1
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Guan HR, Li B, Zhang ZH, Wu HS, He XL, Dong YJ, Su J, Lv GY, Chen SH. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome. BMC Complement Med Ther 2023; 23:458. [PMID: 38102584 PMCID: PMC10722827 DOI: 10.1186/s12906-023-04280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder that is common in women of reproductive age. The clinical features of PCOS include hyperandrogenemia and polycystic ovarian changes. Bailing capsule (BL), a proprietary Chinese medicine that contains fermented Cordyceps sinensis powder, has been applied to treat PCOS. However, the specific active ingredients of BL and its mechanisms of action are yet to be elucidated. METHODS Initially, the effectiveness of BL on PCOS model mice was evaluated. Subsequently, the active ingredients of BL were searched in the TCMSP and TCM Systems Pharmacology databases, and their targets were predicted using Swiss Target Prediction and SEA databases. Furthermore, the GEO gene database was used to screen for differentially expressed genes (DEGs) related to PCOS. Data from Gene Card, OMIM, DDT, and Drugbank databases were then combined to establish a PCOS disease gene library. Cross targets were imported into the STRING database to construct a protein-protein interaction network. In addition, GO and KEGG pathway enrichment analyses were performed using Metascape and DAVID databases and visualized using Cytoscape software and R 4.2.3. The core targets were docked with SYBYL-X software, and their expressions in PCOS mice were further verified using qPCR. RESULTS The core active ingredients of BL were identified to be linoleyl acetate, cholesteryl palmitate, arachidonic acid, among others. Microarray data sets from four groups containing disease and normal samples were obtained from the GEO database. A total of 491 DEGs and 106 drug-disease cross genes were selected. Estrous cycle and ovarian lesions were found to be improved in PCOS model mice following BL treatment. While the levels of testosterone, progesterone, and prolactin decreased, that of estradiol increased. qPCR findings indicated that the expressions of JAK2, PPARG, PI3K, and AKT1 were upregulated, whereas those of ESR1 and IRS1 were downregulated in PCOS model mice. After the administration of BL, the expressions of associated genes were regulated. This study demonstrated that BL exerted anti-PCOS effects via PIK3CA, ESR1, AKT, PPARG, and IRS1 targets affecting PI3K-Akt signaling pathways. DISCUSSION This research clarified the multicomponent, multitarget, and multichannel action of BL and provided a theoretical reference for further investigations on its pharmacological basis and molecular mechanisms against PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China.
| |
Collapse
|
7
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
8
|
Chen L, Chou CL, Yang CR, Knepper MA. Multiomics Analyses Reveal Sex Differences in Mouse Renal Proximal Subsegments. J Am Soc Nephrol 2023; 34:829-845. [PMID: 36758122 PMCID: PMC10125651 DOI: 10.1681/asn.0000000000000089] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Sex-dependent differences in kidney function are recognized but the underlying molecular mechanisms are largely unexplored. Advances in genomics and proteomic technologies now allow extensive characterization of differences between the same cell types of males and females. Multiomics integrating RNA-seq, ATAC-seq, and proteomics data to investigate differences in gene expression, chromatin accessibility, and protein expression in proximal tubules of male and female mice identified many sex-biased genes and proteins associated with kidney functions, including metabolic and transport processes. Sex differences may also arise from variations of the interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to advance understanding of sex differences in cells of the proximal tubule. BACKGROUND Sex differences have been increasingly recognized as important in kidney physiology and pathophysiology, but limited resources are available for comprehensive interrogation of sex differences. METHODS RNA-seq and ATAC-seq of microdissected mouse proximal tubules and protein mass spectrometry of homogenized perfused mouse kidneys reveal differences in proximal tubule cells of males and females. RESULTS The transcriptomic data indicated that the major differences in the proximal tubules between the sexes were in the S2/S3 segments, and most of the sex-biased transcripts mapped to autosomes rather than to the sex chromosomes. Many of the transcripts exhibiting sex-biased expression are involved in monocarboxylic acid metabolic processes, organic anion transport, and organic acid transport. The ATAC-seq method on microdissected tubules captured chromatin accessibility. Many of the more than 7000 differentially accessible DNA regions identified were in distal regions. Motif analyses revealed a lack of direct involvement of estrogen receptors or the androgen receptor (absence of canonical hormone response elements), suggesting an indirect regulatory role of sex hormones. Instead, analyses identified several transcription factors (TFs) ( Tead1 , Nfia/b , and Pou3f3 ) whose interplay with proximal tubule-specific TFs ( e.g. , Hnf1b , Hnf4a ) may contribute to sex differences. Finally, the whole-kidney proteome was correlated with the transcriptome, and many sex-biased proteins ( e.g. , Cyp2e1, Acsm2/3) were identified. CONCLUSIONS Sex-dependent cis-regulatory elements interact with TFs in ways that lead to sex-biased gene expression in proximal tubule cells. These data are provided as a user-friendly web page at https://esbl.nhlbi.nih.gov/MRECA/PT/ .
