1
|
Xie Y, Gu Y, Li Z, He B, Zhang L. Effects of Different Exercises Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-Analysis. Nutrients 2024; 16:3007. [PMID: 39275322 PMCID: PMC11397086 DOI: 10.3390/nu16173007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Exercise and dietary interventions are essential for maintaining weight and reducing fat accumulation. With the growing popularity of various dietary strategies, evidence suggests that combining exercise with dietary interventions offers greater benefits than either approach alone. Consequently, this combined strategy has become a preferred method for many individuals aiming to maintain health. Calorie restriction, 5/2 intermittent fasting, time-restricted feeding, and the ketogenic diet are among the most popular dietary interventions today. Aerobic exercise, resistance training, and mixed exercise are the most widely practiced forms of physical activity. Exploring the best combinations of these approaches to determine which yields the most effective results is both meaningful and valuable. Despite this trend, a comparative analysis of the effects of different exercise and diet combinations is lacking. This study uses network meta-analysis to evaluate the impact of various combined interventions on body composition and to compare their efficacy. METHODS We systematically reviewed literature from database inception through May 2024, searching PubMed, Web of Science, Embase, and the Cochrane Library. The study was registered in PROSPERO under the title: "Effects of Exercise Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-Analysis" (identifier: CRD42024542184). Studies were meticulously selected based on specific inclusion and exclusion criteria (The included studies must be randomized controlled trials involving healthy adults aged 18 to 65 years. Articles were rigorously screened according to the specified inclusion and exclusion criteria.), and their risk of bias was assessed using the Cochrane risk of bias tool. Data were aggregated and analyzed using network meta-analysis, with intervention efficacy ranked by Surface Under the Cumulative Ranking (SUCRA) curves. RESULTS The network meta-analysis included 78 randomized controlled trials with 5219 participants, comparing the effects of four combined interventions: exercise with calorie restriction (CR+EX), exercise with time-restricted eating (TRF+EX), exercise with 5/2 intermittent fasting (5/2F+EX), and exercise with a ketogenic diet (KD+EX) on body composition. Intervention efficacy ranking was as follows: (1) Weight Reduction: CR+EX > KD+EX > TRF+EX > 5/2F+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 2.94 (-3.64, 9.52); 2.37 (-0.40, 5.15); 1.80 (-1.75, 5.34)). (2) BMI: CR+EX > KD+EX > 5/2F+EX > TRF+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 1.95 (-0.49, 4.39); 2.20 (1.08, 3.32); 1.23 (-0.26, 2.71)). (3) Body Fat Percentage: CR+EX > 5/2F+EX > TRF+EX > KD+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 2.66 (-1.56, 6.89); 2.84 (0.56, 5.13); 3.14 (0.52, 5.75).). (4) Lean Body Mass in Male: CR+EX > TRF+EX > KD+EX (Relative to CR+EX, the effect sizes of TRF+EX and KD+EX are -1.60 (-6.98, 3.78); -2.76 (-7.93, 2.40)). (5) Lean Body Mass in Female: TRF+EX > CR+EX > 5/2F+EX > KD+EX (Relative to TRF+EX, the effect sizes of CR+EX, 5/2F+EX and KD+EX are -0.52 (-2.58, 1.55); -1.83 (-4.71, 1.04); -2.46 (-5.69,0.76).). CONCLUSION Calorie restriction combined with exercise emerged as the most effective strategy for reducing weight and fat percentage while maintaining lean body mass. For women, combining exercise with time-restricted eating proved optimal for preserving muscle mass. While combining exercise with a ketogenic diet effectively reduces weight, it is comparatively less effective at decreasing fat percentage and preserving lean body mass. Hence, the ketogenic diet combined with exercise is considered suboptimal.
