1
|
Wang L, Luo W, Zhang S, Zhang J, He L, Shi Y, Gao L, Wu B, Nie X, Hu C, Han X, He C, Xu B, Liang G. Macrophage-derived FGFR1 drives atherosclerosis through PLCγ-mediated activation of NF-κB inflammatory signalling pathway. Cardiovasc Res 2024; 120:1385-1399. [PMID: 38842387 DOI: 10.1093/cvr/cvae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Atherosclerosis (AS) is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signalling in AS are not known. In the present study, we investigated fibroblast growth factor receptor 1 (FGFR1) signalling in AS development and progression. METHODS AND RESULTS Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION Our study provides evidence of a new FGFR1-PLCγ-NF-κB axis in macrophages in inflammatory AS, supporting FGFR1 as a potentially therapeutic target for AS-related diseases.
Collapse
MESH Headings
- Animals
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Phospholipase C gamma/metabolism
- Phospholipase C gamma/genetics
- NF-kappa B/metabolism
- Signal Transduction
- Macrophages/metabolism
- Male
- Female
- Disease Models, Animal
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Humans
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Lipoproteins, LDL/metabolism
- Diet, High-Fat
- Pyrazoles/pharmacology
- Inflammation Mediators/metabolism
- Benzamides/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Piperazines
Collapse
Affiliation(s)
- Lintao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Suya Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Junsheng Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Department of Pathology, Anhui Public Health Clinical Center, Hefei, Anhui 230032, China
| | - Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Yifan Shi
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Baochuan Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Xiaoyan Nie
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Chenghong Hu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
2
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
3
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
5
|
Cao L, Wei L, Du Q, Su Y, Ye S, Liu K. Spleen Toxicity of Organophosphorus Flame Retardant TDCPP in Mice and the Related Mechanisms. TOXICS 2023; 11:231. [PMID: 36976996 PMCID: PMC10051780 DOI: 10.3390/toxics11030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphorus flame retardant that has been utilized in recent years as a primary replacement for polybrominated diphenyl ethers (PBDEs) in a wide variety of fire-sensitive applications. However, the impact of TDCPP on the immune system has not been fully determined. As the largest secondary immune organ in the body, the spleen is considered to be an important study endpoint for determining immune defects in the body. The aim of this study is to investigate the effect of TDCPP toxicity on the spleen and its possible molecular mechanisms. In this study, for 28 consecutive days, TDCPP was administered intragastrically (i.g), and we assessed the general condition of mice by evaluating their 24 h water and food intake. Pathological changes in spleen tissues were also evaluated at the end of the 28-day exposure. To measure the TDCPP-induced inflammatory response in the spleen and its consequences, the expression of the critical players in the NF-κB pathway and mitochondrial apoptosis were detected. Lastly, RNA-seq was performed to identify the crucial signaling pathways of TDCPP-induced splenic injury. The results showed that TDCPP intragastric exposure triggered an inflammatory response in the spleen, likely through activating the NF-κB/IFN-γ/TNF-α/IL-1β pathway. TDCPP also led to mitochondrial-related apoptosis in the spleen. Further RNA-seq analysis suggested that the TDCPP-mediated immunosuppressive effect is associated with the inhibition of chemokines and the expression of their receptor genes in the cytokine-cytokine receptor interaction pathway, including four genes of the CC subfamily, four genes of the CXC subfamily, and one gene of the C subfamily. Taken together, the present study identifies the sub-chronic splenic toxicity of TDCPP and provides insights on the potential mechanisms of TDCPP-induced splenic injury and immune suppression.
Collapse
Affiliation(s)
- Lanqin Cao
- Xiangya Hospital, Central South University, Changsha 410078, China
| | - Lai Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qiaoyun Du
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Ying Su
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Kaihua Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Chan J, Chan J, Shao L, Stawicki SS, Pham VC, Akita RW, Hafner M, Crocker L, Yu K, Koerber JT, Schaefer G, Comps-Agrar L. Systematic pharmacological analysis of agonistic and antagonistic fibroblast growth factor receptor 1 MAbs reveals a similar unique mode of action. J Biol Chem 2023; 299:102729. [PMID: 36410439 PMCID: PMC9758440 DOI: 10.1016/j.jbc.2022.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.
Collapse
Affiliation(s)
- Jocelyn Chan
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA
| | - Lily Shao
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Scott S Stawicki
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Victoria C Pham
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - Rob W Akita
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Lisa Crocker
- Department of Translational Oncology, Genentech Inc, South San Francisco, California, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Gabriele Schaefer
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA.
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
7
|
Gasser E, Sancar G, Downes M, Evans RM. Metabolic Messengers: fibroblast growth factor 1. Nat Metab 2022; 4:663-671. [PMID: 35681108 PMCID: PMC9624216 DOI: 10.1038/s42255-022-00580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
While fibroblast growth factor (FGF) 1 is expressed in multiple tissues, only adipose-derived and brain FGF1 have been implicated in the regulation of metabolism. Adipose FGF1 production is upregulated in response to dietary stress and is essential for adipose tissue plasticity in these conditions. Similarly, in the brain, FGF1 secretion into the ventricular space and the adjacent parenchyma is increased after a hypercaloric challenge induced by either feeding or glucose infusion. Potent anorexigenic properties have been ascribed to both peripheral and centrally injected FGF1. The ability of recombinant FGF1 and variants with reduced mitogenicity to lower glucose, suppress adipose lipolysis and promote insulin sensitization elevates their potential as candidates in the treatment of type 2 diabetes mellitus and associated comorbidities. Here, we provide an overview of the known metabolic functions of endogenous FGF1 and discuss its therapeutic potential, distinguishing between peripherally or centrally administered FGF1.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Leyden GM, Shapland CY, Davey Smith G, Sanderson E, Greenwood MP, Murphy D, Richardson TG. Harnessing tissue-specific genetic variation to dissect putative causal pathways between body mass index and cardiometabolic phenotypes. Am J Hum Genet 2022; 109:240-252. [PMID: 35090585 PMCID: PMC8874216 DOI: 10.1016/j.ajhg.2021.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Body mass index (BMI) is a complex disease risk factor known to be influenced by genes acting via both metabolic pathways and appetite regulation. In this study, we aimed to gain insight into the phenotypic consequences of BMI-associated genetic variants, which may be mediated by their expression in different tissues. First, we harnessed meta-analyzed gene expression datasets derived from subcutaneous adipose (n = 1257) and brain (n = 1194) tissue to identify 86 and 140 loci, respectively, which provided evidence of genetic colocalization with BMI. These two sets of tissue-partitioned loci had differential effects with respect to waist-to-hip ratio, suggesting that the way they influence fat distribution might vary despite their having very similar average magnitudes of effect on BMI itself (adipose = 0.0148 and brain = 0.0149 standard deviation change in BMI per effect allele). For instance, BMI-associated variants colocalized with TBX15 expression in adipose tissue (posterior probability [PPA] = 0.97), but not when we used TBX15 expression data derived from brain tissue (PPA = 0.04) This gene putatively influences BMI via its role in skeletal development. Conversely, there were loci where BMI-associated variants provided evidence of colocalization with gene expression in brain tissue (e.g., NEGR1, PPA = 0.93), but not when we used data derived from adipose tissue, suggesting that these genes might be more likely to influence BMI via energy balance. Leveraging these tissue-partitioned variant sets through a multivariable Mendelian randomization framework provided strong evidence that the brain-tissue-derived variants are predominantly responsible for driving the genetically predicted effects of BMI on cardiovascular-disease endpoints (e.g., coronary artery disease: odds ratio = 1.05, 95% confidence interval = 1.04-1.07, p = 4.67 × 10-14). In contrast, our analyses suggested that the adipose tissue variants might predominantly be responsible for the underlying relationship between BMI and measures of cardiac function, such as left ventricular stroke volume (beta = 0.21, 95% confidence interval = 0.09-0.32, p = 6.43 × 10-4).
