1
|
Yang F, Matthew C, Pu X, Li X, Nan Z. Patterns of foliar fungal diseases and the effects on aboveground biomass in alpine meadow under simulated climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177026. [PMID: 39454798 DOI: 10.1016/j.scitotenv.2024.177026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Fengzhen Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Cory Matthew
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Xiaojian Pu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province 810016, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
2
|
Dey U, Sarkar S, Sehgal M, Awasthi DP, De B, Dutta P, Majumdar S, Pal P, Chander S, Sharma PR, Mohanty AK. Integrating weather indices with field performance of novel fungicides for management of late blight of potato (Phytophthora infestans) in North Eastern Himalayan Region of India. PLoS One 2024; 19:e0310868. [PMID: 39637033 PMCID: PMC11620572 DOI: 10.1371/journal.pone.0310868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/07/2024] [Indexed: 12/07/2024] Open
Abstract
The hemibiotrophic fungus-like oomycete phytopathogen, Phytophthora infestans (Mont.) de Bary, causing late blight disease of potato, is one of the most serious foliar diseases of potato. The pathogen spread very rapidly and can infect at any stage of crop growth.The field experiments were carried out during winter (rabi) season of 2020-21 and winter (rabi) season of 2021-22 to find out the correlation between the disease progress and environmental factors and the effective novel fungicides registered under Central Insecticide Board and Registration Committee (CIB&RC) against P. infestans. Results revealed that T7: Mandipropamid 23.4% SC @ 0.1% (1.0 ml/L) at 35 & 55 days after sowing (DAS) and Ametoctradin 27% + Dimethomorph 20.27% SC @ 0.1% (1.0 ml/L) at 45 & 65 DAS recorded least average per cent late blight disease incidence (PLBDI) of 13.00 and 9.33, per cent late blight disease severity/index (PLBDS) of 8.81 and 5.96 and maximum tuber yield of 21.58 and 21.86 t/ha with highest benefit cost ratio (BCR) value of 1:1.95 and 1: 1.99 as compared to control during winter (rabi) season of 2020-21 and winter (rabi) season of 2021-22, respectively. T7 exhibited minimum Area under the Disease Progress Curve (AUDPC) value during both the consecutive seasons. The disease is positively correlated with maximum and minimum temperature, morning and evening relative humidity and sunshine hours. Linearity assumption scatter matrix indicates coefficient of determination of 0.916 was calculated using the pooled data.The relative potato tuber yield loss ranged from 7.38 to 19.96% and 7.14 to 19.62% during 2020-21 and 2021-22, respectively. Spray schedule with contact fungicide followed by systemic/translaminar + contact fungicide recorded reduced potato late blight disease with highest BCR value under natural epiphytotic condition.
Collapse
Affiliation(s)
- Utpal Dey
- Krishi Vigyan Kendra, Sepahijala, Latiacherra, CAU(I), Tripura, India
| | - Shatabhisa Sarkar
- Krishi Vigyan Kendra, Sepahijala, Latiacherra, CAU(I), Tripura, India
| | - Mukesh Sehgal
- ICAR- National Research Centre for Integrated Pest Management, Mehrauli, New Delhi, India
| | - D. P. Awasthi
- College of Agriculture, Tripura, Lembucherra, West Tripura, India
| | - Biman De
- College of Agriculture, Tripura, Lembucherra, West Tripura, India
| | - Pranab Dutta
- College of Post-Graduate Studies in Agricultural Sciences, CAU(I), Umiam, Meghalaya, India
| | - Saikat Majumdar
- Department of Rural Development, University of Science & Technology, Ri-Bhoi, Meghalaya, India
| | - Prasenjit Pal
- College of Fisheries, Lembucherra, CAU(I), West Tripura, India
| | - Subhash Chander
- ICAR- National Research Centre for Integrated Pest Management, Mehrauli, New Delhi, India
| | - Ph. Ranjit Sharma
- Directorate of Extension Education, Central Agricultural University, Imphal, Manipur, India
| | - A. K. Mohanty
- ICAR - Agricultural Technology Application Research Institute, Zone VII, Umiam, Meghalaya, India
| |
Collapse
|
3
|
Becker LE, Cubeta MA. The contribution of beneficial wheat seed fungal communities beyond disease-causing fungi: Advancing heritable mycobiome-based plant breeding. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70004. [PMID: 39529232 PMCID: PMC11554592 DOI: 10.1111/1758-2229.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
Wheat (Triticum sp.) is a staple cereal crop, providing nearly a fifth of the world's protein and available calories. While fungi associated with wheat plants have been known for centuries, attention to fungi associated with wheat seeds has increased over the last hundred years. Initially, research focused on fungal taxa that cause seed-borne diseases. Seeds act as a physical link between generations and host specialized fungal communities that affect seed dormancy, germination, quality, and disease susceptibility. Interest in beneficial, non-disease-causing fungal taxa associated with seeds has grown since the discovery of Epichloë in fescue, leading to a search for beneficial fungal endophytes in cereal grains. Recent studies of the wheat seed mycobiome have shown that disease, seed development, and temporal variation significantly influence the composition and structure of these fungal communities. This research, primarily descriptive, aims to better understand the wheat seed mycobiome's function in relation to the plant host. A deeper understanding of the wheat seed mycobiome's functionality may offer potential for microbiome-assisted breeding.
Collapse
Affiliation(s)
- Lindsey E. Becker
- Department of Entomology and Plant Pathology, Center for Integrated Fungal ResearchNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal ResearchNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Ma Z, Wang W, Chen X, Gehman K, Yang H, Yang Y. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change. PEST MANAGEMENT SCIENCE 2024; 80:5759-5770. [PMID: 38989640 DOI: 10.1002/ps.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Climate change significantly impacts global maize production via yield reduction, posing a threat to global food security. Disease-related crop damage reduces quality and yield and results in economic losses. However, the occurrence of diseases caused by climate change, and thus crop yield loss, has not been given much attention. RESULTS This study aims to investigate the potential impact of six major diseases on maize yield loss over the next 20 to 80 years under climate change. To this end, the Maximum Entropy model was implemented, based on Coupled Model Intercomparison Project 6 data. The results indicated that temperature and precipitation are identified as primary limiting factors for disease onset. Southern corn rust was projected to be the most severe disease in the future; with a few of the combined occurrence of all the selected diseases covered in this study were predicted to progressively worsen over time. Yield losses caused by diseases varied per continent, with North America facing the highest loss, followed by Asia, South America, Europe, Africa, and Oceania. CONCLUSION This study provides a basis for regional projections and global control of maize diseases under future climate conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihui Ma
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| | - Wenbao Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| | - Xuanjing Chen
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China (Ministry of Agriculture and Rural Affairs), Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Hua Yang
- Corn Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
6
|
Tao Z, Zhang K, Callaway RM, Siemann E, Liu Y, Huang W. Native Plant Diversity Generates Microbial Legacies That Either Promote or Suppress Non-Natives, Depending on Drought History. Ecol Lett 2024; 27:e14504. [PMID: 39354910 DOI: 10.1111/ele.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity-invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of 'historical' and 'contemporary' environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity-invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.
Collapse
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Anand S, Sandhu SK, Biswas B, Bala R. Comparative analysis of different Karnal bunt disease prediction models developed by machine learning techniques for Punjab conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1799-1810. [PMID: 38805068 DOI: 10.1007/s00484-024-02707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Timely prediction of pathogen is important key factor to reduce the quality and yield losses. Wheat is major crop in northern part of India. In Punjab, wheat face challenge by different diseases so the study was conducted for two locations viz. Ludhiana and Bathinda. The information regarding the occurrence of Karnal bunt in 12 consecutive crop seasons (from 2009-10 to 2020-21) in Ludhiana district and in 9 crop seasons (from 2010-11 to 2018-19) in Bathinda district, was collected from the Wheat Section of the Department of Plant Breeding and Genetics at Punjab Agricultural University (PAU), located in Ludhiana. The study aims to investigate the adequacy of various methods of machine learning for prediction of Karnal bunt using meteorological data for different time period viz. February, March, 15 February to 15 March and overall period obtained from Department of Climate Change and Agricultural Meteorology, PAU, Ludhiana. The most intriguing outcome is that for each period, different disease prediction models performed well. The random forest regression (RF) for February month, support vector regression (SVR) for March month, SVR and BLASSO for 15 February to 15 March period and random forest for overall period surpassed the performance than other models. The Taylor diagram was created to assess the effectiveness of intricate models by comparing various metrics such as root mean square error (RMSE), root relative square error (RRSE), correlation coefficient (r), relative mean absolute error (MAE), modified D-index, and modified NSE. It allows for a comprehensive evaluation of these models' performance.