Collapse
Affiliation(s)
- Yongchao Xie
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| | - Yu Gu
- Henan Sports Medicine and Rehabilitation Center, Henan Sport University, Zhengzhou 450044, China;
| | - Zhen Li
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| | - Bingchen He
- Department of Physical Education, South China University of Technology, Guangzhou 510641, China;
| | - Lei Zhang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| |
Collapse
|
2
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Mey JT, Vandagmansar B, Dantas WS, Belmont KP, Axelrod CL, Kirwan JP. Ketogenic propensity is differentially related to lipid-induced hepatic and peripheral insulin resistance. Acta Physiol (Oxf) 2023; 239:e14054. [PMID: 37840478 DOI: 10.1111/apha.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
AIM Determine the ketogenic response (β-hydroxybutyrate, a surrogate of hepatic ketogenesis) to a controlled lipid overload in humans. METHODS In total, nineteen young, healthy adults (age: 28.4 ± 1.7 years; BMI: 22.7 ± 0.3 kg/m2 ) received either a 12 h overnight lipid infusion or saline in a randomized, crossover design. Plasma ketones and inflammatory markers were quantified by colorimetric and multiplex assays. Hepatic and peripheral insulin sensitivity was assessed by the hyperinsulinemic-euglycemic clamp. Skeletal muscle biopsies were obtained to quantify gene expression related to ketone body metabolism and inflammation. RESULTS By design, the lipid overload-induced hepatic (50%, p < 0.001) and peripheral insulin resistance (73%, p < 0.01) in healthy adults. Ketones increased with hyperlipidemia and were subsequently reduced with hyperinsulinemia during the clamp procedure (Saline: Basal = 0.22 mM, Insulin = 0.07 mM; Lipid: Basal = 0.78 mM, Insulin = 0.51 mM; 2-way ANOVA: Lipid p < 0.001, Insulin p < 0.001, Interaction p = 0.07). In the saline control condition, ketones did not correlate with hepatic or peripheral insulin sensitivity. Conversely, in the lipid condition, ketones were positively correlated with hepatic insulin sensitivity (r = 0.59, p < 0.01), but inversely related to peripheral insulin sensitivity (r = -0.64, p < 0.01). Hyperlipidemia increased plasma inflammatory markers, but did not impact skeletal muscle inflammatory gene expression. Gene expression related to ketone and fatty acid metabolism in skeletal muscle increased in response to hyperlipidemia. CONCLUSION This work provides important insight into the role of ketones in human health and suggests that ketone body metabolism is altered at the onset of lipid-induced insulin resistance.
Collapse
Affiliation(s)
- J T Mey
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - B Vandagmansar
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - W S Dantas
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - K P Belmont
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - C L Axelrod
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - J P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Liu X, Johnson SB, Lynch KF, Cordan K, Pate R, Butterworth MD, Lernmark Å, Hagopian WA, Rewers MJ, McIndoe RA, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Yang J. Physical Activity and the Development of Islet Autoimmunity and Type 1 Diabetes in 5- to 15-Year-Old Children Followed in the TEDDY Study. Diabetes Care 2023; 46:1409-1416. [PMID: 37141102 PMCID: PMC10300517 DOI: 10.2337/dc23-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE This study investigated physical activity and its association with the development of islet autoimmunity and type 1 diabetes in genetically at-risk children aged 5-15 years. RESEARCH DESIGN AND METHODS As part of the longitudinal Environmental Determinants of Diabetes in the Young (TEDDY) study, annual assessment of activity using accelerometry was conducted from age 5 years. Time-to-event analyses using Cox proportional hazard models were used to assess the association between time spent in moderate to vigorous physical activity per day and the appearance of one or several autoantibodies and progression to type 1 diabetes in three risk groups: 1) 3,869 islet autoantibody (IA)-negative children, of whom 157 became single IA positive; 2) 302 single IA-positive children, of whom 73 became multiple IA positive; and 3) 294 multiple IA-positive children, of whom 148 developed type 1 diabetes. RESULTS No significant association was found in risk group 1 or risk group 2. A significant association was seen in risk group 3 (hazard ratio 0.920 [95% CI 0.856, 0.988] per 10-min increase; P = 0.021), particularly when glutamate decarboxylase autoantibody was the first autoantibody (hazard ratio 0.883 [95% CI 0.783, 0.996] per 10-min increase; P = 0.043). CONCLUSIONS More daily minutes spent in moderate to vigorous physical activity was associated with a reduced risk of progression to type 1 diabetes in children aged 5-15 years who had developed multiple IAs.
Collapse
Affiliation(s)
- Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL
| | - Kristian F. Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kerry Cordan
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Russell Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Martha D. Butterworth
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | | | - Marian J. Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Richard A. McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jimin Yang
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
5
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic Diet in Children and Adolescents: the Effects on Growth and Nutritional Status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Elisabetta Di Profio
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain.
| | - Gianvincenzo Zuccotti
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.
| | - Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| |
Collapse
|
6
|
Della Guardia L, Codella R. Exercise Restores Hypothalamic Health in Obesity by Reshaping the Inflammatory Network. Antioxidants (Basel) 2023; 12:antiox12020297. [PMID: 36829858 PMCID: PMC9951965 DOI: 10.3390/antiox12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at molecular and cellular level that positively impact local inflammation. This review discusses the positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals. The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and AGEs), and the improvement in the gut-brain axis represent alternative paths through which regular exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis investigating the crosstalk muscle-hypothalamus would help toward a deeper comprehension of the subject.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
7
|
Ahiawodzi PD, Furtado JD, Mukamal KJ. Dietary Macronutrients and Circulating Nonesterified Fatty Acids: A Secondary Analysis of the OMNI Heart Crossover Trial. J Nutr 2023; 152:2802-2807. [PMID: 36026540 PMCID: PMC9839991 DOI: 10.1093/jn/nxac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Nonesterified fatty acids (NEFAs) play key roles in the pathophysiology of diabetes and cardiovascular disease. OBJECTIVES We sought to determine whether macronutrient content differences affect NEFA concentrations in a randomized crossover trial. METHODS Total NEFAs were measured from postintervention specimens of participants in the OMNI Heart trial (Optimal Macronutrient Intake Trial to Prevent Heart Disease). OMNI Heart compared 3 healthful diets to evaluate their effect on systolic blood pressure and serum LDL cholesterol: carbohydrate-rich diet (58% carbohydrate); protein-rich diet (25% protein), about half from plant sources; and a diet rich in unsaturated fatty acids (21% unsaturated fat), predominantly monounsaturated. The trial included 164 participants who consumed the 3 diets, each for 6 wk. Data were analyzed from the 156 participants with unthawed serum available from the week 6 visit for all diet periods. We used ANCOVA and generalized estimating equations (GEEs) to compare serum NEFA concentrations across the 3 diet periods. RESULTS The mean ± SD age of study participants was 52.9 ± 10.6 y and mean BMI was 30.3 ± 6.1 kg/m2. Fifty-five percent of participants were women and 55% were African American. Comparisons of adjusted mean serum NEFA concentrations after each diet intervention identified no statistically significant differences (58% carbohydrate: 0.144 ± 0.083 mEq/L; 25% protein: 0.143 ± 0.076 mEq/L; 21% unsaturated fat: 0.143 ± 0.084 mEq/L; ANCOVA, P = 0.99). Likewise, we observed no significant serum NEFA concentration difference by diet in adjusted GEE models. In adjusted models, serum NEFA concentrations were positively associated, as anticipated, with female sex and higher BMI. CONCLUSIONS In this randomized crossover trial, we observed nearly identical serum NEFA concentrations after each of 3 healthful diets, regardless of macronutrient content.
Collapse
Affiliation(s)
- Peter D Ahiawodzi
- Department of Public Health, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Galicia Ernst I, Torbahn G, Schwingshackl L, Knüttel H, Kob R, Kemmler W, Sieber CC, Batsis JA, Villareal DT, Stroebele-Benschop N, Visser M, Volkert D, Kiesswetter E, Schoene D. Outcomes addressed in randomized controlled lifestyle intervention trials in community-dwelling older people with (sarcopenic) obesity-An evidence map. Obes Rev 2022; 23:e13497. [PMID: 35891613 DOI: 10.1111/obr.13497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Obesity and sarcopenic obesity (SO) are characterized by excess body fat with or without low muscle mass affecting bio-psycho-social health, functioning, and subsequently quality of life in older adults. We mapped outcomes addressed in randomized controlled trials (RCTs) on lifestyle interventions in community-dwelling older people with (sarcopenic) obesity. Systematic searches in Medline, Embase, Cochrane Central, CINAHL, PsycInfo, Web of Science were conducted. Two reviewers independently performed screening and extracted data on outcomes, outcome domains, assessment methods, units, and measurement time. A bubble chart and heat maps were generated to visually display results. Fifty-four RCTs (7 in SO) reporting 464 outcomes in the outcome domains: physical function (n = 42), body composition/anthropometry (n = 120), biomarkers (n = 190), physiological (n = 30), psychological (n = 47), quality of life (n = 14), pain (n = 4), sleep (n = 2), medications (n = 3), and risk of adverse health events (n = 5) were included. Heterogeneity in terms of outcome definition, assessment methods, measurement units, and measurement times was found. Psychological and quality of life domains were investigated in a minority of studies. There is almost no information beyond 52 weeks. This evidence map is the first step of a harmonization process to improve comparability of RCTs in older people with (sarcopenic) obesity and facilitate the derivation of evidence-based clinical decisions.