Collapse
Affiliation(s)
- Genevieve M Leyden
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, United Kingdom; Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, United Kingdom.
| | - Chin Yang Shapland
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Michael P Greenwood
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, United Kingdom; Novo Nordisk Research Centre, Headington, Oxford, OX3 7FZ, United Kingdom.
| |
Collapse
|
9
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
10
|
Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism 2021; 121:154819. [PMID: 34153302 PMCID: PMC8277751 DOI: 10.1016/j.metabol.2021.154819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Emerging evidence implicates the circulating α-klotho protein as a prominent regulator of energy balance and substrate metabolism, with diverse, tissue-specific functions. Despite its well-documented ubiquitous role inhibiting insulin signaling, α-klotho elicits potent antidiabetic and anti-obesogenic effects. α-Klotho facilitates insulin release and promotes β cell health in the pancreas, stimulates lipid oxidation in liver and adipose tissue, attenuates hepatic gluconeogenesis, and increases whole-body energy expenditure. The mechanisms underlying α-klotho's peripheral functions are multifaceted, including hydrolyzing transient receptor potential channels, stimulating integrin β1➔focal adhesion kinase signaling, and activating PPARα via inhibition of insulin-like growth factor receptor 1. Moreover, until recently, potential metabolic roles of α-klotho in the central nervous system remained unexplored; however, a novel α-klotho➔fibroblast growth factor receptor➔PI3kinase signaling axis in the arcuate nucleus of the hypothalamus has been identified as a critical regulator of energy balance and glucose metabolism. Overall, the role of circulating α-klotho in the regulation of metabolism is a new focus of research, but accumulating evidence identifies this protein as an encouraging therapeutic target for Type 1 and 2 Diabetes and obesity. This review analyzes the new literature investigating α-klotho-mediated regulation of metabolism and proposes impactful future directions to progress our understanding of this complex metabolic protein.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
11
|
Nolte T, Baumgärtner W, Colbatzky F, Knippel A, Marxfeld H, Nehrbass D, Odin M, Popp A, Treumann S, Yen HY, Zellmer J, Deschl U. Proceedings of the 2020 Classic Examples in Toxicologic Pathology XXVII. Toxicol Pathol 2021; 49:1206-1228. [PMID: 34259102 DOI: 10.1177/01926233211019288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The histopathology slide seminar "Classic Examples in Toxicologic Pathology XXVII" was held on February 21 and 22, 2020, at the Department of Pathology at the University of Veterinary Medicine in Hannover, Germany, with joint organization by the European Society of Toxicologic Pathology. The goal of this annual seminar is to present and discuss classical and actual cases of toxicologic pathology. This article summarizes the presentations given during the seminar, including images of representative lesions. Ten actual and classical cases of toxicologic pathology, mostly induced by a test article, were presented. These included small intestine pathology and transcriptomics induced by a γ-secretase modulator, liver findings in nonhuman primates induced by gene therapy, drug-induced neutropenia in dogs, device-induced growth plate lesions, polycystic lesions in CAR/PXR double knockout mice, inner ear lesions in transgenic mice, findings in Beagle dogs induced by an inhibitor of the myeloid leukemia cell differentiation protein MCL1, findings induced by a monovalent fibroblast growth factor receptor 1 antagonist, kidney lesions induced by a mammalian target of rapamycin inhibitor in combination therapy, and findings in mutation-specific drugs.
Collapse
Affiliation(s)
- Thomas Nolte
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Wolfgang Baumgärtner
- Institut für Pathologie, Stiftung 26556Tierärztliche Hochschule Hannover, Germany
| | - Florian Colbatzky
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | | | | | - Dirk Nehrbass
- 161930AO Research Institute Davos (ARI), Davos, Switzerland
| | - Marielle Odin
- 123188Roche Innovation Center Basel, Pharma Research & Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Popp
- 385330Abbvie GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Hsi-Yu Yen
- 9184Technical University, Munich, Germany
| | | | - Ulrich Deschl
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| |
Collapse
|
12
|
Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am J Physiol Regul Integr Comp Physiol 2021; 320:R994-R1003. [PMID: 33826442 DOI: 10.1152/ajpregu.00296.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.
Collapse
Affiliation(s)
- Matei Bolborea
- Central and Peripheral Mechanisms of Neurodegeneration, INSERM U1118, Université de Strasbourg, Strasbourg, France.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Fanny Langlet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Zhang S, Huang J, Zhang L, Gu J, Song Q, Cai Y, Zhong J, Zhong H, Deng Y, Zhu W, Zhao J, Deng N. Fermentation, Purification, and Tumor Inhibition of a Disulfide-Stabilized Diabody Against Fibroblast Growth Factor-2. Front Oncol 2021; 11:585457. [PMID: 33718141 PMCID: PMC7947002 DOI: 10.3389/fonc.2021.585457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is considered one of the hallmarks of cancer and plays a critical role in the development of tumor. Fibroblast growth factor 2 (FGF-2) is a member of the FGF family and participates in excessive cancer cell proliferation and tumor angiogenesis. Thus, targeting FGF-2 was considered to be a promising anti-tumor strategy. A disulfide-stabilized diabody (ds-Diabody) against FGF-2 was produced in Pichia pastoris (GS115) by fermentation and the anti-tumor activity was analyzed. The novel 10-L fed batch fermentation with newly designed media was established, and the maximum production of the ds-Diabody against FGF-2 reached 210.4 mg/L. The ds-Diabody against FGF-2 was purified by Ni2+ affinity chromatography and DEAE anion exchange chromatography. The recombinant ds-Diabody against FGF-2 could effectively inhibit proliferation, migration, and invasion of melanoma and glioma tumor cells stimulated by FGF-2. Furthermore, xenograft tumor model assays showed that the ds-Diabody against FGF-2 had potent antitumor activity in nude mice by inhibiting tumor growth and angiogenesis. The tumor growth inhibition rate of melanoma and glioma was about 70 and 45%, respectively. The tumor angiogenesis inhibition rate of melanoma and glioma was about 64 and 51%, respectively. The results revealed that the recombinant ds-Diabody against FGF-2 may be a promising anti-tumor drug for cancer therapy.
