1
|
Jacobsen JM, Petersen N, Torz L, Gerstenberg MK, Pedersen K, Østergaard S, Wulff BS, Andersen B, Raun K, Christoffersen BØ, John LM, Reitman ML, Kuhre RE. Housing mice near vs. below thermoneutrality affects drug-induced weight loss but does not improve prediction of efficacy in humans. Cell Rep 2024; 43:114501. [PMID: 39067024 PMCID: PMC11380917 DOI: 10.1016/j.celrep.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Evaluation of weight loss drugs is usually performed in diet-induced obese mice housed at ∼22°C. This is a cold stress that increases energy expenditure by ∼35% compared to thermoneutrality (∼30°C), which may overestimate drug-induced weight loss. We investigated five anti-obesity mechanisms that have been in clinical development, comparing weight loss in mice housed at 22°C vs. 30°C. Glucagon-like peptide-1 (GLP-1), human fibroblast growth factor 21 (hFGF21), and melanocortin-4 receptor (MC4R) agonist induced similar weight losses. Peptide YY elicited greater vehicle-subtracted weight loss at 30°C (7.2% vs. 1.4%), whereas growth differentiation factor 15 (GDF15) was more effective at 22°C (13% vs. 6%). Independent of ambient temperature, GLP-1 and hFGF21 prevented the reduction in metabolic rate caused by weight loss. There was no simple rule for a better prediction of human drug efficacy based on ambient temperature, but since humans live at thermoneutrality, drug testing using mice should include experiments near thermoneutrality.
Collapse
Affiliation(s)
- Julie M Jacobsen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Natalia Petersen
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lola Torz
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Kent Pedersen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Søren Østergaard
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte S Wulff
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte Andersen
- Diabetes, Obesity and NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Kirsten Raun
- Lead Portfolio Projects, Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Linu M John
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Rune E Kuhre
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Nedergaard J, von Essen G, Cannon B. Brown adipose tissue: can it keep us slim? A discussion of the evidence for and against the existence of diet-induced thermogenesis in mice and men. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220220. [PMID: 37661736 PMCID: PMC10475870 DOI: 10.1098/rstb.2022.0220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
The issue under discussion here is whether a decrease in the degree of UCP1 activity (and brown adipose tissue activity in general) could be a cause of obesity in humans. This possibility principally requires the existence of the phenomenon of diet-induced thermogenesis. Obesity could be a consequence of a reduced functionality of diet-induced thermogenesis. Experiments in mice indicate that diet-induced thermogenesis exists and is dependent on the presence of UCP1 and thus of brown adipose tissue activity. Accordingly, many (but not all) experiments indicate that in the absence of UCP1, mice become obese. Whether similar mechanisms exist in humans is still unknown. A series of studies have indicated a correlation between obesity and low brown adipose tissue activity, but it may be so that the obesity itself may influence the estimates of brown adipose tissue activity (generally glucose uptake), partly explaining the relationship. Estimates of brown adipose tissue catabolizing activity would seem to indicate that it may possess a capacity sufficient to help maintain body weight, and obesity would thus be aggravated in its absence. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gabriella von Essen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Nedergaard J, Fischer AW, Cannon B. Leptin as an Antitorpor Hormone: An Explanation for the Increased Metabolic Efficiency and Cold Sensitivity of ob/ob Mice? Physiol Biochem Zool 2023; 96:30-39. [PMID: 36626840 DOI: 10.1086/722135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractLeptin is recognized as an anorexigenic hormone. In its absence (e.g., in ob/ob mutant mice), mice become obese, primarily as a result of hyperphagia. A recurrent question is whether, additionally, leptin is thermogenic and thus also an antiobesity hormone in this way. We have earlier reviewed available data and have concluded that most articles implying a thermogenic effect of leptin have based this on a misconstrued division by body weight. Here, we have collected evidence that the remaining observations that imply that leptin is a thermogenic hormone are better understood as implying that leptin is an antitorpor hormone. Leptin levels increase in proportion to the body's energy reserves (i.e., stored lipids in the adipose tissue), and leptin thus serves as an indicator of energy availability. In the absence of leptin, ob/ob mice are exceedingly prone to enter daily torpor, since the absence of leptin causes them to perceive a lack of body energy reserves that, in combination with restricted or no food, induces them to enter the torpid state to save energy. This antitorpor effect of leptin probably explains the following earlier observations. First, ob/ob mice have the ability to gain weight even when pair fed with leptin-treated ob/ob mice. This is understood as follows: In the leptin-treated ob/ob mice, food intake is reduced. Untreated pair-fed mice enter daily torpor, and this markedly lowers total daily energy expenditure; the resulting surplus food energy is then accumulated as fat in these mice. However, ob/ob mice fed ad lib. do not enter torpor, so under normal conditions this mechanism does not contribute to the obesity found in the ob/ob mice. Second, neonatal ob/ob mice have the ability to become obese despite eating the same amount as wild-type mice: this is understood as these mice similarly entering daily torpor. Third, ob/ob mice on the C57BL/6J background have a lower metabolic rate: these mice were examined in the absence of food, and torpor was thus probably induced. Fourth, ob/ob mice have apparent high cold sensitivity: these mice experienced cold in the absence of food and would immediately enter deep torpor. It is suggested that this novel explanation of how the antitorpor effects of leptin affect mouse energy metabolism can open new avenues for leptin research.
Collapse
|
5
|
John LM, Petersen N, Gerstenberg MK, Torz L, Pedersen K, Christoffersen BØ, Kuhre RE. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun Biol 2022; 5:946. [PMID: 36088386 PMCID: PMC9464191 DOI: 10.1038/s42003-022-03895-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating. The impact of ambient housing temperature on the interaction of energy intake, energy expenditure and glycemic control in normal and diet-induced obese mice is examined.
Collapse
|
6
|
Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 oC on energy balance, body mass and body composition in mice. Mol Metab 2022; 64:101551. [PMID: 35870706 PMCID: PMC9382332 DOI: 10.1016/j.molmet.2022.101551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Considerable attention is currently focused on the potential to switch on brown adipose tissue (BAT), or promote browning of white adipose tissue, to elevate energy expenditure and thereby reduce obesity levels. These processes are already known to be switched on by cold exposure. Yet humans living in colder regions do not show lower levels of obesity. This could be because humans shield themselves from external temperatures, or because the resultant changes in BAT and thermogenesis are offset by elevated food intake, or reductions in other components of expenditure. Scope of Review We exposed mice to 11 different ambient temperatures between 5 and 35 °C and characterized their energy balance and body weight/composition. As it got colder mice progressively increased their energy expenditure coincident with changes in thyroid hormone levels and increased BAT activity. Simultaneously, these increases in expenditure were matched by elevated food intake, and body mass remained stable. Nevertheless, within this envelope of unchanged body mass there were significant changes in body composition – with increases in the sizes of the liver and small intestine, presumably to support the greater food intake, and reductions in the level of stored fat – maximally providing about 10% of the total elevated energy demands. Major Conclusions Elevating activity of BAT may be a valid strategy to reduce fat storage even if overall body mass is unchanged but if it is mostly offset by elevated food intake, as found here, then the impacts may be small. Male and female mice were exposed to 11 different ambient temperatures between 5 and 35 °C. As it got colder mice increased both energy expenditure and food intake. Increased energy expenditure was coincident with increased THs and BAT activity. Stored fat was considerably reduced in colder conditions, providing about 10% of the elevated energy requirements. Elevating activity of BAT may be a valid strategy to reduce fat storage.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Rui Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Li
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - John R Speakman
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China.
