1
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
2
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2024:e0001623. [PMID: 39699237 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
4
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2024:S1359-6101(24)00080-7. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
5
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
6
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
8
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
9
|
Braga M, Shiga MAS, Silva PES, Yamanaka AHU, Souza VH, Grava S, Simão ANC, Neves JSF, de Lima Neto QA, Zacarias JMV, Visentainer JEL. Association between polymorphisms in TLR3, TICAM1 and IFNA1 genes and covid-19 severity in Southern Brazil. Expert Rev Mol Diagn 2024; 24:525-531. [PMID: 38864429 DOI: 10.1080/14737159.2024.2367466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes related to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS The T/T genotype of TLR3 in recessive model shows 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, the T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model showed twice the risk of critical Covid-19. CONCLUSION We can conclude that rs3775291, rs2292151 and rs1758566 can influence the COVID-19 severity.
Collapse
Affiliation(s)
- Matheus Braga
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | - Victor Hugo Souza
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Sergio Grava
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | | | | |
Collapse
|
10
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
11
|
Naik N, Patel M, Sen R. Developmental Impacts of Epigenetics and Metabolism in COVID-19. J Dev Biol 2024; 12:9. [PMID: 38390960 PMCID: PMC10885083 DOI: 10.3390/jdb12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental biology is intricately regulated by epigenetics and metabolism but the mechanisms are not completely understood. The situation becomes even more complicated during diseases where all three phenomena are dysregulated. A salient example is COVID-19, where the death toll exceeded 6.96 million in 4 years, while the virus continues to mutate into different variants and infect people. Early evidence during the pandemic showed that the host's immune and inflammatory responses to COVID-19 (like the cytokine storm) impacted the host's metabolism, causing damage to the host's organs and overall physiology. The involvement of angiotensin-converting enzyme 2 (ACE2), the pivotal host receptor for the SARS-CoV-2 virus, was identified and linked to epigenetic abnormalities along with other contributing factors. Recently, studies have revealed stronger connections between epigenetics and metabolism in COVID-19 that impact development and accelerate aging. Patients manifest systemic toxicity, immune dysfunction and multi-organ failure. Single-cell multiomics and other state-of-the-art high-throughput studies are only just beginning to demonstrate the extent of dysregulation and damage. As epigenetics and metabolism directly impact development, there is a crucial need for research implementing cutting-edge technology, next-generation sequencing, bioinformatics analysis, the identification of biomarkers and clinical trials to help with prevention and therapeutic interventions against similar threats in the future.
Collapse
Affiliation(s)
- Noopur Naik
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mansi Patel
- Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Rwik Sen
- Active Motif, Inc., Carlsbad, CA 92008, USA
| |
Collapse
|
12
|
Yoo JS. Cellular Stress Responses against Coronavirus Infection: A Means of the Innate Antiviral Defense. J Microbiol Biotechnol 2024; 34:1-9. [PMID: 37674398 PMCID: PMC10840489 DOI: 10.4014/jmb.2307.07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Cellular stress responses are crucial for maintaining cellular homeostasis. Stress granules (SGs), activated by eIF2α kinases in response to various stimuli, play a pivotal role in dealing with diverse stress conditions. Viral infection, as one kind of cellular stress, triggers specific cellular programs aimed at overcoming virus-induced stresses. Recent studies have revealed that virus-derived stress responses are tightly linked to the host's antiviral innate immunity. Virus infection-induced SGs act as platforms for antiviral sensors, facilitating the initiation of protective antiviral responses called "antiviral stress granules" (avSGs). However, many viruses, including coronaviruses, have evolved strategies to suppress avSG formation, thereby counteracting the host's immune responses. This review discusses the intricate relationship between cellular stress responses and antiviral innate immunity, with a specific focus on coronaviruses. Furthermore, the diverse mechanisms employed by viruses to counteract avSGs are described.
Collapse
Affiliation(s)
- Ji-Seung Yoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Zahmatkesh A, Salmasi E, Gholizadeh R. Interaction of toll-like receptors and ACE-2 with different variants of SARS-CoV-2: A computational analysis. BIOIMPACTS : BI 2024; 14:30150. [PMID: 39104618 PMCID: PMC11298020 DOI: 10.34172/bi.2024.30150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 08/07/2024]
Abstract
Introduction Computational studies were performed to investigate the unknown status of endosomal and cell surface receptors in SARS-CoV-2 infection. The interactions between Toll-like receptors (TLRs)- 4/7/8/9 or ACE2 receptor and different SARS-CoV-2 variants were investigated. Methods The RNA motifs for TLR7, TLR8 and a CpG motif for TLR9 were analyzed in different variants. Molecular docking and molecular dynamics (MD) simulations were performed to investigate receptor-ligand interactions. Results The number of motifs recognized by TLR7/8/9 in the Alpha, Delta and Iranian variants was lower than in the wild type (WT). Docking analysis revealed that the Alpha, Delta and some Iranian spike variants had a higher affinity for ACE2 and TLR4 than the WT, which may account for their higher transmission rate. The MD simulation also showed differences in stability and structure size between the variants and the WT, indicating potential variations in viral load. Conclusion It appears that Alpha and some Iranian isolates are the variants of concern due to their higher transmissibility and rapid spread. The Delta mutant is also a variant of concern, not only because of its closer interaction with ACE2, but also with TLR4. Our results emphasize the importance of ACE2 and TLR4, rather than endosomal TLRs, in mediating the effects of different viral mutations and suggest their potential therapeutic applications.
