1
|
Holt AK, Buckmire MG, Moss KS, Meekins J, Outhous AE, Reveil L, Goden AB, Hoetger C, Eversole A, Poklis JL, Soule EK, Cobb CO, Peace MR. A multi-year characterization of confiscated vaping products from Virginia school youth. J Anal Toxicol 2024; 48:606-615. [PMID: 39036864 PMCID: PMC11515133 DOI: 10.1093/jat/bkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The US Food and Drug Administration's (FDA) regulatory oversight over electronic cigarettes (e-cigs) includes access restriction for persons <21 years of age and flavor restrictions for "cartridge-based" products. Despite the restrictions, consumption by US youth perseveres. Studies on youth e-cig use are limited by the reliability and accuracy of self-reports. As an alternative to self-reports, the current study examined nicotine, cannabinoid, and unlabeled e-cigs and other vaping products confiscated from Virginia public schools to characterize trends among students. Findings highlight a shift from JUUL and pod-based products to single use disposable e-cigs following the FDA flavor restrictions on cartridge-based e-cigs. Chemical analysis of e-liquids by gas chromatography-mass spectrometry identified a wide variety of flavorants and an increase in the prevalence of synthetic coolants. Most confiscated products were nicotine salt formulations, but the prevalence of cannabinoid-based vaping products increased. The popularity of flavored disposable e-cigs highlights the need for further restrictions to reduce youth consumption. The increasing use of synthetic coolants instead of menthol may suggest that manufacturers are employing tactics to bypass regulations. Continued youth access to e-cigs and the abundance of cannabinoid-based products is problematic from health and safety perspectives. Continued research incorporating confiscated product analysis can be used to understand youth access to vaping products and evolutions in manufacturing practices.
Collapse
Affiliation(s)
- Alaina K Holt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Meredith G Buckmire
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Kelsey S Moss
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jessemia Meekins
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Ashleigh E Outhous
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Laerissa Reveil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Akira B Goden
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23284, United States
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA 23220, United States
| | - Cosima Hoetger
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23284, United States
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA 23220, United States
- Institute for Integrative Health Care and Health Promotion, Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, 58455, Germany
| | - Alisha Eversole
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23284, United States
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA 23220, United States
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Eric K Soule
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA 23220, United States
- Department of Health Education and Promotion, East Carolina University, Greenville, NC 27858, United States
| | - Caroline O Cobb
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23284, United States
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA 23220, United States
| | - Michelle R Peace
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| |
Collapse
|
2
|
Wang G, Liu W, Cao Y, Chen W, Chen N. Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells. Inhal Toxicol 2024:1-13. [PMID: 39431444 DOI: 10.1080/08958378.2024.2416428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Respiratory co-exposure to ambient PM2.5 and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM2.5 (60 μg/mL), or PM2.5 + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM2.5 + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM2.5 + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM2.5-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Yujie Cao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqi Chen
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Nuo Chen
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Sommer N, Franzen K, Andreas S, Pankow W, Kunstmann W, Hanewinkel R. [Harmful health effects of flavors in e-cigarettes]. Laryngorhinootologie 2024. [PMID: 38996433 DOI: 10.1055/a-2341-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND Almost all e-cigarettes contain flavorings that make the product more attractive. In the evaluation of e-cigarettes on health, flavors have so far played a subordinate role. METHOD Selective literature search in PubMed, supplemented by legal regulations on the use of flavors in e-cigarettes. RESULTS Flavors make it easier to start using e-cigarettes and have a consumption-promoting effect. Deeper inhalation increases nicotine uptake and the absorption of toxic substances from the e-cigarette liquid. For some flavors, pathological effects have been demonstrated in addition to other toxic components of the e-cigarette. To date, no toxicological analyses are available for the vast majority of flavors contained in e-cigarettes. CONCLUSIONS The proven consumption-promoting effect and the health risks that can be extrapolated from preclinical data are significant for the political discussion of a ban on flavors for e-cigarettes, analogous to the ban on flavors in tobacco products already in force.
Collapse
Affiliation(s)
- Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen
| | - Klaas Franzen
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III, Pneumologie, Campus Lübeck, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Lübeck/Großhansdorf
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung
| | - Wulf Pankow
- Philipps-Universität Marburg - Fachbereich Medizin
| | - Wilfried Kunstmann
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| |
Collapse
|
4
|
Al-Otaibi HM, Baqasi AMS, Alhadrami HA. Genotoxicity and mutagenicity assessment of electronic cigarette liquids. Ann Thorac Med 2024; 19:222-227. [PMID: 39144536 PMCID: PMC11321532 DOI: 10.4103/atm.atm_59_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Electronic cigarettes (e-cigarettes) are often advertised as a safer alternative to traditional smoking. However, recent data suggest they may not be as safe as previously believed. This study aims to evaluate the genotoxicity and mutagenicity of e-cigarette liquids. METHODS We randomly selected eight varieties of e-cigarette liquids from the local market in Jeddah, Saudi Arabia. We evaluated their genotoxicity using the Genotoxicity SOS-Chromo Test™ Kit. In this investigation, a rat liver S9 fraction was utilized to emulate liver metabolic function to measure any chemical substance's mutagenic potential. The SOS-Chromo Test was performed by recording the β-galactosidase and alkaline phosphatase activity with and without the metabolic activation enzyme (S-9). RESULTS All samples, except for the first two dilutions of sample 2, were nongenotoxic in the absence of the S9 activation enzyme, according to the genotoxicity analysis. However, when tested in the presence of the S9 enzyme, samples 2, 4, and 7 exhibited mutagenic activity at varying concentrations. CONCLUSION Contrary to common belief, e-cigarettes are not safe. The present investigation confirms the presence of both toxicants and carcinogens in some e-cigarette liquids. This exposure could increase users' risk of various health complications.
Collapse
Affiliation(s)
- Hajed M. Al-Otaibi
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha MS. Baqasi
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani A. Alhadrami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DNA Forensic Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Walker-Franklin I, Onyenwoke RU, Leung T, Huang X, Shipman JG, Kovach A, Sivaraman V. GC/HRMS Analysis of E-Liquids Complements In Vivo Modeling Methods and can Help to Predict Toxicity. ACS OMEGA 2024; 9:26641-26650. [PMID: 38911720 PMCID: PMC11191570 DOI: 10.1021/acsomega.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Tobacco smoking is a major risk factor for disease development, with the user inhaling various chemicals known to be toxic. However, many of these chemicals are absent before tobacco is "burned". Similar, detailed data have only more recently being reported for the e-cigarette with regards to chemicals present before and after the e-liquid is "vaped." Here, zebrafish were dosed with vaped e-liquids, while C57-BL/6J mice were vaped using nose-cone only administration. Preliminary assessments were made using e-liquids and GC/HRMS to identify chemical signatures that differ between unvaped/vaped and flavored/unflavored samples. Oxidative stress and inflammatory immune cell response assays were then performed using our in vivo models. Chemical signatures differed, e.g., between unvaped/vaped samples and also between unflavored/flavored e-liquids, with known chemical irritants upregulated in vaped and unvaped flavored e-liquids compared with unflavored e-liquids. However, when possible respiratory irritants were evaluated, these agents were predominantly present in only the vaped e-liquid. Both oxidative stress and inflammatory responses were induced by a menthol-flavored but not a tobacco-flavored e-liquid. Thus, chemical signatures differ between unvaped versus vaped e-liquid samples and also between unflavored versus flavored e-liquids. These flavors also likely play a significant role in the variability of e-liquid characteristics, e.g., pro-inflammatory and/or cytotoxic responses.
Collapse
Affiliation(s)
| | - Rob U. Onyenwoke
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing
Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| | - TinChung Leung
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Xiaoyan Huang
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jeffrey G. Shipman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Alex Kovach
- RTI
International, Research
Triangle Park, North Carolina 27704, United States
| | - Vijay Sivaraman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
6
|
Sommer N, Franzen K, Andreas S, Pankow W, Kunstmann W, Hanewinkel R. [Harmful health effects of flavors in e-cigarettes]. Dtsch Med Wochenschr 2024; 149:646-653. [PMID: 38458230 DOI: 10.1055/a-2260-5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
BACKGROUND Almost all e-cigarettes contain flavorings that make the product more attractive. In the evaluation of e-cigarettes on health, flavors have so far played a subordinate role. METHOD Selective literature search in PubMed, supplemented by legal regulations on the use of flavors in e-cigarettes. RESULTS Flavors make it easier to start using e-cigarettes and have a consumption-promoting effect. Deeper inhalation increases nicotine uptake and the absorption of toxic substances from the e-cigarette liquid. For some flavors, pathological effects have been demonstrated in addition to other toxic components of the e-cigarette. To date, no toxicological analyses are available for the vast majority of flavors contained in e-cigarettes. CONCLUSIONS The proven consumption-promoting effect and the health risks that can be extrapolated from preclinical data are significant for the political discussion of a ban on flavors for e-cigarettes, analogous to the ban on flavors in tobacco products already in force.
Collapse
Affiliation(s)
- Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Gießen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen
| | - Klaas Franzen
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III, Pneumologie, Campus Lübeck, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Lübeck/Großhansdorf
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung
| | - Wulf Pankow
- Philipps-Universität Marburg - Fachbereich Medizin
| | | | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel
| |
Collapse
|
7
|
Rupp A, Sommer N, Andreas S, Pankow W, Hanewinkel R, Wienbergen H, Batra A, Sauerbruch T, Kardos P, Ulbricht S, Brinkmann F, Scheubel R, Vogelmeier C, Windisch W. [Medical societies in Germany call for a ban on flavors in e-cigarettes - A Position Paper of the German Respiratory Society (DGP) in cooperation with other professional associations and organizations]. Pneumologie 2024; 78:320-324. [PMID: 38503310 DOI: 10.1055/a-2282-9908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
E-cigarettes are primarily used by teenagers and young adults. Flavors in e-cigarettes increase their attractiveness and encourage young people and adults to start using them. This exposes young people in particular to the risk of nicotine addiction and various toxic substances from the aerosol of e-cigarettes. There are indications that various flavors in e-cigarettes are harmful to health, although toxicological studies are still lacking for the majority of flavors. There is a need for independent scientific investigations in this area. The scientific societies involved are calling for a ban on flavors in e-cigarettes, a ban on disposable e-cigarettes, effective regulation of the sale of e-cigarettes and effective control and implementation of the provisions for the protection of minors.