Collapse
Affiliation(s)
- Shubham Anand
- Department of Climate Change & Agricultural Meteorology, PAU, Ludhiana, India.
| | | | | | - Ritu Bala
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| |
Collapse
|
8
|
Scholthof KBG. The Greening of One Health: Plants, Pathogens, and the Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:401-421. [PMID: 38857537 DOI: 10.1146/annurev-phyto-121423-042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
One Health has an aspirational goal of ensuring the health of humans, animals, plants, and the environment through transdisciplinary, collaborative research. At its essence, One Health addresses the human clash with Nature by formulating strategies to repair and restore a (globally) perturbed ecosystem. A more nuanced evaluation of humankind's impact on the environment (Nature, Earth, Gaia) would fully intercalate plants, plant pathogens, and beneficial plant microbes into One Health. Here, several examples point out how plants and plant microbes are keystones of One Health. Meaningful cross-pollination between plant, animal, and human health practitioners can drive discovery and application of innovative tools to address the many complex problems within the One Health framework.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
9
|
Wang L, Li Z, Li M, Chen Y, Zhang Y, Bao W, Wang X, Qi Z, Zhang W, Tao Y. Mechanisms of synthetic bacterial flora YJ-1 to enhance cucumber resistance under combined phthalate-disease stresses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121564. [PMID: 38944953 DOI: 10.1016/j.jenvman.2024.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Biotic and abiotic stresses have emerged as major constraints to agricultural production, causing irreversible adverse impacts on agricultural production systems and thus posing a threat to food security. In this study, a new strain of Bacillus subtilis DNYB-S1 was isolated from soil contaminated with Fusarium wilt. It was found that artificially synthetic flora (YJ-1) [Enterobacter sp. DNB-S2 and Rhodococcus pyridinovorans DNHP-S2, DNYB-S1] could effectively mitigate both biotic (Fusarium wilt) and abiotic (phthalates) sources of stresses, with the inhibition rate of YJ-1 resistant to wilt being 71.25% and synergistic degradation of 500 mg/L PAEs was 91.23%. The adaptive difference of YJ-1 was 0.59 and the ecological niche overlap value was -0.05 as determined by Lotka-Volterra modeling. These results indicate that YJ-1 has good ecological stability. The major degradation intermediates included 2-ethylhexyl benzoate (EHBA), phthalic acid (PA), diisobutyl phthalate (DIBP), and butyl benzoate, suggesting that YJ-1 can provide a more efficient pathway for PAEs degradation. In addition, there was metabolic mutualism among the strains that will selectively utilize the provided carbon source (some metabolites of PAEs) for growth. The pot experiment showed that YJ-1 with cucumber reduced the incidence of cucumber wilt by 45.31%. YJ-1 could reduce the concentration of PAEs (DBP: DEHP = 1:1) in soil species from 30 mg/kg to 4.26 mg/kg within 35 d, with a degradation efficiency of 85.81%. Meanwhile, the concentration of PAEs in cucumber was reduced to 0.01 mg/kg, indicating that YJ-1 is directly involved in the degradation of soil PAEs and the enhancement of plant immunity. In conclusion, this study provides a new perspective for the development of customized microbiomes for phytoremediation under combined biotic-abiotic stresses in agricultural production processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - MingZe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - YuXin Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - WenJing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - XiaoDong Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - ZeWei Qi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - WenQian Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
10
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
11
|
Delmas CEL, Bancal MO, Leyronas C, Robin MH, Vidal T, Launay M. Monitoring the phenology of plant pathogenic fungi: why and how? Biol Rev Camb Philos Soc 2024; 99:1075-1084. [PMID: 38287495 DOI: 10.1111/brv.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Phenology is a key adaptive trait of organisms, shaping biotic interactions in response to the environment. It has emerged as a critical topic with implications for societal and economic concerns due to the effects of climate change on species' phenological patterns. Fungi play essential roles in ecosystems, and plant pathogenic fungi have significant impacts on global food security. However, the phenology of plant pathogenic fungi, which form a huge and diverse clade of organisms, has received limited attention in the literature. This diversity may have limited the use of a common language for comparisons and the integration of phenological data for these taxonomic groups. Here, we delve into the concept of 'phenology' as applied to plant pathogenic fungi and explore the potential drivers of their phenology, including environmental factors and the host plant. We present the PhenoFun scale, a phenological scoring system suitable for use with all fungi and fungus-like plant pathogens. It offers a standardised and common tool for scientists studying the presence, absence, or predominance of a particular phase, the speed of phenological phase succession, and the synchronism shift between pathogenic fungi and their host plants, across a wide range of environments and ecosystems. The application of the concept of 'phenology' to plant pathogenic fungi and the use of a phenological scoring system involves focusing on the interacting processes between the pathogenic fungi, their hosts, and their biological, physical, and chemical environment, occurring during the life cycle of the pathogen. The goal is to deconstruct the processes involved according to a pattern orchestrated by the fungus's phenology. Such an approach will improve our understanding of the ecology and evolution of such organisms, help to understand and anticipate plant disease epidemics and their future evolution, and make it possible to optimise management models, and to encourage the adoption of cropping practices designed from this phenological perspective.
Collapse
Affiliation(s)
| | - Marie-Odile Bancal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Ecosys, Palaiseau, 91120, France
| | | | - Marie-Hélène Robin
- INRAE, INPT, ENSAT, EI Purpan, University of Toulouse, UMR AGIR, Castanet Tolosan, F-31326, France
| | - Tiphaine Vidal
- Université Paris-Saclay, INRAE, UR Bioger, Palaiseau, 91120, France
| | | |
Collapse
|
12
|
Pugliese M, Gilardi G, Garibaldi A, Gullino ML. The Impact of Climate Change on Vegetable Crop Diseases and Their Management: The Value of Phytotron Studies for the Agricultural Industry and Associated Stakeholders. PHYTOPATHOLOGY 2024; 114:843-854. [PMID: 38648074 DOI: 10.1094/phyto-08-23-0284-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Climate change is having a significant impact on global agriculture, particularly on vegetable crops, which play a critical role in global nutrition. Recently, increasing research has concentrated on the impact of climate change on vegetable crop diseases, with several studies being conducted in phytotrons, which have been used to explore the effects of increased temperatures and CO2 concentrations to simulate future scenarios. This review focuses on the combined effects of temperature and carbon dioxide increases on foliar and soilborne vegetable diseases, as evaluated under phytotron conditions. The influence of climate change on mycotoxin production and disease management strategies is also explored through case studies. The results offer valuable information that can be used to guide both seed and agrochemical industries, as well as to develop disease-resistant varieties and innovative control measures, including biocontrol agents, considering the diseases that are likely to become prevalent under future climatic scenarios. Recommendations on how to manage vegetable diseases under ongoing climate change are proposed to facilitate plants' adaptation to and enhanced against the changing conditions. A proactive and comprehensive response to climate-induced challenges in vegetable farming is imperative to ensure food security and sustainability.
