1
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Ai S, Arutyunov A, Liu J, Hill JD, Jiang X, Klein RS. CCR2 limits inflammatory functions of CD8 TRM cells that impair recognition memory during recovery from WNV encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613307. [PMID: 39345540 PMCID: PMC11429802 DOI: 10.1101/2024.09.17.613307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Central nervous system (CNS) resident memory CD8 T cells (T RM ) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairments. Here, we show that CCR2 signalling in CD8 T RM that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2 + versus CCR2 - CD8 T RM during WNV recovery reveal that CCR2 signalling significantly regulates hippocampal CD8 T RM phenotype and function via extrinsic and intrinsic effects, decreasing the expression of CD103 and granzyme A and IFN-γ, respectively. Consistent with this, WNV-recovered Cd8a cre Ccr2 fl/fl mice exhibit decreased recognition memory. Our findings highlight a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.
Collapse
|
4
|
Chang NP, DaPrano EM, Lindman M, Estevez I, Chou TW, Evans WR, Nissenbaum M, McCourt M, Alzate D, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. JCI Insight 2024; 9:e177002. [PMID: 38713518 PMCID: PMC11382884 DOI: 10.1172/jci.insight.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
| | | | | | | | | | - Wesley R Evans
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | | | | | | | | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | |
Collapse
|
5
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
7
|
Feng M, Fei S, Zou J, Xia J, Lai W, Huang Y, Swevers L, Sun J. Single-Nucleus Sequencing of Silkworm Larval Brain Reveals the Key Role of Lysozyme in the Antiviral Immune Response in Brain Hemocytes. J Innate Immun 2024; 16:173-187. [PMID: 38387449 PMCID: PMC10965234 DOI: 10.1159/000537815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinglei Zou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
9
|
Saito S, Shahbaz S, Luo X, Osman M, Redmond D, Cohen Tervaert JW, Li L, Elahi S. Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome. Front Immunol 2024; 15:1341843. [PMID: 38304426 PMCID: PMC10830702 DOI: 10.3389/fimmu.2024.1341843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction A group of SARS-CoV-2 infected individuals present lingering symptoms, defined as long COVID (LC), that may last months or years post the onset of acute disease. A portion of LC patients have symptoms similar to myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a substantial reduction in their quality of life. A better understanding of the pathophysiology of LC, in particular, ME/CFS is urgently needed. Methods We identified and studied metabolites and soluble biomarkers in plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-matched recovered individuals (R) without LC, acute COVID-19 patients (A), and to SARS-CoV-2 unexposed healthy individuals (HC). Results Through these analyses, we identified alterations in several metabolomic pathways in LC vs other groups. Plasma metabolomics analysis showed that LC differed from the R and HC groups. Of note, the R group also exhibited a different metabolomic profile than HC. Moreover, we observed a significant elevation in the plasma pro-inflammatory biomarkers (e.g. IL-1α, IL-6, TNF-α, Flt-1, and sCD14) but the reduction in ATP in LC patients. Our results demonstrate that LC patients exhibit persistent metabolomic abnormalities 12 months after the acute COVID-19 disease. Of note, such metabolomic alterations can be observed in the R group 12 months after the acute disease. Hence, the metabolomic recovery period for infected individuals with SARS-CoV-2 might be long-lasting. In particular, we found a significant reduction in sarcosine and serine concentrations in LC patients, which was inversely correlated with depression, anxiety, and cognitive dysfunction scores. Conclusion Our study findings provide a comprehensive metabolomic knowledge base and other soluble biomarkers for a better understanding of the pathophysiology of LC and suggests sarcosine and serine supplementations might have potential therapeutic implications in LC patients. Finally, our study reveals that LC disproportionally affects females more than males, as evidenced by nearly 70% of our LC patients being female.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Xian Luo
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Edmonton, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Edmonton, AB, Canada
| | | | - Liang Li
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Şeren N, Dovinova I, Birim D, Kaftan G, Barancik M, Erdogan MA, Armagan G. Regulation of tight junction proteins and cell death by peroxisome proliferator-activated receptor γ agonist in brainstem of hypertensive rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:411-421. [PMID: 37458776 DOI: 10.1007/s00210-023-02619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 01/07/2024]
Abstract
The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone. Then, occludin, claudin-1, claudin-2, claudin-12, ZO-1, and NF-κB p65 gene expression levels; pIKKβ, NF-κB p65, TNF, IL-1β, caspase-3, caspase-9 levels, and PARP-1 cleavage were evaluated. Significantly lower pIKKβ, NF-κB p65, TNF, and IL-1β levels were measured in pioglitazone-treated SHR. Results from this study confirm higher occludin (1.35-fold), claudin-2 (7.45-fold), claudin-12 (1.12-fold), and NF-κB p65 subunit (4.76-fold) expressions in the BHR group when compared to the SHR group. Pioglitazone was found effective in terms of regulating gene expression in SHR. Pioglitazone significantly increased occludin (8.17-fold), claudin-2 (2.41-fold), and claudin-12 (1.85-fold) mRNA levels, which were accompanied by decreased cleaved caspase-3, caspase-9 levels, PARP-1 activation, and proinflammatory factor levels in SHR (p ˂ 0.05). Our work has led us to conclude that alterations in tight junction proteins, particularly occludin, and cell death parameters in the brainstem following PPARγ activation may contribute to neuroprotection in essential hypertension.
