireland
| | - Mohamed Helmy
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
48
|
Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, Meng Y, Chen J, Feng X, Han Z, Shi M, Huang H, Han M, Jiang E. Critical Role of Lkb1 in the Maintenance of Alveolar Macrophage Self-Renewal and Immune Homeostasis. Front Immunol 2021; 12:629281. [PMID: 33968022 PMCID: PMC8100336 DOI: 10.3389/fimmu.2021.629281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated AM depletion experiments in wild type mice indicated a cause for AM reduction in aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and neutrophil migration, which might also contribute to the protective function of Lkb1 in AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and immune function of AMs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Animals
- Asthma/enzymology
- Asthma/genetics
- Asthma/immunology
- CD11 Antigens/genetics
- CD11 Antigens/metabolism
- Cell Self Renewal
- Disease Models, Animal
- Homeostasis
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lung/enzymology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration
- Pneumonia, Bacterial/enzymology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Staphylococcal Infections/enzymology
- Staphylococcal Infections/genetics
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiongmei Yang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Tao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiadi Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
49
|
Intranasal Immunization with the Influenza A Virus Encoding Truncated NS1 Protein Protects Mice from Heterologous Challenge by Restraining the Inflammatory Response in the Lungs. Microorganisms 2021; 9:microorganisms9040690. [PMID: 33810549 PMCID: PMC8067201 DOI: 10.3390/microorganisms9040690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Influenza viruses with an impaired NS1 protein are unable to antagonize the innate immune system and, therefore, are highly immunogenic because of the self-adjuvating effect. Hence, NS1-mutated viruses are considered promising candidates for the development of live-attenuated influenza vaccines and viral vectors for intranasal administration. We investigated whether the immunogenic advantage of the virus expressing only the N-terminal half of the NS1 protein (124 a.a.) can be translated into the induction of protective immunity against a heterologous influenza virus in mice. We found that immunization with either the wild-type A/PR/8/34 (H1N1) influenza strain (A/PR8/NSfull) or its NS1-shortened counterpart (A/PR8/NS124) did not prevent the viral replication in the lungs after the challenge with the A/Aichi/2/68 (H3N2) virus. However, mice immunized with the NS1-shortened virus were better protected from lethality after the challenge with the heterologous virus. Besides showing the enhanced influenza-specific CD8+ T-cellular response in the lungs, immunization with the A/PR8/NS124 virus resulted in reduced concentrations of proinflammatory cytokines and the lower extent of leukocyte infiltration in the lungs after the challenge compared to A/PR8/NSfull or the control group. The data show that intranasal immunization with the NS1-truncated virus may better induce not only effector T-cells but also certain immunoregulatory mechanisms, reducing the severity of the innate immune response after the heterologous challenge.
Collapse
|
50
|
NMP4 regulates the innate immune response to influenza A virus infection. Mucosal Immunol 2021; 14:209-218. [PMID: 32152414 PMCID: PMC7483155 DOI: 10.1038/s41385-020-0280-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/04/2023]
Abstract
Severe influenza A virus infection typically triggers excessive and detrimental lung inflammation with massive cell infiltration and hyper-production of cytokines and chemokines. We identified a novel function for nuclear matrix protein 4 (NMP4), a zinc-finger-containing transcription factor playing roles in bone formation and spermatogenesis, in regulating antiviral immune response and immunopathology. Nmp4-deficient mice are protected from H1N1 influenza infection, losing only 5% body weight compared to a 20% weight loss in wild type mice. While having no effects on viral clearance or CD8/CD4 T cell or humoral responses, deficiency of Nmp4 in either lung structural cells or hematopoietic cells significantly reduces the recruitment of monocytes and neutrophils to the lungs. Consistent with fewer innate cells in the airways, influenza-infected Nmp4-deficient mice have significantly decreased expression of chemokine genes Ccl2, Ccl7 and Cxcl1 as well as pro-inflammatory cytokine genes Il1b and Il6. Furthermore, NMP4 binds to the promoters and/or conserved non-coding sequences of the chemokine genes and regulates their expression in mouse lung epithelial cells and macrophages. Our data suggest that NMP4 functions to promote monocyte- and neutrophil-attracting chemokine expression upon influenza A infection, resulting in exaggerated innate inflammation and lung tissue damage.
Collapse
|