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
9
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
11
|
Dickson MJ, Sheldon IM, Bromfield JJ. Lipopolysaccharide alters CEBPβ signaling and reduces estradiol production in bovine granulosa cells. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:66. [PMID: 37576606 PMCID: PMC10419969 DOI: 10.1186/s43170-022-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 08/15/2023]
Abstract
Background Bacterial infection of the uterus in postpartum dairy cows limits ovarian follicle growth, reduces blood estradiol concentrations, and leads to accumulation of bacterial lipopolysaccharide (LPS) in ovarian follicular fluid. Although treating granulosa cells with LPS in vitro decreases the expression of the estradiol synthesis enzyme CYP19A1 and reduces estradiol secretion, the molecular mechanisms are unclear. The transcription factor CCAAT enhancer binding protein beta (CEBPβ) not only facilitates the transcription of LPS regulated cytokines, but also binds to the promoter region of CYP19A1 in humans, mice, and buffalo. We hypothesized that LPS alters CEBPβ signaling to reduce CYP19A1 expression, resulting in decreased estradiol secretion. Methods Bovine granulosa cells were isolated from small/medium or large follicles and treated with LPS in the presence of FSH and androstenedione for up to 24 h. Results Treatment with LPS increased CXCL8 and IL6 gene expression and reduced estradiol secretion in granulosa cells from both small/medium and large follicles. However, LPS only reduced CYP19A1 expression in granulosa cells from large follicles. Treatment with LPS increased CEBPB expression and reduced CEBPβ nuclear localization in granulosa cells from small/medium follicles, but not granulosa cells from large follicles. Conclusions Although LPS reduces estradiol synthesis in bovine granulosa cells, the effects of LPS on CYP19A1 and CEBPβ are dependent on follicle size.
Collapse
Affiliation(s)
| | - I. Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
12
|
Dalil D, Iranzadeh S, Kohansal S. Anticancer potential of cryptotanshinone on breast cancer treatment; A narrative review. Front Pharmacol 2022; 13:979634. [PMID: 36188552 PMCID: PMC9523165 DOI: 10.3389/fphar.2022.979634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer has recently been known as the first lethal malignancy in women worldwide. Despite the existing treatments that have improved the patients’ prognosis, some types of breast cancer are serious challenges to treat. Therefore, efforts are underway to provide more efficient therapy. Cryptotanshinone (CPT) is a liposoluble diterpenoid derivation of a traditional Chinese herbal medicine called Salvia miltiorrhiza Bunge. It has been considered in the past decades due to its vast therapeutic properties, including anti-tumor, anti-inflammatory, and anti-fibrosis. Recently, studies have found that CPT showed a significant anti-breast cancer effect in vivo and in vitro through different physiological and immunological mechanisms. This study summarized the latest research findings on the antitumor effect of CPT in breast cancer. Further, the main molecular mechanisms based on breast cancer types and combination with other drugs were reviewed to provide essential evidence for future longitudinal research and its clinical application in breast cancer treatment.
Collapse
|
13
|
Steiner BM, Berry DC. The Regulation of Adipose Tissue Health by Estrogens. Front Endocrinol (Lausanne) 2022; 13:889923. [PMID: 35721736 PMCID: PMC9204494 DOI: 10.3389/fendo.2022.889923] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its' associated metabolic diseases such as type 2 diabetes and cardiometabolic disorders are significant health problems confronting many countries. A major driver for developing obesity and metabolic dysfunction is the uncontrolled expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of visceral WAT is often associated with metabolic dysfunction due to changes in adipokine secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-inflammatory immune cells. A critical determinate of body fat distribution and WAT health is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically healthy subcutaneous fat over visceral fat growth while protecting against changes in metabolic dysfunction. Our review will focus on the role of estrogen on body fat partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function, and thermogenesis to control WAT health and systemic metabolism.
Collapse
Affiliation(s)
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Liu A, Raja xavier J, Singh Y, Brucker SY, Salker MS. Molecular and Physiological Aspects of SARS-CoV-2 Infection in Women and Pregnancy. Front Glob Womens Health 2022; 3:756362. [PMID: 35284910 PMCID: PMC8908006 DOI: 10.3389/fgwh.2022.756362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Whilst scientific knowledge about SARS-CoV-2 and COVID-19 is rapidly increasing, much of the effects on pregnant women is still unknown. To accommodate pregnancy, the human endometrium must undergo a physiological transformation called decidualization. These changes encompass the remodeling of endometrial immune cells leading to immunotolerance of the semi-allogenic conceptus as well as defense against pathogens. The angiotensin converting enzyme 2 (ACE2) plays an important regulatory role in the renin-angiotensin-system (RAS) and has been shown to be protective against comorbidities known to worsen COVID-19 outcomes. Furthermore, ACE2 is also crucial for decidualization and thus for early gestation. An astounding gender difference has been found in COVID-19 with male patients presenting with more severe cases and higher mortality rates. This could be attributed to differences in sex chromosomes, hormone levels and behavior patterns. Despite profound changes in the female body during pregnancy, expectant mothers do not face worse outcomes compared with non-pregnant women. Whereas mother-to-child transmission through respiratory droplets during labor or in the postnatal period is known, another question of in utero transmission remains unanswered. Evidence of placental SARS-CoV-2 infection and expression of viral entry receptors at the maternal-fetal interface suggests the possibility of in utero transmission. SARS-CoV-2 can cause further harm through placental damage, maternal systemic inflammation, and hindered access to health care during the pandemic. More research on the effects of COVID-19 during early pregnancy as well as vaccination and treatment options for gravid patients is urgently needed.
Collapse
Affiliation(s)
- Anna Liu
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Janet Raja xavier
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
15
|
Harding AT, Heaton NS. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers (Basel) 2022; 14:cancers14040909. [PMID: 35205657 PMCID: PMC8870346 DOI: 10.3390/cancers14040909] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Human health is significantly affected by microbial infections. One of the largest determinants of the outcomes of such infections is the host immune response. Too weak of a response can lead to enhanced spread by the pathogen, while an overstimulated response can lead to immune-induced tissue damage. Thus, to effectively treat infected individuals, it is critical to understand the regulators that control inflammatory responses. Recently, it has become widely accepted that estrogens, a class of sex hormones, are capable of dramatically altering the responses of host cells to microbes. In this review, we discuss how estrogens change the host immune response, as well as how these changes can alter the outcome of the infection for the individual. Abstract Sex hormones, such as estrogen and testosterone, are steroid compounds with well-characterized effects on the coordination and development of vertebrate reproductive systems. Since their discovery, however, it has become clear that these “sex hormones” also regulate/influence a broad range of biological functions. In this review, we will summarize some current findings on how estrogens interact with and regulate inflammation and immunity. Specifically, we will focus on describing the mechanisms by which estrogens alter immune pathway activation, the impact of these changes during infection and the development of long-term immunity, and how different types of estrogens and their respective concentrations mediate these outcomes.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-1351; Fax: +1-919-684-2790
| |
Collapse
|
16
|
Yun J, Kim YS, Heo MJ, Kim MJ, Moon A, Kim SG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int J Cancer 2022; 150:1690-1705. [PMID: 35020952 DOI: 10.1002/ijc.33929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay, and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and -200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and -200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated in human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Yun
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min Joo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Kyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Wu Y, Liu X, Li G. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci Rep 2022; 12:159. [PMID: 34997010 PMCID: PMC8741777 DOI: 10.1038/s41598-021-03980-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Huangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein–protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.