Collapse
Affiliation(s)
- Nazlıcan Şeren
- Master Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ima Dovinova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dubravska Cesta 9, 84104, Bratislava, Slovakia
| | - Derviş Birim
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
- Doctorate Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Gizem Kaftan
- Doctorate Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dubravska Cesta 9, 84104, Bratislava, Slovakia
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, 35610, Izmir, Turkey
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
12
|
Constant O, Maarifi G, Barthelemy J, Martin MF, Tinto B, Savini G, Van de Perre P, Nisole S, Simonin Y, Salinas S. Differential effects of Usutu and West Nile viruses on neuroinflammation, immune cell recruitment and blood-brain barrier integrity. Emerg Microbes Infect 2023; 12:2156815. [PMID: 36495563 DOI: 10.1080/22221751.2022.2156815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Usutu (USUV) and West Nile (WNV) viruses are two closely related Flavivirus belonging to Japanese encephalitis virus serogroup. Evidence of increased circulation of these two arboviruses now exist in Europe. Neurological disorders are reported in humans mainly for WNV, despite the fact that the interaction and effects of viral infections on the neurovasculature are poorly described, notably for USUV. Using a human in vitro blood-brain barrier (BBB) and a mouse model, this study characterizes and compares the cerebral endothelial cell permissiveness, innate immunity and inflammatory responses and immune cell recruitment during infection by USUV and WNV. Both viruses are able to infect and cross the human BBB but with different consequences. We observed that WNV infects BBB cells resulting in significant endothelium impairment, potent neuroinflammation and immune cell recruitment, in agreement with previous studies. USUV, despite being able to infect BBB cells with higher replication rate than WNV, does not strongly affect endothelium integrity. Importantly, USUV also induces neuroinflammation, immune cell recruitment such as T lymphocytes, monocytes and dendritic cells (DCs) and was able to infect dendritic cells (DCs) more efficiently compared to WNV, with greater propensity for BBB recruitment. DCs may have differential roles for neuroinvasion of the two related viruses.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Marie-France Martin
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.,INSERM, Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Sébastien Nisole
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
13
|
Lindman M, Angel JP, Estevez I, Chang NP, Chou TW, McCourt M, Atkins C, Daniels BP. RIPK3 promotes brain region-specific interferon signaling and restriction of tick-borne flavivirus infection. PLoS Pathog 2023; 19:e1011813. [PMID: 38011306 PMCID: PMC10703404 DOI: 10.1371/journal.ppat.1011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/07/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Innate immune signaling in the central nervous system (CNS) exhibits many remarkable specializations that vary across cell types and CNS regions. In the setting of neuroinvasive flavivirus infection, neurons employ the immunologic kinase receptor-interacting kinase 3 (RIPK3) to promote an antiviral transcriptional program, independently of the traditional function of this enzyme in promoting necroptotic cell death. However, while recent work has established roles for neuronal RIPK3 signaling in controlling mosquito-borne flavivirus infections, including West Nile virus and Zika virus, functions for RIPK3 signaling in the CNS during tick-borne flavivirus infection have not yet been explored. Here, we use a model of Langat virus (LGTV) encephalitis to show that RIPK3 signaling is specifically required in neurons of the cerebellum to control LGTV replication and restrict disease pathogenesis. This effect did not require the necroptotic executioner molecule mixed lineage kinase domain like protein (MLKL), a finding similar to previous observations in models of mosquito-borne flavivirus infection. However, control of LGTV infection required a unique, region-specific dependence on RIPK3 to promote expression of key antiviral interferon-stimulated genes (ISG) in the cerebellum. This RIPK3-mediated potentiation of ISG expression was associated with robust cell-intrinsic restriction of LGTV replication in cerebellar granule cell neurons. These findings further illuminate the complex roles of RIPK3 signaling in the coordination of neuroimmune responses to viral infection, as well as provide new insight into the mechanisms of region-specific innate immune signaling in the CNS.
Collapse
Affiliation(s)
- Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Juan P. Angel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Nydia P. Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
14
|
Jamil Al-Obaidi MM, Desa MNM. A review of the mechanisms of blood-brain barrier disruption during COVID-19 infection. J Neurosci Res 2023; 101:1687-1698. [PMID: 37462109 DOI: 10.1002/jnr.25232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 09/10/2023]
Abstract
Coronaviruses are prevalent in mammals and birds, including humans and bats, and they often spread through airborne droplets. In humans, these droplets then interact with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which are the main receptors for the SARS-CoV-2 virus. It can infect several organs, including the brain. The blood-brain barrier (BBB) is designed to maintain the homeostatic neural microenvironment of the brain, which is necessary for healthy neuronal activity, function, and stability. It prevents viruses from entering the brain parenchyma and does not easily allow chemicals to pass into the brain while assisting numerous compounds in exiting the brain. The purpose of this review was to examine how COVID-19 influences the BBB along with the mechanisms that indicate the BBB's deterioration. In addition, the cellular mechanism through which SARS-CoV-2 causes BBB destruction by binding to ACE2 was evaluated and addressed. The mechanisms of the immunological reaction that occurs during COVID-19 infection that may contribute to the breakdown of the BBB were also reviewed. It was discovered that the integrity of the tight junction (TJs), basement membrane, and adhesion molecules was damaged during COVID-19 infection, which led to the breakdown of the BBB. Therefore, understanding how the BBB is disrupted by COVID-19 infection will provide an indication of how the SARS-CoV-2 virus is able to reach the central nervous system (CNS). The findings of this research may help in the identification of treatment options for COVID-19 that can control and manage the infection.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- Biology Unit, Science Department, Rustaq College of Education, University of Technology and Applied Sciences, Al-Rustaq, Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
16
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
17
|
Zhang YG, Zhang HX, Chen HW, Lv P, Su J, Chen YR, Fu ZF, Cui M. Type I/type III IFN and related factors regulate JEV infection and BBB endothelial integrity. J Neuroinflammation 2023; 20:216. [PMID: 37752509 PMCID: PMC10523659 DOI: 10.1186/s12974-023-02891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) remains a predominant cause of Japanese encephalitis (JE) globally. Its infection is usually accompanied by disrupted blood‒brain barrier (BBB) integrity and central nervous system (CNS) inflammation in a poorly understood pathogenesis. Productive JEV infection in brain microvascular endothelial cells (BMECs) is considered the initial event of the virus in penetrating the BBB. Type I/III IFN and related factors have been described as negative regulators in CNS inflammation, whereas their role in JE remains ambiguous. METHODS RNA-sequencing profiling (RNA-seq), real-time quantitative PCR, enzyme-linked immunosorbent assay, and Western blotting analysis were performed to analyze the gene and protein expression changes between mock- and JEV-infected hBMECs. Bioinformatic tools were used to cluster altered signaling pathway members during JEV infection. The shRNA-mediated immune factor-knockdown hBMECs and the in vitro transwell BBB model were utilized to explore the interrelation between immune factors, as well as between immune factors and BBB endothelial integrity. RESULTS RNA-Seq data of JEV-infected hBMECs identified 417, 1256, and 2748 differentially expressed genes (DEGs) at 12, 36, and 72 h post-infection (hpi), respectively. The altered genes clustered into distinct pathways in gene ontology (GO) terms and KEGG pathway enrichment analysis, including host antiviral immune defense and endothelial cell leakage. Further investigation revealed that pattern-recognition receptors (PRRs, including TLR3, RIG-I, and MDA5) sensed JEV and initiated IRF/IFN signaling. IFNs triggered the expression of interferon-induced proteins with tetratricopeptide repeats (IFITs) via the JAK/STAT pathway. Distinct PRRs exert different functions in barrier homeostasis, while treatment with IFN (IFN-β and IFN-λ1) in hBMECs stabilizes the endothelial barrier by alleviating exogenous destruction. Despite the complex interrelationship, IFITs are considered nonessential in the IFN-mediated maintenance of hBMEC barrier integrity. CONCLUSIONS This research provided the first comprehensive description of the molecular mechanisms of host‒pathogen interplay in hBMECs responding to JEV invasion, in which type I/III IFN and related factors strongly correlated with regulating the hBMEC barrier and restricting JEV infection. This might help with developing an attractive therapeutic strategy in JE.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Penghao Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
18
|
Lin SC, Zhao FR, Janova H, Gervais A, Rucknagel S, Murray KO, Casanova JL, Diamond MS. Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nat Commun 2023; 14:5973. [PMID: 37749080 PMCID: PMC10520062 DOI: 10.1038/s41467-023-41600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
| | - Summer Rucknagel
- Gnotobiotic Research, Education, and Transgenic Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy O Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
- Department of Paediatrics, Necker Hospital for Sick Children, Paris, EU, 75015, France
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Weichert L, Düsedau HP, Fritzsch D, Schreier S, Scharf A, Grashoff M, Cebulski K, Michaelsen-Preusse K, Erck C, Lienenklaus S, Dunay IR, Kröger A. Astrocytes evoke a robust IRF7-independent type I interferon response upon neurotropic viral infection. J Neuroinflammation 2023; 20:213. [PMID: 37737190 PMCID: PMC10515022 DOI: 10.1186/s12974-023-02892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.