Collapse
Affiliation(s)
- Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Jiangtao Gu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yaxiong Cai
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Jiangchuan Zhong
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Hui Zhong
- Biomedicine Translational Institute, Jinan University, Guangzhou, China
| | - Yanrui Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Jianfu Zhao
- Cancer Diagnosis and Therapy Research Center, Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Yu P, Knippel A, Onidi M, Paoletti A, Vigna E, Hellmann J, Esdar C. A novel monovalent FGFR1 antagonist: Preclinical safety profiles in rodents and non-human primates. Toxicol Appl Pharmacol 2020; 406:115215. [DOI: 10.1016/j.taap.2020.115215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 01/26/2023]
|
15
|
Landry T, Laing BT, Li P, Bunner W, Rao Z, Prete A, Sylvestri J, Huang H. Central α-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice. Diabetes 2020; 69:1368-1381. [PMID: 32332158 PMCID: PMC7306125 DOI: 10.2337/db19-0941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
α-Klotho is a circulating factor with well-documented antiaging properties. However, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, energy balance, and glucose homeostasis. Intracerebroventricular administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of type 1 and 2 diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing miniature inhibitory postsynaptic currents. Experiments in hypothalamic GT1-7 cells observed that α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256 as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor receptor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. Phosphatidylinositol 3 kinase (PI3K) inhibition also abolished α-klotho's ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Brenton Thomas Laing
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Peixin Li
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Wyatt Bunner
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Zhijian Rao
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Amber Prete
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Julia Sylvestri
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| |
Collapse
|
16
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
17
|
Kamatkar N, Levy M, Hébert JM. Development of a Monomeric Inhibitory RNA Aptamer Specific for FGFR3 that Acts as an Activator When Dimerized. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:530-539. [PMID: 31357131 PMCID: PMC6661505 DOI: 10.1016/j.omtn.2019.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022]
Abstract
There have been limited options for people who suffer from fibroblast growth factor receptor (FGFR) signaling disorders. In this study, we developed RNA aptamers specific for FGFR3 as potential therapeutic agents. Using a structured aptamer library, we performed ten rounds of SELEX (systematic evolution of ligands by exponential enrichment) against mouse FGFR3c protein. Using an engineered BaF3 cell line, one aptamer clone from round 6 of the selection inhibited FGF-dependent cell growth with a concentration at which 50% of growth is observed (IC50) of ∼260 nM and bound both mouse and human FGFR3 but not FGFR1 or FGFR2. This inhibitor of FGFR3 signaling (iR3), when dimerized using a template-driven approach, resulted in a functional activator of FGFR3 (aR3). We validated the activity and specificity of iR3 and aR3 on engineered BaF3 cell lines, mouse and human FGFR protein, and primary cultures of neuroepithelial precursor cells.
Collapse
Affiliation(s)
- Nachiket Kamatkar
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jean M Hébert
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Kaminskas B, Goodman T, Hagan A, Bellusci S, Ornitz DM, Hajihosseini MK. Characterisation of endogenous players in fibroblast growth factor-regulated functions of hypothalamic tanycytes and energy-balance nuclei. J Neuroendocrinol 2019; 31:e12750. [PMID: 31111569 PMCID: PMC6772024 DOI: 10.1111/jne.12750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023]
Abstract
The mammalian hypothalamus regulates key homeostatic and neuroendocrine functions ranging from circadian rhythm and energy balance to growth and reproductive cycles via the hypothalamic-pituitary and hypothalamic-thyroid axes. In addition to its neurones, tanycytes are taking centre stage in the short- and long-term augmentation and integration of diverse hypothalamic functions, although the genetic regulators and mediators of their involvement are poorly understood. Exogenous interventions have implicated fibroblast growth factor (FGF) signalling, although the focal point of the action of FGF and any role for putative endogenous players also remains elusive. We carried out a comprehensive high-resolution screen of FGF signalling pathway mediators and modifiers using a combination of in situ hybridisation, immunolabelling and transgenic reporter mice, aiming to map their spatial distribution in the adult hypothalamus. Our findings suggest that β-tanycytes are the likely focal point of exogenous and endogenous action of FGF in the third ventricular wall, utilising FGF receptor (FGFR)1 and FGFR2 IIIc isoforms, but not FGFR3. Key IIIc-activating endogenous ligands include FGF1, 2, 9 and 18, which are expressed by a subset of ependymal and parenchymal cells. In the parenchymal compartment, FGFR1-3 show divergent patterns, with FGFR1 being predominant in neuronal nuclei and expression of FGFR3 being associated with glial cell function. Intracrine FGFs are also present, suggestive of multiple modes of FGF function. Our findings provide a testable framework for understanding the complex role of FGFs with respect to regulating the metabolic endocrine and neurogenic functions of hypothalamus in vivo.
Collapse
Affiliation(s)
| | - Timothy Goodman
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andrew Hagan
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | - Saverio Bellusci
- Cardio‐Pulmonary InstituteJustus Liebig UniversityGiessenGermany
- International Collaborative Centre on Growth Factor ResearchLife Science InstituteWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - David M. Ornitz
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | - Mohammad K. Hajihosseini
- School of Biological SciencesUniversity of East AngliaNorwichUK
- International Collaborative Centre on Growth Factor ResearchLife Science InstituteWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
19
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev 2019; 46:54-65. [DOI: 10.1016/j.cytogfr.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023]
|
21
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
22
|
Tan Q, Wang Z, Wang Q, Wang Y, Huang Z, Su N, Jin M, Kuang L, Qi H, Ni Z, Li C, Zhu Y, Jiang W, Chen H, Deng C, Du X, Xie Y, Chen L. A novel FGFR1-binding peptide exhibits anti-tumor effect on lung cancer by inhibiting proliferation and angiogenesis. Int J Biol Sci 2018; 14:1389-1398. [PMID: 30123084 PMCID: PMC6097486 DOI: 10.7150/ijbs.24739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
It has been reported that overactivation of fibroblast growth factor receptor 1 (FGFR1) is an important characteristic found in most non-small cell lung cancer (NSCLC) samples. Here, we identified a FGFR1 inhibitory peptide R1-P2 and investigated its effects on the lung cancer cells growth and angiogenesis in vitro and in vivo. Our results demonstrate that R1-P2 bound to human FGFR1 protein, and efficiently blocked the binding of FGF2 to FGFR1 in A549 and NCI-H460 cells. Moreover, this peptide significantly decreased the proliferation, migration and invasion, but promoted the apoptosis in both cell lines. In addition, R1-P2 treatment effectively inhibited the tumor growth and neovascularization in nude mice with xenografted A549 cells, and R1-P2 also significantly inhibited the FGF2-induced angiogenesis in tube formation experiment and CAM model. We further demonstrated that R1-P2 suppressed lung tumor growth through anti-angiogenic and anti-proliferative activity. Our data may provide a novle leading molecule with potential application in the treatment of FGFR1 activation related lung cancers.