Collapse
Affiliation(s)
- Yi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China. .,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, China.
| | - Xinqiao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Guiwei Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| |
Collapse
|
18
|
Nowak K, Jabłońska E, Garley M, Radziwon P, Ratajczak-Wrona W. Methylparaben-induced regulation of estrogenic signaling in human neutrophils. Mol Cell Endocrinol 2021; 538:111470. [PMID: 34606965 DOI: 10.1016/j.mce.2021.111470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
Parabens, including the most common methylparaben (MeP), are popular preservatives, which possess estrogenic activity. The aims of this study were to assess the impact of MeP on estrogen receptors (ERs) and/or NF-κB-dependent generation of IL-8 and production of nitric oxide (NO), and also to verify the hypothesis about the crosstalk of ERs with NF-κB in xenoestrogen-exposed neutrophils. Human neutrophils were incubated for 20-h with MeP (0.06 μM) and/or ER antagonist (1 μM) and/or NF-κB inhibitor (100 μM). After the isolation of cell lysates and cytoplasmic and nuclear fraction, the expression of ERα, ERβ, p-IKKα/β, p65 NF-κB, and inducible nitric oxide synthase (iNOS) was measured by Western blot analysis, The concentration of NO was evaluated by Griess reaction, and that of IL-8 was measured by ELISA. The results showed that MeP modulated the expression of ERα, but not ERβ. Exposure to paraben activated iKKα/β-dependent NF-κB pathway, but translocation of p65 NF-κB into the cell nucleus was inhibited by ERs. MeP also decreased the iNOS-dependent production of NO, but did not influence the secretion of IL-8 by neutrophils. The study indicates that MeP may affect the functioning of human neutrophils by modulating intracellular signal transduction pathways, including ERs and NF-κB pathway.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | |
Collapse
|
19
|
Role of Polyphenols in the Metabolism of the Skeletal System in Humans and Animals – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Polyphenols are a group of compounds arousing enormous interest due to their multiple effects on both human and animal health and omnipresence in plants. A number of in vitro and animal model studies have shown that all polyphenols exhibit anti-inflammatory and antioxidant activities, and play a significant role against oxidative stress-related pathologies. They also exert gut promotory effects and prevent chronic degenerative diseases. However, less attention has been paid to the potential influence of polyphenols on bone properties and metabolism. It is well known that proper growth and functioning of the organism depend largely on bone growth and health. Therefore, understanding the action of substances (including polyphenols) that may improve the health and functioning of the skeletal system and bone metabolism is extremely important for the health of the present and future generations of both humans and farm animals. This review provides a comprehensive summary of literature related to causes of bone loss during ageing of the organism (in both humans and animals) and possible effects of dietary polyphenols preventing bone loss and diseases. In particular, the underlying cellular and molecular mechanisms that can modulate skeletal homeostasis and influence the bone modeling and remodeling processes are presented.
Collapse
|
20
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
21
|
Kawasaki Y, Sendo T. Three photoinitiators induce breast tumor growth in mouse xenografts with MCF-7 breast cancer cells. Curr Res Toxicol 2021; 2:322-328. [PMID: 34522900 PMCID: PMC8426503 DOI: 10.1016/j.crtox.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Photoinitiators are utilized in the production of a wide range of commonly used products. However, some photoinitiators exert toxic effects. We previously demonstrated the endocrine-disrupting effects of photoinitiators in vitro. The present study investigated the estrogenic activities of three photoinitiators: 1-hydroxycyclohexyl phenyl ketone (1-HCHPK), methyl 2-benzoylbenzoate (MBB), and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP), which were subcutaneously injected into mouse xenografts with MCF-7 breast cancer cells. The results obtained showed that 1-HCHPK, MBB, and MTMP promoted breast tumor growth in these xenografts. A pretreatment with the estrogen receptor antagonist tamoxifen blocked the tumor growth-promoting effects of each photoinitiator. Collectively, the present results suggest that the three photoinitiators exhibit estrogenic agonist activities in vivo. Furthermore, as a factor for breast tumor growth, these photoinitiators potentially have estrogenic properties in vivo.