Collapse
|
13
|
Zhang P, Jiang H, Liu X. Diversity inhibits foliar fungal diseases in grasslands: Potential mechanisms and temperature dependence. Ecol Lett 2024; 27:e14435. [PMID: 38735857 DOI: 10.1111/ele.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Hongying Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
14
|
BakhshiGanje M, Mahmoodi S, Ahmadi K, Mirabolfathy M. Potential distribution of Biscogniauxia mediterranea and Obolarina persica causal agents of oak charcoal disease in Iran's Zagros forests. Sci Rep 2024; 14:7784. [PMID: 38565553 PMCID: PMC10987582 DOI: 10.1038/s41598-024-57298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
In Iran, native oak species are under threat from episodes of Charcoal Disease, a decline syndrome driven by abiotic stressors (e.g. drought, elevated temperature) and biotic components, Biscogniauxia mediterranea (De Not.) Kuntze and Obolarina persica (M. Mirabolfathy). The outbreak is still ongoing and the country's largest ever recorded. Still, the factors driving its' epidemiology in time and space are poorly known and such knowledge is urgently needed to develop strategies to counteract the adverse effects. In this study, we developed a generic framework based on experimental, machine-learning algorithms and spatial analyses for landscape-level prediction of oak charcoal disease outbreaks. Extensive field surveys were conducted during 2013-2015 in eight provinces (more than 50 unique counties) in the Zagros ecoregion. Pathogenic fungi were isolated and characterized through morphological and molecular approaches, and their pathogenicity was assessed under controlled water stress regimes in the greenhouse. Further, we evaluated a set of 29 bioclimatic, environmental, and host layers in modeling for disease incidence data using four well-known machine learning algorithms including the Generalized Linear Model, Gradient Boosting Model, Random Forest model (RF), and Multivariate Adaptive Regression Splines implemented in MaxEnt software. Model validation statistics [Area Under the Curve (AUC), True Skill Statistics (TSS)], and Kappa index were used to evaluate the accuracy of each model. Models with a TSS above 0.65 were used to prepare an ensemble model. The results showed that among the different climate variables, precipitation and temperature (Bio18, Bio7, Bio8, and bio9) in the case of O. persica and similarly, gsl (growing season length TREELIM, highlighting the warming climate and the endophytic/pathogenic nature of the fungus) and precipitation in case of B. mediterranea are the most important influencing variables in disease modeling, while near-surface wind speed (sfcwind) is the least important variant. The RF algorithm generates the most robust predictions (ROC of 0.95; TSS of 0.77 and 0.79 for MP and OP, respectively). Theoretical analysis shows that the ensemble model (ROC of 0.95 and 0.96; TSS = 0.79 and 0.81 for MP and OP, respectively), can efficiently be used in the prediction of the charcoal disease spatiotemporal distribution. The oak mortality varied ranging from 2 to 14%. Wood-boring beetles association with diseased trees was determined at 20%. Results showed that water deficiency is a crucial component of the oak decline phenomenon in Iran. The Northern Zagros forests (Ilam, Lorestan, and Kermanshah provinces) along with the southern Zagros forests (Fars and Kohgilouyeh va-Boyer Ahmad provinces) among others are the most endangered areas of potential future pandemics of charcoal disease. Our findings will significantly improve our understanding of the current situation of the disease to pave the way against pathogenic agents in Iran.
Collapse
Affiliation(s)
- Meysam BakhshiGanje
- Kohgiluyeh va Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Yasuj, Iran.
| | - Shirin Mahmoodi
- National center of genetic resources, Agricultural Research Education and Extention Organization, Tehran, Iran
| | - Kourosh Ahmadi
- Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran.
- Fars Agricultural and Natural Resources Research and Education Center (AREEO), Tehran, Iran.
| | | |
Collapse
|
15
|
Silva WTAF, Hansson M, Johansson J. Phenological evolution in annual plants under light competition, changes in the growth season and mass loss. Ecol Evol 2024; 14:e11294. [PMID: 38633520 PMCID: PMC11021803 DOI: 10.1002/ece3.11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Flowering time is an important phenological trait in plants and a critical determinant of the success of pollination and fruit or seed development, with immense significance for agriculture as it directly affects crop yield and overall food production. Shifts in the growth season, changes in the growth season duration and changes in the production rate are environmental processes (potentially linked to climate change) that can lead to changes in flowering time in the long-term due to selection. In contrast, biomass loss (due to, for example, herbivory or diseases) can have profound consequences for plant mass production and food security. We model the effects of these environmental processes on the flowering time evolutionarily stable strategy (ESS) of annual plants and the potential consequences for reproductive output. Our model recapitulates previous theoretical results linked to climate change and light competition and makes novel predictions about the effects of biomass loss on the evolution of flowering time. Our analysis elucidates how both the magnitude and direction of the evolutionary response can depend on whether biomass loss occurs during the earlier vegetative phase or during the later reproductive phase and on whether or not plants are adapted to grow in dense, competitive environments. Specifically, light competition generates an asymetric effect of mass loss on flowering time even when loss is indiscriminate (equal rates), with vegetative mass loss having a stronger effect on flowering time (resulting in greater ESS change) and final reproductive output.
Collapse
Affiliation(s)
- Willian T. A. F. Silva
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesLysekilSweden
| | | | | |
Collapse
|
16
|
Das D, Chowdhury N, Sharma M, Suma R, Saikia B, Velmurugan N, Chikkaputtaiah C. Screening for brown-spot disease and drought stress response and identification of dual-stress responsive genes in rice cultivars of Northeast India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:647-663. [PMID: 38737323 PMCID: PMC11087401 DOI: 10.1007/s12298-024-01447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01447-4.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Remya Suma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
17
|
Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Biochem J 2023; 480:1791-1804. [PMID: 37975605 PMCID: PMC10657175 DOI: 10.1042/bcj20230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Anthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease. Since climate change has been shown to affect the distribution and virulence of these pathogens, it is important to understand how their plant hosts may also respond. This review assesses existing reports of positive, negative, and neutral effects of eCO2 on plant immune responses to fungal pathogen infection. The interaction between eCO2 and immunity appears specific to individual pathosystems, dependent on environmental context and driven by the interactions between plant defence mechanisms, suggesting no universal effect can be predicted for the future. This research is vital for assessing how plants may become more at risk under climate change and could help to guide biotechnological efforts to enhance resistance in vulnerable species. Despite the importance of understanding the effects of eCO2 on plant immunity for protecting global food security, biodiversity, and forests in a changing climate, many plant-pathogen interactions are yet to be investigated. In addition, further research into the effects of eCO2 in combination with other environmental factors associated with climate change is needed. In this review, we highlight the risks of eCO2 to plants and point to the research required to address current unknowns.
Collapse
Affiliation(s)
- Freya Smith
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| |
Collapse
|
18
|
Jo SJ, Kim SG, Park J, Lee YM, Giri SS, Lee SB, Jung WJ, Hwang MH, Park JH, Roh E, Park SC. Optimizing the formulation of Erwinia bacteriophages for improved UV stability and adsorption on apple leaves. Heliyon 2023; 9:e22034. [PMID: 38034629 PMCID: PMC10682131 DOI: 10.1016/j.heliyon.2023.e22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Fire blight is a bacterial disease that affects plants of the Rosaceae family and causes significant economic losses worldwide. Although antibiotics have been used to control the disease, concerns about their environmental impact and the potential to promote antibiotic resistance have arisen. Bacteriophages are being investigated as an alternative to antibiotics; however, their efficacy can be affected by environmental stresses, such as UV radiation. In this study, we optimized the formulation of Erwinia phages to enhance their stability in the field, focusing on improving their UV stability and adsorption using adjuvants. Our results confirmed that 4.5 % polysorbate 80 and kaolin improve phage stability under UV stress, resulting in an 80 % increase in PFU value and improved UV protection efficacy. Adsorption assays also demonstrated that polysorbate 80 and kaolin improved the absorption efficiency, with phages detected in plant for up to two weeks. These findings demonstrate the effectiveness of the auxiliary formulation of Erwinia bacteriophages against environmental stress.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jungkum Park
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
19
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
20
|
Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 2023; 21:640-656. [PMID: 37131070 PMCID: PMC10153038 DOI: 10.1038/s41579-023-00900-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain
| | - Jan E Leach
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pankaj Trivedi
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Mirzayeva S, Huseynova I, Özmen CY, Ergül A. Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses. THE PLANT PATHOLOGY JOURNAL 2023; 39:466-485. [PMID: 37817493 PMCID: PMC10580053 DOI: 10.5423/ppj.oa.07.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Samra Mirzayeva
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| |
Collapse
|
22
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
23
|
Miller ST, Wright S, Stewart JE. The role of stress factors in severity of Cytospora plurivora in greenhouse and field plantings of 13 peach ( Prunus persica) cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1228493. [PMID: 37636082 PMCID: PMC10452880 DOI: 10.3389/fpls.2023.1228493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Understanding the host-pathogen-environmental interactions in a pathosystem is essential for management of diseases and diminished crop yields. Abiotic stressors such as cold damage, water deficit, and high pH soils can be major limiting factors to tree fruit production. Along with decreased yields, these abiotic factors can have direct implications for disease severity within orchards. Cytospora plurivora is a ubiquitous fungal canker pathogen in western Colorado, USA and is a major focus in integrated pest management strategies. This research evaluated the influence of biotic and abiotic stress factors on peach tree health. Thirteen peach cultivars were placed under abiotic stress and inoculated with C. plurivora in greenhouse and field conditions. Under deficit irrigation, C. plurivora infections were significantly larger and more severe in both the greenhouse and field trials when compared with those under the full-irrigation controls. In controlled greenhouse conditions, a positive correlation between lesion size and water potential was evident, but no trend of cultivar tolerance was observed. Furthermore, increase in irrigation water pH, through additions of sodium carbonate and bicarbonate, in the greenhouse trials resulted in decreased leaf water potentials and increased pathogen necrotic tissue volumes (mm3). In field trials, there was no positive relationship between lesion size and water potential; trees with the most negative water potentials had the smallest lesions sizes that did not correspond to cultivar, suggesting that other abiotic or biotic factors may be shielding water stressed trees from increased pathogen aggression. This research highlights the importance of proper irrigation and soil pH management as tools for the management of Cytospora canker in peach orchards.