Collapse
Affiliation(s)
- Loreen Weichert
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - David Fritzsch
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Sarah Schreier
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Annika Scharf
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Martina Grashoff
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Kristin Cebulski
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | | | - Christian Erck
- Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, 30625, Hannover, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany
| | - Andrea Kröger
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany.
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
20
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Duarte N, Shafi AM, Penha-Gonçalves C, Pais TF. Endothelial type I interferon response and brain diseases: identifying STING as a therapeutic target. Front Cell Dev Biol 2023; 11:1249235. [PMID: 37791071 PMCID: PMC10542901 DOI: 10.3389/fcell.2023.1249235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium layer lining the inner surface of blood vessels serves relevant physiological functions in all body systems, including the exchanges between blood and extravascular space. However, endothelial cells also participate in innate and adaptive immune response that contribute to the pathophysiology of inflammatory disorders. Type I Interferon (IFN) signaling is an inflammatory response triggered by a variety of pathogens, but it can also be induced by misplaced DNA in the cytosol caused by cell stress or gene mutations. Type I IFN produced by blood leukocytes or by the endothelium itself is well-known to activate the interferon receptor (IFNAR) in endothelial cells. Here, we discuss the induction of type I IFN secretion and signaling in the endothelium, specifically in the brain microvasculature where endothelial cells participate in the tight blood-brain barrier (BBB). This barrier is targeted during neuroinflammatory disorders such as infection, multiple sclerosis, Alzheimer's disease and traumatic brain injury. We focus on type I IFN induction through the cGAS-STING activation pathway in endothelial cells in context of autoinflammatory type I interferonopathies, inflammation and infection. By comparing the pathophysiology of two separate infectious diseases-cerebral malaria induced by Plasmodium infection and COVID-19 caused by SARS-CoV-2 infection-we emphasize the relevance of type I IFN and STING-induced vasculopathy in organ dysfunction. Investigating the role of endothelial cells as active type I IFN producers and responders in disease pathogenesis could lead to new therapeutic targets. Namely, endothelial dysfunction and brain inflammation may be avoided with strategies that target excessive STING activation in endothelial cells.
Collapse
|
22
|
Sun M, You H, Hu X, Luo Y, Zhang Z, Song Y, An J, Lu H. Microglia-Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells 2023; 12:1942. [PMID: 37566021 PMCID: PMC10417796 DOI: 10.3390/cells12151942] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The interaction between microglia and astrocytes exhibits a relatively balanced state in order to maintain homeostasis in the healthy central nervous system (CNS). Disease stimuli alter microglia-astrocyte interaction patterns and elicit cell-type-specific responses, resulting in their contribution to various pathological processes. Here, we review the similarities and differences in the activation modes between microglia and astrocytes in various scenarios, encompassing different stages of neural development and a wide range of neural disorders. The aim is to provide a comprehensive understanding of their roles in neural development and regeneration and guiding new strategies for restoring CNS homeostasis.
Collapse
Affiliation(s)
- Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Hongli You
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yujia Luo
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yiqun Song
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| |
Collapse
|
23
|
Sun X, Jin X, Liu X, Wang L, Li L, Yang J, Feng H, Lin Z, Zhan C, Zhang W, Gu C, Hu X, Liu X, Cheng G. Microglia play an important role in PRV infection-induced immune responses of the central nervous system. Virol J 2023; 20:151. [PMID: 37452371 PMCID: PMC10349424 DOI: 10.1186/s12985-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pseudorabies virus (PRV) can infect multiple hosts and lead to fatal encephalitis. There is a significant increase in the number of microglia in the brain of animals infected with PRV. However, whether and how microglia contribute to central nervous system damage in PRV infection remain unknown. In the present study, we elucidated that PRV infection can cause more severe inflammatory cell infiltration, thicker and more numerous vessel sleeve walls, and more severe inflammatory responses in the brains of natural hosts (pigs) than in those of nonnatural hosts (mice). In a mice infection model, activated microglia restricted viral replication in the early stage of infection. Acute neuroinflammation caused by microglia hyperactivation at late-stage of infection. Furthermore, in vitro experiments revealed that microglia restricted viral replication and decreased viral infectivity. This may be associated with the phagocytic ability of microglia because we observed a significant increase in the expression of the membrane receptor TREM2 in microglia, which is closely related to phagocytosis, we observed that depletion of microglia exacerbated neurological symptoms, blood-brain barrier breakdown, and peripheral lymphocyte infiltration. Taken together, we revealed the dual role of microglia in protecting the host and neurons from PRV infection.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lumeng Wang
- Henan Shengming Biotechnology Research, Xinxiang, China
| | - Li Li
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengdan Lin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cunlin Zhan
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
24
|