Collapse
Affiliation(s)
- Isabel Galicia Ernst
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Gabriel Torbahn
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of Pediatrics, Paracelsus Medical University, Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität Nürnberg, Nuremberg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| | - Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Cornel C Sieber
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of Medicine, Kantonsspital Winterthur, Winterthur, Switzerland
| | - John A Batsis
- Division of Geriatric Medicine, School of Medicine and Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Nanette Stroebele-Benschop
- Department of Nutritional Psychology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Marjolein Visser
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Eva Kiesswetter
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Schoene
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute for Exercise and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Al-Dorzi HM, Stapleton RD, Arabi YM. Nutrition priorities in obese critically ill patients. Curr Opin Clin Nutr Metab Care 2022; 25:99-109. [PMID: 34930871 DOI: 10.1097/mco.0000000000000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW During critical illness, several neuroendocrine, inflammatory, immune, adipokine, and gastrointestinal tract hormone pathways are activated; some of which are more intensified among obese compared with nonobese patients. Nutrition support may mitigate some of these effects. Nutrition priorities in obese critically ill patients include screening for nutritional risk, estimation of energy and protein requirement, and provision of macronutrients and micronutrients. RECENT FINDINGS Estimation of energy requirement in obese critically ill patients is challenging because of variations in body composition among obese patients and absence of reliable predictive equations for energy expenditure. Whereas hypocaloric nutrition with high protein has been advocated in obese critically ill patients, supporting data are scarce. Recent studies did not show differences in outcomes between hypocaloric and eucaloric nutrition, except for better glycemic control. Sarcopenia is common among obese patients, and the provision of increased protein intake has been suggested to mitigate catabolic changes especially after the acute phase of critical illness. However, high-quality data on high protein intake in these patients are lacking. Micronutrient deficiencies among obese critically ill patients are common but the role of their routine supplementation requires further study. SUMMARY An individualized approach for nutritional support may be needed for obese critically ill patients but high-quality evidence is lacking. Future studies should focus on nutrition priorities in this population, with efficient and adequately powered studies.
Collapse
Affiliation(s)
- Hasan M Al-Dorzi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, and Intensive Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Renee D Stapleton
- Pulmonary and Critical Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Yaseen M Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, and Intensive Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Della Guardia L, Codella R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev 2021; 62:83-93. [PMID: 34620559 DOI: 10.1016/j.cytogfr.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022]
Abstract
Metabolic conditions share a common low-grade inflammatory milieu, which represents a key-factor for their ignition and maintenance. Exercise is instrumental for warranting systemic cardio-metabolic balance, owing to its regulatory effect on inflammation. This review explores the effect of physical activity in the modulation of sub-inflammatory framework characterizing dysmetabolic conditions. Regular exercise suppresses plasma levels of TNFα, IL-1β, FFAs and MCP-1, in dysmetabolic subjects. In addition, a single session of training increases the anti-inflammatory IL-10, IL-1 receptor antagonist (IL-1ra), and muscle-derived IL-6, mitigating low-grade inflammation. Resting IL-6 levels are decreased in trained-dysmetabolic subjects, compared to sedentary. On the other hand, the acute release of muscle-IL-6, after exercise, seems to exert a regulatory effect on the metabolic and inflammatory balance. In fact, muscle-released IL-6 is presumably implicated in fat loss and boosts plasma levels of IL-10 and IL-1ra. The improvement of adipose tissue functionality, following regular exercise, is also critical for the mitigation of sub-inflammation. This effect is likely mediated by muscle-released IL-15 and IL-6 and partly relies on the brown-shifting of white adipocytes, induced by exercise. In obese-dysmetabolic subjects, moderate training is shown to restore gut-microbiota health, and this mitigates the translocation of bacterial-LPS into bloodstream. Finally, regular exercise can lower plasma advanced glycated endproducts. The articulated physiology of circulating mediators and the modulating effect of the pathophysiological background, render the comprehension of the exercise-regulatory effect on sub-inflammation a key issue, in dysmetabolism.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|
11
|
Axelrod CL, Fealy CE, Erickson ML, Davuluri G, Fujioka H, Dantas WS, Huang E, Pergola K, Mey JT, King WT, Mulya A, Hsia D, Burguera B, Tandler B, Hoppel CL, Kirwan JP. Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans. Metabolism 2021; 121:154803. [PMID: 34090870 PMCID: PMC8277749 DOI: 10.1016/j.metabol.2021.154803] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION NCT02697201, ClinicalTrials.gov.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ciaran E Fealy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Melissa L Erickson