Collapse
Affiliation(s)
| | | | - Jane E. Stewart
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| |
Collapse
|
24
|
Ma T, Yang C, Cai F, Osei R. Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China. Pathogens 2023; 12:970. [PMID: 37513816 PMCID: PMC10384706 DOI: 10.3390/pathogens12070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and QY9-1) induced symptoms of walnut branch blight that were consistent with those observed in the field after inoculation. Furthermore, some Fusarium-type conidia and spherical chlamydospores were visible indicating that they were Fusarium spp. A molecular characterization including sequence and phylogenetic analysis of the ITS, TEF-1α, βTUB, Fu, and LSU gene regions revealed that LN-1 and LN-19 belonged to F. avenaceum, LN-3 and LN-6 to F. acuminatum, LN-27 to F. sporotrichioides, and QY3-1 and QY9-1 to F. tricinctum. This is the first time that F. acuminatum-, F. sporotrichioides-, and F. tricinctum-caused walnut branch blight has been reported in China.
Collapse
Affiliation(s)
- Ting Ma
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengde Yang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengfeng Cai
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Richard Osei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Abstract
Plant diseases are strongly influenced by host biodiversity, spatial structure, and abiotic conditions. All of these are undergoing rapid change, as the climate is warming, habitats are being lost, and nitrogen deposition is changing nutrient dynamics of ecosystems with ensuing consequences for biodiversity. Here, I review examples of plant-pathogen associations to demonstrate how our ability to understand, model and predict disease dynamics is becoming increasingly difficult, as both plant and pathogen populations and communities are undergoing extensive change. The extent of this change is influenced via both direct and combined effects of global change drivers, and especially the latter are still poorly understood. Change at one trophic level is expected to drive change also at the other, and hence feedback loops between plants and their pathogens are expected to drive changes in disease risk both through ecological as well as evolutionary mechanisms. Many of the examples discussed here demonstrate an increase in disease risk as a result of ongoing change, suggesting that unless we successfully mitigate global environmental change, plant disease is going to become an increasingly heavy burden on our societies with far-reaching consequences for food security and functioning of ecosystems.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO BOX 65 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Infantino A, Belocchi A, Quaranta F, Reverberi M, Beccaccioli M, Lombardi D, Vitale M. Effects of climate change on the distribution of Fusarium spp. in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163640. [PMID: 37087011 DOI: 10.1016/j.scitotenv.2023.163640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
This work studies the incidence of Fusarium spp. on wheat kernels about current and future climatic conditions in Italy. Epidemiological analyses were performed from 2007 to 2013 and the resulting dataset was used to find correlations between the disease incidence of five important Fusarium species monitored in Italy (Fusarium graminearum, F. langsethiae, F. sporotrichioides, F. poae and F. avenaceum) and climatic and geographical parameters. Probabilistic-based modelling of the actual distribution of Fusarium spp. was achieved by using the Zero-inflated Poisson regression. The probabilistic geographical distribution of the Fusarium species was assessed by applying future climatic scenarios (RCPs 4.5 and 8.5). The shift from current to future climatic scenarios highlighted changes on a national and regional scale. The tightening of environmental conditions from the RCP4.5 to 8.5 scenarios resulted in a sporadic presence of F. avenaceum only in the northern region of Italy. Fusarium graminearum was plentifully present in the current climate, but the tightening of minimum and maximum temperatures and the decrease of precipitation between May-June in the RCP8.5 no longer represents the optimum conditions for it. Fusarium langsethiae was currently distributed in all of Italy, showing an increase in the probability of detecting it by moving from high to low latitudes and from low to high longitudes in the RCP8.5. Fusarium poae, unlike other Fusarium species, grows and develops in arid climatic conditions. High values of F. poae were recorded at low latitudes and longitudes. Under the RCP scenarios, it showed high incidence probabilities in the southeast and northeast areas of Italy. Fusarium sporotrichioides is scarcely present in Italy, found at high latitudes and in the central areas. Climate change altered this distribution, and the chances of discovering it increased significantly moving to southern Italy. Overall, the study shows that climate change conditions are likely to lead to an increase in the incidence of Fusarium species on wheat kernels in Italy, highlighting the importance of developing strategies to mitigate the effects of climate change on wheat production, quality, and safety.
Collapse
Affiliation(s)
- Alessandro Infantino
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Agricultural Economics-CREA, Italy
| | - Andreina Belocchi
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Agricultural Economics-CREA, Italy
| | - Fabrizio Quaranta
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Agricultural Economics-CREA, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | | - Danilo Lombardi
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| |
Collapse
|
27
|
Vacek Z, Vacek S, Cukor J. European forests under global climate change: Review of tree growth processes, crises and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117353. [PMID: 36716544 DOI: 10.1016/j.jenvman.2023.117353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/07/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The ongoing global climate change is challenging all sectors, forestry notwithstanding. On the one hand, forest ecosystems are exposed to and threatened by climate change, but on the other hand, forests can influence the course of climate change by regulating the water regime, air quality, carbon sequestration, and even reduce climate extremes. Therefore, it is crucial to see climate change not only as a risk causing forest disturbances and economic consequences but also as an opportunity for innovative approaches to forest management, conservation, and silviculture based on the results of long-term research. We reviewed 365 studies evaluating the impact of climate change on European forest ecosystems, all published during the last 30 years (1993-2022). The most significant consequences of climate change include more frequent and destructive large-scale forest disturbances (wildfire, windstorm, drought, flood, bark beetle, root rot), and tree species migration. Species distribution shifts and changes in tree growth rate have substantial effects on ecosystem carbon storage. Diameter/volume increment changed from -1 to +99% in Central and Northern Europe, while it decreased from -12 to -49% in Southern Europe across tree species over the last ca. 50 years. However, it is important to sharply focus on the causes of climate change and subsequently, on adaptive strategies, which can successfully include the creation of species-diverse, spatially and age-wise structured stands (decrease drought stress and increase production), prolongation of the regenerative period, or the use of suitable introduced tree species (e.g., Douglas fir, black pine, and Mediterranean oaks). But the desired changes are based on increasing diversity and the mitigation of climate change, and will require significantly higher initial costs for silviculture practices. In conclusion, the scope and complexity of the topic require further comprehensive and long-term studies focusing on international cooperation. We see a critical gap in the transfer of research results into actual forest practice, which will be the key factor influencing afforestation of forest stands and forest growth in the following decades. What our forests will look like for future generations and what the resulting impact of climate change will be on forestry is in the hands of forest managers, depending on supportive forestry research and climate change policy, including adaptive and mitigation strategies.