| |
Collapse
|
7
|
Cold Exposure Drives Weight Gain and Adiposity following Chronic Suppression of Brown Adipose Tissue. Int J Mol Sci 2022; 23:ijms23031869. [PMID: 35163791 PMCID: PMC8836787 DOI: 10.3390/ijms23031869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Therapeutic activation of thermogenic brown adipose tissue (BAT) may be feasible to prevent, or treat, cardiometabolic disease. However, rodents are commonly housed below thermoneutrality (~20 °C) which can modulate their metabolism and physiology including the hyperactivation of brown (BAT) and beige white adipose tissue. We housed animals at thermoneutrality from weaning to chronically supress BAT, mimic human physiology and explore the efficacy of chronic, mild cold exposure (20 °C) and β3-adrenoreceptor agonism (YM-178) under these conditions. Using metabolic phenotyping and exploratory proteomics we show that transfer from 28 °C to 20 °C drives weight gain and a 125% increase in subcutaneous fat mass, an effect not seen with YM-178 administration, thus suggesting a direct effect of a cool ambient temperature in promoting weight gain and further adiposity in obese rats. Following chronic suppression of BAT, uncoupling protein 1 mRNA was undetectable in the subcutaneous inguinal white adipose tissue (IWAT) in all groups. Using exploratory adipose tissue proteomics, we reveal novel gene ontology terms associated with cold-induced weight gain in BAT and IWAT whilst Reactome pathway analysis highlights the regulation of mitotic (i.e., G2/M transition) and metabolism of amino acids and derivatives pathways. Conversely, YM-178 had minimal metabolic-related effects but modified pathways involved in proteolysis (i.e., eukaryotic translation initiation) and RNA surveillance across both tissues. Taken together these findings are indicative of a novel mechanism whereby animals increase body weight and fat mass following chronic suppression of adaptive thermogenesis from weaning. In addition, treatment with a B3-adrenoreceptor agonist did not improve metabolic health in obese animals raised at thermoneutrality.
Collapse
|
8
|
Abstract
Concerning diet-induced thermogenesis, methodological issues relate mainly to the interpretation of measurements, rather than to the technical methodology as such. In the following, we point to a series of issues where the analysis often suggests the occurrence of UCP1-related diet-induced thermogenesis but where the observations are often the consequences of a process that has induced leanness rather than being the cause of them. We particularly emphasize the necessity of focusing on the total organism when interpreting biochemical and molecular data, where the concept of total tissue values rather than relative data better reflects physiologically important alterations. We stress the importance of performing experiments at thermoneutrality in order to obtain clinically relevant data and stress that true thermogenic agents may be overlooked if this is not done.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Li M, Speakman JR. Setting Ambient Temperature Conditions to Optimize Translation of Molecular Work from the Mouse to Human: The "Goldilocks Solution". Methods Mol Biol 2022; 2448:235-250. [PMID: 35167101 DOI: 10.1007/978-1-0716-2087-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature has a profound effect on many aspects of murine physiology. This raises the question of the best temperature at which mice should be housed to maximize the translational potential to humans. The temperatures at which mice have been routinely kept for studies of molecular physiology (20-21 °C) maximize the comfort of animal handling staff. There is a widespread movement suggesting we should perform experiments instead on mice housed at 30 °C. This often produces very different outcomes. Here we analyze the basis of this suggestion and show that while 20-21 °C is too cold, 30 °C is probably too hot. Rather we suggest an intermediate temperature "the Goldilocks solution" of 25-26 °C is probably optimal. This should be combined with providing animals with nesting material so that they can construct nests to generate microclimates that are within their own control. Providing copious nesting material has additional spin-off advantages in terms of increasing environmental enrichment. Ultimately, however, advocating a single temperature to mimic human physiology is plagued by the problem that humans vary widely in the temperature environments they experience, with consequences for human disease. Hence studying responses at a range of temperatures may provide the greatest insights and translational potential.
Collapse
Affiliation(s)
- Min Li
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen, Institutes of Advanced Technology, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Aberdeen, Scotland, UK
| | - John R Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen, Institutes of Advanced Technology, Shenzhen, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
10
|
Zouhar P, Janovska P, Stanic S, Bardova K, Funda J, Haberlova B, Andersen B, Rossmeisl M, Cannon B, Kopecky J, Nedergaard J. A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Mol Metab 2021; 53:101324. [PMID: 34418595 PMCID: PMC8452799 DOI: 10.1016/j.molmet.2021.101324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Administration of FGF21 to mice reduces body weight and increases body temperature. The increase in body temperature is generally interpreted as hyperthermia, i.e. a condition secondary to the increase in energy expenditure (heat production). Here, we examine an alternative hypothesis: that FGF21 has a direct pyrexic effect, i.e. FGF21 increases body temperature independently of any effect on energy expenditure. METHODS We studied the effects of FGF21 treatment on body temperature and energy expenditure in high-fat-diet-fed and chow-fed mice exposed acutely to various ambient temperatures, in high-fat diet-fed mice housed at 30 °C (i.e. at thermoneutrality), and in mice lacking uncoupling protein 1 (UCP1). RESULTS In every model studied, FGF21 increased body temperature, but energy expenditure was increased only in some models. The effect of FGF21 on body temperature was more (not less, as expected in hyperthermia) pronounced at lower ambient temperatures. Effects on body temperature and energy expenditure were temporally distinct (daytime versus nighttime). FGF21 enhanced UCP1 protein content in brown adipose tissue (BAT); there was no measurable UCP1 protein in inguinal brite/beige adipose tissue. FGF21 increased energy expenditure through adrenergic stimulation of BAT. In mice lacking UCP1, FGF21 did not increase energy expenditure but increased body temperature by reducing heat loss, e.g. a reduced tail surface temperature. CONCLUSION The effect of FGF21 on body temperature is independent of UCP1 and can be achieved in the absence of any change in energy expenditure. Since elevated body temperature is a primary effect of FGF21 and can be achieved without increasing energy expenditure, only limited body weight-lowering effects of FGF21 may be expected.
Collapse
Affiliation(s)
- Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Haberlova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Sass F, Schlein C, Jaeckstein MY, Pertzborn P, Schweizer M, Schinke T, Ballabio A, Scheja L, Heeren J, Fischer AW. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab 2021; 47:101173. [PMID: 33516944 PMCID: PMC7903014 DOI: 10.1016/j.molmet.2021.101173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) thermogenesis offers the potential to improve metabolic health in mice and humans. However, humans predominantly live under thermoneutral conditions, leading to BAT whitening, a reduction in BAT mitochondrial content and metabolic activity. Recent studies have established mitophagy as a major driver of mitochondrial degradation in the whitening of thermogenic brite/beige adipocytes, yet the pathways mediating mitochondrial breakdown in whitening of classical BAT remain largely elusive. The transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy belonging to the MiT family of transcription factors, is the only member of this family that is upregulated during whitening, pointing toward a role of TFEB in whitening-associated mitochondrial breakdown. METHODS We generated brown adipocyte-specific TFEB knockout mice, and induced BAT whitening by thermoneutral housing. We characterized gene and protein expression patterns, BAT metabolic activity, systemic metabolism, and mitochondrial localization using in vivo and in vitro approaches. RESULTS Under low thermogenic activation conditions, deletion of TFEB preserves mitochondrial mass independently of mitochondriogenesis in BAT and primary brown adipocytes. However, this does not translate into elevated thermogenic capacity or protection from diet-induced obesity. Autophagosomal/lysosomal marker levels are altered in TFEB-deficient BAT and primary adipocytes, and lysosomal markers co-localize and co-purify with mitochondria in TFEB-deficient BAT, indicating trapping of mitochondria in late stages of mitophagy. CONCLUSION We identify TFEB as a driver of BAT whitening, mediating mitochondrial degradation via the autophagosomal and lysosomal machinery. This study provides proof of concept that interfering with the mitochondrial degradation machinery can increase mitochondrial mass in classical BAT under human-relevant conditions. However, it must be considered that interfering with autophagy may result in accumulation of non-functional mitochondria. Future studies targeting earlier steps of mitophagy or target recognition are therefore warranted.