Collapse
Affiliation(s)
- Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Elham Salmasi
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | - Reza Gholizadeh
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
14
|
Chu GE, Park JY, Park CH, Cho WG. Mitochondrial Reactive Oxygen Species in TRIF-Dependent Toll-like Receptor 3 Signaling in Bronchial Epithelial Cells against Viral Infection. Int J Mol Sci 2023; 25:226. [PMID: 38203397 PMCID: PMC10778811 DOI: 10.3390/ijms25010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Toll-like receptor 3 (TLR3) plays an important role in double-stranded RNA recognition and triggers the innate immune response by acting as a key receptor against viral infections. Intracellular reactive oxygen species (ROS) are involved in TLR3-induced inflammatory responses during viral infections; however, their relationship with mitochondrial ROS (mtROS) remains largely unknown. In this study, we show that polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral RNA, induced TLR3-mediated nuclear factor-kappa B (NF-κB) signaling pathway activation and enhanced mtROS generation, leading to inflammatory cytokine production. TLR3-targeted small interfering RNA (siRNA) and Mito-TEMPO inhibited inflammatory cytokine production in poly(I:C)-treated BEAS-2B cells. Poly(I:C) recruited the TLR3 adaptor molecule Toll/IL-1R domain-containing adaptor, inducing IFN (TRIF) and activated NF-κB signaling. Additionally, TLR3-induced mtROS generation suppression and siRNA-mediated TRIF downregulation attenuated mitochondrial antiviral signaling protein (MAVS) degradation. Our findings provide insights into the TLR3-TRIF signaling pathway and MAVS in viral infections, and suggest TLR3-mtROS as a therapeutic target for the treatment of airway inflammatory and viral infectious diseases.
Collapse
Affiliation(s)
- Ga Eul Chu
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| |
Collapse
|
15
|
Silva MJA, Vieira MCDS, Souza AB, dos Santos EC, Marcelino BDR, Casseb SMM, Lima KVB, Lima LNGC. Analysis of associations between the TLR3 SNPs rs3775291 and rs3775290 and COVID-19 in a cohort of professionals of Belém-PA, Brazil. Front Cell Infect Microbiol 2023; 13:1320701. [PMID: 38173795 PMCID: PMC10763251 DOI: 10.3389/fcimb.2023.1320701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The objective of this article was to verify associations between the SNPs rs3775291 (Cytosine [C]>Thymine [T]) and rs3775290 (C>T) of TLR3 in professionals from Health Institutions (HI) who worked during the first pandemic wave and COVID-19. A case-control study was carried out with workers from HI in Belém-PA, Brazil, divided into symptomatology groups (Asymptomatic-AS, n=91; and Symptomatic-SI, n=121), and severity groups, classified by Chest CT scan (symptomatic with lung involvement - SCP, n=34; symptomatic without lung involvement - SSP, n=8). Genotyping was performed by Sanger sequencing and statistical analysis was performed using the SPSS program. In the analysis of SNP rs3775291, the homozygous recessive genotype (T/T) was not found and the frequency of the mutant allele (T) was less than 2% in the cohort. For the rs3775290 SNP, the frequency of the mutant allele (T) was greater than 42% in the cohort. No significant associations were found for these SNPs in this cohort (N= 212 individuals). The scientific community and physicians can use these facts to find new methods of managing COVID-19.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Alex Brito Souza
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Everaldina Cordeiro dos Santos
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Beatriz dos Reis Marcelino
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Karla Valéria Batista Lima
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | |
Collapse
|
16
|
Yoshimura J, Togami Y, Ebihara T, Matsumoto H, Mitsuyama Y, Sugihara F, Hirata H, Okuzaki D, Ogura H. Classification of patients with COVID-19 by blood RNA endotype: a prospective cohort study. Microbiol Spectr 2023; 11:e0264523. [PMID: 37966347 PMCID: PMC10715063 DOI: 10.1128/spectrum.02645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE In this study, whole-blood RNAs (prolactin and toll-like receptor 3) involved in the prognosis of patients with COVID-19 were identified. The RNA endotypes classified by these important RNAs highlight the possibility of stratifying the COVID-19 patient population and the need for targeted therapy based on these phenotypes.
Collapse
Affiliation(s)
- Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Sahanic S, Hilbe R, Dünser C, Tymoszuk P, Löffler-Ragg J, Rieder D, Trajanoski Z, Krogsdam A, Demetz E, Yurchenko M, Fischer C, Schirmer M, Theurl M, Lener D, Hirsch J, Holfeld J, Gollmann-Tepeköylü C, Zinner CP, Tzankov A, Zhang SY, Casanova JL, Posch W, Wilflingseder D, Weiss G, Tancevski I. SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19. Heliyon 2023; 9:e21893. [PMID: 38034686 PMCID: PMC10686889 DOI: 10.1016/j.heliyon.2023.e21893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Dünser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Krogsdam
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carl P. Zinner
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Sharma D, Joshi M, Apparsundaram S, Goyal RK, Patel B, Dhobi M. Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate. Mol Cell Biochem 2023; 478:2221-2240. [PMID: 36689040 PMCID: PMC9868520 DOI: 10.1007/s11010-022-04654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.