Collapse
Affiliation(s)
- Alexander Rupp
- Pneumologische Praxis im Zentrum, Stuttgart, Mitglied der Arbeitsgruppe Tabakprävention und -entwöhnung der DGP, Leiter der Arbeitsgruppe Tabak im Bundesverband der Pneumologie, Schlaf- und Beatmungsmedizin, Stuttgart, Deutschland
| | - Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen, Gießen, Deutschland
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung, Göttingen, Deutschland
| | - Wulf Pankow
- Vivantes-Institut für Tabakentwöhnung und Raucherprävention, Berlin, Deutschland
| | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| | - Harm Wienbergen
- Bremer Institut für Herz- und Kreislaufforschung, Klinikum Links der Weser Bremen, Universität zu Lübeck für die Deutsche Gesellschaft für Kardiologie - Herz- und Kreislaufforschung (DGK), Bremen, Deutschland
| | - Anil Batra
- Universitätsklinik für Psychiatrie und Psychotherapie, Universität Tübingen für die Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN), Tübingen, Deutschland
| | - Tilman Sauerbruch
- Universität Bonn für die Deutsche Gesellschaft für Innere Medizin (DGIM), Bonn, Deutschland
| | - Peter Kardos
- Lungenzentrum Maingau, Frankfurt a. M. für die Deutsche Atemwegsliga, Frankfurt, Deutschland
| | - Sabina Ulbricht
- Abteilung für Präventionsforschung und Sozialmedizin, Universitätsmedizin Greifswald für das Aktionsbündnis Nichtrauchen, Greifswald, Deutschland
| | - Folke Brinkmann
- Sektion Kinderpneumologie und Allergologie, Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Schleswig-Holstein Campus Lübeck für die Gesellschaft für pädiatrische Pneumologie (GPP), Lübeck, Deutschland
| | - Robert Scheubel
- Klinik für Thoraxchirurgie, Fachkliniken Wangen für die Deutsche Gesellschaft für Thoraxchirurgie, Wangen, Deutschland
| | - Claus Vogelmeier
- Abteilung Pneumologie im Universitätsklinikum Gießen und Marburg, Standort Marburg für die Deutsche Lungenstiftung, Marburg, Deutschland
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke für die Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin, Köln, Deutschland
| |
Collapse
|
8
|
Emma Sarles S, Hensel EC, Terry J, Nuss C, Robinson RJ. Flow Rate and Wall Shear Stress Characterization of a Biomimetic Aerosol Exposure System. J Biomech Eng 2024; 146:045001. [PMID: 38270928 PMCID: PMC10983703 DOI: 10.1115/1.4064549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Current in vitro emissions and exposure systems lack biomimicry, use unrealistic flow conditions, produce unrealistic dose, and provide inaccurate biomechanical cues to cell cultures, limiting ability to correlate in vitro outcomes with in vivo health effects. A biomimetic in vitro system capable of puffing aerosol and clean air inhalation may empower researchers to investigate complex questions related to lung injury and disease. A biomimetic aerosol exposure system (BAES), including an electronic cigarette adapter, oral cavity module (OCM), and bifurcated exposure chamber (BEC) was designed and manufactured. The fraction of aerosol deposited in transit to a filter pad or lost as volatiles was 0.116±0.021 in a traditional emissions setup versus 0.098 ± 0.015 with the adapter. The observed flowrate was within 5% of programed flowrate for puffing (25 mL/s), puff-associated respiration (450 mL/s), and tidal inhalation (350 mL/s). The maximum flowrate observed in the fabricated BAES was 450 mL/s, exceeding the lower target nominal wall shear stress of 0.025 Pa upstream of the bifurcation and fell below the target of 0.02 Pa downstream. This in vitro system addresses several gaps observed in commercially available systems and may be used to study many inhaled aerosols. The current work illustrates how in silico models may be used to correlate results of an in vitro study to in vivo conditions, rather than attempting to design an in vitro system that performs exactly as the human respiratory tract.
Collapse
Affiliation(s)
- S. Emma Sarles
- Department of Mechanical Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623
| | - Edward C. Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623
| | - Janessa Terry
- Department of Mechanical Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623
| | - Caleb Nuss
- Department of Mechanical Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623
| | - Risa J. Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623
| |
Collapse
|
9
|
Dai Y, Yang W, Song H, He X, Guan R, Wu Z, Jiang X, Li M, Liu P, Chen J. Long-term effects of chronic exposure to electronic cigarette aerosol on the cardiovascular and pulmonary system in mice: A comparative study to cigarette smoke. ENVIRONMENT INTERNATIONAL 2024; 185:108521. [PMID: 38508052 DOI: 10.1016/j.envint.2024.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanchun Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjun He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruoqing Guan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Granata S, Vivarelli F, Morosini C, Canistro D, Paolini M, Fairclough LC. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int J Mol Sci 2024; 25:2737. [PMID: 38473984 DOI: 10.3390/ijms25052737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Tobacco smoking remains one of the leading causes of premature death worldwide. Electronic Nicotine Delivery Systems (ENDSs) are proposed as a tool for smoking cessation. In the last few years, a growing number of different types of ENDSs were launched onto the market. Despite the manufacturing differences, ENDSs can be classified as "liquid e-cigarettes" (e-cigs) equipped with an atomizer that vaporizes a liquid composed of vegetable glycerin (VG), polypropylene glycol (PG), and nicotine, with the possible addition of flavorings; otherwise, the "heated tobacco products" (HTPs) heat tobacco sticks through contact with an electronic heating metal element. The presence of some metals in the heating systems, as well as in solder joints, involves the possibility that heavy metal ions can move from these components to the liquid, or they can be adsorbed into the tobacco stick from the heating blade in the case of HTPs. Recent evidence has indicated the presence of heavy metals in the refill liquids and in the mainstream such as arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb). The present review discusses the toxicological aspects associated with the exposition of heavy metals by consumption from ENDSs, focusing on metal carcinogenesis risk.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, East Dr, Nottingham NG7 2TQ, UK
| |
Collapse
|
11
|
Franchitto N, Bloch J, Solal C, Pélissier F. Self-poisoning by E-cigarette and E-liquids: National Reports to French Poison Control Centers from July 2019 to December 2020: VIGIlance and VAPE: The VIGIVAPE Study. Nicotine Tob Res 2024; 26:281-288. [PMID: 37422917 DOI: 10.1093/ntr/ntad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Exposure to e-cigarette liquids, whether intentional or accidental, might lead to adverse events. This study aimed to describe the prevalence and characteristics of exposures to e-liquids reported to French Poison Control Centers. METHODS All e-liquids exposure cases reported to French Poison Control Centers from July 1, 2019, to December 31, 2020, were reviewed. Information was collected about the patient's characteristics, exposure circumstances, management and outcome. RESULTS About 919 cases of exposure to e-liquids were reported. Ages ranged from one month to 89 years, with a mean age of 16.6 ± 18.6 years and a median age of 4 years. The highest number of exposures-50.7%-concerned infants (0-4 years), 3.1% children (5-11 years), 5.9% adolescents (12-17 years), and 40.1% of cases concerned adults. The majority of cases were accidental (95.0%). Intentional exposures (4.9%) were mainly observed in patients older than 12 years of age (P < 0.001). The route of exposure was ingestion in 73.7% of the cases. A total of 455 exposures showed no symptoms or signs related to poisoning. High nicotine concentration in e-liquids was associated with an increase in hospital management (Odds-ratio from 1.77 to 2.60). CONCLUSION Involuntary exposures to e-liquids occurred more often in children under the age of five, mainly by ingestion. Unlike intentional ingestions, unintentional ingestions rarely resulted in severe adverse events. These findings highlight the importance of ongoing surveillance to prevent such exposures and associated injuries, emphasizing the need for effective regulation of these products.
Collapse
Affiliation(s)
- Nicolas Franchitto
- Service d'Addictologie Universitaire, Centre Hospitalier de Toulouse-Purpan, Toulouse, France
- CERPOP, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | | | - Fanny Pélissier
- Centre Antipoison et Toxicovigilance Occitanie, Centre Hospitalier et Universitaire de Toulouse-Purpan, Toulouse, France
| |
Collapse
|
12
|
Cheng S. Investigation of the Association Between e-Cigarette Smoking and Oral Mucosal Health Status Among Young People: Protocol for a Case-Control Trial. JMIR Res Protoc 2024; 13:e53644. [PMID: 38171545 PMCID: PMC10858415 DOI: 10.2196/53644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Given the paucity of current safety studies related to e-cigarettes, there are no definitive studies on whether e-cigarettes cause oral mucosal lesions or even oral cancer. Although it is still undetermined whether e-cigarettes are harmless, an increasing number of teenagers choose to smoke e-cigarettes and believe that they are not harmful to the human body. OBJECTIVE This aims to determine whether e-cigarettes cause damage to the oral mucosa. This study also aims to evaluate the association between e-cigarette smoking and oral mucous membrane lesions in young adults. The objectives are to (1) compare the oral mucosal conditions in participants with and without e-cigarette smoking habits, (2) assess the effect of the amount of e-cigarette smoking on oral mucosal conditions, and (3) assess the effect of the duration of e-cigarette smoking on oral mucosal conditions. METHODS In this prospective study, 304 youths aged 15 to 24 years (n=152, 50% who smoke only e-cigarettes and n=152, 50% who do not smoke e-cigarettes or cigarettes) will be divided into 2 groups for a controlled study. Whether e-cigarettes cause oral mucosal lesions will be verified by comparing the odds of oral mucosal lesions in the 2 experimental groups. For this experiment, the predefined power is 80% (P=.04), and the predefined proportions of groups 1 and 2 are 11% and 2.5%, respectively. RESULTS This experiment is at the conceptualization phase and has not yet been carried out. Experimenters have not been recruited and no data have been collected. CONCLUSIONS e-Cigarettes are still an unfamiliar topic to the public, and it is still unknown whether they can cause damage to the oral mucosa. This experiment aims to find out whether there is a link between the 2. There are still many limitations in this study, such as the lack of categorization of e-cigarettes and the lack of testing methods for oral mucosal status. These limitations are expected to be addressed in the future as the experiment is formally conducted and further optimized. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/53644.