Collapse
|
22
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
23
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
24
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
26
|
El Sabeh R, Bonnet M, Le Corf K, Lang K, Kfoury A, Badran B, Hussein N, Virard F, Treilleux I, Le Romancer M, Lebecque S, Manie S, Coste I, Renno T. A Gender-Dependent Molecular Switch of Inflammation via MyD88/Estrogen Receptor-Alpha Interaction. J Inflamm Res 2021; 14:2149-2156. [PMID: 34045885 PMCID: PMC8149287 DOI: 10.2147/jir.s306805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 01/30/2023] Open
Abstract
Introduction Most Toll-like receptors and IL-1/IL-18 receptors activate a signaling cascade via the adaptor molecule MyD88, resulting in NF-κB activation and inflammatory cytokine and chemokine production. Females are less susceptible than males to inflammatory conditions, presumably due to protection by estrogen. The exact mechanism underlying this protection is unknown. Methods MCF7 cells expressing wild-type or mutated LXXLL motif were used to determine MyD88/estrogen receptor (ER)-a interaction by immunoprecipitation and cell activation by ELISA and luciferase reporter assay. IL-1b and/or E2 were used to activate MCF7 cells expressing normal or knocked down levels of PRMT1. Finally, in situ proximity ligation assay with anti-MyD88 and anti-methylated ER-a (methER-a) antibodies was used to evaluate MyD88/methylated ER-a interaction in THP1 cells and histological sections. Results We show that MyD88 interacts with a methylated, cytoplasmic form of estrogen receptor-alpha (methER-α). This interaction is required for NF-κB transcriptional activity and pro-inflammatory cytokine production, and is dissociated by estrogen. Importantly, we show a strong gender segregation in gametogenic reproductive organs, with MyD88/methER-α interactions found in testicular tissues and in ovarian tissues from menopausal women, but not in ovaries from women age 49 and less - suggesting a role for estrogen in disrupting this complex in situ. Discussion Collectively, our results indicate that the formation of MyD88/methER-α complexes during inflammatory signaling and their disruption by estrogen may represent a mechanism that contributes to gender bias in inflammatory responses.
Collapse
Affiliation(s)
- Rana El Sabeh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université Libanaise, PRASE, Hadath, Lebanon
| | - Mélanie Bonnet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Katy Le Corf
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Kevin Lang
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Alain Kfoury
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | | | - Francois Virard
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Muriel Le Romancer
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Serge Lebecque
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Serge Manie
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Isabelle Coste
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Toufic Renno
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
27
|
Abstract
Estrogen plays important roles in bone homeostasis throughout a person's life, including longitudinal bone growth, bone healing, and adaptation to mechanical forces. Estrogen exerts its action by binding to its multiple receptors in the cell membrane and cytoplasm. Until now at least three estrogen receptors (ER) have been reported: ER alpha (ERα), ER beta (ERβ), and G-protein coupled estrogen receptor 1 (GPER1) also known as GP30. Recently it has been observed that estrogen crosstalk with other signaling pathways helping to understand its wide effects in bone homeostasis. Abrupt loss of estrogen production experienced by menopausal women is associated with the rapid loss of bone mass ultimately leading to osteoporosis. The detrimental results during its absence with aging and the increased life expectancy of current and future generations make it of high importance to fully understand its mechanism of action. This review article aims to update on (1) the molecular mechanism of action of estrogen in the skeletal system, (2) ERs expression in different bone cells, (3) recent reported ER mutations resulting in pathological human conditions, and (4) role of estrogen signaling during bone healing.
Collapse
Affiliation(s)
- Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 East 25th Street, Kansas City, MO 64110, USA
| |
Collapse
|
28
|
Laitano O, Robinson GP, Garcia CK, Mattingly AJ, Sheikh LH, Murray KO, Iwaniec JD, Alzahrani J, Morse D, Hidalgo J, Clanton TL. Skeletal Muscle Interleukin-6 Contributes to the Innate Immune Response in Septic Mice. Shock 2021; 55:676-685. [PMID: 32826815 PMCID: PMC8607997 DOI: 10.1097/shk.0000000000001641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Interleukin-6 (IL-6) is a major cytokine released by skeletal muscle. Although IL-6 plays complex but well-known roles in host defense, the specific contribution of skeletal muscle IL-6 to innate immunity remains unknown. We tested its functional relevance by exposing inducible skeletal muscle IL-6 knockdown (skmIL-6KD) mice to a cecal slurry model of polymicrobial peritonitis and compared responses to strain-matched controls and skeletal muscle Cre-matched controls at 3, 6, and 12 h postinfection. In both sexes, skmIL-6KD mice at 6 h of infection exhibited marked changes to leukocyte trafficking in the peritoneum, characterized by ∼1.75-fold elevation in %neutrophils, a ∼3-fold reduction in %lymphocytes and a ∼2 to 3-fold reduction in %basophils. A similar pattern was seen at 12 h. No changes were observed in plasma leukocyte counts. Circulating cytokines in female skmIL-6KD mice at 6 h consistently showed modest reductions in IL-6, but marked reductions in a broad range of both pro- and anti-inflammatory cytokines, e.g., TNFα and IL-10. In both sexes at 12 h, a generalized suppression of plasma cytokines was also seen after the effects of Cre-induction with raloxifene were addressed. There were no significant effects of skmIL-6KD on mortality in either sex. Collectively, our results are consistent with skmIL-6 playing an important and previously unrecognized role in immune cell trafficking and cytokine regulation during septic shock.
Collapse
Affiliation(s)
- Orlando Laitano
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Gerard P. Robinson
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Christian K. Garcia
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Alex J. Mattingly
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Laila H. Sheikh
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Kevin O. Murray
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - John D. Iwaniec
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Jamal Alzahrani
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Deborah Morse
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Thomas L. Clanton
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| |
Collapse
|
29
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
30
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
31
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
32
|
The association between primary ovarian insufficiency and osteoporosis in the Canadian Longitudinal Study on Aging. ACTA ACUST UNITED AC 2021; 28:693-698. [PMID: 33651742 DOI: 10.1097/gme.0000000000001756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study is to describe the association of premature ovarian insufficiency (POI) and early menopause on bone mineral density (BMD) and osteoporosis in a large cohort of women living in Canada. METHODS Cross-sectional baseline data from a deeply characterized cohort (female participants) of the Canadian Longitudinal Study on Aging was used. Additional bio-psycho-social characteristics that may influence bone health and the development of osteoporosis were explored. RESULTS The mean age of women at the time of baseline assessment was 65 years (N = 12,339). When comparing women with POI to those with early and normal age of menopause, there was no difference in hip BMD between groups, but women in the POI group were more likely to have a higher rate of self-reported osteoporosis (21.9% vs 16.7%) and have used osteoporosis drugs (11.39% vs 7.63%). After adjustment, POI was found to increase the odds of osteoporosis, as diagnosed using BMD. Current cigarette smoking was found to influence this association. Protective factors included obesity and current hormone therapy use, but not the duration of hormone therapy use. Women in the POI group were more likely to be obese, have decreased physical activity, and were more likely to be current smokers. CONCLUSION These results confirm findings from smaller cohorts illustrating that POI is associated with osteoporosis. Increasing understanding of the sequelae associated with an earlier loss of ovarian function will aid in targeting earlier screening and intervention strategies for women in Canada and abroad.