Collapse
Affiliation(s)
- Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic.
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic
| | - Jan Cukor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic; Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic
| |
Collapse
|
28
|
Halliday FW, Czyżewski S, Laine AL. Intraspecific trait variation and changing life-history strategies explain host community disease risk along a temperature gradient. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220019. [PMID: 36744568 PMCID: PMC9900715 DOI: 10.1098/rstb.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023] Open
Abstract
Predicting how climate change will affect disease risk is complicated by the fact that changing environmental conditions can affect disease through direct and indirect effects. Species with fast-paced life-history strategies often amplify disease, and changing climate can modify life-history composition of communities thereby altering disease risk. However, individuals within a species can also respond to changing conditions with intraspecific trait variation. To test the effect of temperature, as well as inter- and intraspecifc trait variation on community disease risk, we measured foliar disease and specific leaf area (SLA; a proxy for life-history strategy) on more than 2500 host (plant) individuals in 199 communities across a 1101 m elevational gradient in southeastern Switzerland. There was no direct effect of increasing temperature on disease. Instead, increasing temperature favoured species with higher SLA, fast-paced life-history strategies. This effect was balanced by intraspecific variation in SLA: on average, host individuals expressed lower SLA with increasing temperature, and this effect was stronger among species adapted to warmer temperatures and lower latitudes. These results demonstrate how impacts of changing temperature on disease may depend on how temperature combines and interacts with host community structure while indicating that evolutionary constraints can determine how these effects are manifested under global change. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fletcher W. Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Szymon Czyżewski
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Research Centre for Ecological Change, Organismal & Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| |
Collapse
|
29
|
Jiranek J, Miller IF, An R, Bruns E, Metcalf CJE. Mechanistic models to meet the challenge of climate change in plant-pathogen systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220017. [PMID: 36744564 PMCID: PMC9900714 DOI: 10.1098/rstb.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence that climate change will impact the ecology and evolution of individual plant species is growing. However, little, as yet, is known about how climate change will affect interactions between plants and their pathogens. Climate drivers could affect the physiology, and thus demography, and ultimately evolutionary processes affecting both plant hosts and their pathogens. Because the impacts of climate drivers may operate in different directions at different scales of infection, and, furthermore, may be nonlinear, abstracting across these processes may mis-specify outcomes. Here, we use mechanistic models of plant-pathogen interactions to illustrate how counterintuitive outcomes are possible, and we introduce how such framing may contribute to understanding climate effects on plant-pathogen systems. We discuss the evidence-base derived from wild and agricultural plant-pathogen systems that could inform such models, specifically in the direction of estimates of physiological, demographic and evolutionary responses to climate change. We conclude by providing an overview of knowledge gaps and directions for future research in this important area. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ian F. Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ruby An
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| | - Emme Bruns
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| |
Collapse
|
30
|
Soheili F, Abdul-Hamid H, Almasi I, Heydari M, Tongo A, Woodward S, Naji HR. How Tree Decline Varies the Anatomical Features in Quercus brantii. PLANTS (BASEL, SWITZERLAND) 2023; 12:377. [PMID: 36679089 PMCID: PMC9866467 DOI: 10.3390/plants12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Drought has serious effects on forests, especially semi-arid and arid forests, around the world. Zagros Forest in Iran has been severely affected by drought, which has led to the decline of the most common tree species, Persian oak (Quercus brantii). The objective of this study was to determine the effects of drought on the anatomical structure of Persian oak. Three healthy and three declined trees were sampled from each of two forest sites in Ilam Forest. Discs were cut at breast height, and three sapwood blocks were taken near the bark of each tree for sectioning. The anatomical characteristics measured included fiber length (FL), fiber wall thickness (FWT), number of axial parenchymal cells (NPC), ray number (RN), ray width (RW), and number of calcium oxalate crystals. Differences between healthy and declined trees were observed in the abundance of NPC and in RN, FL, and FWT, while no differences occurred in the number of oxalate crystals. The decline had uncertain effects on the FL of trees from sites A and B, which showed values of 700.5 and 837.3 μm compared with 592.7 and 919.6 μm in healthy trees. However, the decline resulted in an increase in the FWT of trees from sites A and B (9.33 and 11.53 μm) compared with healthy trees (5.23 and 9.56 μm). NPC, RN, and RW also increased in declined individuals from sites A and B (28.40 and 28.40 mm−1; 41.06 and 48.60 mm−1; 18.60 and 23.20 μm, respectively) compared with healthy trees (20.50 and 19.63 mm−2; 31.60 and 28.30 mm−2; 17.93 and 15.30 μm, respectively). Thus, drought caused measurable changes in the anatomical characteristics of declined trees compared with healthy trees.
Collapse
Affiliation(s)
- Forough Soheili
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| | - Hazandy Abdul-Hamid
- Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Isaac Almasi
- Faculty of Science, Department of Statistics, Razi University, Kermanshah 67144-14971, Iran
| | - Mehdi Heydari
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| | - Afsaneh Tongo
- Department of Forest Science and Engineering, Sari University of Agricultural Sciences and Natural Resources, Sari 48181-68984, Iran
| | - Stephen Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Hamid Reza Naji
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| |
Collapse
|
31
|
Sahoo DK, Hegde C, Bhattacharyya MK. Identification of multiple novel genetic mechanisms that regulate chilling tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1094462. [PMID: 36714785 PMCID: PMC9878698 DOI: 10.3389/fpls.2022.1094462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress adversely affects the growth and development of plants and limits the geographical distribution of many plant species. Accumulation of spontaneous mutations shapes the adaptation of plant species to diverse climatic conditions. METHODS The genome-wide association study of the phenotypic variation gathered by a newly designed phenomic platform with the over six millions single nucleotide polymorphic (SNP) loci distributed across the genomes of 417 Arabidopsis natural variants collected from various geographical regions revealed 33 candidate cold responsive genes. RESULTS Investigation of at least two independent insertion mutants for 29 genes identified 16 chilling tolerance genes governing diverse genetic mechanisms. Five of these genes encode novel leucine-rich repeat domain-containing proteins including three nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes, ADS2 and ACD6 are the only two chilling tolerance genes identified earlier. DISCUSSION The 12.5% overlap between the genes identified in this genome-wide association study (GWAS) of natural variants with those discovered previously through forward and reverse genetic approaches suggests that chilling tolerance is a complex physiological process governed by a large number of genetic mechanisms.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chinmay Hegde
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
32
|
Sbeiti AAL, Mazurier M, Ben C, Rickauer M, Gentzbittel L. Temperature increase modifies susceptibility to Verticillium wilt in Medicago spp and may contribute to the emergence of more aggressive pathogenic strains. FRONTIERS IN PLANT SCIENCE 2023; 14:1109154. [PMID: 36866360 PMCID: PMC9972977 DOI: 10.3389/fpls.2023.1109154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/18/2023] [Indexed: 05/17/2023]
Abstract
Global warming is expected to have a direct impact on plant disease patterns in agro-eco-systems. However, few analyses report the effect of moderate temperature increase on disease severity due to soil-borne pathogens. For legumes, modifications of root plant-microbe interactions either mutualistic or pathogenic due to climate change may have dramatic effects. We investigated the effect of increasing temperature on the quantitative disease resistance to Verticillium spp., a major soil-borne fungal pathogen, in the model legume Medicago truncatula and the crop M. sativa. First, twelve pathogenic strains isolated from various geographical origin were characterized with regard to their in vitro growth and pathogenicity at 20°C, 25°C and 28°C. Most of them exhibited 25°C as the optimum temperature for in vitro parameters, and between 20°C and 25°C for pathogenicity. Second, a V. alfalfae strain was adapted to the higher temperature by experimental evolution, i.e. three rounds of UV mutagenesis and selection for pathogenicity at 28°C on a susceptible M. truncatula genotype. Inoculation of monospore isolates of these mutants on resistant and susceptible M. truncatula accessions revealed that at 28°C they were all more aggressive than the wild type strain, and that some had acquired the ability to cause disease on resistant genotype. Third, one mutant strain was selected for further studies of the effect of temperature increase on the response of M. truncatula and M. sativa (cultivated alfalfa). The response of seven contrasted M. truncatula genotypes and three alfalfa varieties to root inoculation was followed using disease severity and plant colonization, at 20°C, 25°C and 28°C. With increasing temperature, some lines switched from resistant (no symptoms, no fungus in the tissues) to tolerant (no symptoms but fungal growth into the tissues) phenotypes, or from partially resistant to susceptible. Further studies in greenhouse evidence the reduction in plant fitness due to disease in susceptible lines. We thus report that root pathogenic interactions are affected by anticipated global warming, with trends towards increased plant susceptibility and larger virulence for hot-adapted strains. New threats due to hot-adapted strains of soil-borne pathogens, with possibly wider host range and increased aggressiveness, might occur.