Collapse
Affiliation(s)
- Siyuan Cheng
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| |
Collapse
|
13
|
Bishop E, Miazzi F, Bozhilova S, East N, Evans R, Smart D, Gaca M, Breheny D, Thorne D. An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol 2024; 6:100150. [PMID: 38298371 PMCID: PMC10827682 DOI: 10.1016/j.crtox.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Interest in the toxicological assessment of iterations of e-cigarette devices, e-liquid formulations and flavour use is increasing. Here, we describe a multiple test matrix and in vitro approach to assess the biological impact of differing e-cigarette activation mechanism (button vs. puff-activated) and heating technology (cotton vs. ceramic wick). The e-liquids selected for each device contained the same nicotine concentration and flavourings. We tested both e-liquid and aqueous extract of e-liquid aerosol using a high throughput cytotoxicity and genotoxicity screen. We also conducted whole aerosol assessment both in a reconstituted human airway lung tissue (MucilAir) with associated endpoint assessment (cytotoxicity, TEER, cilia beat frequency and active area) and an Ames whole aerosol assay with up to 900 consecutive undiluted puffs. Following this testing it is shown that the biological impact of these devices is similar, taking into consideration the limitations and capturing efficiencies of the different testing matrices. We have contextualised these responses against previous published reference cigarette data to establish the comparative reduction in response consistent with reduced risk potential of the e-cigarette products tested in this study as compared to conventional cigarettes.
Collapse
Affiliation(s)
- E. Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F. Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S. Bozhilova
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N. East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - R. Evans
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Smart
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M. Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
14
|
Cook DK, Lalonde G, Oldham MJ, Wang J, Bates A, Ullah S, Sulaiman C, Carter K, Jongsma C, Dull G, Gillman IG. A Practical Framework for Novel Electronic Nicotine Delivery System Evaluation: Chemical and Toxicological Characterization of JUUL2 Aerosol and Comparison with Reference Cigarettes. TOXICS 2024; 12:41. [PMID: 38250996 PMCID: PMC10820849 DOI: 10.3390/toxics12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically relevant chemicals in the aerosols and characterize any related toxicology. Herein, we present a proposed framework for characterizing novel ENDS products (i.e., devices and formulations) and determining the reduced risk potential utilizing analytical chemistry and in vitro toxicological studies with a qualitative risk assessment. To demonstrate this proposed framework, long-term stability studies (12 months) analyzing relevant toxicant emissions from six formulations of a next-generation product, JUUL2, were conducted and compared to reference combustible cigarette (CC) smoke under both non-intense and intense puffing regimes. In addition, in vitro cytotoxicity, mutagenicity, and genotoxicity assays were conducted on aerosol and smoke condensates. In all samples, relevant toxicants under both non-intense and intense puffing regimes were substantially lower than those observed in reference CC smoke. Furthermore, neither cytotoxicity, mutagenicity, nor genotoxicity was observed in aerosol condensates generated under both intense and non-intense puffing regimes, in contrast to results observed for reference cigarettes. Following the proposed framework, the results demonstrate that the ENDS products studied in this work generate significantly lower levels of toxicants relative to reference cigarettes and were not cytotoxic, mutagenic, or genotoxic under these in vitro assay conditions.
Collapse
Affiliation(s)
- David K. Cook
- JUUL Labs, 1000 F Street NW, Washington, DC 20004, USA (M.J.O.); (S.U.); (C.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
López-Ojeda W, Hurley RA. Vaping and the Brain: Effects of Electronic Cigarettes and E-Liquid Substances. J Neuropsychiatry Clin Neurosci 2024; 36:A41-5. [PMID: 38226910 DOI: 10.1176/appi.neuropsych.20230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
16
|
Effah F, Adragna J, Luglio D, Bailey A, Marczylo T, Gordon T. Toxicological assessment of E-cigarette flavored E-liquids aerosols using Calu-3 cells: A 3D lung model approach. Toxicology 2023; 500:153683. [PMID: 38013136 PMCID: PMC10826471 DOI: 10.1016/j.tox.2023.153683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE London, UK; UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 ORQ, UK.
| | - John Adragna
- Division of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - David Luglio
- Division of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Tim Marczylo
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 ORQ, UK
| | - Terry Gordon
- Division of Environmental Medicine, New York University Langone Health, New York, NY, USA
| |
Collapse
|
17
|
Effah F, Elzein A, Taiwo B, Baines D, Bailey A, Marczylo T. In Vitro high-throughput toxicological assessment of E-cigarette flavors on human bronchial epithelial cells and the potential involvement of TRPA1 in cinnamon flavor-induced toxicity. Toxicology 2023; 496:153617. [PMID: 37595738 DOI: 10.1016/j.tox.2023.153617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Electronic cigarettes (ECs) are considered a less hazardous alternative to tobacco smoking but are not harmless. Growing concerns about the safety profiles of flavors in e-liquids underpin the need for this study. Here, we screened 53 nicotine-free flavored e-liquids (across 15 flavor categories) across a 3-point concentration range (0.25%, 0.5%, and 1% v/v) in a high-throughput fashion in human bronchial epithelial (HBEC-3KT) submerged cell cultures to identify 'toxic hits' using in vitro endpoint assays comprising cell count, cell viability, and lactate dehydrogenase (LDH). We observed significant, dose-dependent adverse effects only with cinnamon, vanilla tobacco, and hazelnut e-liquids compared to media-only and PG/VG vehicle controls. Hence, we further analyzed these three flavors for their effects on HBEC-3KT proliferation, mitochondrial health, and oxidative stress. A significant decrease in cell proliferation after 36 h was observed for each e-liquid toxic hit compared to media-only and PG/VG controls. Hazelnut (at all concentrations) and vanilla tobacco (1%) increased cytoplasmic reactive oxygen species generation compared to media-only and PG/VG controls. Conversely, all three flavors at 0.5% and 1% significantly decreased mitochondrial membrane potential compared to PG/VG and media-only controls. Chemical analysis revealed that all three flavors contained volatile organic compounds. We hypothesized that the cytotoxicity of cinnamon might be mediated via TRPA1; however, TRPA1 antagonist AP-18 (10 μM) did not mitigate these effects, and cinnamon significantly increased TRPA1 transcript levels. Therefore, pathways mediating cinnamon's cytotoxicity warrant further investigations. This study could inform public health authorities on the relative health risks assessment following exposure to EC flavor ingredients.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE London, UK; UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 ORQ, UK.
| | - Atallah Elzein
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 ORQ, UK
| | - Benjamin Taiwo
- Physiology Section, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Deborah Baines
- Infection and Immunity Institute, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Tim Marczylo
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 ORQ, UK.
| |
Collapse
|
18
|
Zhao M, Han Y, Yang Q, Yue Q, Zhang S, Zhao C, Sun X, Xu J, Jiang X, Li K, Li B, Zhao L, Su L. Evaluation of the Effects of e-Cigarette Aerosol Extracts and Tobacco Cigarette Smoke Extracts on RAW264.7 Cells. ACS OMEGA 2023; 8:29336-29345. [PMID: 37599962 PMCID: PMC10433514 DOI: 10.1021/acsomega.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
With the advancement of society, electronic cigarettes (e-cigarettes) have gained popularity among a growing number of individuals. While numerous toxicological studies have suggested that e-cigarettes are a safer alternative to traditional cigarettes, there is also a body of literature presenting contrasting findings. This in vitro study aimed to compare the effects of e-cigarettes and tobacco cigarettes (t-cigarettes) on RAW264.7 cells by using four e-cigarette aerosol extracts (ECA) and cigarette smoking extracts (CS) containing different nicotine concentrations. The results revealed that low concentration of nicotine in CS as well as in ECA with grape, watermelon, and cola flavors could promote cell viability. Conversely, high nicotine concentration in CS and ECA with four flavors decreased cell viability. Furthermore, our study demonstrated that CS significantly reduced the phagocytic capability of RAW264.7 cells and increased the levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β) and reactive oxygen species (ROS) compared to ECA. Overall, our findings indicate all four e-cigarettes induced less cytotoxicity to RAW264.7 cells and might be safer than t-cigarettes.
Collapse
Affiliation(s)
- Minghan Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yuting Han
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qi Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qiulin Yue
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Song Zhang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Chen Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Xin Sun
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Jing Xu
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Xingtao Jiang
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Kunlun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Baojun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Lin Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shandong
Chenzhang Biotechnology Co., Ltd., Jinan 250353, P. R. China
| | - Le Su
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| |
Collapse
|
19
|
Sabo AN, Filaudeau E, Da Silva S, Becker G, Monassier L, Kemmel V. Flavoured and nicotine-containing e-liquids impair homeostatic properties of an alveolar-capillary cell model. Food Chem Toxicol 2023; 174:113650. [PMID: 36758787 DOI: 10.1016/j.fct.2023.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Most people consider that electronic cigarettes are safer than tobacco and are marketed as quit-smoking products. The e-liquid, which usually contains propylene glycol (PG) and vegetable glycerin (VG) in different ratios, nicotine and a wide variety of flavours, is heated by a coil and the aerosol droplets are primarily delivered to the alveolar area where nicotine and other molecules cross the alveolar-capillary barrier (ACB). However, e-cigarettes effects on the ACB are not yet established. In our study, a well-characterised in vitro model of the ACB was exposed to PG and VG and to five flavoured e-liquids with and without nicotine. The vehicles, due to their hypertonic properties, modulated the ACB integrity by modifying occludin expression. Below a 10% concentration, the vehicles did not trigger oxidative stress or cell death. Different results were observed between flavoured e-liquids: while red fruits and mint-eucalyptus disrupted ACB integrity, triggered oxidative stress and cell death, blond tobacco had no worse effect compared to the vehicles. However, the addition of nicotine in the latter e-liquid increased oxidative stress and cell death compared to the vehicles. Finally, mint-eucalyptus e-liquid increased some inflammation markers. Our results revealed that e-liquids alter ACB homeostasis, depending on flavour and nicotine presence.