Collapse
Affiliation(s)
- Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy; Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
De Nardi M, Bisio A, Della Guardia L, Facheris C, Faelli E, La Torre A, Luzi L, Ruggeri P, Codella R. Partial-Body Cryostimulation Increases Resting Energy Expenditure in Lean and Obese Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084127. [PMID: 33919703 PMCID: PMC8070728 DOI: 10.3390/ijerph18084127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Cryostimulation is currently seen as a potential adjuvant strategy to tackle obesity and dysmetabolism by triggering cold-induced thermogenesis. Although suggestive, the underlying mechanisms are still poorly elucidated. We tested whether single or repeated applications of partial-body cryostimulation (PBC) could influence resting energy expenditure (REE) in exposed individuals. Fifteen middle-aged obese and sixteen control lean women (body mass index 31 ± 1.6 kg/m2 and 22 ± 1.7 kg/m2) underwent a daily PBC (−130 °C × 150 s) for five consecutive days. Resting energy metabolism (REE) was assessed by indirect calorimetry pre- and post-PBC on day 1 and day 5. As concerns REE, the linear mixed model revealed that REE changes were explained by session and time (F1,29 = 5.58; p = 0.02; ƞp2 = 0.16) independent of the group (F1,29 = 2.9; p = 0.09; ƞp2 = 0.09). REE pre-PBC increased from day 1 to day 5 either in leans (by 8.2%, from 1538 ± 111 to 1665 ± 106 kcal/day) or in obese women (by 5.5%, from 1610 ± 110 to 1698 ± 142 vs kcal/day). Respiratory quotient was significantly affected by the time (F1,29 = 51.61; p < 0.000001, ƞp2 = 0.64), as it increased from pre- to post-PBC, suggesting a shift in substrate oxidation. According to these preliminary data, cold-induced thermogenesis could be explored as a strategy to elevate REE in obese subjects. Longitudinal studies could test whether chronic PBC effects may entail favorable metabolic adaptations.
Collapse
Affiliation(s)
- Massimo De Nardi
- Krioplanet Ltd., Treviglio, 24047 Bergamo, Italy; (M.D.N.); (C.F.)
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
| | - Ambra Bisio
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
| | - Carlo Facheris
- Krioplanet Ltd., Treviglio, 24047 Bergamo, Italy; (M.D.N.); (C.F.)
| | - Emanuela Faelli
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Antonio La Torre
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milano, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milano, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
13
|
Boulet N, Luijten IHN, Cannon B, Nedergaard J. Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition. Am J Physiol Endocrinol Metab 2021; 320:E359-E378. [PMID: 33284094 PMCID: PMC8260372 DOI: 10.1152/ajpendo.00352.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via β1/β2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely.NEW & NOTEWORTHY A regulatory or mediatory role-positive or negative-for macrophages in the recruitment of brown adipose tissue is presently discussed. As the recruited state in the tissue is a dynamic process, maintenance of the recruited state would need persistent alterations in macrophage complement. Contrary to this expectation, we demonstrate here an absence of alterations in macrophage complement in thermogenically recruited brown-or brite/beige-adipose tissues. Macrophage regulation of thermogenic capacity is thus less likely.
Collapse
MESH Headings
- Adipose Tissue, Beige/cytology
- Adipose Tissue, Beige/physiology
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/physiology
- Animals
- Diet/adverse effects
- Gene Expression Regulation
- Macrophages/cytology
- Macrophages/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/physiology
- Thermogenesis
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Nathalie Boulet
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ineke H N Luijten
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Islam MT, Henson GD, Machin DR, Bramwell RC, Donato AJ, Lesniewski LA. Aging differentially impacts vasodilation and angiogenesis in arteries from the white and brown adipose tissues. Exp Gerontol 2020; 142:111126. [PMID: 33203620 DOI: 10.1016/j.exger.2020.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
Abstract
Aging adipose tissues (ATs) manifest reduced vascularity and increased hypoxia and inflammation that contribute to local and systemic metabolic dysfunction. However, the mechanisms that underlie these age-related changes are incompletely understood. In this study, we sought to examine insulin-stimulated vasodilation and angiogenesis in the arterial vasculature from three major AT depots, perigonadal white (pgWAT), subcutaneous white (scWAT) and brown (BAT) from young and old mice. Here, we demonstrate that in young mice, insulin-stimulated vasodilation is lower in feed arteries from pgWAT compared to scWAT (p < 0.05), but no differences were found between feed arteries in other AT depots (p > 0.05). Insulin-stimulated vasodilation was lower in old compared to young feed arteries from all three AT depots (p < 0.05 for all). In the presence of endothelial nitric oxide synthase inhibitor, L-NAME, insulin-stimulated vasodilation was decreased in young (p < 0.05), but was unaffected in old (p > 0.05) from all AT depots. We also observed no age-related differences in endothelium-independent dilation, as assessed by sodium nitroprusside (p > 0.05). We next investigated angiogenic capacity of the vasculature in these AT depots. In young mice, BAT vasculature demonstrated the highest angiogenic potential, followed by pgWAT and scWAT. We found that aging decreased angiogenic sprout formation in pgWAT and BAT (both p < 0.05), but increased angiogenic potential in scWAT (p < 0.05), indicating dissimilar impact of aging on angiogenesis in different AT depots. Collectively, these data suggest that aging leads to a consistent impairment in insulin-stimulated vasodilation and reduction in NO bioavailability in all three AT, although aging differentially impacts angiogenic capacity across different AT depots.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Grant D Henson
- Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Daniel R Machin
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R Colton Bramwell
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA; Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA; Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
16
|
Kwok A, Zvetkova I, Virtue S, Luijten I, Huang-Doran I, Tomlinson P, Bulger DA, West J, Murfitt S, Griffin J, Alam R, Hart D, Knox R, Voshol P, Vidal-Puig A, Jensen J, O'Rahilly S, Semple RK. Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Mol Metab 2020; 40:101020. [PMID: 32439336 PMCID: PMC7385515 DOI: 10.1016/j.molmet.2020.101020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted.
Collapse
Affiliation(s)
- Albert Kwok
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ilona Zvetkova
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Sam Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Patsy Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - David A Bulger
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - James West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Steven Murfitt
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Medicine, Imperial College London, The Sir Alexander Fleming Building, London, UK
| | - Rafeah Alam
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Daniel Hart
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Peter Voshol
- Louis Bolk Institute, Kosterijland 3-5, NL-3981 AJ, Bunnik, the Netherlands
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ulleval Stadion, 0806 Oslo, Norway
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK; The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
17
|
Ono-Moore KD, Rutkowsky JM, Pearson NA, Williams DK, Grobe JL, Tolentino T, Lloyd KCK, Adams SH. Coupling of energy intake and energy expenditure across a temperature spectrum: impact of diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2020; 319:E472-E484. [PMID: 32691631 PMCID: PMC7509245 DOI: 10.1152/ajpendo.00041.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity and its metabolic sequelae are implicated in dysfunction of the somatosensory, sympathetic, and hypothalamic systems. Because these systems contribute to integrative regulation of energy expenditure (EE) and energy intake (EI) in response to ambient temperature (Ta) changes, we hypothesized that diet-induced obesity (DIO) disrupts Ta-associated EE-EI coupling. C57BL/6N male mice were fed a high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for ∼9.5 wk; HFD mice were then split into body weight (BWT) quartiles (n = 8 each) to study DIO-low gainers (Q1) versus -high gainers (Q4). EI and indirect calorimetry (IC) were measured over 3 days each at 10°C, 20°C, and 30°C. Responses did not differ between LFD, Q1, and Q4; EI and BWT-adjusted EE increased rapidly when transitioning toward 20°C and 10°C. In all groups, EI at 30°C was not reduced despite lower EE, resulting in positive energy balance and respiratory exchange ratios consistent with increased de novo lipogenesis, energy storage, and relative hyperphagia. We conclude that 1) systems controlling Ta-dependent acute EI/EE coupling remained intact in obese mice and 2) rapid coupling of EI/EE at cooler temperatures is an important adaptation to maintain energy stores and defend body temperature, but less critical at thermoneutrality. A post hoc analysis using digestible EI plus IC-calculated EE suggests that standard IC assumptions for EE calculation require further validation in the setting of DIO. The experimental paradigm provides a platform to query the hypothalamic, somatosensory, and sympathetic mechanisms that drive Ta-associated EI/EE coupling.