Collapse
Affiliation(s)
- Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuanqiang Wang
- College of Bioengineering, Chongqing Institute of Technology, Chongqing, China
| | - Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
Monoclonal antibody targeting of fibroblast growth factor receptor 1c causes cardiac valvulopathy in rats. Toxicol Appl Pharmacol 2018; 355:147-155. [PMID: 30008375 DOI: 10.1016/j.taap.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
Abstract
Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) have been proposed as potential drug targets for the treatment of obesity. The aim of this study was to assess the potential toxicity in rats of three anti-FGFR1c mAbs with differential binding activity prior to clinical development. Groups of male rats received weekly injections of either one of two FGFR1c-specific mAbs or an FGFR1c/FGFR4-specific mAb at 10 mg/kg for up to 4 weeks. All three mAbs caused significant reductions in food intake and weight loss leading to some animals being euthanized early for welfare reasons. In all three groups given these mAbs, microscopic changes were seen in the bones and heart valves. In the bones of the femoro-tibial joint, thickening of the diaphyseal cortex of long bones, due to deposition of well organized new lamellar bone, indicated that an osteogenic effect was observed. In the heart, valvulopathy described as an endocardial myxomatous change affecting the mitral, pulmonary, tricuspid and aortic valves was observed in all mAb-treated animals. The presence of FGFR1 mRNA expression in the heart valves was confirmed using in situ hybridization. Targeting the FGF-FGFR1c pathway with anti-FGFR1c mAbs leads to drug induced valvulopathy in rats. In effect, this precluded the development of these mAbs as potential anti-obesity drugs. The valvulopathy observed was similar to that described for fenfluramine and dexafenfluramine. The pathogenesis of the drug-induced valvulopathy is considered FGFR1c-mediated, based on the specificity of the mAbs and FGFR1 mRNA expression in the heart valves.
Collapse
|
24
|
Xu C, Messina A, Somm E, Miraoui H, Kinnunen T, Acierno J, Niederländer NJ, Bouilly J, Dwyer AA, Sidis Y, Cassatella D, Sykiotis GP, Quinton R, De Geyter C, Dirlewanger M, Schwitzgebel V, Cole TR, Toogood AA, Kirk JM, Plummer L, Albrecht U, Crowley WF, Mohammadi M, Tena-Sempere M, Prevot V, Pitteloud N. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol Med 2018; 9:1379-1397. [PMID: 28754744 PMCID: PMC5623842 DOI: 10.15252/emmm.201607376] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin‐releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with β‐Klotho (KLB), the obligate co‐receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH. Genetic screening of 334 CHH patients identified seven heterozygous loss‐of‐function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.
Collapse
Affiliation(s)
- Cheng Xu
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hichem Miraoui
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Tarja Kinnunen
- Department of Biology, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - James Acierno
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Bouilly
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrew A Dwyer
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,University of Lausanne Institute of Higher Education and Research in Healthcare, Lausanne, Switzerland
| | - Yisrael Sidis
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniele Cassatella
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Richard Quinton
- Institute for Genetic Medicine, University of Newcastle-on-Tyne, Newcastle-on Tyne, UK
| | - Christian De Geyter
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Valérie Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Trevor R Cole
- Department of Clinical Genetics, Birmingham Women's Hospital, Birmingham, UK
| | - Andrew A Toogood
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Jeremy Mw Kirk
- Department of Endocrinology, Birmingham Children's Hospital, Birmingham, UK
| | - Lacey Plummer
- National Center for Translational Research in Reproduction and Infertility, Harvard Reproductive Endocrine Sciences Center of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Urs Albrecht
- Department of Biology, Biochemistry, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - William F Crowley
- National Center for Translational Research in Reproduction and Infertility, Harvard Reproductive Endocrine Sciences Center of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, JPARC, Lille, France.,FHU 1000 Days for Health, School of Medicine, University of Lille, Lille, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
25
|
He XX, Du S, Gao SQ, Chen JY, Cao RJ, Xing ZK, Kazim ARS, Yu HL, Zheng QC, Zhu XJ. Humanization of fibroblast growth factor 1 single-chain antibody and validation for its antitumorigenic efficacy in breast cancer and glioma cells. J Cell Mol Med 2018; 22:3259-3263. [PMID: 29575613 PMCID: PMC5980129 DOI: 10.1111/jcmm.13547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023] Open
Abstract
Single‐chain variable fragment (scFv) antibodies are the smallest immunoglobulins with high antigen‐binding affinity. We have previously reported that fibroblast growth factor 1 played pivotal roles in cancer development and generated a mouse scFv (mscFv1C9) could effectively prohibit cancer cell proliferation in vitro and in vivo. Here, we further humanized this scFv (hscFv1C9) using a structure‐guided complementarity determining region grafting strategy. The purified hscFv1C9 maintained similar antigen‐binding affinity and specificity as mscFv1C9, and it was capable of inhibiting growth of different tumours in vitro and in vivo. These data strongly suggested that hscFv1C9 has antitumour potentials.
Collapse
Affiliation(s)
- Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shi-Qian Gao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jing-Ying Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ran-Juan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Kai Xing
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Alia Rizvi Syeda Kazim
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
26
|
Liu S, Marcelin G, Blouet C, Jeong JH, Jo YH, Schwartz GJ, Chua S. A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol Metab 2017; 8:37-50. [PMID: 29290621 PMCID: PMC5985052 DOI: 10.1016/j.molmet.2017.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Bile acids have been implicated as important regulators of glucose metabolism via activation of FXR and GPBAR1. We have previously shown that FGF19 can modulate glucose handling by suppressing the activity of hypothalamic AGRP/NPY neurons. As bile acids stimulate the release of FGF19/FGF15 into the circulation, we pursued the potential of bile acids to improve glucose tolerance via a gut-brain axis involving FXR and FGF15/FGF19 within enterocytes and FGF receptors on hypothalamic AGRP/NPY neurons. METHODS A 5-day gavage of taurocholic acid, mirroring our previous protocol of a 5-day FGF19 treatment, was performed. Oral glucose tolerance tests in mice with genetic manipulations of FGF signaling and melanocortin signaling were used to define a gut-brain axis responsive to bile acids. RESULTS The taurocholic acid gavage led to increased serum concentrations of taurocholic acid as well as increases of FGF15 mRNA in the ileum and improved oral glucose tolerance in obese (ob/ob) mice. In contrast, lithocholic acid, an FXR antagonist but a potent agonist for GPBAR1, did not improve glucose tolerance. The positive response to taurocholic acid is dependent upon an intact melanocortinergic system as obese MC4R-null mice or ob/ob mice without AGRP did not show improvements in glucose tolerance after taurocholate gavage. We also tested the FGF receptor isoform necessary for the bile acid response, using AGRP:Fgfr1-/- and AGRP:Fgfr2-/- mice. While the absence of FGFR1 in AGRP/NPY neurons did not alter glucose tolerance after taurocholate gavage, manipulations of Fgfr2 caused bidirectional changes depending upon the experimental model. We hypothesized the existence of an endogenous hypothalamic FGF, most likely FGF17, that acted as a chronic activator of AGRP/NPY neurons. We developed two short peptides based on FGF8 and FGF17 that should antagonize FGF17 action. Both of these peptides improved glucose homeostasis after a 4-day course of central and peripheral injections. Significantly, daily average blood glucose from continuous glucose monitoring was reduced in all tested animals but glucose concentrations remained in the euglycemia range. CONCLUSIONS We have defined a gut-brain axis that regulates glucose metabolism mediated by antagonistic fibroblast growth factors. From the intestine, bile acids stimulate FGF15 secretion, leading to activation of the FGF receptors in hypothalamic AGRP/NPY neurons. FGF receptor intracellular signaling subsequently silences AGRP/NPY neurons, leading to improvements of glucose tolerance that are likely mediated by the autonomic nervous system. Finally, short peptides that antagonize homodimeric FGF receptor signaling within the hypothalamus have beneficial effects on glucose homeostasis without inducing hypoglycemia. These peptides could provide a new mode of regulating glucose metabolism.