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Sarcopenia and Malnutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core, Case Western Reserve University, Cleveland, OH 44109, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Emily Huang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacob T Mey
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William T King
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anny Mulya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Hsia
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Bartolome Burguera
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Bernard Tandler
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44109, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
Malin SK, Stewart NR. Metformin May Contribute to Inter-individual Variability for Glycemic Responses to Exercise. Front Endocrinol (Lausanne) 2020; 11:519. [PMID: 32849302 PMCID: PMC7431621 DOI: 10.3389/fendo.2020.00519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin and exercise independently improve glycemic control. Metformin traditionally is considered to reduce hepatic glucose production, while exercise training is thought to stimulate skeletal muscle glucose disposal. Collectively, combining treatments would lead to the anticipation for additive glucose regulatory effects. Herein, we discuss recent literature suggesting that metformin may inhibit, enhance or have no effect on exercise mediated benefits toward glucose regulation, with particular emphasis on insulin sensitivity. Importantly, we address issues surrounding the impact of metformin on exercise induced glycemic benefit across multiple insulin sensitive tissues (e.g., skeletal muscle, liver, adipose, vasculature, and the brain) in effort to illuminate potential sources of inter-individual glycemic variation. Therefore, the review identifies gaps in knowledge that require attention in order to optimize medical approaches that improve care of people with elevated blood glucose levels and are at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Nathan R. Stewart
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Curran M, Drayson MT, Andrews RC, Zoppi C, Barlow JP, Solomon TPJ, Narendran P. The benefits of physical exercise for the health of the pancreatic β-cell: a review of the evidence. Exp Physiol 2020; 105:579-589. [PMID: 32012372 DOI: 10.1113/ep088220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the evidence of the benefits of exercise training for β-cell health through improvements in function, proliferation and survival which may have implications in the treatment of diabetes. What advances does it highlight? This review highlights how exercise may modulate β-cell health in the context of diabetes and highlights the need for further exploration of whether β-cell preserving effects of exercise translates to T1D. ABSTRACT Physical exercise is a core therapy for type 1 and type 2 diabetes. Whilst the benefits of exercise for different physiological systems are recognised, the effect of exercise specifically on the pancreatic β-cell is not well described. Here we review the effects of physical exercise on β-cell health. We show that exercise improves β-cell mass and function. The improved function manifests primarily through the increased insulin content of the β-cell and its increased ability to secrete insulin in response to a glucose stimulus. We review the evidence relating to glucose sensing, insulin signalling, β-cell proliferation and β-cell apoptosis in humans and animal models with acute exercise and following exercise training programmes. Some of the mechanisms through which these benefits manifest are discussed.
Collapse
Affiliation(s)
- Michelle Curran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Claudio Zoppi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Jonathan P Barlow
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Thomas P J Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Department of Diabetes, The Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
14
|
Haywood C, Sumithran P. Treatment of obesity in older persons-A systematic review. Obes Rev 2019; 20:588-598. [PMID: 30645010 DOI: 10.1111/obr.12815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
The study aims to systematically review the available evidence regarding weight loss interventions (lifestyle, surgical, and pharmacological) for obesity in adults aged over 60 years. A search of prospective, randomized studies took place in January 2018, on Medline (Web of Science) and PubMed databases. Search terms included the following: elderly, obese, hypocaloric, pharmacotherapy, and bariatric surgery. Abstracts were screened for eligibility. A total of 256 publications regarding lifestyle interventions were identified; of these, 69 studies were eligible. As no eligible studies were identified for pharmacotherapy or bariatric surgery, the search was broadened to include non- randomized studies. Four pharmacotherapy and 66 surgery studies were included. Lifestyle intervention had similar weight loss efficacy in older compared with younger people, with positive effects on a number of relevant outcomes, including physical function and cardiovascular parameters. There was little data regarding obesity pharmacotherapy in older persons. The available data for bariatric surgery indicate comparable weight loss and resolution of type 2 diabetes, with similar or slightly higher complication rates in older compared with younger people. Older age alone should not be considered a contraindication to intensive lifestyle or surgical intervention for obesity. There are insufficient data to guide clinical decisions regarding obesity pharmacotherapy in older people.