Collapse
Affiliation(s)
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Nicole A Pearson
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| | - D Keith Williams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Justin L Grobe
- Department of Physiology and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Department of Surgery, School of Medicine, University of California, Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
18
|
Luijten IHN, Brooks K, Boulet N, Shabalina IG, Jaiprakash A, Carlsson B, Fischer AW, Cannon B, Nedergaard J. Glucocorticoid-Induced Obesity Develops Independently of UCP1. Cell Rep 2020; 27:1686-1698.e5. [PMID: 31067456 DOI: 10.1016/j.celrep.2019.04.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
An excess of glucocorticoids leads to the development of obesity in both mice and humans, but the mechanism for this is unknown. Here, we determine the extent to which decreased BAT thermogenic capacity (as a result of glucocorticoid treatment) contributes to the development of obesity. Contrary to previous suggestions, we show that only in mice housed at thermoneutrality (30°C) does corticosterone treatment reduce total BAT UCP1 protein. This reduction is reflected in reduced brown adipocyte cellular and mitochondrial UCP1-dependent respiration. However, glucocorticoid-induced obesity develops to the same extent in animals housed at 21°C and 30°C, whereas total BAT UCP1 protein levels differ 100-fold between the two groups. In corticosterone-treated wild-type and UCP1 knockout mice housed at 30°C, obesity also develops to the same extent. Thus, our results demonstrate that the development of glucocorticoid-induced obesity is not caused by a decreased UCP1-dependent thermogenic capacity.
Collapse
Affiliation(s)
- Ineke H N Luijten
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Katie Brooks
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Nathalie Boulet
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Irina G Shabalina
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Ankita Jaiprakash
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Bo Carlsson
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander W Fischer
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Barbara Cannon
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
19
|
Cannon B, de Jong JMA, Fischer AW, Nedergaard J, Petrovic N. Human brown adipose tissue: Classical brown rather than brite/beige? Exp Physiol 2020; 105:1191-1200. [PMID: 32378255 DOI: 10.1113/ep087875] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? It has been suggested that human brown adipose tissue (BAT) is more similar to the brite/beige adipose tissue of mice than to classical BAT of mice. The basis of this is discussed in relationship to the physiological conditions of standard experimental mice. What advances does it highlight? We highlight that, provided mouse adipose tissues are examined under physiological conditions closer to those prevalent for most humans, the gene expression profile of mouse classical BAT is more similar to that of human BAT than is the profile of mouse brite/beige adipose tissue. Human BAT is therefore not different in nature from classical mouse BAT. ABSTRACT Since the presence of brown adipose tissue (BAT) was established in adult humans some 13 years ago, its physiological significance and molecular characteristics have been discussed. In particular, it has been proposed that the mouse adipose tissue depot most closely resembling and molecularly parallel to human BAT is not classical mouse BAT. Instead, so-called brite or beige adipose tissue, which is characteristically observed in the inguinal 'white' adipose tissue depot of mice, has been proposed to be the closest mouse equivalent of human BAT. We summarize here the published evidence examining this question. We emphasize the differences in tissue appearance and tissue transcriptomes from 'standard' mice [young, chow fed and, in effect semi-cold exposed (20°C)] versus 'physiologically humanized' mice [middle-aged, high-fat diet-fed mice living at thermoneutrality (30°C)]. We find that in the physiologically humanized mice, classical BAT displays molecular and cellular characteristics that are more akin to human BAT than are those of brite/beige adipose tissues from either standard or physiologically humanized mice. We suggest, therefore, that mouse BAT is the more relevant tissue for translational studies. This is an invited summary of a presentation given at Physiology 2019 (Aberdeen).
Collapse
Affiliation(s)
- Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jasper M A de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Schipper L, van Heijningen S, Karapetsas G, van der Beek EM, van Dijk G. Individual housing of male C57BL/6J mice after weaning impairs growth and predisposes for obesity. PLoS One 2020; 15:e0225488. [PMID: 32453751 PMCID: PMC7250426 DOI: 10.1371/journal.pone.0225488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
For (metabolic) research models using mice, singly housing is widely used for practical purposes to study e.g. energy balance regulation and derangements herein. Mouse (social) housing practices could however influence study results by modulating (metabolic) health outcomes. To study the effects of the social housing condition, we assessed parameters for energy balance regulation and proneness to (diet induced) obesity in male C57Bl/6J mice that were housed individually or socially (in pairs) directly after weaning, both at standard ambient temperature of 21°C. During adolescence, individually housed mice had reduced growth rate, while energy intake and energy expenditure were increased compared to socially housed counterparts. At 6 weeks of age, these mice had reduced lean body mass, but significantly higher white adipose tissue mass compared to socially housed mice, and higher UCP-1 mRNA expression in brown adipose tissue. During adulthood, body weight gain of individually housed animals exceeded that of socially housed mice, with elevations in both energy intake and expenditure. At 18 weeks of age, individually housed mice showed higher adiposity and higher mRNA expression of UCP-1 in inguinal white but not in brown adipose tissue. Exposure to an obesogenic diet starting at 6 weeks of age further amplified body weight gain and adipose tissue deposition and caused strong suppression of inguinal white adipose tissue mRNA UCP-1 expression. This study shows that post-weaning individual housing of male mice impairs adolescent growth and results in higher susceptibility to obesity in adulthood with putative roles for thermoregulation and/or affectiveness.