Collapse
Affiliation(s)
- Shunmei Liu
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Genevieve Marcelin
- INSERM UMR S 1166, ICAN Institute, Faculte de Medecine Pitie-Salpetriere, 91 Boulevard de l'Hopital, 75013 Paris, France
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Jae Hoon Jeong
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Young-Hwan Jo
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Streamson Chua
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
27
|
|
28
|
Lewis JE, Samms RJ, Cooper S, Luckett JC, Perkins AC, Dunbar JD, Smith DP, Emmerson PJ, Adams AC, Ebling FJP, Tsintzas K. Antibody-Mediated Targeting of the FGFR1c Isoform Increases Glucose Uptake in White and Brown Adipose Tissue in Male Mice. Endocrinology 2017; 158:3090-3096. [PMID: 28938451 PMCID: PMC5659699 DOI: 10.1210/en.2017-00591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
The increased prevalence of obesity and its cardiometabolic implications demonstrates the imperative to identify novel therapeutic targets able to effect meaningful metabolic changes in this population. Antibody-mediated targeting of fibroblast growth factor receptor 1c isoform (FGFR1c) has been shown to ameliorate hyperglycemia and protect from diet- and genetically-induced obesity in rodents and nonhuman primates. However, it is currently unknown which tissue(s) contribute to this glucose-lowering effect. Thus, to elucidate this effect, we treated euglycemic mice with H7, a monoclonal antibody that selectively targets FGFR1c, and used whole-body positron emission computed tomography with a glucose tracer (18F-fluorodeoxyglucose). Treatment with H7 increased basal glucose uptake in white adipose tissue (WAT), brown adipose tissue (BAT), the brain, and liver but reduced it in the quadriceps muscles. Consequentially, blood glucose was significantly reduced in response to treatment. Under insulin-stimulated conditions, the effects of H7 were maintained in WAT, BAT, liver, and muscle. Treatment with H7 decreased triglyceride (TG) content and increased adipose TG lipase content in white adipose tissue, while increasing activation of acetyl coenzyme A carboxylase, suggesting futile cycling of TGs, albeit favoring net hydrolysis. We demonstrated, in vitro, this is a direct effect of treatment in adipose tissue, as basal cellular respiration and glucose uptake were increased in response to treatment. Taken together, these data suggest that antibody-mediated targeting of FGFR1c exerts its powerful glucose-lowering efficacy primarily due to increased glucose uptake in adipose tissue.
Collapse
MESH Headings
- Acetyl-CoA Carboxylase/metabolism
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Blood Glucose/analysis
- Brain/drug effects
- Brain/metabolism
- Enzyme Activation/drug effects
- Glucose/metabolism
- Insulin/pharmacology
- Lipase/analysis
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Protein Isoforms
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/immunology
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Jo E. Lewis
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Ricardo J. Samms
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
- Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Scott Cooper
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jeni C. Luckett
- School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alan C. Perkins
- School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | - Francis J. P. Ebling
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Kostas Tsintzas
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
29
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
30
|
Lewis JE, Samms RJ, Cooper S, Luckett JC, Perkins AC, Adams AC, Tsintzas K, Ebling FJP. Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster. Sci Rep 2017; 7:4238. [PMID: 28652585 PMCID: PMC5484705 DOI: 10.1038/s41598-017-03607-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022] Open
Abstract
FGF21 exerts profound metabolic effects in Siberian hamsters exposed to long day (LD) photoperiods that increase appetite and adiposity, however these effects are attenuated in short day (SD) animals that display hypophagia and reduced adiposity. The aim of this study was to investigate whether the beneficial effects of a novel mimetic of FGF21 in the LD state are a consequence of increased adiposity or of the central photoperiodic state. This was achieved by investigating effects of FGF21 in aged hamsters, which is associated with reduced adiposity. In LD hamsters with increased adiposity, FGF21 lowered body weight as a result of both reduced daily food intake and increased caloric expenditure, driven by an increase in whole-body fat oxidation. However, in LD animals with reduced adiposity, the effect of FGF21 on body weight, caloric intake and fat oxidation were significantly attenuated or absent when compared to those with increased adiposity. These attenuated/absent effects were underpinned by the inability of FGF21 to increase the expression of key thermogenic genes in interscapular and visceral WAT. Our study demonstrates the efficacy of a novel FGF21 mimetic in hamsters, but reveals attenuated effects in the animal model where adiposity is reduced naturally independent of photoperiod.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Jeni C Luckett
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Andrew C Adams
- Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Kostas Tsintzas
- MRC/ARUK Centre for Musculoskeletal Ageing, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
31
|
Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017; 30:/j/hmbci.ahead-of-print/hmbci-2017-0002/hmbci-2017-0002.xml. [PMID: 28525362 DOI: 10.1515/hmbci-2017-0002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) analogs and FGF21 receptor agonists (FGF21RAs) that mimic FGF21 ligand activity constitute the new "FGF21-class" of anti-obesity and anti-diabetic molecules that improve insulin sensitivity, ameliorate hepatosteatosis and promote weight loss. The metabolic actions of FGF21-class proteins in obese mice are attributed to stimulation of brown fat thermogenesis and increased secretion of adiponectin. The therapeutic utility of this class of molecules is being actively investigated in clinical trials for the treatment of type 2 diabetes and non-alcoholic steatohepatitis (NASH). This review is focused on various FGF21-class molecules, their molecular designs and the preclinical and clinical activities. These molecules include modified FGF21 as well as agonistic antibodies against the receptor for FGF21, namely the complex of FGF receptor 1 (FGFR1) and the obligatory coreceptor βKlotho (KLB). In addition, a novel approach to increase endogenous FGF21 activity by inhibiting the FGF21-degrading protease fibroblast activation protein (FAP) is discussed.