Collapse
Affiliation(s)
- Abed Al Latif Sbeiti
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Castanet-Tolosan, France
| | - Mélanie Mazurier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Castanet-Tolosan, France
| | - Cécile Ben
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Castanet-Tolosan, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Martina Rickauer
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Castanet-Tolosan, France
| | - Laurent Gentzbittel
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Castanet-Tolosan, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Laurent Gentzbittel,
| |
Collapse
|
33
|
Qiu J, Liu Z, Xie J, Lan B, Shen Z, Shi H, Lin F, Shen X, Kou Y. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. PLANT, CELL & ENVIRONMENT 2022; 45:3399-3411. [PMID: 36175003 DOI: 10.1111/pce.14452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Humidity is a critical environmental factor affecting the epidemic of plant diseases. However, it is still unclear how ambient humidity affects the occurrence of diseases in plants. In this study, we show that high ambient humidity enhanced blast development in rice plants under laboratory conditions. Furthermore, we found that high ambient humidity enhanced the virulence of Magnaporthe oryzae by promoting conidial germination and appressorium formation. In addition, the results of RNA-sequencing analysis and the ethylene content assessment revealed that high ambient humidity suppressed the accumulation of ethylene and the activation of ethylene signaling pathway induced by M. oryzae in rice. Knock out of ethylene signaling genes OsEIL1 and OsEIN2 or exogenous application of 1-methylcyclopropene (ethylene inhibitor) and ethephon (ethylene analogues) eliminated the difference of blast resistance between the 70% and 90% relative humidity conditions, suggesting that the activation of ethylene signaling contributes to humidity-modulated basal resistance against M. oryzae in rice. In conclusion, our results demonstrated that high ambient humidity enhances the virulence of M. oryzae and compromises basal resistance by reducing the activation of ethylene biosynthesis and signaling in rice. Results from this study provide cues for novel strategies to control rice blast under global environmental changes.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiquan Liu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhui Xie
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Bo Lan
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenan Shen
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Yanjun Kou
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
34
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
35
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Response of the wheat mycobiota to flooding revealed substantial shifts towards plant pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1028153. [PMID: 36518495 PMCID: PMC9742542 DOI: 10.3389/fpls.2022.1028153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Rainfall extremes are intensifying as a result of climate change, leading to increased flood risk. Flooding affects above- and belowground ecosystem processes, representing a substantial threat to crop productivity under climate change. Plant-associated fungi play important roles in plant performance, but their response to abnormal rain events is unresolved. Here, we established a glasshouse experiment to determine the effects of flooding stress on the spring wheat-mycobiota complex. Since plant phenology could be an important factor in the response to hydrological stress, flooding was induced only once and at different plant growth stages, such as tillering, booting and flowering. We assessed the wheat mycobiota response to flooding in three soil-plant compartments (phyllosphere, roots and rhizosphere) using metabarcoding. Key soil and plant traits were measured to correlate physiological plant and edaphic changes with shifts in mycobiota structure and functional guilds. Flooding reduced plant fitness, and caused dramatic shifts in mycobiota assembly across the entire plant. Notably, we observed a functional transition consisting of a decline in mutualist abundance and richness with a concomitant increase in plant pathogens. Indeed, fungal pathogens associated with important cereal diseases, such as Gibberella intricans, Mycosphaerella graminicola, Typhula incarnata and Olpidium brassicae significantly increased their abundance under flooding. Overall, our study demonstrate the detrimental effect of flooding on the wheat mycobiota complex, highlighting the urgent need to understand how climate change-associated abiotic stressors alter plant-microbe interactions in cereal crops.
Collapse
Affiliation(s)
- Davide Francioli
- Institute of Crop Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
36
|
Lundell S, Batbaatar A, Carlyle CN, Lamb EG, Otfinowski R, Schellenberg MP, Bennett JA. Plant responses to soil biota depend on precipitation history, plant diversity, and productivity. Ecology 2022; 103:e3784. [PMID: 35672930 DOI: 10.1002/ecy.3784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Soil biota are critical drivers of plant growth, population dynamics, and community structure and thus have wide-ranging effects on ecosystem function. Interactions between plants and soil biota are complex, however, and can depend on the diversity and productivity of the plant community and environmental conditions. Plant-soil biota interactions may be especially important during stressful periods, such as drought, when plants can gain great benefits from beneficial biota but may be susceptible to antagonists. How soil biota respond to drought is also important and can influence plant growth following drought and leave legacies that affect future plant responses to soil biota and further drought. To explore how drought legacies and plant community context influence plant growth responses to soil biota and further drought, we collected soils from 12 grasslands varying in plant diversity and productivity where precipitation was experimentally reduced. We used these soils as inoculum in a growth chamber experiment testing how precipitation history (ambient or reduced) and soil biota (live or sterile soil inoculum) mediate plant growth and drought responses within an experimental plant community. We also tested whether these responses differed with the diversity and productivity of the community where the soil was collected. Plant growth responses to soil biota were positive when inoculated with soils from less diverse and productive plant communities and became negative as the diversity and productivity of the conditioning community increased. At low diversity, however, positive soil biota effects on plant growth were eliminated if precipitation had been reduced in the field, suggesting that diversity loss may heighten climate change sensitivity. Differences among species within the experimental community in their responses to soil biota and drought suggest that species benefitting from less drought sensitive soil biota may be able to compensate for some of this loss of productivity. Regardless of the plant species and soil origin, further drought eliminated any effects of soil biota on plant growth. Consequently, soil biota may be unable to buffer the effects of drought on primary productivity or other ecosystem functions as extreme events increase in frequency.
Collapse
Affiliation(s)
- Seth Lundell
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Amgaa Batbaatar
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron N Carlyle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Rafael Otfinowski
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Michael P Schellenberg
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
37
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
38
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
39
|
Predicting the effects of climate change on the cross-scale epidemiological dynamics of a fungal plant pathogen. Sci Rep 2022; 12:14823. [PMID: 36050344 PMCID: PMC9437057 DOI: 10.1038/s41598-022-18851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The potential for climate change to exacerbate the burden of human infectious diseases is increasingly recognized, but its effects on infectious diseases of plants have received less attention. Understanding the impacts of climate on the epidemiological dynamics of plant pathogens is imperative, as these organisms play central roles in natural ecosystems and also pose a serious threat to agricultural production and food security. We use the fungal ‘flax rust’ pathogen (Melampsora lini) and its subalpine wildflower host Lewis flax (Linum lewisii) to investigate how climate change might affect the dynamics of fungal plant pathogen epidemics using a combination of empirical and modeling approaches. Our results suggest that climate change will initially slow transmission at both the within- and between-host scales. However, moderate resurgences in disease spread are predicted as warming progresses, especially if the rate of greenhouse gas emissions continues to increase at its current pace. These findings represent an important step towards building a holistic understanding of climate effects on plant infectious disease that encompasses demographic, epidemiological, and evolutionary processes. A core result is that neglecting processes at any one scale of plant pathogen transmission may bias projections of climate effects, as climate drivers have variable and cascading impacts on processes underlying transmission that occur at different scales.
Collapse
|
40
|
Garrett KA, Bebber DP, Etherton BA, Gold KM, Plex Sulá AI, Selvaraj MG. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:357-378. [PMID: 35650670 DOI: 10.1146/annurev-phyto-021021-042636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk ofplant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers' phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change.