Collapse
Affiliation(s)
- Divya Sharma
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Mit Joshi
- Institute of Pharmacy, Nirma University, 382481, Ahmedabad, Gujarat, India
| | - Subbu Apparsundaram
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector-9, Gandhinagar-382007, Gujarat, India.
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India.
| |
Collapse
|
19
|
Isazadeh A, Heris JA, Shahabi P, Mohammadinasab R, Shomali N, Nasiri H, Valedkarimi Z, Khosroshahi AJ, Hajazimian S, Akbari M, Sadeghvand S. Pattern-recognition receptors (PRRs) in SARS-CoV-2. Life Sci 2023; 329:121940. [PMID: 37451397 DOI: 10.1016/j.lfs.2023.121940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Pattern recognition receptors (PRRs) are specific sensors that directly recognize various molecules derived from viral or bacterial pathogens, senescent cells, damaged cells, and apoptotic cells. These sensors act as a bridge between nonspecific and specific immunity in humans. PRRs in human innate immunity were classified into six types: toll-like receptors (TLR), C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP (cGAMP) synthase (cGAS). Numerous types of PRRs are responsible for recognizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is immensely effective in prompting interferon responses. Detection of SARS-CoV-2 infection by PRRs causes the initiation of an intracellular signaling cascade and subsequently the activation of various transcription factors that stimulate the production of cytokines, chemokines, and other immune-related factors. Therefore, it seems that PRRs are a promising potential therapeutic approach for combating SARS-CoV-2 infection and other microbial infections. In this review, we have introduced the current knowledge of various PRRs and related signaling pathways in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahram Sadeghvand
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Srivastava S, Kolbe M. Novel "GaEl Antigenic Patches" Identified by a "Reverse Epitomics" Approach to Design Multipatch Vaccines against NIPAH Infection, a Silent Threat to Global Human Health. ACS OMEGA 2023; 8:31698-31713. [PMID: 37692250 PMCID: PMC10483669 DOI: 10.1021/acsomega.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. Several NiV outbreaks have been reported since 1999 with nearly annual occurrences in Bangladesh. The outbreaks had high mortality rates ranging from 40 to 90%. No specific vaccine has yet been reported against NiV. Recently, several vaccine candidates and different designs of vaccines composed of epitopes against NiV were proposed. Most of the vaccines target single protein or protein complex subunits of the pathogen. The multiepitope vaccines proposed also cover a largely limited number of epitopes, and hence, their efficiency is still uncertain. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have utilized the "reverse epitomics" approach ("overlapping-epitope-clusters-to-patches" method) to identify "antigenic patches" (Ag-Patches) and utilize them as immunogenic composition for multipatch vaccine (MPV) design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties, and interaction with Toll-like receptor 3 ectodomain. In total, 30 CTL (cytotoxic T lymphocyte) and 27 HTL (helper T lymphocyte) antigenic patches were identified from the entire NiV proteome based on the clusters of overlapping epitopes. These identified Ag-Patches cover a total of discrete 362 CTL and 414 HTL epitopes from the entire proteome of NiV. The antigenic patches were utilized as immunogenic composition for the design of two CTL and two HTL multipatch vaccines. The 57 antigenic patches utilized here cover 776 overlapping epitopes targeting 52 different HLA class I and II alleles, providing a global ethnically distributed human population coverage of 99.71%. Such large number of epitope coverage resulting in large human population coverage cannot be reached with single-protein/subunit or multiepitope based vaccines. The reported antigenic patches also provide potential immunogenic composition for early detection diagnostic kits for NiV infection. Further, all the MPVs and Toll-like receptor ectodomain complexes show a stable nature of molecular interaction with numerous hydrogen bonds, salt bridges, and nonbounded contact formation and acceptable root mean square deviation and fluctuation. The cDNA analysis shows a favorable large-scale expression of the MPV constructs in a human cell line. By utilizing the novel "reverse epitomics" approach, highly immunogenic novel "GaEl antigenic patches" (GaEl Ag-Patches), a synonym term for "antigenic patches", were identified and utilized as immunogenic composition to design four MPVs against NiV. We conclude that the novel multipatch vaccines are potential candidates to combat NiV, with greater effectiveness, high specificity, and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection
Biology Group, Indian Foundation for Fundamental
Research Trust, Raebareli, Uttar Pradesh 229316, India
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Kolbe
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
- Faculty
of Mathematics, Informatics and Natural Sciences, University of Hamburg, Rothenbaumchaussee 19, 20148 Hamburg, Germany
| |
Collapse
|
21
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
22
|