Sharma V, Chhabra T, Singh TG. Correlation of covid-19 and Guillain-Barré syndrome: A Mechanistic Perspective. OBESITY MEDICINE 2023; 40:100493. [PMID: 37131407 PMCID: PMC10091783 DOI: 10.1016/j.obmed.2023.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Aims Coronaviruses, SARS-CoV-2 particles are spherical and have proteins called spikes that stick out on the surface. COVID-19 most commonly affects the respiratory system, but various clinical manifestations on coronavirus have revealed their potential neurotropism. The neuroinvasive affinity of Coronavirus infections has been reported nearly for all the β Coronavirus infections, including MERS-CoV, SARS-CoV, HCoV-OC43 and HEV. Coronavirus invasion occurs through hypoxia injury, immune injury, ACE2, and direct infection. The pathophysiology of SARS-CoV-2 and other human Coronaviruses reveals the possible mechanisms of neurodegeneration. Methods A systematic literature review carried out from various search engines like Scopus, PubMed, Medline, and Elsevier for investigating the therapeutic perspective of association between Covid-19 and Guillain-Barré syndrome. Results SARS-CoV-2 uses angiotensin-converting enzyme 2 as its entry receptor and enters the central nervous system through a Blood-brain barrier constituted of inflammatory mediators, direct infection of the endothelial cells, or endothelial injury. Guillain-Barré syndrome is an autoimmune disease that injures and attacks the nerves in the peripheral nervous system. Studies suggest that the virus can infect peripheral neurons to cause direct damage through various mechanisms, including direct damage by cytokine-related injury, ACE2 receptors, and the sequelae of hypoxia. Conclusion we have discussed the possible mechanisms between neuroinvasion of SARs-cov2 and Guillain-barre syndrome.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tarun Chhabra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
25
|
Phelps AL, Salguero FJ, Hunter L, Stoll AL, Jenner DC, O’Brien LM, Williamson ED, Lever MS, Laws TR. Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice. Viruses 2023; 15:1307. [PMID: 37376607 PMCID: PMC10302690 DOI: 10.3390/v15061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - Laura Hunter
- UK Health Security Agency, Salisbury SP4 0JG, UK
| | | | | | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - M. Stephen Lever
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| |
Collapse
|
26
|
Lindman M, Angel JP, Estevez I, Chang NP, Chou TW, McCourt M, Atkins C, Daniels BP. RIPK3 promotes brain region-specific interferon signaling and restriction of tick-borne flavivirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525284. [PMID: 36747672 PMCID: PMC9900788 DOI: 10.1101/2023.01.23.525284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Innate immune signaling in the central nervous system (CNS) exhibits many remarkable specializations that vary across cell types and CNS regions. In the setting of neuroinvasive flavivirus infection, neurons employ the immunologic kinase receptor-interacting kinase 3 (RIPK3) to promote an antiviral transcriptional program, independently of the traditional function of this enzyme in promoting necroptotic cell death. However, while recent work has established roles for neuronal RIPK3 signaling in controlling mosquito-borne flavivirus infections, including West Nile virus and Zika virus, functions for RIPK3 signaling in the CNS during tick-borne flavivirus infection have not yet been explored. Here, we use a model of Langat virus (LGTV) encephalitis to show that RIPK3 signaling is specifically required in neurons of the cerebellum to control LGTV replication and restrict disease pathogenesis. This effect did not require the necroptotic executioner molecule mixed lineage kinase domain like protein (MLKL), a finding similar to previous observations in models of mosquito-borne flavivirus infection. However, control of LGTV infection required a unique, region-specific dependence on RIPK3 to promote expression of key antiviral interferon-stimulated genes (ISG) in the cerebellum. This RIPK3-mediated potentiation of ISG expression was associated with robust cell-intrinsic restriction of LGTV replication in cerebellar granule cell neurons. These findings further illuminate the complex roles of RIPK3 signaling in the coordination of neuroimmune responses to viral infection, as well as provide new insight into the mechanisms of region-specific innate immune signaling in the CNS.
Collapse
Affiliation(s)
- Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Juan P Angel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Nydia P Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
27
|
Pozzi M, Ripa C, Meroni V, Ferlicca D, Annoni A, Villa M, Strepparava MG, Rezoagli E, Piva S, Lucchini A, Bellani G, Foti G. Hospital Memories and Six-Month Psychological Outcome: A Prospective Study in Critical Ill Patients with COVID-19 Respiratory Failure. J Clin Med 2023; 12:jcm12093344. [PMID: 37176785 PMCID: PMC10179721 DOI: 10.3390/jcm12093344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
ICU survivors suffer from various long-term physical and psychological impairments. Memories from the critical illness may influence long-term psychological outcome. In particular, the role of ICU memories in COVID-19 critically ill patients is unknown. In a prospective observational study, we aimed to investigate patients' memories from the experience of critical illness and their association with a six-month psychological outcome involving quality of life evaluation. Patients' memories were investigated with ICU Memory tool, while psychological outcome and quality of life were evaluated by means of a battery of validated questionnaires during an in-person interview at the follow-up clinic. 149 adult patients were enrolled. 60% retained memories from pre-ICU days spent on a general ward, while 70% reported memories from the in-ICU period. Delusional memories (i.e., memories of facts that never happened) were reported by 69% of patients. According to a multivariable analysis, the lack of pre-ICU memories was an independent predictor of worse psychological outcomes in terms of anxiety, depression and Post-traumatic Stress Disorder (PTDS). Factors associated with long-term outcome in ICU survivors are not still fully understood and patients' experience during the day spent before ICU admission may be associated with psychological sequelae.