Collapse
|
32
|
Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith RC, White KE. Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho. J Am Soc Nephrol 2017; 28:1162-1174. [PMID: 27837149 PMCID: PMC5373441 DOI: 10.1681/asn.2015111266] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 10/01/2016] [Indexed: 12/22/2022] Open
Abstract
αKlotho (αKL) regulates mineral metabolism, and diseases associated with αKL deficiency are characterized by hyperphosphatemia and vascular calcification (VC). αKL is expressed as a membrane-bound protein (mKL) and recognized as the coreceptor for fibroblast growth factor-23 (FGF23) and a circulating soluble form (cKL) created by endoproteolytic cleavage of mKL. The functions of cKL with regard to phosphate metabolism are unclear. We tested the ability of cKL to regulate pathways and phenotypes associated with hyperphosphatemia in a mouse model of CKD-mineral bone disorder and αKL-null mice. Stable delivery of adeno-associated virus (AAV) expressing cKL to diabetic endothelial nitric oxide synthase-deficient mice or αKL-null mice reduced serum phosphate levels. Acute injection of recombinant cKL downregulated the renal sodium-phosphate cotransporter Npt2a in αKL-null mice supporting direct actions of cKL in the absence of mKL. αKL-null mice with sustained AAV-cKL expression had a 74%-78% reduction in aorta mineral content and a 72%-77% reduction in mineral volume compared with control-treated counterparts (P<0.01). Treatment of UMR-106 osteoblastic cells with cKL + FGF23 increased the phosphorylation of extracellular signal-regulated kinase 1/2 and induced Fgf23 expression. CRISPR/Cas9-mediated deletion of fibroblast growth factor receptor 1 (FGFR1) or pretreatment with inhibitors of mitogen-activated kinase kinase 1 or FGFR ablated these responses. In summary, sustained cKL treatment reduced hyperphosphatemia in a mouse model of CKD-mineral bone disorder, and it reduced hyperphosphatemia and prevented VC in mice without endogenous αKL. Furthermore, cKL stimulated Fgf23 in an FGFR1-dependent manner in bone cells. Collectively, these findings indicate that cKL has mKL-independent activity and suggest the potential for enhancing cKL activity in diseases of hyperphosphatemia with associated VC.
Collapse
Affiliation(s)
- Julia M Hum
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda M O'Bryan
- Biotechnology Discovery Research, Lilly Research Laboratories
| | - Arun K Tatiparthi
- Lead Optimization Toxicology and Pharmacology, Covance Inc., Greenfield, Indiana
| | - Taryn A Cass
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Martin S Cramer
- Biotechnology Discovery Research, Lilly Research Laboratories
| | | | | | - Jonathan M Wilson
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, Indiana; and
| | | | - Kenneth E White
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|
33
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
34
|
Giacomini A, Chiodelli P, Matarazzo S, Rusnati M, Presta M, Ronca R. Blocking the FGF/FGFR system as a two-compartment antiangiogenic/antitumor approach in cancer therapy. Pharmacol Res 2016; 107:172-185. [DOI: 10.1016/j.phrs.2016.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022]
|
35
|
Tolcher A, Papadopoulos K, Patnaik A, Wilson K, Thayer S, Zanghi J, Gemo A, Kavanaugh W, Keer H, LoRusso P. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann Oncol 2016; 27:526-32. [DOI: 10.1093/annonc/mdv591] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/19/2015] [Indexed: 11/12/2022] Open
|
36
|
Trägårdh M, Chappell MJ, Ahnmark A, Lindén D, Evans ND, Gennemark P. Input estimation for drug discovery using optimal control and Markov chain Monte Carlo approaches. J Pharmacokinet Pharmacodyn 2016; 43:207-21. [PMID: 26932466 PMCID: PMC4791487 DOI: 10.1007/s10928-016-9467-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/17/2016] [Indexed: 11/29/2022]
Abstract
Input estimation is employed in cases where it is desirable to recover the form of an input function which cannot be directly observed and for which there is no model for the generating process. In pharmacokinetic and pharmacodynamic modelling, input estimation in linear systems (deconvolution) is well established, while the nonlinear case is largely unexplored. In this paper, a rigorous definition of the input-estimation problem is given, and the choices involved in terms of modelling assumptions and estimation algorithms are discussed. In particular, the paper covers Maximum a Posteriori estimates using techniques from optimal control theory, and full Bayesian estimation using Markov Chain Monte Carlo (MCMC) approaches. These techniques are implemented using the optimisation software CasADi, and applied to two example problems: one where the oral absorption rate and bioavailability of the drug eflornithine are estimated using pharmacokinetic data from rats, and one where energy intake is estimated from body-mass measurements of mice exposed to monoclonal antibodies targeting the fibroblast growth factor receptor (FGFR) 1c. The results from the analysis are used to highlight the strengths and weaknesses of the methods used when applied to sparsely sampled data. The presented methods for optimal control are fast and robust, and can be recommended for use in drug discovery. The MCMC-based methods can have long running times and require more expertise from the user. The rigorous definition together with the illustrative examples and suggestions for software serve as a highly promising starting point for application of input-estimation methods to problems in drug discovery.
Collapse
Affiliation(s)
- Magnus Trägårdh
- University of Warwick, School of Engineering, Coventry, CV4 7AL, UK. .,CVMD iMed DMPK, AstraZeneca R&D, 431 83, Mölndal, Sweden.
| | | | - Andrea Ahnmark
- CVMD iMed Bioscience, AstraZeneca R&D, 431 83, Mölndal, Sweden
| | - Daniel Lindén
- CVMD iMed Bioscience, AstraZeneca R&D, 431 83, Mölndal, Sweden
| | - Neil D Evans
- University of Warwick, School of Engineering, Coventry, CV4 7AL, UK
| | | |
Collapse
|
37
|
Antibody-Mediated Inhibition of the FGFR1c Isoform Induces a Catabolic Lean State in Siberian Hamsters. Curr Biol 2015; 25:2997-3003. [PMID: 26549257 DOI: 10.1016/j.cub.2015.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
Hypothalamic tanycytes are considered to function as sensors of peripheral metabolism. To facilitate this role, they express a wide range of receptors, including fibroblast growth factor receptor 1 (FGFR1). Using a monoclonal antibody (IMC-H7) that selectively antagonizes the FGFR1c isoform, we investigated possible actions of FGFR1c in a natural animal model of adiposity, the Siberian hamster. Infusion of IMC-H7 into the third ventricle suppressed appetite and increased energy expenditure. Likewise, peripheral treatment with IMC-H7 decreased appetite and body weight and increased energy expenditure and fat oxidation. A greater reduction in body weight and caloric intake was observed in response to IMC-H7 during the long-day fat state as compared to the short-day lean state. This enhanced response to IMC-H7 was also observed in calorically restricted hamsters maintained in long days, suggesting that it is the central photoperiodic state rather than the peripheral adiposity that determines the response to FGFR1c antagonism. Hypothalamic thyroid hormone availability is controlled by deiodinase enzymes (DIO2 and DIO3) expressed in tanycytes and is the key regulator of seasonal cycles of energy balance. Therefore, we determined the effect of IMC-H7 on hypothalamic expression of these deiodinase enzymes. The reductions in food intake and body weight were always associated with decreased expression of DIO2 in the hypothalamic ependymal cell layer containing tanycytes. These data provide further support for the notion the tanycytes are an important component of the mechanism by which the hypothalamus integrates central and peripheral signals to regulate energy intake and expenditure.