Xu L, Cai C, Fang J, Wu Q, Zhao J, Wang Z, Guo P, Zheng L, Liu A. Systems pharmacology dissection of pharmacological mechanisms of Xiaochaihu decoction against human coronavirus. BMC Complement Med Ther 2023; 23:252. [PMID: 37475019 PMCID: PMC10357659 DOI: 10.1186/s12906-023-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/03/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) pandemic is still rage worldwide, there are still very limited treatments for human coronaviruses (HCoVs) infections. Xiaochahu decoction (XCHD), which is one of the traditional Chinese medicine (TCM) prescriptions in Qingfeipaidu decoction (QFPDD), is widely used for COVID-19 treatment in China and able to relieve the symptoms of fever, fatigue, anorexia, and sore throat. To explore the role and mechanisms of XCHD against HCoVs, we presented an integrated systems pharmacology framework in this study. METHODS We constructed a global herb-compound-target (H-C-T) network of XCHD against HCoVs. Multi-level systems pharmacology analyses were conducted to highlight the key XCHD-regulated proteins, and reveal multiple HCoVs relevant biological functions affected by XCHD. We further utilized network-based prediction, drug-likeness analysis, combining with literature investigations to uncover the key ani-HCoV constituents in XCHD, whose effects on anit-HCoV-229E virus were validated using cytopathic effect (CPE) assay. Finally, we proposed potential molecular mechanisms of these compounds against HCoVs via subnetwork analysis. RESULTS Based on the systems pharmacology framework, we identified 161 XCHD-derived compounds interacting with 37 HCoV-associated proteins. An integrated pathway analysis revealed that the mechanism of XCHD against HCoVs is related to TLR signaling pathway, RIG-I-like receptor signaling pathway, cytoplasmic DNA sensing pathway, and IL-6/STAT3 pro-inflammatory signaling pathway. Five compounds from XCHD, including betulinic acid, chrysin, isoliquiritigenin, schisandrin B, and (20R)-Ginsenoside Rh1 exerted inhibitory activity against HCoV-229E virus in Huh7 cells using in vitro CPE assay. CONCLUSION Our work presented a comprehensive systems pharmacology approach to identify the effective molecules and explore the molecular mechanism of XCHD against HCoVs.
Collapse
Affiliation(s)
- Lvjie Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
24
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Darif D, Ejghal R, Desterke C, Outlioua A, Hammi I, Lemrani M, Hilali F, Guessous F, Zaid Y, Akarid K. Type I and III interferons are good markers to monitor COVID-19 pathophysiology. Cytokine 2023; 165:156172. [PMID: 36924609 PMCID: PMC10008794 DOI: 10.1016/j.cyto.2023.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has caused millions of deaths and has resulted in disastrous societal and economic impacts worldwide. During SARS-CoV-2 infection, abnormal levels of pro-inflammatory cytokines have been observed and were associated to the severity of the disease. Type I (-α/β) and Type III (IFN-λ) interferons are family members of cytokines that play an important role in fighting viral replication during the early phases of infection. The location and timing of the IFNs production have been shown to be decisive for the COVID-19 outcome. Despite the effectiveness of COVID-19 vaccines and with the emergence of new SARS-CoV-2 variants, a better understanding of the involvement of IFNs as players in antiviral immunity in the COVID-19 pathophysiology is necessary to implement additional potent prophylactic and/or therapeutic approaches. In this study, we investigated the role of type I and III IFN in COVID-19 pathophysiology. We first analyzed the IFN-α, IFN-β and IFN- λ mRNA expression in nasopharyngeal swabs and blood samples from Moroccan patients infected with SARS-CoV-2 and secondly correlated these IFNs expressions with COVID-19 clinical and biological parameters. Our results showed that in the upper airways of patients with mild, non-severe, or severe COVID-19 manifestations, the IFN- α, - β and - λ are expressed in the same manner as in controls. However, in blood samples their expression was downregulated in all groups. Univariate linear models with interferons as predictors to evaluate clinical-biological parameters highlighted that the main clinical-biological relations were found when testing: FiO2, Lymphocyte values and virus load. Furthermore, the multivariate models confirmed that quantifications of interferons during COVID-19 are good biological markers for tracking COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Dounia Darif
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rajaâ Ejghal
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris Saclay, Villejuif, France
| | - Ahmed Outlioua
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ikram Hammi
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Farida Hilali
- Research and Biosafety Laboratory, Mohamed V Military Teaching Hospital, Mohamed V University, Rabat, Morocco
| | - Fadila Guessous
- Faculty of Medicine, Department of Biological Sciences, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Khadija Akarid
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
26
|
Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm (Beijing) 2023; 4:e247. [PMID: 37035134 PMCID: PMC10080216 DOI: 10.1002/mco2.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, causes coronavirus disease 2019 (COVID-19) which led to neurological damage and increased mortality worldwide in its second and third waves. It is associated with systemic inflammation, myocardial infarction, neurological illness including ischemic strokes (e.g., cardiac and cerebral ischemia), and even death through multi-organ failure. At the early stage, the virus infects the lung epithelial cells and is slowly transmitted to the other organs including the gastrointestinal tract, blood vessels, kidneys, heart, and brain. The neurological effect of the virus is mainly due to hypoxia-driven reactive oxygen species (ROS) and generated cytokine storm. Internalization of SARS-CoV-2 triggers ROS production and modulation of the immunological cascade which ultimately initiates the hypercoagulable state and vascular thrombosis. Suppression of immunological machinery and inhibition of ROS play an important role in neurological disturbances. So, COVID-19 associated damage to the central nervous system, patients need special care to prevent multi-organ failure at later stages of disease progression. Here in this review, we are selectively discussing these issues and possible antioxidant-based prevention therapies for COVID-19-associated neurological damage that leads to multi-organ failure.