Collapse
Affiliation(s)
- Lidewij Schipper
- Danone Nutricia Research, Utrecht, The Netherlands
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Steffen van Heijningen
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Giorgio Karapetsas
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Eline M. van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gertjan van Dijk
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Škop V, Guo J, Liu N, Xiao C, Hall KD, Gavrilova O, Reitman ML. Mouse Thermoregulation: Introducing the Concept of the Thermoneutral Point. Cell Rep 2020; 31:107501. [PMID: 32294435 PMCID: PMC7243168 DOI: 10.1016/j.celrep.2020.03.065] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human and mouse thermal physiology differ due to dissimilar body sizes. Unexpectedly, in mice we found no ambient temperature zone where both metabolic rate and body temperature were constant. Body temperature began increasing once cold-induced thermogenesis was no longer required. This result reproduced in male, female, C57BL/6J, 129, chow-fed, diet-induced obese, and ob/ob mice as well as Trpv1-/-;Trpm8-/-;Trpa1-/- mice lacking thermal sensory channels. During the resting-light phase, the energy expenditure minimum spanned ∼4°C of ambient temperature, whereas in the active-dark phase it approximated a point. We propose the concept of a thermoneutral point (TNP), a discrete ambient temperature below which energy expenditure increases and above which body temperature increases. Humans do not have a TNP. As studied, the mouse TNP is ∼29°C in light phase and ∼33°C in dark phase. These observations inform how thermoneutrality is defined and how mice are used to model human energy physiology and drug development.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Juen Guo
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Abstract
Animals that lack the hormone leptin become grossly obese, purportedly for 2 reasons: increased food intake and decreased energy expenditure (thermogenesis). This review examines the experimental evidence for the thermogenesis component. Analysis of the data available led us to conclude that the reports indicating hypometabolism in the leptin-deficient ob/ob mice (as well as in the leptin-receptor-deficient db/db mice and fa/fa rats) derive from a misleading calculation artefact resulting from expression of energy expenditure per gram of body weight and not per intact organism. Correspondingly, the body weight-reducing effects of leptin are not augmented by enhanced thermogenesis. Congruent with this, there is no evidence that the ob/ob mouse demonstrates atrophied brown adipose tissue or diminished levels of total UCP1 mRNA or protein when the ob mutation is studied on the inbred C57BL/6 mouse background, but a reduced sympathetic nerve activity is observed. On the outbred "Aston" mouse background, brown adipose tissue atrophy is seen, but whether this is of quantitative significance for the development of obesity has not been demonstrated. We conclude that leptin is not a thermogenic hormone. Rather, leptin has effects on body temperature regulation, by opposing torpor bouts and by shifting thermoregulatory thresholds. The central pathways behind these effects are largely unexplored.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, Israni NS, Johnson JW, Lea HJ, Linderman JD, O'Mara AE, Zhu KY, Cypess AM. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem 2019; 295:1926-1942. [PMID: 31914415 DOI: 10.1074/jbc.rev119.007363] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The current obesity pandemic results from a physiological imbalance in which energy intake chronically exceeds energy expenditure (EE), and prevention and treatment strategies remain generally ineffective. Approaches designed to increase EE have been informed by decades of experiments in rodent models designed to stimulate adaptive thermogenesis, a long-term increase in metabolism, primarily induced by chronic cold exposure. At the cellular level, thermogenesis is achieved through increased rates of futile cycling, which are observed in several systems, most notably the regulated uncoupling of oxidative phosphorylation from ATP generation by uncoupling protein 1, a tissue-specific protein present in mitochondria of brown adipose tissue (BAT). Physiological activation of BAT and other organ thermogenesis occurs through β-adrenergic receptors (AR), and considerable effort over the past 5 decades has been directed toward developing AR agonists capable of safely achieving a net negative energy balance while avoiding unwanted cardiovascular side effects. Recent discoveries of other BAT futile cycles based on creatine and succinate have provided additional targets. Complicating the current and developing pharmacological-, cold-, and exercise-based methods to increase EE is the emerging evidence for strong physiological drives toward restoring lost weight over the long term. Future studies will need to address technical challenges such as how to accurately measure individual tissue thermogenesis in humans; how to safely activate BAT and other organ thermogenesis; and how to sustain a negative energy balance over many years of treatment.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Zahraa Abdul Sater
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas M Cassimatis
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - James W Johnson
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Joyce D Linderman
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Alana E O'Mara
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
24
|
Fischer AW, Cannon B, Nedergaard J. No insulating effect of obesity, neither in mice nor in humans. Am J Physiol Endocrinol Metab 2019; 317:E952-E953. [PMID: 31697209 DOI: 10.1152/ajpendo.00333.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Brychta RJ, Cypess AM, Reitman ML, Chen KY. Reply to Letter to the Editor: "No insulating effect of obesity, neither in mice nor in humans". Am J Physiol Endocrinol Metab 2019; 317:E954-E956. [PMID: 31697208 PMCID: PMC6879861 DOI: 10.1152/ajpendo.00363.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Switching off the furnace: brown adipose tissue and lactation. Mol Aspects Med 2019; 68:18-41. [DOI: 10.1016/j.mam.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
|
27
|
Kasza I, Adler D, Nelson DW, Eric Yen CL, Dumas S, Ntambi JM, MacDougald OA, Hernando D, Porter WP, Best FA, Alexander CM. Evaporative cooling provides a major metabolic energy sink. Mol Metab 2019; 27:47-61. [PMID: 31302039 PMCID: PMC6717770 DOI: 10.1016/j.molmet.2019.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/08/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022] Open
Abstract
Objective Elimination of food calories as heat could help redress the excess accumulation of metabolic energy exhibited as obesity. Prior studies have focused on the induction of thermogenesis in beige and brown adipose tissues as the application of this principle, particularly because the β-adrenergic environment associated with thermogenic activation has been shown to have positive health implications. The counterpoint to this strategy is the regulation of heat loss; we propose that mammals with inefficient heat conservation will require more thermogenesis to maintain body temperature. Methods Surface temperature thermography and rates of trans-epidermal water loss were integrated to profile the total heat transfer of genetically-engineered and genetically variable mice. Results These data were incorporated with energy expenditure data to generate a biophysical profile to test the significance of increased rates of evaporative cooling. Conclusions We show that mouse skins vary considerably in their heat retention properties, whether because of naturally occurring variation (SKH-1 mice), or genetic modification of the heat-retaining lipid lamellae (SCD1, DGAT1 or Agouti Ay obese mice). In particular, we turn attention to widely different rates of evaporative cooling as the result of trans-epidermal water loss; higher rates of heat loss by evaporative cooling leads to increased demand for thermogenesis. We speculate that this physiology could be harnessed to create an energy sink to assist with strategies aimed at treating metabolic diseases.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Doug Adler
- Space Science and Engineering Center, University of Wisconsin-Madison, United States
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - C-L Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Sabrina Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States; Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, United States
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, United States
| | - Warren P Porter
- Department of Zoology, University of Wisconsin-Madison, United States
| | - Fred A Best
- Space Science and Engineering Center, University of Wisconsin-Madison, United States
| | - C M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
28
|
Fischer AW, Albers K, Schlein C, Sass F, Krott LM, Schmale H, Gordts PLSM, Scheja L, Heeren J. PID1 regulates insulin-dependent glucose uptake by controlling intracellular sorting of GLUT4-storage vesicles. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1592-1603. [PMID: 30904610 PMCID: PMC6624118 DOI: 10.1016/j.bbadis.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4). This prompted us to investigate whether PID1 modulates GLUT4 translocation and function via its interaction with the LRP1 cytosolic domain. We initially evaluated this in primary brown adipocytes as we observed an inverse correlation between brown adipose tissue glucose uptake and expression of LRP1 and PID1. Insulin stimulation in wild type brown adipocytes induced LRP1 and GLUT4 translocation from endosomal storage vesicles to the cell surface. Loss of PID1 expression in brown adipocytes prompted LRP1 and GLUT4 sorting to the plasma membrane independent of insulin signaling. When placed on a diabetogenic high fat diet, systemic and adipocyte-specific PID1-deficient mice presented with improved hyperglycemia and glucose tolerance as well as reduced basal plasma insulin levels compared to wild type control mice. Moreover, the improvements in glucose parameters associated with increased glucose uptake in adipose and muscle tissues from PID1-deficient mice. The data provide evidence that PID1 serves as an insulin-regulated retention adaptor protein controlling translocation of LRP1 in conjunction with GLUT4 to the plasma membrane of adipocytes. Notably, loss of PID1 corrects for insulin resistance-associated hyperglycemia emphasizing its pivotal role and therapeutic potential in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Kirstin Albers
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Schmale
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
29
|