Collapse
|
38
|
Ronca R, Giacomini A, Di Salle E, Coltrini D, Pagano K, Ragona L, Matarazzo S, Rezzola S, Maiolo D, Torrella R, Moroni E, Mazzieri R, Escobar G, Mor M, Colombo G, Presta M. Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell 2015; 28:225-39. [PMID: 26267536 DOI: 10.1016/j.ccell.2015.07.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/10/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Emanuela Di Salle
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, 20133 Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, 20133 Milan, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniele Maiolo
- Chemistry for Technologies Laboratory and INSTM, School of Engineering, University of Brescia, 25123 Brescia, Italy
| | - Rubben Torrella
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Roberta Mazzieri
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Giulia Escobar
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Mor
- Department of Pharmacy, University of Parma, 43121 Parma, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
39
|
Kolumam G, Chen MZ, Tong R, Zavala-Solorio J, Kates L, van Bruggen N, Ross J, Wyatt SK, Gandham VD, Carano RAD, Dunshee DR, Wu AL, Haley B, Anderson K, Warming S, Rairdan XY, Lewin-Koh N, Zhang Y, Gutierrez J, Baruch A, Gelzleichter TR, Stevens D, Rajan S, Bainbridge TW, Vernes JM, Meng YG, Ziai J, Soriano RH, Brauer MJ, Chen Y, Stawicki S, Kim HS, Comps-Agrar L, Luis E, Spiess C, Wu Y, Ernst JA, McGuinness OP, Peterson AS, Sonoda J. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex. EBioMedicine 2015; 2:730-43. [PMID: 26288846 PMCID: PMC4534681 DOI: 10.1016/j.ebiom.2015.05.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022] Open
Abstract
Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin. A humanized bispecific antibody that selectively activates FGFR1/βKlotho complex was generated. Anti-FGFR1/βKlotho agonist antibody induced sustained thermogenesis in brown fat and induced weight loss. Anti-FGFR1/βKlotho agonist antibody improved insulin sensitivity even before the onset of weight loss.
Collapse
Affiliation(s)
- Ganesh Kolumam
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mark Z Chen
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Raymond Tong
- Protein Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Lance Kates
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Jed Ross
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Shelby K Wyatt
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Vineela D Gandham
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | - Ai-Luen Wu
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Keith Anderson
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Søren Warming
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Xin Y Rairdan
- Transgenic Technology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Yingnan Zhang
- Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Johnny Gutierrez
- ITGR/NTA Pharmacodynamic Biomarkers, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Amos Baruch
- ITGR/NTA Pharmacodynamic Biomarkers, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Dale Stevens
- Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sharmila Rajan
- Preclinical & Translational Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Jean-Michel Vernes
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Y Gloria Meng
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - James Ziai
- Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Robert H Soriano
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Matthew J Brauer
- Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yongmei Chen
- Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott Stawicki
- Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Hok Seon Kim
- Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Laëtitia Comps-Agrar
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Elizabeth Luis
- Protein Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Christoph Spiess
- Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yan Wu
- Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - James A Ernst
- Protein Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew S Peterson
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Junichiro Sonoda
- Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
40
|
Tsimafeyeu I, Bratslavsky G. Fibroblast growth factor receptor 1 as a target for the therapy of renal cell carcinoma. Oncology 2015; 88:321-31. [PMID: 25678187 DOI: 10.1159/000370118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Dysregulation of fibroblast growth factor (FGF) signaling in renal cell carcinoma is now well understood, and it is becoming increasingly likely that certain tumors become dependent on an activation of this pathway for their growth and survival. Dissecting the FGF/FGF receptor (FGFR) pathway offers the hope of developing new therapeutic approaches that selectively target the FGF/FGFR axis in patients whose tumors are known to harbor FGF/FGFR dysregulation. In this review, we summarize the existing data on the role of FGFR1 in the pathogenesis of renal cell carcinoma and discuss methodological issues for drug investigation in this setting.
Collapse
|
41
|
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015; 26:22-9. [PMID: 25476453 PMCID: PMC4277911 DOI: 10.1016/j.tem.2014.10.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) 15/19 and 21 belong to a subfamily of FGFs that function as hormones. Produced in response to specific nutritional cues, they act on overlapping sets of cell surface receptors composed of classic FGF receptors in complex with βKlotho, and regulate metabolism and related processes during periods of fluctuating energy availability. Pharmacologically, both FGF15/19 and FGF21 cause weight loss and improve both insulin-sensitivity and lipid parameters in rodent and primate models of metabolic disease. Recently, FGF21 was shown to have similar effects in obese patients with type 2 diabetes. We discuss here emerging concepts in FGF15/19 and FGF21 tissue-specific actions and critically assess their putative role as candidate targets for treating metabolic disease.
Collapse
Affiliation(s)
- Bryn M Owen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Nies VJM, Sancar G, Liu W, van Zutphen T, Struik D, Yu RT, Atkins AR, Evans RM, Jonker JW, Downes MR. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front Endocrinol (Lausanne) 2015; 6:193. [PMID: 26834701 PMCID: PMC4718082 DOI: 10.3389/fendo.2015.00193] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.
Collapse
Affiliation(s)
- Vera J. M. Nies
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Weilin Liu
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim van Zutphen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dicky Struik
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| | - Michael Robert Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| |
Collapse
|
43
|
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol 2014; 25:221-33. [PMID: 25467007 DOI: 10.1016/j.tcb.2014.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Abbie E Fearon
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK.