Collapse
Affiliation(s)
- Sibani Sarkar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Subhajit Karmakar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder College, University of CalcuttaDakshin BarasatWBIndia
| | - Pratyasha Ghosh
- Department of EconomicsBethune CollegeUniversity of CalcuttaKolkataIndia
| | - Mrinal K Ghosh
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| |
Collapse
|
27
|
Wang X, Guan F, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Lei J, Filatov A, Liu C. The role of dendritic cells in COVID-19 infection. Emerg Microbes Infect 2023; 12:2195019. [PMID: 36946172 PMCID: PMC10171120 DOI: 10.1080/22221751.2023.2195019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organ dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Maria G Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo - SP, Brazil
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 DOI: 10.7554/elife.86002:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/28/2024] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, District of Columbia, United States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, United States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's Hospital, New York, United States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, United States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas, San Antonio, United States
| |
Collapse
|
29
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 PMCID: PMC10032659 DOI: 10.7554/elife.86002] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashington, District of ColumbiaUnited States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI)BethesdaUnited States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's HospitalNew YorkUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of CaliforniaSan FranciscoUnited States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of TexasSan AntonioUnited States
| |
Collapse
|
30
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Srivastava S, Verma S, Kamthania M, Saxena AK, Pandey KC, Pande V, Kolbe M. Exploring the structural basis to develop efficient multi-epitope vaccines displaying interaction with HLA and TAP and TLR3 molecules to prevent NIPAH infection, a global threat to human health. PLoS One 2023; 18:e0282580. [PMID: 36920996 PMCID: PMC10016716 DOI: 10.1371/journal.pone.0282580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed and in silico validated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
| | - Sonia Verma
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mohit Kamthania
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
| | - Ajay Kumar Saxena
- Molecular Medicine Lab., School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Kailash C. Pandey
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Kumaun University, Bheemtal, Nainital, Uttarakhand, India
| | - Michael Kolbe
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Abstract
Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.
Collapse
Affiliation(s)
- Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. HUMAN GENE 2023; 35. [PMID: 37521006 PMCID: PMC9754755 DOI: 10.1016/j.humgen.2022.201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 is a severe respiratory disease caused by SARS-CoV-2, a novel human coronavirus. Patients infected with SARS-CoV-2 exhibit heterogeneous symptoms that pose pragmatic hurdles for implementing appropriate therapy and management of the COVID-19 patients and their post-COVID complications. Thus, understanding the impact of infection severity at the molecular level in the host is vital to understand the host response and accordingly it's precise management. In the current study, we performed a comparative transcriptomics analysis of publicly available seven asymptomatic and eight severe COVID-19 patients. Exploratory data analysis employing Principal Component Analysis (PCA) showed the distinct clusters of asymptomatic and severe patients. Subsequently, the differential gene expression analysis using DESeq2 identified 1224 significantly upregulated genes (logFC≥ 1.5, p-adjusted value <0.05) and 268 significantly downregulated genes (logFC≤ −1.5, p-adjusted value <0.05) in severe samples in comparison to asymptomatic samples. Eventually, Gene Set Enrichment Analysis (GSEA) revealed the upregulation of anti-viral and anti-inflammatory pathways, secondary infections, Iron homeostasis, anemia, cardiac-related, etc.; while, downregulation of lipid metabolism, adaptive immune response, translation, recurrent respiratory infections, heme-biosynthetic pathways, etc. Conclusively, these findings provide insight into the enhanced susceptibility of severe COVID-19 patients to other health comorbidities including non-viral pathogenic infections, atherosclerosis, autoinflammatory diseases, anemia, male infertility, etc. owing to the activation of biological processes, pathways and molecular functions associated with them. We anticipate this study will facilitate the researchers in finding efficient therapeutic targets and eventually the clinicians in management of COVID-19 patients and post-COVID-19 effects in them.
Collapse
|
34
|
Almazmomi MA, Alsieni M. Targeting TLR-4 Signaling to Treat COVID-19-induced Acute Kidney Injury. J Pharmacol Pharmacother 2023. [DOI: 10.1177/0976500x221147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has turned into a potentially fatal pandemic illness. Numerous acute kidney injury (AKI) cases have been reported, although diffuse alveolar destruction and acute respiratory failure are the major symptoms of SARS-CoV-2 infection. The AKI, often known as a sudden loss of kidney function, carries a greater risk of mortality and morbidity. AKI was the second most frequent cause of death after acute respiratory distress syndrome (ARDS) in critically ill patients with coronavirus disease 2019 (COVID-19). While most patients with COVID-19 have moderate symptoms, some have severe symptoms, such as septic shock and ARDS. Also, it has been proven that some patients have severe symptoms, such as the failure of several organs. The kidneys are often affected either directly or indirectly. The major signs of kidney involvement are proteinuria and AKI. It is hypothesized that multiple mechanisms contribute to kidney injury in COVID-19. Direct infection of podocytes and proximal tubular cells in the kidneys may lead to acute tubular necrosis and collapsing glomerulopathy. SARS-CoV2 may also trigger a cascade of immunological responses that lead to AKI, including cytokine storm (CS), macrophage activation syndrome, and Toll-like receptor type-4 activation (TLR-4). Other proposed processes of AKI include interactions between organs, endothelial failure, hypercoagulability, rhabdomyolysis, and sepsis. Furthermore, ischemic damage to the kidney might result from the decreased oxygen supply. This article focuses on kidney injury’s epidemiology, etiology, and pathophysiological processes. Specifically, it focuses on the CS and the role of TLR-4 in this process. To effectively manage and treat acute kidney damage and AKI in COVID-19, it is crucial to understand the underlying molecular pathways and pathophysiology.