Collapse
Affiliation(s)
- Matteo Pozzi
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Claudio Ripa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Meroni
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Daniela Ferlicca
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Alice Annoni
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Marta Villa
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | | | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, 25123 Brescia, Italy
| | - Alberto Lucchini
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giacomo Bellani
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
28
|
Wu D, Wang J, Huang C, Zhao J, Fu ZF, Zhao L, Zhou M. Interleukin-1β suppresses rabies virus infection by activating cGAS-STING pathway and compromising the blood-brain barrier integrity in mice. Vet Microbiol 2023; 280:109708. [PMID: 36857805 DOI: 10.1016/j.vetmic.2023.109708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that severely threatens the public health throughout the world. Previous study indicated that interleukin-1β (IL-1β) plays an important role in RABV infection. However, the mechanism how IL-1β affects RABV pathogenicity is still unknown yet. In this study, we confirmed that IL-1β was able to reduce viral titers of RABV in different cells, and the recombinant RABV expressing IL-1β, designated as rCVS-IL1β, could be suppressed in different cells due to the expression of IL-1β. Furthermore, the survival rates of mice infected with rCVS-IL1β by intramuscular route was significantly higher than those of mice infected with parent virus rCVS, which is associated with the less viral loads for entry into the central nervous system (CNS). We further characterized that the cGAS-STING pathway was activated in rCVS-IL1β infected bone marrow derived dendritic cells (BMDC), which could contribute to the decreased viral loads of RABV after intramuscular infection. Moreover, we also observed that the expression of IL-1β by rCVS-IL1β could compromise the blood-brain barrier (BBB) integrity by degrading the tight junction proteins, which allowing peripheral inflammatory cytokines, chemokines, and CD4+T cells to enter into the brain for the clearance of RABV in the CNS. Together, our study suggests that IL-1β could attenuate RABV pathogenicity through activating cGAS-STING pathway in to decrease the viral entry into the CNS and enhance the BBB permeability to promote RABV clearance in the CNS as well, which provides new insight into developing effective therapeutics for rabies.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiao Wang
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengli Huang
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianqing Zhao
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Zhou
- Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Yan S, Si Y, Zhou W, Cheng R, Wang P, Wang D, Ding W, Shi W, Jiang Q, Yang F, Yao L. Single-cell transcriptomics reveals the interaction between peripheral CD4+ CTLs and mesencephalic endothelial cells mediated by IFNG in Parkinson's disease. Comput Biol Med 2023; 158:106801. [PMID: 36989741 DOI: 10.1016/j.compbiomed.2023.106801] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurons degeneration in the substantia nigra pars compacta. Increasing evidence indicates that peripheral CD4+ T cells, a vital pathological component of PD, have been implicated in systemic inflammation activation, blood-brain barrier (BBB) dysfunction, central nervous system infiltration, and consequent neurons degeneration. However, there is no consensus on CD4+ T cell types' exact phenotypic characteristics in systemic inflammation and the mechanism of CD4+ T cells traffic into the BBB in patients with PD. In this study, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the potential mechanism of T cells on the breakdown of BBB. The PD-associated Cytotoxic CD4+ T cells (CD4+ CTLs) were characterized by a significant increase in proportion as well as enhancement of interferon-gamma (IFNG) response and cell adhesion. Meanwhile, TBX21, IRF1 and NFATC2, identified as the key transcription factors in effector CD4+ T cells differentiation, induced overexpression of target genes-IFNG in CD4+ CTLs. Interestingly, endothelial cells (ECs) in PD patients were discovered to be more responsive to IFNG than other cell types of midbrain. Furthermore, the cell-cell communication analysis between CD4+ T cells and midbrain cells identified IFNG/IFNGR1 and SPP1/ITGB1 as the ligand-receptor pairs to mediate CD4+ CTLs' infiltration into the central nervous system (CNS) through the weakened ECs' tight junction. Together, these results suggested that PD-specific peripheral CD4+ CTLs might influence BBB function by migrating to mesencephalic endothelial cells (ECs) and activating the IFNG response in ECs.
Collapse
|
30
|
Kumar PR, Shilpa B, Jha RK. Brain Disorders: Impact of Mild SARS-CoV-2 May Shrink Several Parts of the Brain. Neurosci Biobehav Rev 2023; 149:105150. [PMID: 37004892 PMCID: PMC10063523 DOI: 10.1016/j.neubiorev.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Coronavirus (COVID-19) is a highly infectious respiratory infection discovered in Wuhan, China, in December 2019. As a result of the pandemic, several individuals have experienced life-threatening diseases, the loss of loved ones, lockdowns, isolation, an increase in unemployment, and household conflict. Moreover, COVID-19 may cause direct brain injury via encephalopathy. The long-term impacts of this virus on mental health and brain function need to be analysed by researchers in the coming years. This article aims to describe the prolonged neurological clinical consequences related to brain changes in people with mild COVID-19 infection. When compared to a control group, people those who tested positive for COVID-19 had more brain shrinkage, grey matter shrinkage, and tissue damage. The damage occurs predominantly in areas of the brain that are associated with odour, ambiguity, strokes, reduced attention, headaches, sensory abnormalities, depression, and mental abilities for few months after the first infection. Therefore, in patients after a severe clinical condition of COVID-19, a deepening of persistent neurological signs is necessary.
Collapse
Affiliation(s)
- Puranam Revanth Kumar
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - B Shilpa
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - Rajesh Kumar Jha
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| |
Collapse
|
31
|
Bühler M, Li D, Li L, Runft S, Waltl I, Pavlou A, Kalinke U, Ciurkiewicz M, Huehn J, Floess S, Beineke A, Baumgärtner W, Gerhauser I. IFNAR signaling of neuroectodermal cells is essential for the survival of C57BL/6 mice infected with Theiler's murine encephalomyelitis virus. J Neuroinflammation 2023; 20:58. [PMID: 36872323 PMCID: PMC9985866 DOI: 10.1186/s12974-023-02737-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that causes encephalitis followed by chronic demyelination in SJL mice and spontaneous seizures in C57BL/6 mice. Since earlier studies indicated a critical role of type I interferon (IFN-I) signaling in the control of viral replication in the central nervous system (CNS), mouse strain-specific differences in pathways induced by the IFN-I receptor (IFNAR) might determine the outcome of TMEV infection. METHODS Data of RNA-seq analysis and immunohistochemistry were used to compare the gene and protein expression of IFN-I signaling pathway members between mock- and TMEV-infected SJL and C57BL/6 mice at 4, 7 and 14 days post-infection (dpi). To address the impact of IFNAR signaling in selected brain-resident cell types, conditional knockout mice with an IFNAR deficiency in cells of the neuroectodermal lineage (NesCre±IFNARfl/fl), neurons (Syn1Cre±IFNARfl/fl), astrocytes (GFAPCre±IFNARfl/fl), and microglia (Sall1CreER±IFNARfl/fl) on a C57BL/6 background were tested. PCR and an immunoassay were used to quantify TMEV RNA and cytokine and chemokine expression in their brain at 4 dpi. RESULTS RNA-seq analysis revealed upregulation of most ISGs in SJL and C57BL/6 mice, but Ifi202b mRNA transcripts were only increased in SJL and Trim12a only in C57BL/6 mice. Immunohistochemistry showed minor differences in ISG expression (ISG15, OAS, PKR) between both mouse strains. While all immunocompetent Cre-negative control mice and the majority of mice with IFNAR deficiency in neurons or microglia survived until 14 dpi, lack of IFNAR expression in all cells (IFNAR-/-), neuroectodermal cells, or astrocytes induced lethal disease in most of the analyzed mice, which was associated with unrestricted viral replication. NesCre±IFNARfl/fl mice showed more Ifnb1, Tnfa, Il6, Il10, Il12b and Ifng mRNA transcripts than Cre-/-IFNARfl/fl mice. IFNAR-/- mice also demonstrated increased IFN-α, IFN-β, IL1-β, IL-6, and CXCL-1 protein levels, which highly correlated with viral load. CONCLUSIONS Ifi202b and Trim12a expression levels likely contribute to mouse strain-specific susceptibility to TMEV-induced CNS lesions. Restriction of viral replication is strongly dependent on IFNAR signaling of neuroectodermal cells, which also controls the expression of key pro- and anti-inflammatory cytokines during viral brain infection.