| |
Collapse
|
44
|
Lelliott CJ, Ahnmark A, Admyre T, Ahlstedt I, Irving L, Keyes F, Patterson L, Mumphrey MB, Bjursell M, Gorman T, Bohlooly-Y M, Buchanan A, Harrison P, Vaughan T, Berthoud HR, Lindén D. Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms. PLoS One 2014; 9:e112109. [PMID: 25427253 PMCID: PMC4245083 DOI: 10.1371/journal.pone.0112109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
We have generated a novel monoclonal antibody targeting human FGFR1c (R1c mAb) that caused profound body weight and body fat loss in diet-induced obese mice due to decreased food intake (with energy expenditure unaltered), in turn improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp, Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food intake inhibition and body weight loss via other mechanisms in the brain. Interestingly, peripherally administered R1c mAb accumulated in the median eminence, adjacent arcuate nucleus and in the circumventricular organs where it activated the early response gene c-Fos. As a plausible mechanism and coinciding with the initiation of food intake suppression, R1c mAb induced hypothalamic expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and ERK1/2 and p70 S6 kinase 1 activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Arcuate Nucleus of Hypothalamus/physiopathology
- Chemokine CCL2/agonists
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL7/agonists
- Chemokine CCL7/genetics
- Chemokine CCL7/metabolism
- Circumventricular Organs/drug effects
- Circumventricular Organs/metabolism
- Circumventricular Organs/physiopathology
- Eating/drug effects
- Energy Metabolism
- Female
- Gene Expression Regulation
- Glucose Intolerance/drug therapy
- Glucose Intolerance/genetics
- Glucose Intolerance/metabolism
- Glucose Intolerance/physiopathology
- Humans
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiopathology
- Leptin/deficiency
- Leptin/genetics
- Mice
- Mice, Knockout
- Mice, Obese
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/physiopathology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, Somatostatin/deficiency
- Receptors, Somatostatin/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Serum Response Factor/agonists
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Christopher J. Lelliott
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Andrea Ahnmark
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Therese Admyre
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Ingela Ahlstedt
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Lorraine Irving
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Feenagh Keyes
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Laurel Patterson
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Michael B. Mumphrey
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Tracy Gorman
- AstraZeneca, Discovery Sciences, Mereside, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | | | - Andrew Buchanan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Paula Harrison
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Tristan Vaughan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Daniel Lindén
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
- * E-mail:
| |
Collapse
|
45
|
Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci U S A 2014; 111:13379-84. [PMID: 25139991 DOI: 10.1073/pnas.1324235111] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Endothelial cells (ECs) express fibroblast growth factor receptors (FGFRs) and are exquisitely sensitive to FGF signals. However, whether the EC or another vascular cell type requires FGF signaling during development, homeostasis, and response to injury is not known. Here, we show that Flk1-Cre or Tie2-Cre mediated deletion of FGFR1 and FGFR2 (Fgfr1/2(Flk1-Cre) or Fgfr1/2(Tie2-Cre) mice), which results in deletion in endothelial and hematopoietic cells, is compatible with normal embryonic development. As adults, Fgfr1/2(Flk1-Cre) mice maintain normal blood pressure and vascular reactivity and integrity under homeostatic conditions. However, neovascularization after skin or eye injury was significantly impaired in both Fgfr1/2(Flk1-Cre) and Fgfr1/2(Tie2-Cre) mice, independent of either hematopoietic cell loss of FGFR1/2 or vascular endothelial growth factor receptor 2 (Vegfr2) haploinsufficiency. Also, impaired neovascularization was associated with delayed cutaneous wound healing. These findings reveal a key requirement for cell-autonomous EC FGFR signaling in injury-induced angiogenesis, but not for vascular homeostasis, identifying the EC FGFR signaling pathway as a target for diseases associated with aberrant vascular proliferation, such as age-related macular degeneration, and for modulating wound healing without the potential toxicity associated with direct manipulation of systemic FGF or VEGF activity.
Collapse
|
46
|
Shi H, Fu C, Wang W, Li Y, Du S, Cao R, Chen J, Sun D, Zhang Z, Wang X, Zhu X. The FGF-1-specific single-chain antibody scFv1C9 effectively inhibits breast cancer tumour growth and metastasis. J Cell Mol Med 2014; 18:2061-70. [PMID: 25124967 PMCID: PMC4244020 DOI: 10.1111/jcmm.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy mediated by recombinant antibodies is an effective therapeutic strategy for a variety of cancers. In a previous study, we demonstrated that the fibroblast growth factor 1 (FGF-1)-specific recombinant antibody scFv1C9 arrests the cell cycle at the G0/G1 transition by blocking the intracrine FGF-1 pathway in breast cancer cells. Here, we further show that the overexpression of scFv1C9 in MCF-7 and MDA-MB-231 breast cancer cells by lentiviral infection resulted in decreased tumourigenicity, tumour growth and lung metastasis through FGF-1 neutralization. We found that scFv1C9 resulted in the up-regulation of p21, which in turn inhibited the expression of CDK2 and blocked cell cycle progression. To explore the potential role of scFv1C9 in vivo, we delivered the gene into solid tumours by electroporation, which resulted in significant inhibition of tumour growth. In tumour tissue sections, immunohistochemical staining of the cellular proliferation marker Ki-67 and the microvessel marker CD31 showed a reduction in the proliferative index and microvessel density, respectively, upon expression of scFv1C9 compared with the appropriate controls. Thus, our data indicate a central role for scFv1C9 in blocking the intracrine pathway of FGF-1, therefore, scFv1C9 could be developed in an effective therapeutic for breast cancer.
Collapse
Affiliation(s)
- Hengliang Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Walewski JL, Ge F, Lobdell H, Levin N, Schwartz GJ, Vasselli JR, Pomp A, Dakin G, Berk PD. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring) 2014; 22:1643-52. [PMID: 24550067 PMCID: PMC4077920 DOI: 10.1002/oby.20725] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Microarray studies identified Ch12:orf39 (Spexin) as the most down-regulated gene in obese human fat. Therefore, we examined its role in obesity pathogenesis. METHODS Spexin effects on food intake, meal patterns, body weight, respiratory exchange ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with diet-induced obesity (DIO). Its effects on adipocyte [(3)H]-oleate uptake were determined. RESULTS In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = -0.797) with Leptin. In rats, Spexin (35 µg/kg/day SC) reduced caloric intake ∼32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 µg/kg/day IP) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70 µg/kg/day IP) demonstrated no aversive Spexin effects. CONCLUSIONS Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy.
Collapse
Affiliation(s)
- José L Walewski
- Department of Medicine, Columbia University Medical Center, New York, New York, 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsuda Y, Shinji S, Yoshimura H, Naito Z, Ishiwata T. Fibroblast Growth Factor Receptor-2 IIIc as a Novel Molecular Target in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-013-0200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Abstract
Fibroblast growth factors, or FGFs, are a large family of polypeptide cytokines exhibiting a pleiotropy of functions, from cell growth to angiogenesis, wound healing, and tissue repair. This review broadly covers the genetics and protein expression of the FGF family members and the signaling pathways involved in FGF-mediated growth regulation. We emphasize the role of FGFs in the pathogenesis of hepatocellular carcinoma (HCC), including their effects on regulation of the tumor microenvironment and angiogenesis. Finally, we present current views on FGF's potential role as a prognostic marker in clinical practice, as well as its potential as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Dalbir S. Sandhu
- Division of Gastroenterology and Hepatology; University of Iowa Hospitals and Clinics; Iowa City IA
| | - Esha Baichoo
- Division of Gastroenterology and Hepatology and Mayo Clinic Cancer Center, College of Medicine; Mayo Clinic; Rochester MN
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology and Mayo Clinic Cancer Center, College of Medicine; Mayo Clinic; Rochester MN
| |
Collapse
|
50
|
Scroyen I, Vranckx C, Lijnen HR. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity. Adipocyte 2014; 3:46-9. [PMID: 24575368 DOI: 10.4161/adip.27233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.
Collapse
|