Collapse
Affiliation(s)
- Meaad A. Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard—Health Affairs, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alsieni
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Yamada T, Takaoka A. Innate immune recognition against SARS-CoV-2. Inflamm Regen 2023; 43:7. [PMID: 36703213 PMCID: PMC9879261 DOI: 10.1186/s41232-023-00259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative virus of pandemic acute respiratory disease called coronavirus disease 2019 (COVID-19). Most of the infected individuals have asymptomatic or mild symptoms, but some patients show severe and critical systemic inflammation including tissue damage and multi-organ failures. Immune responses to the pathogen determine clinical course. In general, the activation of innate immune responses is mediated by host pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) as well as host damage-associated molecular patterns (DAMPs), which results in the activation of the downstream gene induction programs of types I and III interferons (IFNs) and proinflammatory cytokines for inducing antiviral activity. However, the excessive activation of these responses may lead to deleterious inflammation. Here, we review the recent advances in our understanding of innate immune responses to SARS-CoV-2 infection, particularly in terms of innate recognition and the subsequent inflammation underlying COVID-19 immunopathology.
Collapse
Affiliation(s)
- Taisho Yamada
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| |
Collapse
|
36
|
Farkas D, Bogamuwa S, Piper B, Newcomb G, Gunturu P, Bednash JS, Londino JD, Elhance A, Nho R, Mejia OR, Yount JS, Horowitz JC, Goncharova EA, Mallampalli RK, Robinson RT, Farkas L. A role for Toll-like receptor 3 in lung vascular remodeling associated with SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.524586. [PMID: 36747676 PMCID: PMC9900759 DOI: 10.1101/2023.01.25.524586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cardiovascular sequelae of severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) disease 2019 (COVID-19) contribute to the complications of the disease. One potential complication is lung vascular remodeling, but the exact cause is still unknown. We hypothesized that endothelial TLR3 insufficiency contributes to lung vascular remodeling induced by SARS-CoV-2. In the lungs of COVID-19 patients and SARS-CoV-2 infected Syrian hamsters, we discovered thickening of the pulmonary artery media and microvascular rarefaction, which were associated with decreased TLR3 expression in lung tissue and pulmonary artery endothelial cells (ECs). In vitro , SARS-CoV-2 infection reduced endothelial TLR3 expression. Following infection with mouse-adapted (MA) SARS-CoV-2, TLR3 knockout mice displayed heightened pulmonary artery remodeling and endothelial apoptosis. Treatment with the TLR3 agonist polyinosinic:polycytidylic acid reduced lung tissue damage, lung vascular remodeling, and endothelial apoptosis associated with MA SARS-CoV-2 infection. In conclusion, repression of endothelial TLR3 is a potential mechanism of SARS-CoV-2 infection associated lung vascular remodeling and enhancing TLR3 signaling is a potential strategy for treatment.
Collapse
|
37
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Aktar S, Amin S. SARS-CoV-2 mediated dysregulation in cell signaling events drives the severity of COVID-19. Virus Res 2023; 323:198962. [PMID: 36209917 PMCID: PMC9536871 DOI: 10.1016/j.virusres.2022.198962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023]
Abstract
A balance in immune response against an unfamiliar pathogen is crucial to eliminate the infection. A cascade of cell signaling events is immediately activated upon sensing the presence of SARS-CoV-2 by cellular toll like receptors in a natural host response manner against the invading virus. The ultimate aim of such innate immune signaling pathways is to provide a required level of protection to our bodies by interfering with the invader. However, if there is any loss in such balance, an impairment in immune system emerge that fails to control the regulated transcription and translation of signaling components. Consequently, excessive level of proinflammatory mediators release into the circulatory systems that ultimately cause "cytokine storm" and COVID-19 pathological syndromes. The limited production of interferons (IFNs), while excessive yield of pro-inflammatory cytokines followed by SARS-CoV-2 infection suggests an abnormal cell signaling event and explains the reasons of increased immunopathology and severity in COVID-19.
Collapse
Affiliation(s)
- Salma Aktar
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Saiful Amin
- Chittagong Medical University, Chattogram, Bangladesh
| |
Collapse
|
39
|
Lerner A, Benzvi C. SARS-CoV-2 induction and COVID-19 manifestations related to autoimmune gastrointestinal diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:451-469. [DOI: 10.1016/b978-0-443-18566-3.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
TIRAP, TRAM, and Toll-Like Receptors: The Untold Story. Mediators Inflamm 2023; 2023:2899271. [PMID: 36926280 PMCID: PMC10014160 DOI: 10.1155/2023/2899271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Toll-like receptors (TLRs) are the most studied receptors among the pattern recognition receptors (PRRs). They act as microbial sensors, playing major roles in the regulation of the innate immune system. TLRs mediate their cellular functions through the activation of MyD88-dependent or MyD88-independent signaling pathways. Myd88, or myeloid differentiation primary response 88, is a cytosolic adaptor protein essential for the induction of proinflammatory cytokines by all TLRs except TLR3. While the crucial role of Myd88 is well described, the contribution of other adaptors in mediating TLR signaling and function has been underestimated. In this review, we highlight important results demonstrating that TIRAP and TRAM adaptors are also required for full signaling activity and responses induced by most TLRs.