Collapse
Affiliation(s)
- Amelia-Naomi Sabo
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| | - Emma Filaudeau
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Sylvia Da Silva
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Guillaume Becker
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Pôle Pharmacie-Pharmacologie, 67200, France.
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Véronique Kemmel
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| |
Collapse
|
20
|
Chhor M, Tulpar E, Nguyen T, Cranfield CG, Gorrie CA, Chan YL, Chen H, Oliver BG, McClements L, McGrath KC. E-Cigarette Aerosol Condensate Leads to Impaired Coronary Endothelial Cell Health and Restricted Angiogenesis. Int J Mol Sci 2023; 24:ijms24076378. [PMID: 37047355 PMCID: PMC10094580 DOI: 10.3390/ijms24076378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of ‘e-vaping’. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Esra Tulpar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Charles G. Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Catherine A. Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Correspondence: (L.M.); (K.C.M.)
| | - Kristine C. McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Correspondence: (L.M.); (K.C.M.)
| |
Collapse
|
21
|
Bishop E, East N, Miazzi F, Fiebelkorn S, Breheny D, Gaca M, Thorne D. A contextualised e-cigarette testing strategy shows flavourings do not impact lung toxicity in vitro. Toxicol Lett 2023; 380:1-11. [PMID: 36935081 DOI: 10.1016/j.toxlet.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Vaping has the potential to reduce the individual health risks associated with smoking and e-cigarette flavours have been reported to help smokers' transition from cigarettes. In this manuscript, we provide evidence to support the reduced risk potential of e-cigarette aerosols and flavours by assessing commercially available e-liquids (Vuse ePod - Manufactured by British American Tobacco) in a 2D in vitro screening approach. We also analysed selected flavours using a more physiologically relevant 3D (MucilAir) whole aerosol exposure model, measuring toxicity and functional endpoints such as Trans Epithelial Electrical Resistance, Cilia Beat Frequency and Active Area. To contextualise responses, we have compared e-cigarette aerosol to cigarette smoke (1R6F research cigarette) and calculated the percentage reduction using a point of departure approach. We show that aerosolised flavoured e-liquids, (appropriately stewarded) do not increase the overall measured aerosol toxicity when compared to cigarette smoke. In fact, we demonstrate that the measured in vitro cellular toxicity of flavoured e-cigarette products remains >95% reduced when compared to cigarette smoke toxicity, using point of departure (IC80) approach. These data indicate that the overall product toxicity is not increased in a flavour dependent manner and that flavoured e-cigarette products can potentially play a role in tobacco harm reduction.
Collapse
Affiliation(s)
- E Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S Fiebelkorn
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
22
|
Been T, Alakhtar B, Traboulsi H, Tsering T, Bartolomucci A, Heimbach N, Paoli S, Burnier J, Mann KK, Eidelman DH, Baglole CJ. Chronic low-level JUUL aerosol exposure causes pulmonary immunologic, transcriptomic, and proteomic changes. FASEB J 2023; 37:e22732. [PMID: 36694994 DOI: 10.1096/fj.202201392r] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023]
Abstract
E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.
Collapse
Affiliation(s)
- Terek Been
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bayan Alakhtar
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Thupten Tsering
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Alexandra Bartolomucci
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Nicole Heimbach
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sofia Paoli
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Julia Burnier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Martinez JD, Easwaran M, Ramirez D, Erickson-DiRenzo E. Effects of Electronic (E)-cigarette Vapor and Cigarette Smoke in Cultured Vocal Fold Fibroblasts. Laryngoscope 2023; 133:139-146. [PMID: 35213064 DOI: 10.1002/lary.30073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The public use of electronic-cigarettes (e-cigs) is rapidly growing. When heated, e-cigs produce a vapor that is inhaled. The vocal folds are among the first tissues exposed to this insult. However, the impact of e-cigs on vocal fold health is almost entirely unknown. Our objective was to evaluate the effects of e-cig vapor on cultured human vocal fold fibroblasts (hVFFs), the primary cell type of the lamina propria. We compared the cellular effects of e-cig vapor without and with nicotine and conventional cigarette smoke. STUDY DESIGN In vitro. METHODS E-cig vapor extract (EVE) and cigarette smoke extract (CSE) were created by bubbling vapor and smoke, respectively, into the cell culture medium. hVFFs were exposed to EVE without or with nicotine or CSE for 24 hours. Untreated cells were used as a control group. Cells were harvested, and cytotoxicity, extracellular matrix and inflammatory gene expression, and DNA damage were assessed. RESULTS Undiluted EVE without and with nicotine reduced the viability of hVFFs to a cytotoxic level. CSE reduced hVFFs viability to a greater extent than EVE and induced DNA damage as measured by DNA double-strand breaks. No changes in gene expression were observed following EVE or CSE exposure. CONCLUSION EVE induces cytotoxicity in hVFFs. However, cellular responses were greater following exposure to CSE, suggesting cigarette smoke may induce more harm, at least in the short term. Findings from this investigation improve our understanding of responses of hVFFs to e-cigs and form the basis for an in vitro methodology to study the vocal fold responses to these products. LEVEL OF EVIDENCE NA Laryngoscope, 133:139-146, 2023.
Collapse
Affiliation(s)
- Joshua D Martinez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Meena Easwaran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Daniel Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
24
|
Wang H, Han S, Chen H, Li P, Li S, Wu Y, Zhang C, Fu Y, Tian Y, Liu T, Hou H, Hu Q. In Vitro Toxicological Investigation and Risk Assessment of E-Cigarette Aerosols Based on a Novel Solvent-Free Extraction Method. ACS OMEGA 2022; 7:48403-48415. [PMID: 36591148 PMCID: PMC9798774 DOI: 10.1021/acsomega.2c06663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Cigarettes, potentially safer alternatives to combustible cigarettes, have been reported to increase the health risk for long-term users, so accumulating information about their potential toxicity is of great concern. However, toxicological evaluations of e-cigarette aerosols are limited, which may be attributed to the lack of a simple and efficient extraction method. Here, we developed a high-speed centrifugal method for extracting e-cigarette aerosol collected mass (ACM) and prepared ACM samples of 26 representative e-cigarettes, and 10 samples were further selected based on their cytotoxicity for systematic toxicological assessments. The average extraction efficiency of ACM, primary aerosol components, and typical carbonyls exceeded 85%. The toxicological evaluation showed that the IC50 value range of e-cigarettes for cytotoxicity was 2-52 mg/mL ACM, all e-cigarettes can induce the risk of DNA damage, mitochondrial depolarization, and c-Jun-related signal disturbances; most e-cigarettes significantly caused disturbance of oxidative stress balance. E-cigarettes with higher cytotoxicity appeared to cause a higher degree of damage, while no e-cigarette promoted mutagenicity and cytochrome c release. The toxicity difference among e-cigarettes using nicotine equivalent was significantly lower than that of ACM. This study provides a novel extraction method and a comprehensive in vitro toxicity risk profile of e-cigarette aerosols.
Collapse
Affiliation(s)
- Hongjuan Wang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shulei Han
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Huan Chen
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Peizhen Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shigang Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yujuan Wu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Chunxia Zhang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yaning Fu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yushan Tian
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Tong Liu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Hongwei Hou
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Qingyuan Hu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| |
Collapse
|
25
|
Debbaneh P, Dhir S, Anderson M, Rivero A. Electronic Cigarettes: A Narrative Review and Cohort Study of Electronic Cigarette Users in the Otolaryngology Clinic. Perm J 2022; 26:85-93. [PMID: 36184759 PMCID: PMC9761286 DOI: 10.7812/tpp/22.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electronic nicotine delivery systems (ENDSs) are growing in popularity, particularly in young adults. While in vitro and murine models have demonstrated potentially harmful health effects of ENDSs, long-term health effects and clinical outcomes are generally unknown. Use as a smoking cessation aid is propagated by studies of potential harm reduction compared to conventional cigarette smoking. We present a review of the current controversies of ENDS use and present a novel cohort of patients visiting the otolaryngology clinic with known ENDS use to understand their clinical and demographic characteristics and the prevalence of otolaryngologic inflammatory diagnoses. Eighty-eight patients had 105 diagnoses. Forty-three (48.9%) ENDS users had at least 1 inflammatory diagnosis. ENDS use was more common in White, male patients between the ages of 18 and 35 years. The most common inflammatory diagnoses were chronic otitis media (17.4%) and allergic rhinitis (13.0%). While the rate of inflammatory disease was significantly higher in male than in female patients (60.7% vs 28.1% p = 0.003), no significant association was seen between inflammatory disease and age, race/ethnicity, or length of ENDS use. The identification and description of patients with ENDS use will help clinicians' better risk-stratify otolaryngologic diagnoses associated with this novel health behavior. Additionally, further clinical research is necessary to elucidate long-term health outcomes of ENDS use.