Collapse
Affiliation(s)
- Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Lin Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
- c/o School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
32
|
Majrashi NAA. The value of chest X-ray and CT severity scoring systems in the diagnosis of COVID-19: A review. Front Med (Lausanne) 2023; 9:1076184. [PMID: 36714121 PMCID: PMC9877460 DOI: 10.3389/fmed.2022.1076184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a coronavirus family member known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main laboratory test to confirm the quick diagnosis of COVID-19 infection is reverse transcription-polymerase chain reaction (RT-PCR) based on nasal or throat swab sampling. A small percentage of false-negative RT-PCR results have been reported. The RT-PCR test has a sensitivity of 50-72%, which could be attributed to a low viral load in test specimens or laboratory errors. In contrast, chest CT has shown 56-98% of sensitivity in diagnosing COVID-19 at initial presentation and has been suggested to be useful in correcting false negatives from RT-PCR. Chest X-rays and CT scans have been proposed to predict COVID-19 disease severity by displaying the score of lung involvement and thus providing information about the diagnosis and prognosis of COVID-19 infection. As a result, the current study provides a comprehensive overview of the utility of the severity score index using X-rays and CT scans in diagnosing patients with COVID-19 when compared to RT-PCR.
Collapse
|
33
|
Luo H, Wang T. Methods to Study West Nile Virus Infection and the Virus-Induced Inflammation in the Brain in a Murine Model. Methods Mol Biol 2023; 2585:41-49. [PMID: 36331764 DOI: 10.1007/978-1-0716-2760-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV), a mosquito-borne neurotropic flavivirus, has become the leading cause of vector-borne viral encephalitis in the United States for the past decades. The murine model of WNV infection is an effective in vivo experimental model to investigate WNV neuropathogenesis in humans. Here, we describe several laboratory protocols to study WNV infection and the virus-induced inflammation in the brain in both in vitro and in vivo murine models.
Collapse
Affiliation(s)
- Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
34
|
Kasambala M, Mukaratirwa S, Vengesai A, Mduluza-Jokonya T, Jokonya L, Midzi H, Makota RB, Mutemeri A, Maziti E, Dube-Marimbe B, Chibanda D, Mutapi F, Mduluza T. The association of systemic inflammation and cognitive functions of pre-school aged children residing in a Schistosoma haematobium endemic area in Zimbabwe. Front Immunol 2023; 14:1139912. [PMID: 37143686 PMCID: PMC10151793 DOI: 10.3389/fimmu.2023.1139912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Background Cognitive function is negatively impacted by schistosomiasis and might be caused by systemic inflammation which has been hypothesized to be one of the mechanisms driving cognitive decline, This study explored the association of systemic inflammatory biomarkers; interleukin (IL)-10, IL-6, IL-17, transforming growth factor (TGF-β), tumor necrosis factor (TNF-α), C-reactive protein (CRP) and hematological parameters with cognitive performance of preschool-aged children (PSAC) from an Schistosoma haematobium endemic area. Methods The Griffith III tool was used to measure the cognitive performance of 136 PSAC. Whole blood and sera were collected and used to quantify levels of IL-10, TNF-α, IL-6, TGF-β, IL-17 A and CRP using the enzyme-linked immunosorbent assay and hematological parameters using the hematology analyzer. Spearman correlation analysis was used to determine the relationship between each inflammatory biomarker and cognitive performance. Multivariate logistic regression analysis was used to determine whether systemic inflammation due to S. haematobium infection affected cognitive performance in PSAC. Results Higher levels of TNF-α and IL-6, were correlated with lower performance in the Foundations of Learning domain (r = -0.30; p < 0.001 and r = -0.26; p < 0.001), respectively. Low cognitive performance in the Eye-Hand-Coordination Domain was observed in PSAC with high levels of the following inflammatory biomarkers that showed negative correlations to performance; TNF-α (r = -0.26; p < 0.001), IL-6 (r = -0.29; p < 0.001), IL-10 (r = -0.18; p < 0.04), WBC (r = -0.29; p < 0.001), neutrophils (r = -0.21; p = 0.01) and lymphocytes (r = -0.25; p = 0.003) The General Development Domain correlated with TNF-α (r = -0.28; p < 0.001) and IL-6 (r = -0.30; p < 0.001). TGF-β, L-17A and MXD had no significant correlations to performance in any of the cognitive domains. The overall general development of PSAC was negatively impacted by S. haematobium infections (OR = 7.6; p = 0.008) and (OR = 5.6; p = 0.03) where the PSAC had higher levels of TNF-α and IL-6 respectively. Conclusion Systemic inflammation and S. haematobium infections are negatively associated with cognitive function. We recommend the inclusion of PSAC into mass drug treatment programs.
Collapse
Affiliation(s)
- Maritha Kasambala
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biological Sciences and Ecology, University of Zimbabwe, Harare, Zimbabwe
- *Correspondence: Maritha Kasambala,
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Arthur Vengesai
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - Tariro Mduluza-Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Luxwell Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Herald Midzi
- School of Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo Birri Makota
- Department of Biological Sciences and Ecology, University of Zimbabwe, Harare, Zimbabwe
| | - Arnold Mutemeri
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Emmanuel Maziti
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Bazondlile Dube-Marimbe
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Dixon Chibanda
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Ashworth Laboratories, Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- School of Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, Jiang X, Bricker T, Rosoklija GB, Arango V, Underwood M, Mann JJ, Dwork AJ, Goldman JE, Boon ACM, Boldrini M, Klein RS. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022; 145:4193-4201. [PMID: 36004663 PMCID: PMC9452175 DOI: 10.1093/brain/awac270] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.