Collapse
Affiliation(s)
- Cilla Haywood
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.,Department of Aged Care, Austin Health, Heidelberg, Victoria, Australia
| | - Priya Sumithran
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
15
|
Free Fatty Acids' Level and Nutrition in Critically Ill Patients and Association with Outcomes: A Prospective Sub-Study of PermiT Trial. Nutrients 2019; 11:nu11020384. [PMID: 30781774 PMCID: PMC6412238 DOI: 10.3390/nu11020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The objectives of this study were to evaluate the clinical and nutritional correlates of high free fatty acids (FFAs) level in critically ill patients and the association with outcomes, and to study the effect of short-term caloric restriction (permissive underfeeding) on FFAs level during critical illness. PATIENTS/METHOD In this pre-planned sub-study of the PermiT (Permissive Underfeeding vs. Target Enteral Feeding in Adult Critically Ill Patients) trial, we included critically ill patients who were expected to stay for ≥14 days in the intensive care unit. We measured FFAs level on day 1, 3, 5, 7, and 14 of enrollment. Of 70 enrolled patients, 23 (32.8%) patients had high FFAs level (baseline FFAs level >0.45 mmol/L in females and >0.6 mmol/L in males). RESULTS Patients with high FFAs level were significantly older and more likely to be females and diabetics and they had lower ratio of partial pressure of oxygen to the fraction of inspired oxygen, higher creatinine, and higher total cholesterol levels than those with normal FFAs level. During the study period, patients with high FFAs level had higher blood glucose and required more insulin. On multivariable logistic regression analysis, the predictors of high baseline FFAs level were diabetes (adjusted odds ratio (aOR): 5.36; 95% confidence interval (CI): 1.56, 18.43, p = 0.008) and baseline cholesterol level (aOR, 4.29; 95% CI: 11.64, 11.19, p = 0.003). Serial levels of FFAs did not differ with time between permissive underfeeding and standard feeding groups. FFAs level was not associated with 90-day mortality (aOR: 0.49; 95% CI: 0.09, 2.60, p = 0.40). CONCLUSION We conclude that high FFAs level in critically ill patients is associated with features of metabolic syndrome and is not affected by short-term permissive underfeeding.
Collapse
|
16
|
Heiston EM, Malin SK. Impact of Exercise on Inflammatory Mediators of Metabolic and Vascular Insulin Resistance in Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:271-294. [PMID: 30919343 DOI: 10.1007/978-3-030-12668-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of obesity is cornerstone in the etiology of metabolic and vascular insulin resistance and consequently exacerbates glycemic control. Exercise is an efficacious first-line therapy for type 2 diabetes that improves insulin action through, in part, reducing hormone mediated inflammation. Together, improving the coordination of skeletal muscle metabolism with vascular delivery of glucose will be required for optimizing type 2 diabetes and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 2018; 202:69-82. [PMID: 30153426 DOI: 10.1016/j.trsl.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
Collapse
Affiliation(s)
- CiarÁn E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher L Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
| |
Collapse
|
18
|
Mey JT, Haus JM. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med 2018; 5:117. [PMID: 30250846 PMCID: PMC6139330 DOI: 10.3389/fcvm.2018.00117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase-1 (GLO1) is a ubiquitously expressed cytosolic protein which plays a role in the natural maintenance of cellular health and is abundantly expressed in human skeletal muscle. A consequence of reduced GLO1 protein expression is cellular dicarbonyl stress, which is elevated in obesity, insulin resistance and type 2 diabetes (T2DM). Both in vitro and pre-clinical models suggest dicarbonyl stress per se induces insulin resistance and is prevented by GLO1 overexpression, implicating a potential role for GLO1 therapy in insulin resistance and type 2 diabetes (T2DM). Recent work has identified the therapeutic potential of novel natural agents as a GLO1 inducer, which resulted in improved whole-body metabolism in obese adults. Given skeletal muscle is a major contributor to whole-body glucose, lipid, and protein metabolism, such GLO1 inducers may act, in part, through mechanisms in skeletal muscle. Currently, investigations examining the specificity of dicarbonyl stress and GLO1 biology in human skeletal muscle are lacking. Recent work from our lab indicates that dysregulation of GLO1 in skeletal muscle may underlie human insulin resistance and that exercise training may impart therapeutic benefits. This minireview will summarize the existing human literature examining skeletal muscle GLO1 and highlight the emerging therapeutic concepts for GLO1 gain-of-function in conditions such as insulin resistance and cardiometabolic disease.