Collapse
Affiliation(s)
- Peter Debbaneh
- 1Department of Otolaryngology—Head and Neck Surgery, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA,Peter Debbaneh, MD
| | - Sanidhya Dhir
- 2Chicago Medical School–Rosalind Franklin University, North Chicago, IL, USA
| | | | - Alexander Rivero
- 1Department of Otolaryngology—Head and Neck Surgery, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| |
Collapse
|
26
|
Michon M, Mercier C, Petit C, Leclerc L, Bertoletti L, Pourchez J, Forest V. In Vitro Biological Effects of E-Cigarette on the Cardiovascular System-Pro-Inflammatory Response Enhanced by the Presence of the Cinnamon Flavor. TOXICS 2022; 10:784. [PMID: 36548617 PMCID: PMC9782467 DOI: 10.3390/toxics10120784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The potential cardiovascular effects of e-cigarettes remain largely unidentified and poorly understood. E-liquids contain numerous chemical compounds and can induce exposure to potentially toxic ingredients (e.g., nicotine, flavorings, etc.). Moreover, the heating process can also lead to the formation of new thermal decomposition compounds that may be also hazardous. Clinical as well as in vitro and in vivo studies on e-cigarette toxicity have reported potential cardiovascular damages; however, results remain conflicting. The aim of this study was to assess, in vitro, the toxicity of e-liquids and e-cigarette aerosols on human aortic smooth muscle cells. To that purpose, cells were exposed either to e-liquids or to aerosol condensates obtained using an e-cigarette device at different power levels (8 W or 25 W) to assess the impact of the presence of: (i) nicotine, (ii) cinnamon flavor, and (iii) thermal degradation products. We observed that while no cytotoxicity and no ROS production was induced, a pro-inflammatory response was reported. In particular, the production of IL-8 was significantly enhanced at a high power level of the e-cigarette device and in the presence of the cinnamon flavor (confirming the suspected toxic effect of this additive). Further investigations are required, but this study contributes to shedding light on the biological effects of vaping on the cardiovascular system.
Collapse
Affiliation(s)
- Marine Michon
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Clément Mercier
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Claudie Petit
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Laurent Bertoletti
- Service de Médecine Vasculaire et Thérapeutique, CHU de Saint-Etienne, 42055 Saint-Etienne, France
- INSERM, UMR1059, Equipe Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
- INSERM, CIC-1408, CHU Saint-Etienne, 42055 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| |
Collapse
|
27
|
Omaiye EE, Luo W, McWhirter KJ, Pankow JF, Talbot P. Ethyl maltol, vanillin, corylone and other conventional confectionery-related flavour chemicals dominate in some e-cigarette liquids labelled 'tobacco' flavoured. Tob Control 2022; 31:s238-s244. [PMID: 36328460 PMCID: PMC9664106 DOI: 10.1136/tc-2022-057484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The increased popularity of electronic cigarettes (e-cigarettes) has been linked to the abundance of flavoured products that are attractive to adolescents and young adults. In the last decade, e-cigarette designs have evolved through four generations that include modifications in battery power, e-cigarette liquid (e-liquid) reservoirs and atomiser units. E-liquids have likewise evolved in terms of solvent use/ratios, concentration and number of flavour chemicals, use of nicotine salts and acids, the recent increased use of synthetic cooling agents and the introduction of synthetic nicotine. Our current objective was to evaluate and compare the evolving composition of tobacco-flavoured e-liquids over the last 10 years. METHODS Our extensive database of flavour chemicals in e-liquids was used to identify trends and changes in flavour chemical composition and concentrations. RESULTS Tobacco-flavoured products purchased in 2010 and 2011 generally had very few flavour chemicals, and their concentrations were generally very low. In tobacco-flavoured refill fluids purchased in 2019 and Puff Bar Tobacco e-cigarettes, the total number and concentration of flavour chemicals were higher than expected. Products with total flavour chemicals >10 mg/mL contained one to five dominant flavour chemicals (>1 mg/mL). The most frequently used flavour chemicals in tobacco e-liquids were fruity and caramellic. CONCLUSIONS There is a need for continuous surveillance of e-liquids, which are evolving in often subtle and harmful ways. Chemical constituents of tobacco flavours should be monitored as they clearly can be doctored by manufacturers to have a taste that would appeal to young users.
Collapse
Affiliation(s)
- Esther E Omaiye
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, USA
| | - Wentai Luo
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Kevin J McWhirter
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - James F Pankow
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
28
|
Dell LG, Page MK, Leigh NJ, Goniewicz ML. Removal of mango-flavoured Juul pods created opportunity for adulterated mango Juul-compatible pods with altered chemical constituents. Tob Control 2022; 31:s230-s233. [PMID: 36328469 PMCID: PMC9664127 DOI: 10.1136/tc-2022-057476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Juul is a leading electronic cigarette (e-cigarette) brand in the USA. By November 2019, Juul pre-emptively limited online and in-store sales of non-tobacco or menthol-flavoured pods ahead of impending flavour bans. Since this removal, sale of mango-flavoured Juul-compatible pods was introduced to the market by smaller companies. The aim of this study was to compare chemical constituents of original Juul mango pods with mango-flavoured Juul-compatible pods. METHODS Juul and 16 brands of Juul-compatible mango-flavoured pods were purchased online in May 2018 (original Juul) and November 2019 (Juul-compatible), after Juul voluntarily removed their flavoured pods from the market. Liquid was extracted from pods and analysed using chromatography and mass spectrometry methods for nicotine concentration, solvent ratios, nicotine salt identification, as well as flavouring identification and quantitation. RESULTS Juul-compatible pods had a significantly lower average nicotine concentration compared with original Juul pod (42.8±8.9 vs 57.2±0.9 mg/mL, p<0.0001). Nicotine benzoate was used in original Juul pod and all Juul-compatible pods. The propylene glycol to vegetable glycerin volumetric ratio of Juul-compatible pods averaged 55:45, while the original Juul pod was 35:65 (p<0.0001). Total number of flavouring chemicals detected was significantly higher in Juul-compatible pods as compared with Juul (p<0.0001). In Juul-compatible pods, average concentrations of benzyl alcohol (fruity flavouring) were 0.8±1.3 mg/mL, approximately 27 times higher than in original Juul pod (p<0.0001). CONCLUSIONS Adulterated Juul-compatible products may expose e-cigarette consumers to more chemical constituents at higher concentrations than previously found in the original product, despite similarity in product design.
Collapse
Affiliation(s)
- Liam G Dell
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michelle K Page
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Noel J Leigh
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maciej Lukasz Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
29
|
Effah F, Taiwo B, Baines D, Bailey A, Marczylo T. Pulmonary effects of e-liquid flavors: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:343-371. [PMID: 36154615 PMCID: PMC9590402 DOI: 10.1080/10937404.2022.2124563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electronic cigarettes (ECs) are purported to be tobacco harm-reduction products whose degree of harm has been highly debated. EC use is considered less hazardous than smoking but is not expected to be harmless. Following the banning of e-liquid flavors in countries such as the US, Finland, Ukraine, and Hungary, there are growing concerns regarding the safety profile of e-liquid flavors used in ECs. While these are employed extensively in the food industry and are generally regarded as safe (GRAS) when ingested, GRAS status after inhalation is unclear. The aim of this review was to assess evidence from 38 reports on the adverse effects of flavored e-liquids on the respiratory system in both in vitro and in vivo studies published between 2006 and 2021. Data collected demonstrated greater detrimental effects in vitro with cinnamon (9 articles), strawberry (5 articles), and menthol (10 articles), flavors than other flavors. The most reported effects among these investigations were perturbations of pro-inflammatory biomarkers and enhanced cytotoxicity. There is sufficient evidence to support the toxicological impacts of diacetyl- and cinnamaldehyde-containing e-liquids following human inhalation; however, safety profiles on other flavors are elusive. The latter may result from inconsistencies between experimental approaches and uncertainties due to the contributions from other e-liquid constituents. Further, the relevance of the concentration ranges to human exposure levels is uncertain. Evidence indicates that an adequately controlled and consistent, systematic toxicological investigation of a broad spectrum of e-liquid flavors may be required at biologically relevant concentrations to better inform public health authorities on the risk assessment following exposure to EC flavor ingredients.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George’s University of London, London, UK
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| | - Benjamin Taiwo
- Physiology Section, St George’s University of London, London, UK
| | - Deborah Baines
- Infection and Immunity Institute, St George’s University of London, London, UK
| | - Alexis Bailey
- Pharmacology Section, St George’s University of London, London, UK
| | - Tim Marczylo
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| |
Collapse
|
30
|
Wick KD, Fang X, Maishan M, Matsumoto S, Spottiswoode N, Sarma A, Simoneau C, Khakoo M, Langelier C, Calfee CS, Gotts JE, Matthay MA. Impact of e-cigarette aerosol on primary human alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 2022; 323:L152-L164. [PMID: 35670478 PMCID: PMC9559034 DOI: 10.1152/ajplung.00503.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) are designed to simulate combustible cigarette smoking and to aid in smoking cessation. Although the number of e-cigarette users has been increasing, the potential health impacts and biological effects of e-cigarettes are still not fully understood. Previous research has focused on the biological effects of e-cigarettes on lung cancer cell lines and distal airway epithelial cells; however, there have been few published studies on the effect of e-cigarettes on primary lung alveolar epithelial cells. The primary purpose of this study was to investigate the direct effect of e-cigarette aerosol on primary human lung alveolar epithelial type 2 (AT2) cells, both alone and in the presence of viral infection. The Melo-3 atomizer caused direct AT2 cell toxicity, whereas the more popular Juul pod's aerosol did not have a detectable cytotoxic effect on AT2 cells. Juul nicotine aerosol also did not increase short-term susceptibility to viral infection. However, 3 days of exposure upregulated genes central to the generation of reactive oxygen species, lipid peroxidation, and carcinogen metabolism and downregulated key innate immune system genes related to cytokine and chemokine signaling. These findings have implications for the potentially injurious impact of long-term use of popular low-power e-cigarette pods on the human alveolar epithelium. Gene expression data might be an important endpoint for evaluating the potential harmful effects of vaping devices that do not cause overt toxicity.