Collapse
Affiliation(s)
- Allison L Soung
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna S Nordvig
- Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cheick A Sissoko
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gorazd B Rosoklija
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Mark Underwood
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maura Boldrini
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Shafiee G, Arastou T, Heshmat R, Jamshidi AR, Larijani B, Arzaghi SM. Post COVID-19 neuropsychiatric complications and therapeutic role for TNF-α inhibitors: a case series study. J Diabetes Metab Disord 2022; 21:2013-2016. [PMID: 36267491 PMCID: PMC9569165 DOI: 10.1007/s40200-022-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022]
Abstract
Background The post-COVID syndrome is the various physical and neuropsychiatric symptoms after the acute phase of COVID-19. The understanding of pathophysiology of this syndrome and its treatment need to further studies. This study aimed to present three cases of neuropsychiatric symptoms after COVID-19 and effective treatments in these patients. Case presentation Three patients with new or progressively neuropsychiatric symptoms such as seizures, attention difficulties, insomnia, confusion and etc., were referred to our clinic about 8 months after severe COVID-19 infection. The patients were assessed with extensive workup includes a neurological exam, brain MRI, LORETA scan, and biochemical and levels of inflammatory serum markers. All patients had elevated levels of TNF-α, poor neurological exam, and abnormal reports of MRI or LORETA scan. Diagnosis of post- COVID neuropsychiatric complications was made for the patients.TNF inhibition with Adalimumab (40 mg/weekly for a month) was initiated for the patients and led to a dramatic improvement of all symptoms. Conclusions To our knowledge, this report is the first case series study that suggests TNF inhibitors in the treatment of post-COVID-19 syndrome, especially neuropsychological complications. However, future studies should evaluate the best therapeutic options for this syndrome.
Collapse
Affiliation(s)
- Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tohid Arastou
- Elderly Health Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Arzaghi
- Elderly Health Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Institute, NO 10, Jalale-Al-Ahmad Ave, Chamran Highway, Tehran, Iran
| |
Collapse
|
37
|
Fan W, Wang Y, Jiang S, Li Y, Yao X, Wang M, Zhao J, Sun X, Jiang X, Zhong L, Han Y, Song H, Xu Y. Identification of key proteins of cytopathic biotype bovine viral diarrhoea virus involved in activating NF-κB pathway in BVDV-induced inflammatory response. Virulence 2022; 13:1884-1899. [PMID: 36316807 PMCID: PMC9629132 DOI: 10.1080/21505594.2022.2135724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases in cattle, with inflammatory diarrhea, enteritis, and mucosa necrosis as the major clinical manifestations. NF-κB is an important transcription complex that regulates the expression of genes involved in inflammation and immune responses. NLRP3 inflammasome plays a key role in the development of inflammatory diseases. However, whether the activation of NF-κB is crucial for BVDV infection-induced inflammatory responses remains unclear. The results of our present study showed that BVDV infection significantly activated the NF-κB pathway and promoted the expression of NLRP3 inflammasome components (NLRP3, ASC, pro-caspase 1) as well inflammatory cytokine pro-IL-1β in BVDV-infected bovine cells, resulting in the cleavage of pro-caspase 1 and pro-IL-1β into active form caspase 1 and IL-1β. However, the levels of the NLRP3 inflammasome components and inflammatory cytokines were obviously inhibited, as well the cleavage of pro-caspase 1 and pro-IL-1β in the pre-treated bovine cells with NF-κB-specific inhibitors after BVDV infection. Further, cytopathic biotype BVDV (cpBVDV) Erns and NS5A proteins with their key functional domains contributed to BVDV-induced inflammatory responses via activating the NF-κB pathway were confirmed experimentally. Especially, the NS5A can promote cholesterol synthesis and accelerate its augmentation, further activating the NF-κB signalling pathway. Conclusively, our data elucidate that the activation of NF-κB signaling pathway plays a crucial role in cpBVDV infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Wenlu Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Mei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Jinghua Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaobo Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaoxia Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,CONTACT Houhui Song
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Yigang Xu
| |
Collapse
|
38
|
Klein RS. Meningeal MAIT cells maintain meningeal and brain function. Nat Immunol 2022; 23:1659-1661. [PMID: 36494576 PMCID: PMC9894298 DOI: 10.1038/s41590-022-01368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zhang et al. describe how meningeal MAIT cells maintain meningeal barrier integrity via the secretion of antioxidants, which also limit neuroinflammation and preserve spatial learning.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
40
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Vanderheiden A, Klein RS. Neuroinflammation and COVID-19. Curr Opin Neurobiol 2022; 76:102608. [PMID: 35863101 PMCID: PMC9239981 DOI: 10.1016/j.conb.2022.102608] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a historic pandemic of respiratory disease. COVID-19 also causes acute and post-acute neurological symptoms, which range from mild, such as headaches, to severe, including hemorrhages. Current evidence suggests that there is no widespread infection of the central nervous system (CNS) by SARS-CoV-2, thus what is causing COVID-19 neurological disease? Here, we review potential immunological mechanisms driving neurological disease in COVID-19 patients. We begin by discussing the implications of imbalanced peripheral immunity on CNS function. Next, we examine the evidence for dysregulation of the blood-brain barrier during SARS-CoV-2 infection. Last, we discuss the role myeloid cells may play in promoting COVID-19 neurological disease. Combined, we highlight the role of innate immunity in COVID-19 neuroinflammation and suggest areas for future research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
42
|
Marshall EM, Koopmans MPG, Rockx B. A Journey to the Central Nervous System: Routes of Flaviviral Neuroinvasion in Human Disease. Viruses 2022; 14:2096. [PMID: 36298652 PMCID: PMC9611789 DOI: 10.3390/v14102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.
Collapse
Affiliation(s)
| | | | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
43
|
Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. J Virol 2022; 96:e0105022. [PMID: 36005758 PMCID: PMC9472762 DOI: 10.1128/jvi.01050-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.
Collapse
|
44
|
Serrano GE, Walker JE, Tremblay C, Piras IS, Huentelman MJ, Belden CM, Goldfarb D, Shprecher D, Atri A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Caselli R, Woodruff BK, Haarer CF, Ruhlen T, Torres M, Nguyen S, Schmitt D, Rapscak SZ, Bime C, Peters JL, Alevritis E, Arce RA, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Oliver J, Russell A, Suszczewicz KE, Borja CI, Cline MP, Hemmingsen SJ, Qiji S, Hobgood HM, Mizgerd JP, Sahoo MK, Zhang H, Solis D, Montine TJ, Berry GJ, Reiman EM, Röltgen K, Boyd SD, Pinsky BA, Zehnder JL, Talbot P, Desforges M, DeTure M, Dickson DW, Beach TG. SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. J Neuropathol Exp Neurol 2022; 81:666-695. [PMID: 35818336 PMCID: PMC9278252 DOI: 10.1093/jnen/nlac056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.