Collapse
|
33
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
34
|
Li X, Qiu Q, Li M, Lin H, Cao S, Wang Q, Chen Z, Jiang W, Zhang W, Huang Y, Luo H, Luo L. Chemical composition and pharmacological mechanism of ephedra-glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19). Aging (Albany NY) 2021; 13:4811-4830. [PMID: 33581688 PMCID: PMC7950231 DOI: 10.18632/aging.202622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicine (TCM) had demonstrated effectiveness in the prevention and control of COVID-19. Statistics showed that Ephedra and Glycyrrhiza were frequently used in the treatment of COVID-19. We hypothesized that the Ephedra-Glycyrrhiza drug pair is a potential choice for the treatment of COVID-19. Here, 112 active compounds were identified from Ephedra-Glycyrrhiza via network pharmacology approach. Ephedra-Glycyrrhiza pair enrichment analysis demonstrated that these compounds might participate in the cAMP, PI3K-Akt, JAK-STAT and chemokine signaling pathways, which had a high correlation with respiratory, nervous, blood circulation and digestive system-related diseases. Pathway analysis between Ephedra-Glycyrrhiza and COVID-19 showed that the key targets were TNF-α, IL2, FOS, ALB, and PTGS2. They might control PI3K-Akt signaling pathway to exert immune regulation, organ protection and antiviral effects. Molecular docking results showed that the active compounds from the Ephedra-Glycyrrhiza pair bound well to COVID-19 related targets, including the main protease (Mpro, also called 3CLpro), the spike protein (S protein), and the angiotensin-converting enzyme 2 (ACE2). The Molecular dynamics simulation was analyzed for the stability and flexibility of the complex. In conclusion, our study elucidated the potential pharmacological mechanism of Ephedra-Glycyrrhiza in the treatment of COVID-19 through multiple targets and pathways.
Collapse
Affiliation(s)
- Xiaoling Li
- Animal Experiment Center of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Qin Qiu
- Graduate School of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haowen Lin
- The First Clinical College of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Shilin Cao
- Group of Sustainable Biochemical Engineering, School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, China
- Sustainable Biochemical and Biosynthetic Engineering Center, Foshan Wu-Yuan Biotechnology Co., Ltd., Guangdong Biomedical Industrial Base, Foshan 528000, Guangdong, China
| | - Qu Wang
- The First Clinical College of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Zishi Chen
- Group of Sustainable Biochemical Engineering, School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Wenhao Jiang
- Group of Sustainable Biochemical Engineering, School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, China
| | | | - Yuge Huang
- Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
35
|
Li H, Gao C, Liang Q, Liu C, Liu L, Zhuang J, Yang J, Zhou C, Feng F, Sun C. Cryptotanshinone Is a Intervention for ER-Positive Breast Cancer: An Integrated Approach to the Study of Natural Product Intervention Mechanisms. Front Pharmacol 2021; 11:592109. [PMID: 33505309 PMCID: PMC7832090 DOI: 10.3389/fphar.2020.592109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Resistance to endocrine therapy has hampered clinical treatment in patients with ER-positive breast cancer (BRCA). Studies have confirmed that cryptotanshinone (CPT) has cytotoxic effects on BRCA cells and can significantly inhibit the proliferation and metastasis of ER-positive cancer cells. Methods: We analyzed the gene high-throughput data of ER-positive and negative BRCA to screen out key gene targets for ER-positive BRCA. Finally, the effects of CPT on BRCA cells (MCF-7 and MDA-MB-231) were examined, and quantitative RT-PCR was used to evaluate the expression of the key targets during CPT intervention. Results: A total of 169 differentially expressed genes were identified, and revealed that CPT affects the ER-positive BRCA cells by regulating CDK1, CCNA2, and ESR1. The overall experimental results initially show that MCF-7 cells were more sensitive to CPT than MDA-MB-231 cells, and the expression of ESR1 was not affected in the BRCA cells during CPT intervention, while the expression of CDK1 and CCNA2 were significantly down-regulated. Conclusion: CPT can inhibit the proliferation and migration of BRCA cells by regulating CDK1, CCNA2, and ESR1, especially in ER-positive BRCA samples. On the one hand, our research has discovered the possible mechanism that CPT can better interfere with ER+ BRCA; on the other hand, the combination of high-throughput data analysis and network pharmacology provides valuable information for identifying the mechanism of drug intervention in the disease.
Collapse
Affiliation(s)
- Huayao Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Liang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, China
| | - Jing Yang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Chao Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Basic Medical Science, Qingdao University, Qingdao, China
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Chinese Medicine Innovation Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
36
|
Guan Y, Zhang C, Lyu G, Huang X, Zhang X, Zhuang T, Jia L, Zhang L, Zhang C, Li C, Tao W. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res 2020; 48:10909-10923. [PMID: 33045748 PMCID: PMC7641768 DOI: 10.1093/nar/gkaa858] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional configuration of the chromatin architecture is known to be crucial for alterations in the transcriptional network; however, the underlying mechanisms of epigenetic control of senescence-related gene expression by modulating the chromatin architecture remain unknown. Here, we demonstrate frequent chromosomal compartment switching during mouse embryonic fibroblasts (MEFs) replicative senescence as characterized by senescence-inactivated (SIAEs) and -activated enhancers (SAEs) in topologically associated domains (TADs). Mechanistically, SAEs are closely correlated with senescence-associated secretory phenotype (SASP) genes, which are a key transcriptional feature of an aging microenvironment that contributes to tumor progression, aging acceleration, and immunoinflammatory responses. Moreover, SAEs can positively regulate robust changes in SASP expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is capable of enhancing SAE activity, which accelerates the emergence of SAEs flanking SASPs and the secretion of downstream factors, contributing to the progression of senescence. Our results provide novel insight into the TAD-related control of SASP gene expression by revealing hierarchical roles of the chromatin architecture, transcription factors, and enhancer activity in the regulation of cellular senescence.