Collapse
|
41
|
Upregulation of miRNA-200c during Disease Progression in COVID-19 Patients. J Clin Med 2022; 12:jcm12010283. [PMID: 36615083 PMCID: PMC9821078 DOI: 10.3390/jcm12010283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has caused more than 6 million deaths worldwide since its first outbreak in December 2019 and continues to be a major health problem. Several studies have established that the infection by SARS-CoV-2 can be categorized in a viremic, acute and recovery or severe phase. Hyperinflammation during the acute pneumonia phase is a major cause of severe disease progression and death. Treatment of COVID-19 with directly acting antivirals is limited within a narrow window of time between first clinical symptoms and the hyperinflammatory response. Therefore, early initiation of treatment is crucial to assure optimal health care for patients. Molecular diagnostic biomarkers represent a potent tool to predict the course of disease and thus to assess the optimal treatment regimen and time point. Here, we investigated miRNA-200c as a potential marker for the prediction of the severity of COVID-19 to preventively initiate and personalize therapeutic interventions in the future. We found that miRNA-200c correlates with the severity of disease. With retrospective analysis, however, there is no correlation with prognosis at the time of hospitalization. Our study provides the basis for further evaluation of miRNA-200c as a predictive biomarker for the progress of COVID-19.
Collapse
|
42
|
Antonazzo IC, Fornari C, Rozza D, Conti S, Di Pasquale R, Cortesi PA, Kaleci S, Ferrara P, Zucchi A, Maifredi G, Silenzi A, Cesana G, Mantovani LG, Mazzaglia G. Statins Use in Patients with Cardiovascular Diseases and COVID-19 Outcomes: An Italian Population-Based Cohort Study. J Clin Med 2022; 11:jcm11247492. [PMID: 36556112 PMCID: PMC9781425 DOI: 10.3390/jcm11247492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of statins among patients with established cardiovascular diseases (CVDs) who are hospitalized with COVID-19 is still debated. This study aimed at assessing whether the prior use of statins was associated with a less severe COVID-19 prognosis. METHODS Subjects with CVDs infected with SARS-CoV-2 and hospitalized between 20 February 2020 and 31 December 2020 were selected. These were classified into two mutually exclusive groups: statins-users and non-users of lipid-lowering therapies (non-LLT users). The relationship between statins exposure and the risk of Mechanical Ventilation (MV), Intensive Care Unit (ICU) access and death were evaluated by using logistic and Cox regressions models. RESULTS Of 1127 selected patients, 571 were statins-users whereas 556 were non-LLT users. The previous use of statins was not associated with a variation in the risk of need of MV (Odds Ratio [OR]: 1.00; 95% Confidence Intervals [CI]: 0.38-2.67), ICU access (OR: 0.54; 95% CI: 0.22-1.32) and mortality at 14 days (Hazard Ratio [HR]: 0.42; 95% CI: 0.16-1.10). However, a decreased risk of mortality at 30 days (HR: 0.39; 95% CI: 0.18-0.85) was observed in statins-users compared with non-LLT users. CONCLUSIONS These findings support the clinical advice for patients CVDs to continue their treatment with statins during SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Carla Fornari
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence:
| | - Davide Rozza
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sara Conti
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | | | - Paolo Angelo Cortesi
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Shaniko Kaleci
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Pietro Ferrara
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Alberto Zucchi
- Health Protection Agency of Bergamo (ATS Bergamo), 24121 Bergamo, Italy
| | - Giovanni Maifredi
- Health Protection Agency of Brescia (ATS Brescia), 25124 Brescia, Italy
| | - Andrea Silenzi
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Lorenzo Giovanni Mantovani
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Giampiero Mazzaglia
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
43
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
44
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
45
|
Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J Transl Med 2022; 20:542. [PMID: 36419185 PMCID: PMC9682745 DOI: 10.1186/s12967-022-03767-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
The innate immune system serves as the first line of defense against invading pathogens; however, dysregulated innate immune responses can induce aberrant inflammation that is detrimental to the host. Therefore, careful innate immune regulation is critical during infections. The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in global morbidity and mortality as well as socio-economic stresses. Innate immune sensing of SARS-CoV-2 by multiple host cell pattern recognition receptors leads to the production of various pro-inflammatory cytokines and the induction of inflammatory cell death. These processes can contribute to cytokine storm, tissue damage, and acute respiratory distress syndrome. Here, we discuss the sensing of SARS-CoV-2 to induce innate immune activation and the contribution of this innate immune signaling in the development and severity of COVID-19. In addition, we provide a conceptual framework for innate immunity driving cytokine storm and organ damage in patients with severe COVID-19. A better understanding of the molecular mechanisms regulated by innate immunity is needed for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| |
Collapse
|
46
|