Collapse
Affiliation(s)
- Jacob T Mey
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Solomon TPJ. Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose. Front Physiol 2018; 9:896. [PMID: 30061841 PMCID: PMC6055062 DOI: 10.3389/fphys.2018.00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
In the context of type 2 diabetes, inter-individual variability in the therapeutic response of blood glucose control to exercise exists to the extent that some individuals, occasionally referred to as “non-responders,” may not experience therapeutic benefit to their blood glucose control. This narrative review examines the evidence and, more importantly, identifies the sources of such inter-individual variability. In doing so, this review highlights that no randomized controlled trial of exercise has yet prospectively measured inter-individual variability in blood glucose control in individuals with prediabetes or type 2 diabetes. Of the identified sources of inter-individual variability, neither has a prospective randomized controlled trial yet quantified the impact of exercise dose, exercise frequency, exercise type, behavioral/environmental barriers, exercise-meal timing, or anti-hyperglycemic drugs on changes in blood glucose control, in individuals with prediabetes or type 2 diabetes. In addition, there is also an urgent need for prospective trials to identify molecular or physiological predictors of inter-individual variability in the changes in blood glucose control following exercise. Therefore, the narrative identifies critical science gaps that must be filled if exercise scientists are to succeed in optimizing health care policy recommendations for type 2 diabetes, so that the therapeutic benefit of exercise may be maximized for all individuals with, or at risk of, diabetes.
Collapse
Affiliation(s)
- Thomas P J Solomon
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Yoshikawa T, Zempo-Miyaki A, Kumagai H, Myoenzono K, So R, Tsujimoto T, Tanaka K, Maeda S. Relationships between serum free fatty acid and pulse pressure amplification in overweight/obese men: insights from exercise training and dietary modification. J Clin Biochem Nutr 2018. [PMID: 29892165 DOI: 10.3164/jcbn.17.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulse pressure amplification (i.e., the ratio of peripheral to central pulse pressure) is a strong predictor of cardiovascular events. Circulating free fatty acid, which is a major cause of insulin resistance, has been reported to favorably be associated with pulse pressure amplification in the arm (from the aorta to brachial artery). We hypothesized that this paradoxical relationship depended on an evaluating site of pulse pressure amplification and investigated whether serum free fatty acid level is related to pulse pressure amplification in the arm or trunk (from the aorta to femoral artery) in overweight/obese men. In a cross-sectional study, 85 men participated, and regression analyses revealed that serum free fatty acid level was significantly and independently associated with pulse pressure amplification in the arm but not the trunk. In a longitudinal study, 33 men completed a 12-week lifestyle intervention that involved both exercise training and dietary modification. The lifestyle intervention-induced change in serum free fatty acid level was significantly correlated to that in pulse pressure amplification in the arm but not the trunk. These results support our hypothesis and suggest that pulse pressure amplification should be measured in the trunk instead of the arm in overweight/obese men to simplify its interpretation.
Collapse
Affiliation(s)
- Toru Yoshikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Asako Zempo-Miyaki
- Faculty of Health and Sport Science, Ryutsu Keizai University, 120 Ryugasaki, Ibaraki 301-8555, Japan
| | - Hiroshi Kumagai
- Faculty of Health and Sport Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1606, Japan
| | - Kanae Myoenzono
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rina So
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Takehiko Tsujimoto
- Faculty of Human Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kiyoji Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
21
|
Yoshikawa T, Zempo-Miyaki A, Kumagai H, Myoenzono K, So R, Tsujimoto T, Tanaka K, Maeda S. Relationships between serum free fatty acid and pulse pressure amplification in overweight/obese men: insights from exercise training and dietary modification. J Clin Biochem Nutr 2018; 62:254-258. [PMID: 29892165 PMCID: PMC5990403 DOI: 10.3164/jcbn.17-103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Pulse pressure amplification (i.e., the ratio of peripheral to central pulse pressure) is a strong predictor of cardiovascular events. Circulating free fatty acid, which is a major cause of insulin resistance, has been reported to favorably be associated with pulse pressure amplification in the arm (from the aorta to brachial artery). We hypothesized that this paradoxical relationship depended on an evaluating site of pulse pressure amplification and investigated whether serum free fatty acid level is related to pulse pressure amplification in the arm or trunk (from the aorta to femoral artery) in overweight/obese men. In a cross-sectional study, 85 men participated, and regression analyses revealed that serum free fatty acid level was significantly and independently associated with pulse pressure amplification in the arm but not the trunk. In a longitudinal study, 33 men completed a 12-week lifestyle intervention that involved both exercise training and dietary modification. The lifestyle intervention-induced change in serum free fatty acid level was significantly correlated to that in pulse pressure amplification in the arm but not the trunk. These results support our hypothesis and suggest that pulse pressure amplification should be measured in the trunk instead of the arm in overweight/obese men to simplify its interpretation.