Collapse
Affiliation(s)
- Yiting Guan
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China.,Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524000, China
| | - Chao Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Guoliang Lyu
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoke Huang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuebin Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tenghan Zhuang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lumeng Jia
- Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Lijun Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chen Zhang
- China Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Deng S, Ramos-Castaneda M, Velasco WV, Clowers MJ, Gutierrez BA, Noble O, Dong Y, Zarghooni M, Alvarado L, Caetano MS, Yang S, Ostrin EJ, Behrens C, Wistuba II, Stabile LP, Kadara H, Watowich SS, Moghaddam SJ. Interplay between estrogen and Stat3/NF-κB-driven immunomodulation in lung cancer. Carcinogenesis 2020; 41:1529-1542. [PMID: 32603404 PMCID: PMC7896112 DOI: 10.1093/carcin/bgaa064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Berenice A Gutierrez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oscar Noble
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiping Dong
- Department of Oncology Radiotherapy, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Melody Zarghooni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucero Alvarado
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Edwin J Ostrin
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Humam Kadara
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
38
|
Kim SY, Song HK, Lee SK, Kim SG, Woo HG, Yang J, Noh HJ, Kim YS, Moon A. Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients. Biomol Ther (Seoul) 2020; 28:491-502. [PMID: 33077700 PMCID: PMC7585639 DOI: 10.4062/biomolther.2020.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye Kyung Song
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06649, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang 10326, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
39
|
Chen D, Li Q, Chen H, Huang Q, Zeng M. Estrogen receptor regulates immune defense by suppressing NF-κB signaling in the Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:796-803. [PMID: 32846244 DOI: 10.1016/j.fsi.2020.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The crosstalk between the estrogen receptor (ER) and NF-κB signalling pathways has merged in vertebrates and plays a key role in the control of genes involved in inflammation, cell proliferation and apoptosis. However, such crosstalk between the endocrine and immune systems needs to be explored in lower invertebrates. In this study, we identified a 2856-bp homologue of the estrogen receptor from Hong Kong oyster (ChER), containing a 5' untranslated region (UTR) of 234 bp, a 3' UTR of 387 bp, and an open reading frame (ORF) of 2235 bp. We observed that overexpression of ChER suppressed ChRel-dependent NF-kappaB (NF-κB) activation in the HEK293T (human embryonic kidney 293T) cell line, and depletion of ChER in vivo resulted in upregulation of two NF-κB-responsive marker genes, namely, TNF-α and IL-17, which confirmed its potential role in controlling NF-κB signalling. Furthermore, an EMSA (electrophoretic mobility shift assay) showed that ChER could negatively regulate the binding of ChRel to NF-κB probe-responsive elements. Serial domain requirement analysis showed that both region C (DNA-binding domain) and region E (ligand-binding domain) of ChER were essential for mediating the crosstalk underlying ChER-dependent NF-κB suppression. In conclusion, we demonstrate for the first time the negative regulatory role of the ER in NF-κB signalling in oysters, strongly indicating the presence of complex crosstalk between the endocrine and immune systems in lower marine molluscs.
Collapse
Affiliation(s)
- Dongbo Chen
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Li
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingsong Huang
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Manhong Zeng
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Ge W, Duan H, Xiao L, Lv J, Jiang Y, Ding Z, Hu J, Zhang Y, Zhao X. 17β-estradiol protects sheep oviduct epithelial cells against lipopolysaccharide-induced inflammation in vitro. Mol Immunol 2020; 127:21-30. [PMID: 32905905 DOI: 10.1016/j.molimm.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
Estrogen has known anti-inflammatory effects, but the mechanism whereby 17β-estradiol (E2) protects oviduct sheep epithelial cells from inflammation remains unknown. In this study, we detected the E2 synthetase and E2 nuclear and membrane receptors in sheep oviducts, primarily in epithelial cells. Using lipopolysaccharide (LPS)-stimulated sheep oviduct epithelial cells as an in vitro inflammation model, we demonstrated that E2 attenuates the expression of inflammatory factors in a concentration-response manner. E2 also inhibited the LPS-stimulated phosphorylation of p38 MAPK and NF-κB p65 but did not reduce the phosphorylation of JNK and ERK 1/2. This attenuation was partially antagonized by an intracellular estrogen antagonist that was involved in genomic regulation and enhanced by a G protein-coupled estrogen receptor agonist that was involved in nongenomic cellular modulation. These results suggest that E2 has an inhibitory effect on LPS-induced oviduct epithelial cell inflammation in sheep, which is mediated by the downstream regulatory effects of estrogen receptors.