Wu C, Wu Z, Chen Y, Huang X, Tian B. Potential core genes associated with COVID-19 identified via weighted gene co-expression network analysis. Swiss Med Wkly 2022; 152:40033. [PMID: 36509426 DOI: 10.57187/smw.2022.40033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus belonging to the Coronaviridae family that causes coronavirus disease (COVID-19). This disease rapidly reached pandemic status, presenting a serious threat to global health. However, the detailed molecular mechanism contributing to COVID-19 has not yet been elucidated. METHODS The expression profiles, including the mRNA levels, of samples from patients infected with SARS-CoV-2 along with clinical data were obtained from the GSE152075 dataset in the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules, which were then implemented to evaluate the relationships between fundamental modules and clinical traits. The differentially expressed genes (DEGs), gene ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were evaluated using R software packages. RESULTS A total of 377 SARS-CoV-2-infected samples and 54 normal samples with available clinical and genetic data were obtained from the GEO database. There were 1444 DEGs identified between the sample types, which were used to screen out 11 co-expression modules in the WGCNA. Six co-expression modules were significantly associated with three clinical traits (SARS-CoV-2 positivity, age, and sex). Among the DEGs in two modules significantly correlated with SARS-CoV-2 positivity, enrichment was observed in the biological process of viral infection strategies (viral translation) in the GO analysis. The KEGG signalling pathway analysis demonstrated that the DEGs in the two modules were commonly enriched in oxidative phosphorylation, ribosome, and thermogenesis pathways. Moreover, a five-core gene set (RPL35A, RPL7A, RPS15, RPS20, and RPL17) with top connectivity with other genes was identified in the SARS-CoV-2 infection modules, suggesting that these genes may be indispensable in viral transcription after infection. CONCLUSION The identified core genes and signalling pathways associated with SARS-CoV-2 infection can significantly supplement the current understanding of COVID-19. The five core genes encoding ribosomal proteins may be indispensable in viral protein biosynthesis after SARS-CoV-2 infection and serve as therapeutic targets for COVID-19 treatment. These findings can be used as a basis for creating a hypothetical model for future experimental studies regarding associations of SARS-CoV-2 infection with ribosomal protein function.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zuowei Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
47
|
Semple SL, Alkie TN, Jenik K, Warner BM, Tailor N, Kobasa D, DeWitte-Orr SJ. More tools for our toolkit: The application of HEL-299 cells and dsRNA-nanoparticles to study human coronaviruses in vitro. Virus Res 2022; 321:198925. [PMID: 36115551 PMCID: PMC9474404 DOI: 10.1016/j.virusres.2022.198925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFNβ, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tamiru N Alkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kristof Jenik
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Bryce M Warner
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
48
|
de Graaf DM, Teufel LU, de Nooijer AH, van Gammeren AJ, Ermens AAM, Gaál IO, Crișan TO, van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LAB, Arts RJW. Exploratory analysis of interleukin-38 in hospitalized COVID-19 patients. Immun Inflamm Dis 2022; 10:e712. [PMID: 36301025 PMCID: PMC9601778 DOI: 10.1002/iid3.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION A major contributor to coronavirus disease 2019 (COVID-19) progression and severity is a dysregulated innate and adaptive immune response. Interleukin-38 (IL-38) is an IL-1 family member with broad anti-inflammatory properties, but thus far little is known about its role in viral infections. Recent studies have shown inconsistent results, as one study finding an increase in circulating IL-38 in COVID-19 patients in comparison to healthy controls, whereas two other studies report no differences in IL-38 concentrations. METHODS Here, we present an exploratory, retrospective cohort study of circulating IL-38 concentrations in hospitalized COVID-19 patients admitted to two Dutch hospitals (discovery n = 148 and validation n = 184) and age- and sex-matched healthy subjects. Plasma IL-38 concentrations were measured by enzyme-linked immunosorbent assay, disease-related proteins by proximity extension assay, and clinical data were retrieved from hospital records. RESULTS IL-38 concentrations were stable during hospitalization and similar to those of healthy control subjects. IL-38 was not associated with rates of intensive care unit admission or mortality. Only in men in the discovery cohort, IL-38 concentrations were positively correlated with hospitalization duration. A positive correlation between IL-38 and the inflammatory biomarker d-dimer was observed in men of the validation cohort. In women of the validation cohort, IL-38 concentrations correlated negatively with thrombocyte numbers. Furthermore, plasma IL-38 concentrations in the validation cohort correlated positively with TNF, TNFRSF9, IL-10Ra, neurotrophil 3, polymeric immunoglobulin receptor, CHL1, CD244, superoxide dismutase 2, and fatty acid binding protein 2, and negatively with SERPINA12 and cartilage oligomeric matrix protein. CONCLUSIONS These data indicate that IL-38 is not associated with disease outcomes in hospitalized COVID-19 patients. However, moderate correlations between IL-38 concentrations and biomarkers of disease were identified in one of two cohorts. While we demonstrate that IL-38 concentrations are not indicative of COVID-19 severity, its anti-inflammatory effects may reduce COVID-19 severity and should be experimentally investigated.
Collapse
Affiliation(s)
- Dennis M. de Graaf
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Lisa U. Teufel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | - Ildikó O. Gaál
- Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of Immunology and Metabolism, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Charles A. Dinarello
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
49
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|