Collapse
Affiliation(s)
- Geidy E Serrano
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Jessica E Walker
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Cécilia Tremblay
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Danielle Goldfarb
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - David Shprecher
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alireza Atri
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Shyamal H Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard Caselli
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bryan K Woodruff
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Thomas Ruhlen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Maria Torres
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Steve Nguyen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Dasan Schmitt
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | | | | | | | | | - Richard A Arce
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Daisy Vargas
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Courtney M Nelson
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Javon Oliver
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Aryck Russell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (AR)
| | | | - Claryssa I Borja
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Madison P Cline
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Sanaria Qiji
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly M Hobgood
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Haiyu Zhang
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University, Stanford, California, USA
| | | | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Stanford, California, USA
- Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - James L Zehnder
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pierre Talbot
- Laboratory of Neuroimmunology, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Marc Desforges
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
- Laboratory of Virology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Michael DeTure
- Département de microbiologie, infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Dennis W Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Thomas G Beach
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
45
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW As of January 8, 2022, a global pandemic caused by infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a new RNA virus, has resulted in 304,896,785 cases in over 222 countries and regions, with over 5,500,683 deaths (www.worldometers.info/coronavirus/). Reports of neurological and psychiatric symptoms in the context of coronavirus infectious disease 2019 (COVID-19) range from headache, anosmia, and dysgeusia, to depression, fatigue, psychosis, seizures, delirium, suicide, meningitis, encephalitis, inflammatory demyelination, infarction, and acute hemorrhagic necrotizing encephalopathy. Moreover, 30-50% of COVID-19 survivors develop long-lasting neurologic symptoms, including a dysexecutive syndrome, with inattention and disorientation, and/or poor movement coordination. Detection of SARS-CoV-2 RNA within the central nervous system (CNS) of patients is rare, and mechanisms of neurological damage and ongoing neurologic diseases in COVID-19 patients are unknown. However, studies demonstrating viral glycoprotein effects on coagulation and cerebral vasculature, and hypoxia- and cytokine-mediated coagulopathy and CNS immunopathology suggest both virus-specific and neuroimmune responses may be involved. This review explores potential mechanistic insights that could contribute to COVID-19-related neurologic disease. RECENT FINDINGS While the development of neurologic diseases during acute COVID-19 is rarely associated with evidence of viral neuroinvasion, new evidence suggests SARS-CoV-2 Spike (S) protein exhibits direct inflammatory and pro-coagulation effects. This, in conjunction with immune dysregulation resulting in cytokine release syndrome (CRS) may result in acute cerebrovascular or neuroinflammatory diseases. Additionally, CRS-mediated loss of blood-brain barrier integrity in specific brain regions may contribute to the expression of proinflammatory mediators by neural cells that may impact brain function long after resolution of acute infection. Importantly, host co-morbid diseases that affect vascular, pulmonary, or CNS function may contribute to the type of neurologic disease triggered by SARS-COV-2 infection. SUMMARY Distinct effects of SARS-CoV-2 S protein and CNS compartment- and region-specific responses to CRS may underlie acute and chronic neuroinflammatory diseases associated with COVID-19.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
47
|
Cheng Y, Medina A, Yao Z, Basu M, Natekar JP, Lang J, Sanchez E, Nkembo MB, Xu C, Qian X, Nguyen PTT, Wen Z, Song H, Ming GL, Kumar M, Brinton MA, Li MMH, Tang H. Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Rep 2022; 39:110885. [PMID: 35649379 PMCID: PMC9230077 DOI: 10.1016/j.celrep.2022.110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions. These iPSC-derived cells faithfully recapitulate a striking difference in in vivo neuroinvasion by two alphavirus isolates and are selectively permissive to neurotropic flaviviruses. A model of cocultured iBMECs and astrocytes exhibits high transendothelial electrical resistance and blocks non-neurotropic flaviviruses from getting across the barrier. We find that iBMECs constitutively express an interferon-induced gene, IFITM1, which preferentially restricts the replication of non-neurotropic flaviviruses. Barrier cells from blood-testis and blood-retinal barriers also constitutively express IFITMs that contribute to the viral resistance. Our application of a renewable human iPSC-based model for studying virus-BBB interactions reveals that intrinsic immunity at the barriers contributes to virus exclusion. Using a stem cell-derived cellular model and a panel of human pathogenic viruses, Cheng et al. show a mechanism by which some viruses can penetrate the blood-brain barrier and cause diseases in the central nervous system.
Collapse
Affiliation(s)
- Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Jianshe Lang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Egan Sanchez
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mezindia B Nkembo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuyu Qian
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phuong T T Nguyen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
48
|
Bhide K, Mochnáčová E, Tkáčová Z, Petroušková P, Kulkarni A, Bhide M. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells. Sci Rep 2022; 12:8863. [PMID: 35614140 PMCID: PMC9133079 DOI: 10.1038/s41598-022-13043-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne encephalitis virus and West Nile virus can cross the blood–brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.
Collapse
Affiliation(s)
- Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
49
|
Ampie L, McGavern DB. Immunological defense of CNS barriers against infections. Immunity 2022; 55:781-799. [PMID: 35545028 PMCID: PMC9087878 DOI: 10.1016/j.immuni.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Neuroanatomical barriers with physical, chemical, and immunological properties play an essential role in preventing the spread of peripheral infections into the CNS. A failure to contain pathogens within these barriers can result in very serious CNS diseases. CNS barriers are inhabited by an elaborate conglomerate of innate and adaptive immune cells that are highly responsive to environmental challenges. The CNS and its barriers can also be protected by memory T and B cells elicited by prior infection or vaccination. Here, we discuss the different CNS barriers from a developmental, anatomical, and immunological standpoint and summarize our current understanding of how memory cells protect the CNS compartment. We then discuss a contemporary challenge to CNS-barrier system (SARS-CoV-2 infection) and highlight approaches to promote immunological protection of the CNS via vaccination.
Collapse
Affiliation(s)
- Leonel Ampie
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Sánchez KE, Rosenberg GA. Shared Inflammatory Pathology of Stroke and COVID-19. Int J Mol Sci 2022; 23:5150. [PMID: 35563537 PMCID: PMC9101120 DOI: 10.3390/ijms23095150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
- Department of Neurology, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|