Collapse
Affiliation(s)
- Katherine D Wick
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Mazharul Maishan
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California
| | - Aartik Sarma
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, California
| | - Camille Simoneau
- Gladstone Institutes, University of California, San Francisco, California
| | - Manisha Khakoo
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Chaz Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Carolyn S Calfee
- Cardiovascular Research Institute, University of California, San Francisco, California
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, California
| | - Jeffrey E Gotts
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
- Department of Anesthesia, University of California, San Francisco, California
| |
Collapse
|
31
|
Vivarelli F, Granata S, Rullo L, Mussoni M, Candeletti S, Romualdi P, Fimognari C, Cruz-Chamorro I, Carrillo-Vico A, Paolini M, Canistro D. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol Res 2022; 182:106315. [PMID: 35724819 DOI: 10.1016/j.phrs.2022.106315] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Department of Medicine and Surgery - University of Milano - Bicocca
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
32
|
Ruokolainen O, Ollila H, Karjalainen K. Correlates of e-cigarette use before and after comprehensive regulatory changes and e-liquid flavour ban among general population. Drug Alcohol Rev 2022; 41:1174-1183. [PMID: 35106874 DOI: 10.1111/dar.13435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In 2016, the Finnish Tobacco Act was revised to harmonise e-cigarette regulations with the EU Tobacco Products Directive. Unlike before, the sale of nicotine-containing e-liquids was allowed while additional national regulations included, for example, a ban for other than unflavoured and tobacco-flavoured e-liquids. This study examines the correlates of e-cigarette use before and after the comprehensive regulatory change, and characteristics and correlates of flavoured e-cigarette use after the flavour ban in the general Finnish population. METHODS Repeated cross-sectional population-based drug surveys for 15-69-year-olds in 2014 (n = 3485; 50% response rate) and in 2018 (n = 3229; 46%). Correlates of e-cigarette use were studied with logistic regression models. RESULTS Current e-cigarette use remained infrequent (approximately 2%) and the correlates of e-cigarette use varied only slightly between the study years. In 2018, of past-year e-cigarette users (n = 316), 43% used unflavoured e-liquids, 24% used tobacco and 43% used other flavours, fruits being the most common. In univariate models, demographic variables, smoking and e-cigarette use-related factors were associated with flavoured e-cigarette use. In multivariable models, those who used e-cigarettes to experiment used unflavoured e-cigarettes more likely than other than tobacco flavours (odds ratio 3.00, 95% confidence interval 1.15-7.82). DISCUSSION AND CONCLUSIONS In Finland, the regulated entry of nicotine-containing e-liquids to retail sales has not led to increased e-cigarette use in the general population. After the flavour ban, other than tobacco-flavoured e-cigarette use still occurs. The use of flavoured e-cigarettes is associated with reasons for e-cigarette use. Flavoured e-cigarette use and its correlates warrant further monitoring.
Collapse
Affiliation(s)
- Otto Ruokolainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Hanna Ollila
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Karoliina Karjalainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
33
|
Onyenwoke RU, Leung T, Huang X, Parker D, Shipman JG, Alhadyan SK, Sivaraman V. An assessment of vaping-induced inflammation and toxicity: A feasibility study using a 2-stage zebrafish and mouse platform. Food Chem Toxicol 2022; 163:112923. [PMID: 35318090 PMCID: PMC9018621 DOI: 10.1016/j.fct.2022.112923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
It is currently understood that tobacco smoking is a major cause of pulmonary disease due to pulmonary/lung inflammation. However, due to a highly dynamic market place and an abundance of diverse products, less is known about the effects of e-cigarette (E-cig) use on the lung. In addition, varieties of E-cig liquids (e-liquids), which deliver nicotine and numerous flavor chemicals into the lungs, now number in the 1000s. Thus, a critical need exists for safety evaluations of these E-cig products. Herein, we employed a "2-stage in vivo screening platform" (zebrafish to mouse) to assess the safety profiles of e-liquids. Using the zebrafish, we collected embryo survival data after e-liquid exposure as well as neutrophil migration data, a key hallmark for a pro-inflammatory response. Our data indicate that certain e-liquids induce an inflammatory response in our zebrafish model and that e-liquid exposure alone results in pro-inflammatory lung responses in our C57BL/6J model, data collected from lung staining and ELISA analysis, respectively, in the mouse. Thus, our platform can be used as an initial assessment to ascertain the safety profiles of e-liquid using acute inflammatory responses (zebrafish, Stage 1) as our initial metric followed by chronic studies (C57BL/6J, Stage 2).
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - De'Jana Parker
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Jeffrey G Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
34
|
Su L, Zhao M, Ma F, An Z, Yue Q, Zhao C, Sun X, Zhang S, Xu J, Jiang X, Li K, Zhao L. A comparative assessment of e-cigarette aerosol extracts and tobacco cigarette smoke extracts on in vitro endothelial cell inflammation response. Hum Exp Toxicol 2022; 41:9603271221088996. [PMID: 35382644 DOI: 10.1177/09603271221088996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the development of the times, electronic cigarettes (e-cigarettes) are being received by more and more people. We compared the different effects of e-cigarettes and tobacco cigarettes on human umbilical vein endothelial cells (HUVECs) treated with the typical e-cigarette aerosol extracts (ECA) and cigarette smoking extracts (CS) sourced from commercial retail stores. HUVECs were treated with different kinds of ECA or CS with different nicotinic concentrations (0.03125, 0.125, 0.5, 2, 8, or 32 μg/mL). Cell viability was examined by the MTT assay. The cell apoptosis was investigated by acridine orange (AO) and Hoechst 33258 staining. The RT-PCR and western blot assays were used to analyze the adhesion molecules and inflammation cytokines released by HUVECs. Furthermore, the intracellular reactive oxygen species (ROS) was observed by fluorescence microscopy. Our data showed that the CS (nicotine concentration at 0.125 μg/mL could decrease the viability of HUVECs by 71%, but not the four kinds of ECA. The apoptotic ratio was about 32.5% in the CS group. No matter the levels of adhesion molecules, inflammation cytokines or ROS, they were higher in CS groups than in ECA groups. Overall, the four kinds of e-cigarettes induced significantly less cytotoxicity than the commercially available tobacco cigarettes in HUVECs. The CS showed the most severe impact on HUVECs. ECA might provide a harm reduction measure, especially in cardiovascular risk, after people switch from tobacco cigarettes to e-cigarettes.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Minghan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing Xu
- Shenzhen RELX Tech. Co., Ltd, Shenzhen, China
| | | | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, 12689Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
35
|
Forest V, Mercier C, Pourchez J. Considerations on dosimetry for in vitro assessment of e-cigarette toxicity. Respir Res 2022; 23:358. [PMID: 36528600 PMCID: PMC9758947 DOI: 10.1186/s12931-022-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.
Collapse
Affiliation(s)
- Valérie Forest
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Clément Mercier
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Jérémie Pourchez
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| |
Collapse
|
36
|
Le HHT, Liu CW, Denaro P, Jousma J, Shao NY, Rahman I, Lee WH. Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract. Stem Cell Res Ther 2021; 12:593. [PMID: 34863290 PMCID: PMC8643021 DOI: 10.1186/s13287-021-02654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction. METHODS Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling. RESULTS 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining vascular barrier, reducing reactive oxygen species level, and increasing migration capacity. CONCLUSION This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.
Collapse
Affiliation(s)
- Hoai Huong Thi Le
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Chen-Wei Liu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Philip Denaro
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ning-Yi Shao
- Health Sciences, University of Macau, Macau, China
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA.