Fischer AW, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab 2019; 316:E487-E503. [PMID: 30576247 PMCID: PMC6459298 DOI: 10.1152/ajpendo.00443.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possibility that recruitment and activation of brown adipose tissue (BAT) thermogenesis could be beneficial for curtailing obesity development in humans prompts a need for a better understanding of the control of these processes [that are often referred to collectively as diet-induced thermogenesis (DIT)]. Dietary conditions are associated with large changes in blood-borne factors that could be responsible for BAT recruitment, but BAT is also innervated by the sympathetic nervous system. To examine the significance of the innervation for DIT recruitment, we surgically denervated the largest BAT depot, i.e., the interscapular BAT depot in mice and exposed the mice at thermoneutrality to a high-fat diet versus a chow diet. Denervation led to an alteration in feeding pattern but did not lead to enhanced obesity, but obesity was achieved with a lower food intake, as denervation increased metabolic efficiency. Conclusively, denervation totally abolished the diet-induced increase in total UCP1 protein levels observed in the intact mice, whereas basal UCP1 expression was not dependent on innervation. The denervation of interscapular BAT did not discernably hyper-recruit other BAT depots, and no UCP1 protein could be detected in the principally browning-competent inguinal white adipose tissue depot under any of the examined conditions. We conclude that intact innervation is essential for diet-induced thermogenesis and that circulating factors cannot by themselves initiate recruitment of brown adipose tissue under obesogenic conditions. Therefore, the processes that link food intake and energy storage to activation of the nervous system are those of significance for the further understanding of diet-induced thermogenesis.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Barbara Cannon
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Jan Nedergaard
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
30
|
Nedergaard J, Cannon B. Brown adipose tissue as a heat-producing thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2019; 156:137-152. [PMID: 30454587 DOI: 10.1016/b978-0-444-63912-7.00009-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extra heat for defense of body temperature can be obtained from shivering or nonshivering thermogenesis. Nonshivering thermogenesis is a facultative (i.e., only occurring when needed) and adaptive (i.e., being augmented when the demand is chronically higher) process that, in mammals, is the result of the activity of uncoupling protein-1 (UCP1) in brown and brownish adipose tissues; no other quantitatively significant mechanism that fulfills the above criteria has been established. Measurement of heat production is generally indirect, based on oxygen consumption. Heat from brown adipose tissue is generated in mammals adapted to cold, in mammalian neonates, and in mammalian hibernators during arousal; brown adipose tissue may also be active in obese mammals and thus partially protect against further obesity. UCP1 is innately inhibited by cytosolic adenosine triphosphate (ATP) and is likely activated by fatty acids released from triglycerides within the cells; this lipolysis is stimulated by norepinephrine released from the sympathetic nerves innervating the tissue. For prolonged thermogenesis, substrate is delivered by the circulation as chylomicrons, lipoproteins, fatty acids, and glucose. The proton gradient over the mitochondrial membrane created by the respiratory chain is dispersed through the activity of UCP1; brown adipose tissue is nearly devoid of ATP synthase (as compared to respiratory chain activity). UCP1 developed likely at the dawn of mammalian evolution; most mammalian species still retain functional UCP1. Other members of the uncoupling protein family cannot uncouple. Both newborn and adult humans possess active brown adipose tissue but the significance of the tissue for adult human metabolism is not established.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Townsend LK, Wright DC. Looking on the "brite" side exercise-induced browning of white adipose tissue. Pflugers Arch 2019; 471:455-465. [PMID: 29982948 DOI: 10.1007/s00424-018-2177-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
The need for effective and convenient ways of combatting obesity has created great interest in brown adipose tissue (BAT). However, because adult humans have relatively little amounts of BAT, the possibility of browning white adipose tissue (WAT), i.e., switching the metabolism of WAT from an energy storing to energy burning organ, has gained considerable attention. Exercise has countless health benefits, and has consistently been shown to cause browning in rodent white adipose tissue. The purpose of this review is to provide an overview of recent studies examining the effects of exercise and other interventions on the browning of white adipose tissue. The role of various endocrine factors, including catecholamines, interleukin-6, irisin, and meteorin-like in addition to local re-esterification-mediated mechanisms in inducing the browning of WAT will be discussed. The physiological importance of browning will be discussed, as will discrepancies in the literature between human and rodent studies.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
32
|
Townsend LK, Medak KD, Knuth CM, Peppler WT, Charron MJ, Wright DC. Loss of glucagon signaling alters white adipose tissue browning. FASEB J 2019; 33:4824-4835. [PMID: 30615494 DOI: 10.1096/fj.201802048rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various endocrine factors contribute to cold-induced white adipose tissue (WAT) browning, but glucagon has largely been ignored. The purpose of the current investigation was to determine if glucagon was required for the effects of cold on WAT browning. Utilizing whole-body glucagon receptor knockout (Gcgr-/-) mice and their wild-type (WT) littermate controls, we examined the response of inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) to an acute (48 h) cold stress or challenge with the β3-adrenergic agonist CL316,243. The effects of glucagon alone on the induction of thermogenic genes in adipose tissue from C57BL6/J mice were also examined. Gcgr-/- mice displayed modest increases in indices of browning at room temperature while displaying a blunted induction of Ucp1, Cidea, and Ffg21 mRNA expression in iWAT following cold exposure. Similarly, cold induced increases in mitochondrial DNA copy number, and the protein content of mitochondrial respiratory chain complexes, UCP1, and PGC1α were attenuated in iWAT from Gcgr-/- mice. In BAT, the induction of thermogenic markers following cold exposure was reduced, but the effect was less pronounced than in iWAT. Glucagon treatment increased the expression of thermogenic genes in both iWAT and BAT of C57BL6/J mice. In response to CL316,243, circulating fatty acids, glycerol, and the phosphorylation of hormone-sensitive lipase were attenuated in iWAT of Gcgr-/- mice. We provide evidence that glucagon is sufficient for the induction of thermogenic genes in iWAT, and the absence of intact glucagon signaling blunts the cold-induced browning of WAT, possibly due, in part, to impaired adrenergic signaling.-Townsend, L. K., Medak, K. D., Knuth, C. M., Peppler, W. T., Charron, M. J., Wright, D. C. Loss of glucagon signaling alters white adipose tissue browning.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York, USA; and.,Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Forni MF, Peloggia J, Braga TT, Chinchilla JEO, Shinohara J, Navas CA, Camara NOS, Kowaltowski AJ. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin. Cell Rep 2018; 20:2678-2692. [PMID: 28903047 DOI: 10.1016/j.celrep.2017.08.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Julia Peloggia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Tárcio T Braga
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | | | - Jorge Shinohara
- Laboratório de Química Supramolecular e Nanotecnologia - LQSN, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Carlos Arturo Navas
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, R. do Matão, 321, 05508-090 São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
34
|
Schipper L, Harvey L, van der Beek EM, van Dijk G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obes Rev 2018; 19:614-637. [PMID: 29334694 DOI: 10.1111/obr.12663] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 12/09/2022]
Abstract
Rats and mice are widely used to study environmental effects on psychological and metabolic health. Study designs differ widely and are often characterized by varying (social) housing conditions. In itself, housing has a profound influence on physiology and behaviour of rodents, affecting energy balance and sustainable metabolic health. However, evidence for potential long-term consequences of individual versus social housing on body weight and metabolic phenotype is inconsistent. We conducted a systematic literature review and meta-analyses assessing effects of individual versus social housing of rats and mice, living under well-accepted laboratory conditions, on measures of metabolic health, including body weight, food intake and visceral adipose tissue mass. Seventy-one studies were included in this review; 59 were included in the meta-analysis. Whilst housing did not affect body weight, both food intake and visceral adipose tissue mass were significantly higher in individually compared with socially housed animals. A combination of emotional stress and lack of social thermoregulation likely contributed to these effects. Increased awareness of consequences and improved specifications of housing conditions are necessary to accurately evaluate efficacy of drugs, diets or other interventions on metabolic and other health outcomes because housing conditions are rarely considered as possible moderators of reported outcomes.
Collapse
Affiliation(s)
- L Schipper
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | | | - E M van der Beek
- Nutricia Research, Utrecht, The Netherlands.,Department of Paediatrics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - G van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol 2018; 60:R157-R170. [PMID: 29434028 DOI: 10.1530/jme-17-0319] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (TH) are of central importance for thermogenesis, energy homeostasis and metabolism. Here, we will discuss these aspects by focussing on the physiological aspects of TH-dependent regulation in response to cold exposure and fasting, which will be compared to alterations in primary hyperthyroidism and hypothyroidism. In particular, we will summarise current knowledge on regional thyroid hormone status in the central nervous system (CNS) and in peripheral cells. In contrast to hyperthyroidism and hypothyroidism, where parallel changes are observed, local alterations in the CNS differ to peripheral compartments when induced by cold exposure or fasting. Cold exposure is associated with low hypothalamic TH concentrations but increased TH levels in the periphery. Fasting results in a reversed TH pattern. Primary hypothyroidism and hyperthyroidism disrupt these fine-tuned adaptive mechanisms and both, the hypothalamus and the periphery, will have the same TH status. These important mechanisms need to be considered when discussing thyroid hormone replacement and other therapeutical interventions to modulate TH status.