Collapse
Affiliation(s)
- Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102200, PR China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
41
|
Khan N. Possible protective role of 17β-estradiol against COVID-19. JOURNAL OF ALLERGY AND INFECTIOUS DISEASES 2020; 1:38-48. [PMID: 33196058 PMCID: PMC7665224 DOI: 10.46439/allergy.1.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19); a worldwide pandemic as declared by the World Health Organization (WHO). SARS-CoV-2 appears to infect cells by first binding and priming its viral-spike proteins with membrane-associated angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Through the coordinated actions of ACE2 and TMPRSS2, SARS-CoV-2 spike proteins fuse with plasma membranes and ultimately the virus enters cells. ACE2 is integral to the renin-angiotensin-aldosterone system (RAAS), and SARS-CoV-2 down-regulates protein expression levels of ACE2. Once infected, patients typically develop acute respiratory distress syndrome (ARDS) and a number of other severe complications that result in a high rate of fatality, especially in older (>60 years) adults and in people with pre-existing medical conditions. Data now indicate clearly that among people of all age groups, COVID-19 fatalities are higher in men than women. Here, attention is focused on these sex differences and posit a role of estrogen in these differences as well as possible therapeutic and protective actions of 17β-estradiol against COVID-19.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
42
|
Qureshi R, Picon-Ruiz M, Aurrekoetxea-Rodriguez I, Nunes de Paiva V, D'Amico M, Yoon H, Radhakrishnan R, Morata-Tarifa C, Ince T, Lippman ME, Thaller SR, Rodgers SE, Kesmodel S, Vivanco MDM, Slingerland JM. The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development. Cell Metab 2020; 31:1154-1172.e9. [PMID: 32492394 DOI: 10.1016/j.cmet.2020.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/26/2019] [Accepted: 05/11/2020] [Indexed: 12/30/2022]
Abstract
Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17β-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17β-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17β-estradiol opposes this. In obese mice, estrone increases and 17β-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17β-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17β-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17β-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.
Collapse
Affiliation(s)
- Rehana Qureshi
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| | - Manuel Picon-Ruiz
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Department of Human Anatomy and Embryology, Faculty of Medicine, Biopathology and Medicine Regenerative Institute (IBIMER), and Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Iskander Aurrekoetxea-Rodriguez
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Vanessa Nunes de Paiva
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Massimo D'Amico
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Ramya Radhakrishnan
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Cynthia Morata-Tarifa
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Tan Ince
- Department of Pathology, Weill Cornell Medicine and New York Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Marc E Lippman
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Seth R Thaller
- Department of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Steven E Rodgers
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Susan Kesmodel
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria Del Mar Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
43
|
Wei YB, McCarthy M, Ren H, Carrillo-Roa T, Shekhtman T, DeModena A, Liu JJ, Leckband SG, Mors O, Rietschel M, Henigsberg N, Cattaneo A, Binder EB, Aitchison KJ, Kelsoe JR. A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression. Mol Psychiatry 2020; 25:1312-1322. [PMID: 30874608 PMCID: PMC6745302 DOI: 10.1038/s41380-019-0397-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate < 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P < 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response.
Collapse
Affiliation(s)
- Ya Bin Wei
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 17176, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden.,Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael McCarthy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.,Psychiatry Service, VA San Diego Healthcare System, San Diego, CA,92161, USA
| | - Hongyan Ren
- Psychiatric Laboratory and Mental Health Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Psychiatry and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.,Psychiatry Service, VA San Diego Healthcare System, San Diego, CA,92161, USA
| | - Anna DeModena
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.,Psychiatry Service, VA San Diego Healthcare System, San Diego, CA,92161, USA
| | - Jia Jia Liu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.,Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Susan G. Leckband
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 17176, Sweden.,Psychiatry Service, VA San Diego Healthcare System, San Diego, CA,92161, USA
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital, Denmark
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim Heidelberg University, Mannheim Germany
| | - Neven Henigsberg
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia
| | | | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Katherine J. Aitchison
- Department of Psychiatry and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.,Psychiatry Service, VA San Diego Healthcare System, San Diego, CA,92161, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
44
|
Sanchis P, Fernández-Gayol O, Comes G, Escrig A, Giralt M, Palmiter RD, Hidalgo J. Interleukin-6 Derived from the Central Nervous System May Influence the Pathogenesis of Experimental Autoimmune Encephalomyelitis in a Cell-Dependent Manner. Cells 2020; 9:cells9020330. [PMID: 32023844 PMCID: PMC7072597 DOI: 10.3390/cells9020330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Interleukin-6 (IL-6) is a pleiotropic and multifunctional cytokine that plays a critical role in induction of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Although EAE has always been considered a peripherally elicited disease, Il6 expression exclusively within central nervous system is sufficient to induce EAE development. Neurons, astrocytes, and microglia can secrete and respond to IL-6. Methods: To dissect the relevance of each cell source for establishing EAE, we generated and immunized conditional Il6 knockout mice for each of these cell types with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide dissolved in complete Freund’s adjuvant (CFA) and supplemented with Mycobacterium tuberculosis. Results and conclusions: The combined results reveal a minor role for Il6 expression in both astrocytes and microglia for symptomatology and neuropathology of EAE, whereas neuronal Il6 expression was not relevant for the variables analyzed.
Collapse
Affiliation(s)
- Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
| | - Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
- Current affiliation: Department of Pediatrics, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, NY10032, USA
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
| | - Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
| | - Richard D. Palmiter
- Department of Biochemistry, Genome Sciences, and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA;
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (P.S.); (O.F.-G.); (A.E.); (M.G.)