Collapse
Affiliation(s)
- K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - D P Bebber
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - B A Etherton
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - K M Gold
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York, USA
| | - A I Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - M G Selvaraj
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
41
|
Chen K, Shi Z, Zhang S, Wang Y, Xia X, Jiang Y, Gull S, Chen L, Guo H, Wu T, Zhang H, Liu J, Kong W. Methylation and Expression of Rice NLR Genes after Low Temperature Stress. Gene 2022; 845:146830. [PMID: 35995119 DOI: 10.1016/j.gene.2022.146830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are included in most plant disease resistance proteins. Some NLR proteins have been revealed to be induced by the invasion of plant pathogens. DNA methylation is required for adaption to adversity and proper regulation of gene expression in plants. Low temperature stress (LTS) is a restriction factor in rice growth, development and production. Here, we report the methylation and expression of NLR genes in two rice cultivars, i.e., 9311 (an indica rice cultivar sensitive to LTS), and P427 (a japonica cultivar, tolerant to LTS), after LTS. We found that the rice NLR genes were heavily methylated within CG sites at room temperature and low temperature in 9311 and P427, and many rice NLR genes showed DNA methylation alteration after LTS. A great number of rice NLR genes were observed to be responsive to LTS at the transcriptional level. Our observation suggests that the alteration of expression of rice NLR genes was similar but their change in DNA methylation was dynamic between the two rice cultivars after LTS. We identified that more P427 NLR genes reacted to LTS than those of 9311 at the methylation and transcriptional level. The results in this study will be useful for further understanding the transcriptional regulation and potential functions of rice NLR genes.
Collapse
Affiliation(s)
- Kun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zuqi Shi
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shengwei Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yanxin Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Xia
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yan Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sadia Gull
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lin Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hui Guo
- Rice Research Institute, Guizhou Provincial Academy of Agriculture Sciences, Guiyang, 550006, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Jinglan Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
42
|
Major N, Perković J, Palčić I, Bažon I, Horvat I, Ban D, Goreta Ban S. The Phytochemical and Nutritional Composition of Shallot Species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum) Is Genetically and Environmentally Dependent. Antioxidants (Basel) 2022; 11:antiox11081547. [PMID: 36009266 PMCID: PMC9405304 DOI: 10.3390/antiox11081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Shallots are a perennial plant from the Alliaceae family, classified with the common onion under the name of the Allium cepa Aggregatum group. The term shallot is also used for diploid and triploid viviparous onions, known as Allium × proliferum (Moench) Schrad and Allium × cornutum Clementi ex Vis., respectively. In this study, we compared the dry matter, pyruvic acid content, sugar content, flavonoid content, antioxidant capacity and mineral composition of 34 shallot accessions falling into three shallot species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum). Shallot accessions belonging to the A.× cornutum and A. × proliferum groups are characterized by high dry matter content (around 25%), of which a little less than 50% is formed of inulin-type sugars, polysaccharides, considered an excellent prebiotic with beneficial effects on human health. On the other hand, accessions belonging to the A. cepa Aggregatum group have lower dry matter content and, as a result, lower pungency (measured as pyruvic acid content), making them more suitable for fresh consumption by a broader range of consumers, but, at the same time, abundant in phenolic compounds, especially quercetin and isorhamnetin glycosides. We also observed a greater biodiversity among accessions within the A. cepa Aggregatum group in all the analyzed physico-chemical parameters compared to the other shallot groups. The investigated shallot accessions have an excellent in vitro antioxidant capacity, as well as excellent nutritional properties.
Collapse
Affiliation(s)
- Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| | - Josipa Perković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Iva Bažon
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Ivana Horvat
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Dean Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| |
Collapse
|
43
|
Kashima M, Kamitani M, Nomura Y, Mori-Moriyama N, Betsuyaku S, Hirata H, Nagano AJ. DeLTa-Seq: direct-lysate targeted RNA-Seq from crude tissue lysate. PLANT METHODS 2022; 18:99. [PMID: 35933383 PMCID: PMC9356424 DOI: 10.1186/s13007-022-00930-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/24/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Quantification of gene expression such as RNA-Seq is a popular approach to study various biological phenomena. Despite the development of RNA-Seq library preparation methods and sequencing platforms in the last decade, RNA extraction remains the most laborious and costly step in RNA-Seq of tissue samples of various organisms. Thus, it is still difficult to examine gene expression in thousands of samples. RESULTS Here, we developed Direct-RT buffer in which homogenization of tissue samples and direct-lysate reverse transcription can be conducted without RNA purification. The DTT concentration in Direct-RT buffer prevented RNA degradation but not RT in the lysates of several plant tissues, yeast, and zebrafish larvae. Direct reverse transcription on these lysates in Direct-RT buffer produced comparable amounts of cDNA to those synthesized from purified RNA. To maximize the advantage of the Direct-RT buffer, we integrated Direct-RT and targeted RNA-Seq to develop a cost-effective, high-throughput quantification method for the expressions of hundreds of genes: DeLTa-Seq (Direct-Lysate reverse transcription and Targeted RNA-Seq). The DeLTa-Seq method could drastically improve the efficiency and accuracy of gene expression analysis. DeLTa-Seq analysis of 1056 samples revealed the temperature-dependent effects of jasmonic acid and salicylic acid in Arabidopsis thaliana. CONCLUSIONS The DeLTa-Seq method can realize large-scale studies using thousands of animal, plant, and microorganism samples, such as chemical screening, field experiments, and studies focusing on individual variability. In addition, Direct-RT is also beneficial for gene expression analysis in small tissues from which it is difficult to purify enough RNA for the experiments.
Collapse
Affiliation(s)
- Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Fuchinobe 5-10-1, Chuoku, , Sagamihara 252-5258 Japan
| | - Mari Kamitani
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113 Japan
| | - Yasuyuki Nomura
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| | - Natsumi Mori-Moriyama
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| | - Shigeyuki Betsuyaku
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Fuchinobe 5-10-1, Chuoku, , Sagamihara 252-5258 Japan
| | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata 997-0017 Japan
| |
Collapse
|
44
|
High Variability of Fungal Communities Associated with the Functional Tissues and Rhizosphere Soil of Picea abies in the Southern Baltics. FORESTS 2022. [DOI: 10.3390/f13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change, which leads to higher temperatures, droughts, and storms, is expected to have a strong effect on both health of forest trees and associated biodiversity. The aim of this study was to investigate the diversity and composition of fungal communities associated with the functional tissues and rhizosphere soil of healthy-looking Picea abies to better understand these fungal communities and their potential effect on tree health in the process of climate change. The study sites included 30 P. abies stands, where needles, shoots, roots, and the rhizosphere soil was sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker and subjected to high-throughput sequencing. The sequence analysis showed the presence of 232,547 high-quality reads, which following clustering were found to represent 2701 non-singleton fungal OTUs. The highest absolute richness of fungal OTUs was in the soil (1895), then in the needles (1049) and shoots (1002), and the lowest was in the roots (641). The overall fungal community was composed of Ascomycota (58.3%), Basidiomycota (37.2%), Zygomycota (2.5%), Chytridiomycota (1.6%), and Glomeromycota (0.4%). The most common fungi based on sequence read abundance were Aspergillus pseudoglaucus (7.9%), Archaeorhizomyces sp. (3.6%), and Rhinocladiella sp. (2.0%). Pathogens were relatively rare, among which the most common were Phacidium lacerum (1.7%), Cyphellophora sessilis (1.4%), and Rhizosphaera kalkhoffii (1.4%). The results showed that the detected diversity of fungal OTUs was generally high, but their relative abundance varied greatly among different study sites, thereby highlighting the complexity of interactions among the host trees, fungi, and local environmental conditions.