Collapse
Affiliation(s)
- K Alexander Iwen
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Georg Brabant
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of EndocrinologyThe Christie Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
36
|
Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced 'browning' of adipose tissues. Metabolism 2018; 81:63-70. [PMID: 29155135 PMCID: PMC5893183 DOI: 10.1016/j.metabol.2017.11.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Global rates of obesity continue to rise and are necessarily the consequence of a long-term imbalance between energy intake and energy expenditure. This is the result of an expansion of adipose tissue due to both the hypertrophy of existing adipocytes and hyperplasia of adipocyte pre-cursors. Exercise elicits numerous physiological benefits on adipose tissue, which are likely to contribute to the associated cardiometabolic benefits. More recently it has been demonstrated that exercise, through a range of mechanisms, induces a phenotypic switch in adipose tissue from energy storing white adipocytes to thermogenic beige adipocytes. This has generated the hypothesis that the process of adipocyte 'browning' may partially underlie the improved cardiometabolic health in physically active populations. Interestingly, 'browning' also occurs in response to various stressors and could represent an adaptive response. In the context of exercise, it is not clear whether the appearance of beige adipocytes is metabolically beneficial or whether they occur as a transient adaptive process to exercise-induced stresses. The present review discusses the various mechanisms (e.g. fatty acid oxidation during exercise, decreased thermal insulation, stressors and angiogenesis) by which the exercise-induced 'browning' process may occur.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - James Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mark Pope
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael E Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Disease Centre and Biomedical Research Centre School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH.
| |
Collapse
|
37
|
Abstract
Human obesity has a large genetic component, yet has many serious negative consequences. How this state of affairs has evolved has generated wide debate. The thrifty gene hypothesis was the first attempt to explain obesity as a consequence of adaptive responses to an ancient environment that in modern society become disadvantageous. The idea is that genes (or more precisely, alleles) predisposing to obesity may have been selected for by repeated exposure to famines. However, this idea has many flaws: for instance, selection of the supposed magnitude over the duration of human evolution would fix any thrifty alleles (famines kill the old and young, not the obese) and there is no evidence that hunter-gatherer populations become obese between famines. An alternative idea (called thrifty late) is that selection in famines has only happened since the agricultural revolution. However, this is inconsistent with the absence of strong signatures of selection at single nucleotide polymorphisms linked to obesity. In parallel to discussions about the origin of obesity, there has been much debate regarding the regulation of body weight. There are three basic models: the set-point, settling point and dual-intervention point models. Selection might act against low and high levels of adiposity because food unpredictability and the risk of starvation selects against low adiposity whereas the risk of predation selects against high adiposity. Although evidence for the latter is quite strong, evidence for the former is relatively weak. The release from predation ∼2-million years ago is suggested to have led to the upper intervention point drifting in evolutionary time, leading to the modern distribution of obesity: the drifty gene hypothesis. Recent critiques of the dual-intervention point/drifty gene idea are flawed and inconsistent with known aspects of energy balance physiology. Here, I present a new formulation of the dual-intervention point model. This model includes the novel suggestion that food unpredictability and starvation are insignificant factors driving fat storage, and that the main force driving up fat storage is the risk of disease and the need to survive periods of pathogen-induced anorexia. This model shows why two independent intervention points are more likely to evolve than a single set point. The molecular basis of the lower intervention point is likely based around the leptin pathway signalling. Determining the molecular basis of the upper intervention point is a crucial key target for future obesity research. A potential definitive test to separate the different models is also described.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
38
|
Abstract
Dietary triglyceride (TG) is the most efficient energy substrate. It is processed and stored at substantially lower metabolic cost than is protein or carbohydrate. In fed animals, circulating TGs are preferentially routed for storage to white adipose tissue (WAT) by angiopoietin-like proteins 3 (A3) and 8 (A8). Here, we show that mice lacking A3 and A8 (A3-/-A8-/- mice) have decreased fat mass and a striking increase in temperature (+1 °C) in the fed (but not fasted) state, without alterations in food intake or physical activity. Subcutaneous WAT (WAT-SQ) from these animals had morphologic and metabolic changes characteristic of beiging. O2 consumption rates (OCRs) and expression of genes involved in both fatty acid synthesis and fatty acid oxidation were increased in WAT-SQ of A3-/-A8-/- mice, but not in their epididymal or brown adipose tissue (BAT). The hyperthermic response to feeding was blocked by maintaining A3-/-A8-/- mice at thermoneutrality or by treating with a β3-adrenergic receptor (AR) antagonist. To determine if sympathetic stimulation was sufficient to increase body temperature in A3-/-A8-/- mice, WT and A3-/-A8-/- animals were maintained at thermoneutrality and then treated with a β3-AR agonist; treatment induced hyperthermia in A3-/-A8-/- , but not WT, mice. Antibody-mediated inactivation of both circulating A3 and A8 induced hyperthermia in WT mice. Together, these data indicate that A3 and A8 are essential for efficient storage of dietary TG and that disruption of these genes increases feeding-induced thermogenesis and energy utilization.
Collapse
|
39
|
Abstract
Excised fat tissue has a lower thermal conductivity than excised lean tissue. In theory then subcutaneous fat might serve as a barrier to heat loss and influence thermoregulatory abilities. In some aquatic mammals and animals from severely cold habitats subcutaneous adipose tissue has evolved into a continuous sheet that envelopes the organs and acts as a thermal insulation layer. This layer can comprise more than half of the cross-sectional area of the body. In most mammals however, the distribution of fat is less continuous. It has been suggested that in tropical animals this distribution may in fact allow animals to still store energy while not impeding heat loss. Studies of humans immersed in cool water convincingly demonstrate that obesity in humans also serves an insulation function. Humans with obesity cool less rapidly and have to elevate their metabolism less significantly than lean individuals when immersed in water. Although obesity provides an advantage in cold conditions it conversely impedes heat loss and makes obese people susceptible to heat stress more than lean individuals. In small mammals like mice the role of subcutaneous (or intradermal) fat for providing thermal insulation is less clear. In theory variations in thermoregulatory capacity may allow individuals different capabilities to burn off excess consumption. Hence, thermoregulatory variations may cause obesity differences. Thermoregulatory capacity is related to ambient temperature. Yet, levels of obesity are only weakly related to ambient temperature and this effect disappears when confounding factors like poverty and race are taken into account. Hence we conclude that obesity may have a significant impact on thermoregulatory physiology, but the converse is much less likely.
Collapse
|
40
|
Shabalina IG, Vyssokikh MY, Gibanova N, Csikasz RI, Edgar D, Hallden-Waldemarson A, Rozhdestvenskaya Z, Bakeeva LE, Vays VB, Pustovidko AV, Skulachev MV, Cannon B, Skulachev VP, Nedergaard J. Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1. Aging (Albany NY) 2017; 9:315-339. [PMID: 28209927 PMCID: PMC5361666 DOI: 10.18632/aging.101174] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022]
Abstract
MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related to an alleviation of the effects of an enhanced reactive oxygen species (ROS) level in mtDNA mutator mice: the increased mitochondrial ROS released due to mitochondrial mutations probably interact with polyunsaturated fatty acids in cardiolipin, releasing malondialdehyde and 4-hydroxynonenal that form protein adducts and thus diminishes mitochondrial functions. SkQ1 counteracts this as it scavenges mitochondrial ROS. As the results, the normal mitochondrial ultrastructure is preserved in liver and heart; the phosphorylation capacity of skeletal muscle mitochondria as well as the thermogenic capacity of brown adipose tissue is also improved. The SkQ1-treated mice live significantly longer (335 versus 290 days). These data may be relevant in relation to treatment of mitochondrial diseases particularly and the process of aging in general.