- Correspondence: ; Tel.: +34-93-581-2037; Fax: +34-93-581-2390
| |
Collapse
|
45
|
Abstract
Sexual dimorphisms account for differences in clinical manifestations or incidence of infectious or autoimmune diseases and malignancy between females and males. Females develop enhanced innate and adaptive immune responses than males and are less susceptible to many infections of bacterial, viral, parasitic, and fungal origin and malignancies but in contrast, they are more prone to develop autoimmune diseases. The higher susceptibility to infections in males is observed from birth to adulthood, suggesting that sex chromosomes and not sex hormones have a major role in sexual dimorphism in innate immunity. Sex-based regulation of immune responses ultimately contributes to age-related disease development and life expectancy. Differences between males and females have been described in the expression of pattern recognition receptors of the innate immune response and in the functional responses of phagocytes and antigen presenting cells. Different factors have been shown to account for the sex-based disparity in immune responses, including genetic factors and hormonal mediators, which contribute independently to dimorphism in the innate immune response. For instance, several genes encoding for innate immune molecules are located on the X chromosome. In addition, estrogen and/or testosterone have been reported to modulate the differentiation, maturation, lifespan, and effector functions of innate immune cells, including neutrophils, macrophages, natural killer cells, and dendritic cells. In this review, we will focus on differences between males and females in innate immunity, which represents the first line of defense against pathogens and plays a fundamental role in the activation, regulation, and orientation of the adaptive immune response.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Kevin Berthenet
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
46
|
Sweeney EL, Gardiner S, Tickner J, Trim L, Beagley KW, Carey AJ. Group B Streptococcus serotypes Ia and V induce differential vaginal immune responses that may contribute to long term colonization of the female reproductive tract. Am J Reprod Immunol 2019; 83:e13199. [PMID: 31626718 DOI: 10.1111/aji.13199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023] Open
Abstract
PROBLEM Group B Streptococcus (GBS) is a common colonizer of the female genital tract at the time of pregnancy and has been associated with severe neonatal infections. Despite trials for GBS vaccines already being underway, the factors influencing vaginal GBS colonization and clearance are currently poorly understood. METHOD OF STUDY Within this study, we investigated the host immune responses to GBS infections in mice that affect GBS vaginal colonization and clearance. Cervicovaginal swabs were used to measure vaginal GBS persistence, and vaginal cytokine responses were measured using the BioPlex® system. Lymphocytes isolated from spleens were stimulated with UV-killed GBS to examine systemic cellular responses. Additional in vitro cellular experiments using human vaginal epithelial cells were also performed, examining the effect pregnancy level hormones had on GBS adhesion, invasion, and cytokine responses. RESULTS We observed significant differences in the ability of GBS serotype V infections to persist, compared with GBS serotype Ia vaginal infections. Vaginal cytokine response examination identified temporal changes in cytokine production (IL10, IFNγ, IL6, IL1β, and TNFα) in relation to GBS serotype and clearance or colonization. Lymphocyte proliferation assays also revealed robust cellular immune responses to GBS vaginal infections irrespective of clearance or colonization. In vitro human cellular analyses also identified that vaginal epithelial cell line cytokine production was suppressed in the presence of hormones despite no alteration in adhesion/invasion. CONCLUSION Here, we establish previously unknown, serotype specific, temporal immune responses which may be associated with vaginal GBS colonization or clearance in the female genital tract.
Collapse
Affiliation(s)
- Emma L Sweeney
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephanie Gardiner
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacob Tickner
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Logan Trim
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth W Beagley
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alison J Carey
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Huang P, Zheng N, Zhou HB, Huang J. Curcumin inhibits BACE1 expression through the interaction between ERβ and NFκB signaling pathway in SH-SY5Y cells. Mol Cell Biochem 2019; 463:161-173. [DOI: 10.1007/s11010-019-03638-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022]
|
48
|
Shiba S, Ikeda K, Suzuki T, Shintani D, Okamoto K, Horie-Inoue K, Hasegawa K, Inoue S. Hormonal Regulation of Patient-Derived Endometrial Cancer Stem-like Cells Generated by Three-Dimensional Culture. Endocrinology 2019; 160:1895-1906. [PMID: 31265065 DOI: 10.1210/en.2019-00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Low-grade and early-stage endometrial cancer usually has a favorable prognosis, whereas recurrent or metastatic disease is often difficult to cure. Thus, the molecular mechanisms underlying advanced pathophysiology remain to be elucidated. From the perspective of the origin of advanced endometrial cancer, the characterization of cancer stem-like cells (CSCs) will be the first step toward the development of clinical management. We established long-term culturable patient-derived cancer cells (PDCs) from patient endometrial tumors by spheroid cell culture, which is favorable for the enrichment of CSCs. PDC-derived xenograft tumors were generated in immunodeficient NOD/Shi-scid, IL-2RγKO Jic mice. Morphologically, PDCs derived from three distinct patient samples and their xenograft tumors recapitulated the corresponding original patient tumors. Of note, CSC-related genes including ALDH1A1 were upregulated in all of these PDCs, and the therapeutic potentiality of aldehyde dehydrogenase inhibitors was demonstrated. In addition, these PDCs and their patient-derived xenograft (PDX) models exhibited distinct characteristics on the basis of their hormone responsiveness and metastatic features. Interestingly, genes associated with inflammation and tumor immunity were upregulated by 17β-estradiol in PDC lines with high estrogen receptor expression and were also overexpressed in secondary PDCs obtained from metastatic tumor models. These results suggest that PDC and PDX models from endometrial cancer specimens would be useful to elucidate CSC traits and to develop alternative diagnostic and therapeutic options for advanced disease.
Collapse
Affiliation(s)
- Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
49
|
Ramesh SS, Christopher R, Indira Devi B, Bhat DI. The vascular protective role of oestradiol: a focus on postmenopausal oestradiol deficiency and aneurysmal subarachnoid haemorrhage. Biol Rev Camb Philos Soc 2019; 94:1897-1917. [DOI: 10.1111/brv.12541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shruthi S. Ramesh
- Department of NeurochemistryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Rita Christopher
- Department of NeurochemistryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Bhagavatula Indira Devi
- Department of NeurosurgeryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Dhananjaya I. Bhat
- Department of NeurosurgeryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| |
Collapse
|
50
|
Kettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, Carey JPW, Chen X, Eckols TK, Raghavendra AS, Ibrahim NK, Karuturi MS, Watowich SS, Sahin A, Tweardy DJ, Hunt KK, Tripathy D, Keyomarsi K. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin Cancer Res 2019; 25:3996-4013. [PMID: 30867218 PMCID: PMC6606366 DOI: 10.1158/1078-0432.ccr-18-3274] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Human Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshara S Raghavendra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghan Sri Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|