| |
Collapse
|
37
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
38
|
Goenka S, Simon SR. Effects of E-Cigarette Refill Liquid Flavorings with and without Nicotine on Human Retinal Pigment Epithelial Cells: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11655. [PMID: 34770169 PMCID: PMC8582700 DOI: 10.3390/ijerph182111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Smoking is an etiologic factor for age-related macular degeneration (AMD). Although cigarette smoke has been extensively researched for retinal pigment epithelial (RPE) cell degeneration, the potential for adverse effects on the retinal epithelium following exposure to flavored e-cigarette refill liquid has never been explored. In this preliminary study, we have examined the effects of 20 e-liquids (10 different flavored nicotine-free and 10 nicotine-rich e-liquids) used in e-cigarettes on the metabolic activity, membrane integrity, and mitochondrial membrane potential of RPE cells. Our results showed that of the flavors studied over the concentration range: 0.5, 1, and 2% v/v for a duration of 48 h, cinnamon was the most toxic and menthol was the second most toxic, while other flavors showed lesser or no cytotoxicity. The presence of nicotine augmented cytotoxicity for cinnamon, menthol, strawberry, vanilla, and banana while for other flavors there was no synergism. Together, our results demonstrate that exposure of RPE to flavored e-cigarette refill liquids caused significant cytotoxicity and may be a risk factor for the development of retinal pathogenesis, although further in-depth studies are necessary.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
39
|
Goldsteen PA, Yoseif C, Dolga AM, Gosens R. Human pluripotent stem cells for the modelling and treatment of respiratory diseases. Eur Respir Rev 2021; 30:30/161/210042. [PMID: 34348980 PMCID: PMC9488746 DOI: 10.1183/16000617.0042-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide, representing a major unmet medical need. New chemical entities rarely make it into the clinic to treat respiratory diseases, which is partially due to a lack of adequate predictive disease models and the limited availability of human lung tissues to model respiratory disease. Human pluripotent stem cells (hPSCs) may help fill this gap by serving as a scalable human in vitro model. In addition, human in vitro models of rare genetic mutations can be generated using hPSCs. hPSC-derived epithelial cells and organoids have already shown great potential for the understanding of disease mechanisms, for finding new potential targets by using high-throughput screening platforms, and for personalised treatments. These potentials can also be applied to other hPSC-derived lung cell types in the future. In this review, we will discuss how hPSCs have brought, and may continue to bring, major changes to the field of respiratory diseases by understanding the molecular mechanisms of the pathology and by finding efficient therapeutics. Human pluripotent stem cells may help to develop animal-free, fully human in vitro models to advance our understanding of disease mechanisms, for finding new potential targets by using high-throughput screening platforms, and for personalised treatments.https://bit.ly/3cahaqz
Collapse
Affiliation(s)
- Pien A Goldsteen
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands .,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Christina Yoseif
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Sakamaki-Ching S, Williams M, Hua M, Li J, Bates SM, Robinson AN, Lyons TW, Goniewicz ML, Talbot P. Correlation between biomarkers of exposure, effect and potential harm in the urine of electronic cigarette users. BMJ Open Respir Res 2021; 7:7/1/e000452. [PMID: 32079607 PMCID: PMC7047495 DOI: 10.1136/bmjresp-2019-000452] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives To determine if urinary biomarkers of effect and potential harm are elevated in electronic cigarette users compared with non-smokers and if elevation correlates with increased concentrations of metals in urine. Study design and setting This was a cross-sectional study of biomarkers of exposure, effect and potential harm in urine from non-smokers (n=20), electronic cigarette users (n=20) and cigarette smokers (n=13). Participant’s screening and urine collection were performed at the Roswell Park Comprehensive Cancer Center, and biomarker analysis and metal analysis were performed at the University of California, Riverside. Results Metallothionein was significantly elevated in the electronic cigarette group (3761±3932 pg/mg) compared with the non-smokers (1129±1294 pg/mg, p=0.05). 8-OHdG (8-hydroxy-2′-deoxyguanosine) was significantly elevated in electronic cigarette users (442.8±300.7 ng/mg) versus non-smokers (221.6±157.8 ng/mg, p=0.01). 8-Isoprostane showed a significant increase in electronic cigarette users (750.8±433 pg/mg) versus non-smokers (411.2±287.4 pg/mg, p=0.03). Linear regression analysis in the electronic cigarette group showed a significant correlation between cotinine and total metal concentration; total metal concentration and metallothionein; cotinine and oxidative DNA damage; and total metal concentration and oxidative DNA damage. Zinc was significantly elevated in the electronic cigarette users (584.5±826.6 µg/g) compared with non-smokers (413.6±233.7 µg/g, p=0.03). Linear regression analysis showed a significant correlation between urinary zinc concentration and 8-OHdG in the electronic cigarette users. Conclusions This study is the first to investigate biomarkers of potential harm and effect in electronic cigarette users and to show a linkage to metal exposure. The biomarker levels in electronic cigarette users were similar to (and not lower than) cigarette smokers. In electronic cigarette users, there was a link to elevated total metal exposure and oxidative DNA damage. Specifically, our results demonstrate that zinc concentration was correlated to oxidative DNA damage.
Collapse
Affiliation(s)
- Shane Sakamaki-Ching
- Department of Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, California, USA
| | - Monique Williams
- Department of Toxicology, University of California Riverside, Riverside, California, USA
| | - My Hua
- Department of Toxicology, University of California Riverside, Riverside, California, USA
| | - Jun Li
- Department of Statistics, University of California Riverside, Riverside, California, USA
| | - Steve M Bates
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| | - Andrew N Robinson
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| | | | - Prue Talbot
- Department of Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
41
|
Electronic cigarettes: Modern instruments for toxic lung delivery and posing risk for the development of chronic disease. Int J Biochem Cell Biol 2021; 137:106039. [PMID: 34242684 DOI: 10.1016/j.biocel.2021.106039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Following the emergence of electronic cigarette, or vaping product use associated lung injury (EVALI) in 2019 in the US, regulation of e-cigarettes has become globally tighter and the collective evidence of the detrimental effects of vaping has grown. The danger of cellular distress and altered homeostasis is heavily associated with the modifiable nature of electronic cigarette devices. An array of harmful chemicals and elevated concentrations of metals have been detected in e-cigarette aerosols which have been linked to various pathogeneses. Vaping is linked to increased inflammation, altered lipid homeostasis and mitochondrial dysfunction whilst also increasing microbial susceptibility whilst the long-term damage is yet to be observed. The scientific evidence is mounting and highlighting that, along with traditional tobacco cigarette smoking, electronic cigarette vaping is not a safe practice.
Collapse
|
42
|
Fuochi V, Caruso M, Emma R, Stivala A, Polosa R, Distefano A, Furneri PM. Investigation on the Antibacterial Activity of Electronic Cigarette Liquids (ECLs): A Proof of Concept Study. Curr Pharm Biotechnol 2021; 22:983-994. [PMID: 32881666 DOI: 10.2174/1389201021666200903121624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. OBJECTIVE The effect of combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. METHODS Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. RESULTS All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. Higher activity was correlated to the presence of flavors and nicotine. DISCUSSION In most cases, the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to the presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. CONCLUSION Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Aldo Stivala
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine (MEDCLIN), University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Pio M Furneri
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| |
Collapse
|
43
|
Lee YS, Yang K, Kameg B, Palmer J, Lee H. Characteristics of electronic cigarette user and traditional smokers: 2017 Youth risk behavior surveillance system. Public Health Nurs 2021; 38:1030-1038. [PMID: 34101886 DOI: 10.1111/phn.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Although electronic cigarette (e-cigarette) use among adolescents rapidly has increased over the past decade, which has raised concerns over the corresponding behavioral health risks, the current literature presents limited data for understanding the characteristics of adolescent e-cigarette users. OBJECTIVE The purpose of this study was to (1) identify general characteristics that may be shared between e-cigarette users and traditional cigarette smokers and (2) examine the unique characteristics of e-cigarette users vis-à-vis traditional cigarette smokers. DESIGN Cross-sectional descriptive study. SAMPLE AND DATA SOURCE A total of 14,765 9th- to 12-grade students drawn from the CDC 2017 Youth Risk Behavior Surveillance System. RESULTS We observed that the prevalence of marijuana, alcohol, and other illicit drug use was higher among e-cigarette users and traditional tobacco users than non-users. Moreover, physically active adolescents were more likely to use e-cigarettes than those who were physically inactive, although the level of the activity did not predict smoking status. CONCLUSION We recommend that primary prevention strategies for e-cigarette use should be incorporated in physical education programs and target adolescents who engage in not only health risk behaviors, but also health promoting behaviors, such as physical activity.
Collapse
Affiliation(s)
- Young-Shin Lee
- School of Nursing, San Diego State University, San Diego, California, USA
| | - Kyeongra Yang
- School of Nursing, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Brayden Kameg
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Josh Palmer
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heeyoung Lee
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Marques P, Piqueras L, Sanz MJ. An updated overview of e-cigarette impact on human health. Respir Res 2021; 22:151. [PMID: 34006276 PMCID: PMC8129966 DOI: 10.1186/s12931-021-01737-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
The electronic cigarette (e-cigarette), for many considered as a safe alternative to conventional cigarettes, has revolutionised the tobacco industry in the last decades. In e-cigarettes, tobacco combustion is replaced by e-liquid heating, leading some manufacturers to propose that e-cigarettes have less harmful respiratory effects than tobacco consumption. Other innovative features such as the adjustment of nicotine content and the choice of pleasant flavours have won over many users. Nevertheless, the safety of e-cigarette consumption and its potential as a smoking cessation method remain controversial due to limited evidence. Moreover, it has been reported that the heating process itself can lead to the formation of new decomposition compounds of questionable toxicity. Numerous in vivo and in vitro studies have been performed to better understand the impact of these new inhalable compounds on human health. Results of toxicological analyses suggest that e-cigarettes can be safer than conventional cigarettes, although harmful effects from short-term e-cigarette use have been described. Worryingly, the potential long-term effects of e-cigarette consumption have been scarcely investigated. In this review, we take stock of the main findings in this field and their consequences for human health including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain. .,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain. .,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
45
|
Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol Ther 2021; 224:107838. [PMID: 33746051 DOI: 10.1016/j.pharmthera.2021.107838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Electronic cigarettes (e-cigarettes) were introduced in the United States in 2007 and by 2014 they were the most popular tobacco product amongst youth and had overtaken use of regular tobacco cigarettes. E-cigarettes are used to aerosolize a liquid (e-liquid) that the user inhales. Flavorings in e-liquids is a primary reason for youth to initiate use of e-cigarettes. Evidence is growing in the scientific literature that inhalation of some flavorings is not without risk of harm. In this review, 67 original articles (primarily cellular in vitro) on the toxicity of flavored e-liquids were identified in the PubMed and Scopus databases and evaluated critically. At least 65 individual flavoring ingredients in e-liquids or aerosols from e-cigarettes induced toxicity in the respiratory tract, cardiovascular and circulatory systems, skeletal system, and skin. Cinnamaldehyde was most frequently reported to be cytotoxic, followed by vanillin, menthol, ethyl maltol, ethyl vanillin, benzaldehyde and linalool. Additionally, modern e-cigarettes can be modified to aerosolize cannabis as dried plant material or a concentrated extract. The U.S. experienced an outbreak of lung injuries, termed e-cigarette, or vaping, product use-associated lung injury (EVALI) that began in 2019; among 2,022 hospitalized patients who had data on substance use (as of January 14, 2020), 82% reported using a delta-9-tetrahydrocannabinol (main psychoactive component in cannabis) containing e-cigarette, or vaping, product. Our literature search identified 33 articles related to EVALI. Vitamin E acetate, a diluent and thickening agent in cannabis-based products, was strongly linked to the EVALI outbreak in epidemiologic and laboratory studies; however, e-liquid chemistry is highly complex, and more than one mechanism of lung injury, ingredient, or thermal breakdown product may be responsible for toxicity. More research is needed, particularly with regard to e-cigarettes (generation, power settings, etc.), e-liquids (composition, bulk or vaped form), modeled systems (cell type, culture type, and dosimetry metrics), biological monitoring, secondhand exposures and contact with residues that contain nicotine and flavorings, and causative agents and mechanisms of EVALI toxicity.