Collapse
Affiliation(s)
- Irina G Shabalina
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mikhail Yu Vyssokikh
- The Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russian Federation
| | - Natalia Gibanova
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert I Csikasz
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Edgar
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.,Present address: Buck Institute for research on aging, Novato, CA 94945, USA
| | - Anne Hallden-Waldemarson
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zinaida Rozhdestvenskaya
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lora E Bakeeva
- The Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, 119992, Moscow, Russian Federation
| | - Valeria B Vays
- The Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russian Federation
| | - Antonina V Pustovidko
- The Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russian Federation
| | - Maxim V Skulachev
- Institute of Mitoengineering, Moscow State University, 119992, Moscow, Russian Federation
| | - Barbara Cannon
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vladimir P Skulachev
- The Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, 119992, Moscow, Russian Federation
| | - Jan Nedergaard
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
41
|
von Essen G, Lindsund E, Cannon B, Nedergaard J. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. Am J Physiol Endocrinol Metab 2017; 313:E515-E527. [PMID: 28679625 DOI: 10.1152/ajpendo.00097.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
Abstract
The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such.
Collapse
Affiliation(s)
- Gabriella von Essen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Fischer AW, Cannon B, Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: An experimental study. Mol Metab 2017; 7:161-170. [PMID: 29122558 PMCID: PMC5784327 DOI: 10.1016/j.molmet.2017.10.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/12/2017] [Accepted: 10/21/2017] [Indexed: 11/05/2022] Open
Abstract
Objectives The laboratory mouse is presently the most common model for examining mechanisms of human physiology and disease. Housing temperatures can have a large impact on the outcome of such experiments and on their translatability to the human situation. Humans usually create for themselves a thermoneutral environment without cold stress, while laboratory mice under standard conditions (≈20° C) are under constant cold stress. In a well-cited, theoretical paper by Speakman and Keijer in Molecular Metabolism, it was argued that housing mice under close to standard conditions is the optimal way of modeling the human metabolic situation. This tenet was mainly based on the observation that humans usually display average metabolic rates of about 1.6 times basal metabolic rate. The extra heat thereby produced would also be expected to lead to a shift in the ‘lower critical temperature’ towards lower temperatures. Methods To examine these tenets experimentally, we performed high time-resolution indirect calorimetry at different environmental temperatures on mice acclimated to different housing temperatures. Results Based on the high time-resolution calorimetry analysis, we found that mice already under thermoneutral conditions display mean diurnal energy expenditure rates 1.8 times higher than basal metabolism, remarkably closely resembling the human situation. At any temperature below thermoneutrality, mice metabolism therefore exceeds the human equivalent: Mice under standard conditions display energy expenditure 3.1 times basal metabolism. The discrepancy to previous conclusions is probably attributable to earlier limitations in establishing true mouse basal metabolic rate, due to low time resolution. We also found that the fact that mean energy expenditure exceeds resting metabolic rate does not move the apparent thermoneutral zone (the lower critical temperature) downwards. Conclusions We show that housing mice at thermoneutrality is an advantageous step towards aligning mouse energy metabolism to human energy metabolism. High time-resolution indirect calorimetry reveals true resting metabolic rate in mice. Mice at thermoneutrality display average energy expenditure 1.8 times their RMR (BMR). This relationship very closely resembles the human situation. Lower critical temperature is not influenced by enhanced energy expenditure. To model human metabolism, 30 °C remains the optimal housing temperature for mice.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, DE-20246 Hamburg, Germany
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
43
|
Gordon CJ. The mouse thermoregulatory system: Its impact on translating biomedical data to humans. Physiol Behav 2017; 179:55-66. [PMID: 28533176 PMCID: PMC6196327 DOI: 10.1016/j.physbeh.2017.05.026] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
The laboratory mouse has become the predominant test species in biomedical research. The number of papers that translate or extrapolate data from mouse to human has grown exponentially since the year 2000. There are many physiological and anatomical factors to consider in the process of extrapolating data from one species to another. Body temperature is, of course, a critical determinant in extrapolation because it has a direct impact on metabolism, cardiovascular function, drug efficacy, pharmacokinetics of toxins and drugs, and many other effects. While most would consider the thermoregulatory system of mice to be sufficiently stable and predictable as to not be a cause for concern, the thermal physiology of mice does in fact present unique challenges to the biomedical researcher. A variable and unstable core temperature, high metabolic rate, preference for warm temperatures, large surface area: body mass ratio, and high rate of thermal conductance, are some of the key factors of mice that can affect the interpretation and translation of data to humans. It is the intent of this brief review to enlighten researchers studying interspecies translation of biomedical data on the salient facets of the mouse thermal physiology and show how extrapolation in fields such as physiology, psychology, nutrition, pharmacology, toxicology, and pathology.
Collapse
Affiliation(s)
- Christopher J Gordon
- Toxicity Assessment Division, National Health Effects and Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
44
|
Kruse V, Neess D, Færgeman NJ. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends Endocrinol Metab 2017; 28:669-683. [PMID: 28668301 DOI: 10.1016/j.tem.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.
Collapse
Affiliation(s)
- Vibeke Kruse
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
45
|
Nahon KJ, Boon MR, Doornink F, Jazet IM, Rensen PCN, Abreu-Vieira G. Lower critical temperature and cold-induced thermogenesis of lean and overweight humans are inversely related to body mass and basal metabolic rate. J Therm Biol 2017; 69:238-248. [PMID: 29037389 DOI: 10.1016/j.jtherbio.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5°C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.
Collapse
Affiliation(s)
- Kimberly J Nahon
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Fleur Doornink
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ingrid M Jazet
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Gustavo Abreu-Vieira
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
46
|
Cold-induced thermogenesis in humans. Eur J Clin Nutr 2016; 71:345-352. [PMID: 27876809 DOI: 10.1038/ejcn.2016.223] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
A basic property of endothermic thermoregulation is the ability to generate heat by increasing metabolism in response to cold ambient temperatures to maintain a stable core body temperature. This process, known as cold-induced thermogenesis (CIT), has been measured in humans as early as 1780 by Antoine Lavoisier, but has found renewed interest because of the recent 'rediscovery' of thermogenic, cold-activated brown adipose tissue (BAT) in adult humans. In this review, we summarize some of the key findings of the work involving CIT over the past two centuries and highlight some of the seminal studies focused on this topic. There has been a substantial range of variability in the reported CIT in these studies, from 0 to 280% above basal metabolism. We identify and discuss several potential sources of this variability, including both methodological (measurement device, cold exposure temperature and duration) and biological (age and body composition of subject population) discrepancies. These factors should be considered when measuring CIT going forward to better assess whether BAT or other thermogenic organs are viable targets to combat chronic positive energy balance based on their relative capacities to elevate human metabolism.
Collapse
|
47
|
Fischer AW, Csikasz RI, von Essen G, Cannon B, Nedergaard J. Reply to letter to the editor: at thermoneutrality, neither the lean nor the obese freeze. Am J Physiol Endocrinol Metab 2016; 311:E639. [PMID: 27619918 DOI: 10.1152/ajpendo.00309.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden; and Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert I Csikasz
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden; and
| | - Gabriella von Essen
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden; and
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden; and
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden; and
| |
Collapse
|
48
|
Jay O, Raubenheimer D. Some problems with translating the insulating effect of obesity from mice to men. Am J Physiol Endocrinol Metab 2016; 311:E638. [PMID: 27619917 DOI: 10.1152/ajpendo.00265.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; and
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|