Collapse
|
45
|
McCloy MWD, Andringa RK, Grace JK. Resilience of Avian Communities to Urbanization and Climate Change: an Integrative Review. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.918873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The concept of ecological resilience is widely used to assess how species and ecosystems respond to external stressors but is applied infrequently at the level of the community or to chronic, ongoing disturbances. In this review, we first discuss the concept of ecological resilience and methods for quantifying resilience in ecological studies. We then synthesize existing evidence for the resilience of avian communities to climate change and urbanization, two chronic disturbances that are driving global biodiversity loss, and conclude with recommendations for future directions. We only briefly discuss the theoretical framework behind ecological resilience and species-specific responses to these two major disturbances, because numerous reviews already exist on these topics. Current research suggests strong heterogeneity in the responses and resilience of bird communities to urbanization and climate change, although community disassembly and reassembly is high following both disturbances. To advance our understanding of community resilience to these disturbances, we recommend five areas of future study (1) the development of a standardized, comprehensive community resilience index that incorporates both adaptive capacity and measures of functional diversity, (2) measurement/modeling of both community resistance and recovery in response to disturbance, (3) multi-scale and/or multi-taxa studies that include three-way interactions between plants, animals, and climate, (4) studies that incorporate interactions between disturbances, and (5) increased understanding of interactions between ecological resilience and socio-ecological dynamics. Advancement in these areas will enhance our ability to predict and respond to the rapidly accelerating effects of climate change and urbanization.
Collapse
|
46
|
Assessment of the Morphological Pattern of the Lebanon Cedar under Changing Climate: The Mediterranean Case. LAND 2022. [DOI: 10.3390/land11060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of climate change on species can influence the delicate balance in ecosystems. For this reason, conservation planning needs to take account of connectivity and the related ecological processes within the framework of climate change. In this study, we focus on the change in the ecological connectivity of the Lebanon cedar (Cedrus libani A. Rich.), which is widely distributed in the Mediterranean, particularly in the Amanus and Taurus Mountains. To this end, we evaluated the changes in spatial units providing connectivity in the potential and future distributions of the species through ecological niche modelling, morphological spatial pattern analysis, and landscape metrics. The results suggest that the species is moving to the northeast. According to the future projections, we predict that the potential habitat suitability of the species will shrink significantly and that, in the case of pessimistic scenarios, the extent of the suitable habitats will decrease, particularly in the western and central Taurus Mountain chains. A comparison of potential and future cores indicates that there will be a slight increase under the RCP 4.5 2050 scenario, whereas core areas will decrease in the RCP 4.5 2070, RCP 8.5 2050, and RCP 8.5 2070 scenarios. In addition, it is predicted that bridges would increase in the RCP 4.5 2070 and RCP 8.5 2050 scenarios but decrease in other scenarios.
Collapse
|
47
|
Buchenau N, van Kleunen M, Wilschut RA. Direct and legacy‐mediated drought effects on plant performance are species‐specific and depend on soil community composition. OIKOS 2022. [DOI: 10.1111/oik.08959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Buchenau
- Dept of Biology, Univ. of Konstanz Konstanz Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | | | | |
Collapse
|
48
|
Chiu MC, Chen CL, Chen CW, Lin HJ. Weather fluctuation can override the effects of integrated nutrient management on fungal disease incidence in the rice fields in Taiwan. Sci Rep 2022; 12:4273. [PMID: 35277560 PMCID: PMC8917239 DOI: 10.1038/s41598-022-08139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Both weather fluctuation and farming system influence the epidemiology of crop diseases. However, short-term experiments are difficult to mechanistically extrapolate into long-term ecological responses. Using a mechanistic model with Bayesian inference, long-term data spanning 10 years were used to construct relationships among weather fluctuation (temperature, relative humidity, wind, and rainfall), farming system (conventional and low-external-input farming), and crop disease in experimental rice fields in Taiwan. Conventional and low-external-input farming had similar influences on the disease incidence of rice blast. Temperature had a positive influence on the disease incidence only under high relative humidity. Rainfall positively affected the disease incidence until an optimum level of rainfall. Low-external-input farming, with a lower application of fertilizers and other sustainable nutrient management, achieved similar effects on the disease incidence to those achieved by conventional farming. This suggests that weather fluctuation may override the effect of the farming systems on fungal disease incidence in rice fields.
Collapse
Affiliation(s)
- Ming-Chih Chiu
- Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, 40227, Taiwan
- Department of Entomology, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Chi-Ling Chen
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City, 41362, Taiwan.
| | - Chun-Wei Chen
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City, 41362, Taiwan
| | - Hsing-Juh Lin
- Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, 40227, Taiwan.
| |
Collapse
|
49
|
Chivasa W, Worku M, Teklewold A, Setimela P, Gethi J, Magorokosho C, Davis NJ, Prasanna BM. Maize varietal replacement in Eastern and Southern Africa: Bottlenecks, drivers and strategies for improvement. GLOBAL FOOD SECURITY 2022; 32:100589. [PMID: 35300043 PMCID: PMC8907863 DOI: 10.1016/j.gfs.2021.100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
Seed security is vital for food security. Rapid-cycle, climate-adaptive breeding programs and seed systems that deliver new, elite varieties to farmers to replace obsolete ones can greatly improve the productivity of maize-based cropping systems in sub-Saharan Africa (SSA). Despite the importance and benefits of accelerated varietal turnover to climate change adaptation and food security, the rate of maize varietal replacement in SSA is slow. This review outlines the major bottlenecks, drivers, risks, and benefits of active replacement of maize varieties in eastern and southern Africa (ESA) and highlights strategies that are critical to varietal turnover. Although there is an upsurge of new seed companies in ESA and introduction of new varieties with better genetics in the market, some established seed companies continue to sell old (over 15-year-old) varieties. Several recently developed maize hybrids in ESA have shown significant genetic gains under farmers' conditions. Empirical evidence also shows that timely replacement of old products results in better business success as it helps seed companies maintain or improve market share and brand relevance. Therefore, proactive management of product life cycles by seed companies benefits both the farmers and businesses alike, contributing to improved food security and adaptation to the changing climate.
Collapse
Affiliation(s)
- Walter Chivasa
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya
| | - Mosisa Worku
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya
| | | | | | | | | | - Nicholas J. Davis
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya
| |
Collapse
|
50
|
Du XX, Park JR, Wang XH, Jan R, Lee GS, Kim KM. Genotype and Phenotype Interaction between OsWKRYq6 and BLB after Xanthomonas oryzae pv. Oryzae Inoculation in the Field. PLANTS 2022; 11:plants11030287. [PMID: 35161267 PMCID: PMC8840003 DOI: 10.3390/plants11030287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Bacterial leaf blight (BLB) is an important and devastating rice disease caused by the pathogen Xanthomonas oryzae pv. Oryzae (Xoo). In particular, in recent years, the occurrence of abnormal climate and warming phenomena has produced a good environment for the occurrence of BLB, and the rice yield due to the occurrence of BLB continues to decrease. Currently, molecular breeding is applied by searching for resistant genes to development of BLB resistance cultivar. In addition, there are many methods for screening resistant genes, and among them, phenotype analysis in the field and applied research is rarely conducted. Due to recent rapid climate change, BLB is a major problem that has a more serious negative effect on rice yield. Therefore, we suggest OsWRKYq6 to be effectively used for breeding BLB-resistant cultivars by screening BLB-resistant genes. In this study, the BLB-resistant gene was screened using the lesion length, which most definitely changes to the phenotype when Xoo is infected. OsWRKYq6 was finally selected as a BLB resistance gene by analyzing the phenotype and genotype after inoculating Xoo in 120 Cheongcheong/Nagdong double haploid (CNDH) lines in the field. After Xoo inoculation, lesion length and yield were investigated, and 120 CNDH lines were divided from BLB-resistant and susceptible lines. Moreover, when the transcription level of OsWRKYq6 was analyzed in the resistant and susceptible lines after Xoo inoculation in the field, the expression level was regulated to a high level in the resistant line. In this study, we propose OsWRKYq6 as a transcription factor involved in BLB resistance. Currently, the differentiation of various races is proceeding rapidly due to rapid climate change. In addition, screening of transcription factor genes involved in BLB resistance in the field can be effectively applied to molecular breeding to develop resistant cultivars in preparation for rapid climate change.
Collapse
Affiliation(s)
- Xiao-Xuan Du
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Ryoung Park
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
- Department of Crop Breeding, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Xiao-Han Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Korea;
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
| | - Gang-Seob Lee
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4791 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4791 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| |
Collapse
|