Collapse
|
46
|
Jabba SV, Diaz AN, Erythropel HC, Zimmerman JB, Jordt SE. Chemical Adducts of Reactive Flavor Aldehydes Formed in E-Cigarette Liquids Are Cytotoxic and Inhibit Mitochondrial Function in Respiratory Epithelial Cells. Nicotine Tob Res 2021; 22:S25-S34. [PMID: 33320255 PMCID: PMC8224836 DOI: 10.1093/ntr/ntaa185] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
Introduction Flavor aldehydes in e-cigarettes, including vanillin, ethyl vanillin (vanilla), and benzaldehyde (berry/fruit), rapidly undergo chemical reactions with the e-liquid solvents, propylene glycol, and vegetable glycerol (PG/VG), to form chemical adducts named flavor aldehyde PG/VG acetals that can efficiently transfer to e-cigarette aerosol. The objective of this study was to compare the cytotoxic and metabolic toxic effects of acetals and their parent aldehydes in respiratory epithelial cells. Aims and Methods Cell metabolic assays were carried out in bronchial (BEAS-2B) and alveolar (A549) epithelial cells assessing the effects of benzaldehyde, vanillin, ethyl vanillin, and their corresponding PG acetals on key bioenergetic parameters of mitochondrial function. The potential cytotoxic effects of benzaldehyde and vanillin and their corresponding PG acetals were analyzed using the LIVE/DEAD cell assay in BEAS-2B cells and primary human nasal epithelial cells (HNEpC). Cytostatic effects of vanillin and vanillin PG acetal were compared using Click-iT EDU cell proliferation assay in BEAS-2B cells. Results Compared with their parent aldehydes, PG acetals diminished key parameters of cellular energy metabolic functions, including basal respiration, adenosine triphosphate production, and spare respiratory capacity. Benzaldehyde PG acetal (1–10 mM) increased cell mortality in BEAS-2B and HNEpC, compared with benzaldehyde. Vanillin PG acetal was more cytotoxic than vanillin at the highest concentration tested while both diminished cellular proliferation in a concentration-dependent manner. Conclusions Reaction products formed in e-liquids between flavor aldehydes and solvent chemicals have differential toxicological properties from their parent flavor aldehydes and may contribute to the health effects of e-cigarette aerosol in the respiratory system of e-cigarette users. Implications With no inhalation toxicity studies available for acetals, data from this study will provide a basis for further toxicological studies using in vitro and in vivo models. This study suggests that manufacturers’ disclosure of e-liquid ingredients at time of production may be insufficient to inform a comprehensive risk assessment of e-liquids and electronic nicotine delivery systems use, due to the chemical instability of e-liquids over time and the formation of new compounds.
Collapse
Affiliation(s)
- Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC.,Yale Center for the Study of Tobacco Products (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Alexandra N Diaz
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| | - Hanno C Erythropel
- Yale Center for the Study of Tobacco Products (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | - Julie B Zimmerman
- Yale Center for the Study of Tobacco Products (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC.,Yale Center for the Study of Tobacco Products (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Integrated Toxicology and Environmental Health Program (ITEHP), Duke University, Durham, NC
| |
Collapse
|
47
|
An interlaboratory in vitro aerosol exposure system reference study. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/2397847321992752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the complexity of inhaled substances, the aerosol exposure environment has seen diversification and development of setups in conjunction with the evolving in vitro toxicology space. Each laboratory uses its in vitro exposure system differently (different protocols, adaptations, and biological analysis). Unfortunately, as systems diversify, so does the complexity of comparing multiple systems in a “standardized” manner. As yet, no one has compared simply whether these diverse systems can all generate a consistent aerosol stream, which is paramount prior to transit and exposure. This study has compared, at source, aerosol generation (using nicotine as an exposure marker) in nine in vitro whole-aerosol exposure setups (seven different systems) across five distinct geographically independent locations, including the UK, the USA, Switzerland, Germany, and Japan. The results demonstrate that, despite system-wide differences (adaptations, nuances, and application), these systems—when appropriately maintained and used under a prescribed set of established conditions can all generate a consistent and statistically comparable aerosol stream. These data will be invaluable for new researchers and established laboratories, so they may benchmark against this study. Finally, this interlaboratory comparison combined with the wealth of transit and exposure interface data, may help the environment move towards a truly validated and consistent approach to aerosol exposure. Such an approach could be replicated for other aerosolized products, such as e-cigarettes and heated tobacco products.
Collapse
|
48
|
Tarran R, Barr RG, Benowitz NL, Bhatnagar A, Chu HW, Dalton P, Doerschuk CM, Drummond MB, Gold DR, Goniewicz ML, Gross ER, Hansel NN, Hopke PK, Kloner RA, Mikheev VB, Neczypor EW, Pinkerton KE, Postow L, Rahman I, Samet JM, Salathe M, Stoney CM, Tsao PS, Widome R, Xia T, Xiao D, Wold LE. E-Cigarettes and Cardiopulmonary Health. FUNCTION 2021; 2:zqab004. [PMID: 33748758 PMCID: PMC7948134 DOI: 10.1093/function/zqab004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023] Open
Abstract
E-cigarettes have surged in popularity over the last few years, particularly among youth and young adults. These battery-powered devices aerosolize e-liquids, comprised of propylene glycol and vegetable glycerin, typically with nicotine, flavors, and stabilizers/humectants. Although the use of combustible cigarettes is associated with several adverse health effects including multiple pulmonary and cardiovascular diseases, the effects of e-cigarettes on both short- and long-term health have only begun to be investigated. Given the recent increase in the popularity of e-cigarettes, there is an urgent need for studies to address their potential adverse health effects, particularly as many researchers have suggested that e-cigarettes may pose less of a health risk than traditional combustible cigarettes and should be used as nicotine replacements. This report is prepared for clinicians, researchers, and other health care providers to provide the current state of knowledge on how e-cigarette use might affect cardiopulmonary health, along with research gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Neal L Benowitz
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aruni Bhatnagar
- Department of Medicine, American Heart Association Tobacco Regulation Center University of Louisville, Louisville, KY, USA
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pamela Dalton
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Claire M Doerschuk
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and the Channing Division of Network Medicine, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nadia N Hansel
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Cardiovascular Division, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Vladimir B Mikheev
- Individual and Population Health, Battelle Memorial Institute, Columbus, OH, USA
| | - Evan W Neczypor
- Biomedical Science Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Lisa Postow
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine M Stoney
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip S Tsao
- Division of Cardiovascular Medicine, VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Widome
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Tian Xia
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - DaLiao Xiao
- Department of Basic Sciences, Lawrence D Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Smith MR, Jarrell ZR, Orr M, Liu KH, Go YM, Jones DP. Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism. ENVIRONMENT INTERNATIONAL 2021; 147:106323. [PMID: 33360165 PMCID: PMC7856097 DOI: 10.1016/j.envint.2020.106323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (e-cig) are an increasingly popular alternative to traditional smoking but have been in use for too short of a period of time to fully understand health risks. Furthermore, associated health risks are difficult to evaluate because of a large range of flavoring agents and their combinations for use with e-cig. Many flavoring agents are generally regarded as safe but have limited studies for effects on lung. Vanillin, an aromatic aldehyde, is one of the most commonly used flavoring agents in e-cig. Vanillin is electrophilic and can be redox active, with chemical properties expected to interact within biologic systems. Because accumulating lung metabolomics studies have identified metabolic disruptions associated with idiopathic pulmonary fibrosis, asthma and acute respiratory distress syndrome, we used human bronchial epithelial cells (BEAS-2B) with high-resolution metabolomics analysis to determine whether these disease-associated pathways are impacted by vanillin over the range used in e-cig. A metabolome-wide association study showed that vanillin perturbed specific energy, amino acid, antioxidant and sphingolipid pathways previously associated with human disease. Analysis of a small publicly available human dataset showed associations with several of the same pathways. Because vanillin is a common and high-abundance flavorant in e-cig, these results show that vanillin has potential to be mechanistically important in lung diseases and warrants in vivo toxicity testing in the context of e-cig use.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Zhang R, Jones MM, Dornsife RE, Wu T, Sivaraman V, Tarran R, Onyenwoke RU. JUUL e-liquid exposure elicits cytoplasmic Ca 2+ responses and leads to cytotoxicity in cultured airway epithelial cells. Toxicol Lett 2021; 337:46-56. [PMID: 33253780 PMCID: PMC7772262 DOI: 10.1016/j.toxlet.2020.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE The popularity of new and emerging tobacco products such as E-cigarettes (E-cigs) is rapidly expanding worldwide. However, uncertainties surrounding the potential health consequences due to the use of such products exist and warrant further study. METHODS Cultured A549 and Calu-3 airway epithelia were exposed to three out of the eight types of JUUL brand e-liquids ("Mint", "Virginia Tobacco" and "Menthol", all containing 3% nicotine at 1% and 3% (vol/vol) dilutions) and assessed for viability using a resazurin-based assay. Intracellular Ca2+ levels were measured using fluorescent indicators and pro-inflammatory cytokine levels were monitored by quantitative PCR (qPCR). Cultures were also analyzed by flow cytometry to evaluate apoptotic markers and cell viability. RESULTS Exposing the airway epithelial cells to the flavored JUUL e-liquids led to significant cytotoxicity, with the "Mint" flavor being the overall most cytotoxic. The "Mint" flavored e-liquid also led to significant elevations in intracellular Ca2+ and upregulation of the pro-inflammatory cytokine IL-6 and early apoptotic marker Annexin V. CONCLUSIONS JUUL e-liquid challenge resulted in a loss of airway epithelial cell viability, induced pro-inflammatory responses and eventually caused apoptosis.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, PR China; Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, NC, United States
| | - Myles M Jones
- Department of Biological and Biomedical Sciences, Durham, NC, United States
| | - Ronna E Dornsife
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, NC, United States
| | - Tongde Wu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, NC, United States; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, Durham, NC, United States
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, NC, United States; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States.
| |
Collapse
|