Collapse
Affiliation(s)
- Toru Yoshikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Asako Zempo-Miyaki
- Faculty of Health and Sport Science, Ryutsu Keizai University, 120 Ryugasaki, Ibaraki 301-8555, Japan
| | - Hiroshi Kumagai
- Faculty of Health and Sport Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1606, Japan
| | - Kanae Myoenzono
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rina So
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Takehiko Tsujimoto
- Faculty of Human Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kiyoji Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
22
|
Oh S, Han G, Kim B, Shoda J. Regular Exercise as a Secondary Practical Treatment for Nonalcoholic Fatty Liver Disease. EXERCISE MEDICINE 2018. [DOI: 10.26644/em.2018.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Grenier-Larouche T, Carreau AM, Geloën A, Frisch F, Biertho L, Marceau S, Lebel S, Hould FS, Richard D, Tchernof A, Carpentier AC. Fatty Acid Metabolic Remodeling During Type 2 Diabetes Remission After Bariatric Surgery. Diabetes 2017; 66:2743-2755. [PMID: 28835473 DOI: 10.2337/db17-0414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022]
Abstract
Hypertrophic remodeling of white adipose tissues is associated with overexposure of lean organs to circulating triglycerides (TGs) and nonesterified fatty acids (NEFAs), ultimately leading to insulin resistance. Bariatric surgery promotes type 2 diabetes (T2D) remission through a succession of weight loss-dependent and -independent mechanisms. However, the longitudinal contribution of adipocyte size reduction and fatty acid metabolic handling remain unknown. Here we show that severely obese participants with T2D display hypertriglyceridemia and excessive systemic lipolysis during intravenous lipid overload. Three days after biliopancreatic diversion with duodenal switch (DS), whole-body glycerol turnover was normalized and associated with lower HOMA-insulin resistance index. A mean excess weight loss of 84% was achieved 12 months after DS. The smaller subcutaneous adipocyte size predicted better glycemic control in T2D. TG disposal and acylcarnitine production during lipid overload, along with muscle insulin sensitivity, improved with weight loss. Nevertheless, systemic NEFA fluxes and NEFA spillover remained similar, suggesting that increased NEFA storage capacity per volume of adipose tissue exactly compensated for the decrease in fat mass during weight loss. In conclusion, T2D remission after DS is mainly associated with greater circulating TG disposal, lower systemic lipolysis, and better fatty acid handling by lean tissues.
Collapse
Affiliation(s)
- Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain Geloën
- University of Lyon, CARMEN INSERM U1060, INSA-Lyon, Villeurbanne, France
| | - Frédérique Frisch
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurent Biertho
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Simon Marceau
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Stéfane Lebel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Frédéric-Simon Hould
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - André Tchernof
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
24
|
Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, Kirwan JP. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol 2017; 313:C575-C583. [PMID: 28835436 DOI: 10.1152/ajpcell.00123.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
We are interested in understanding mechanisms that govern the protective role of exercise against lipid-induced insulin resistance, a key driver of type 2 diabetes. In this context, cell culture models provide a level of abstraction that aid in our understanding of cellular physiology. Here we describe the development of an in vitro myotube contraction system that provides this protective effect, and which we have harnessed to investigate lipid-induced insulin resistance. C2C12 myocytes were differentiated into contractile myotubes. A custom manufactured platinum electrode system and pulse stimulator, with polarity switching, provided an electrical pulse stimulus (EPS) (1 Hz, 6-ms pulse width, 1.5 V/mm, 16 h). Contractility was assessed by optical flow flied spot noise mapping and inhibited by application of ammonium acetate. Following EPS, myotubes were challenged with 0.5 mM palmitate for 4 h. Cells were then treated with or without insulin for glucose uptake (30 min), secondary insulin signaling activation (10 min), and phosphoinositide 3-kinase-α (PI3Kα) activity (5 min). Prolonged EPS increased non-insulin-stimulated glucose uptake (83%, P = 0.002), Akt (Thr308) phosphorylation (P = 0.005), and insulin receptor substrate-1 (IRS-1)-associated PI3Kα activity (P = 0.048). Palmitate reduced insulin-specific action on glucose uptake (-49%, P < 0.001) and inhibited insulin-stimulated Akt phosphorylation (P = 0.049) and whole cell PI3Kα activity (P = 0.009). The inhibitory effects of palmitate were completely absent with EPS pretreatment at the levels of glucose uptake, insulin responsiveness, Akt phosphorylation, and whole cell PI3Kα activity. This model suggests that muscle contraction alone is a sufficient stimulus to protect against lipid-induced insulin resistance as evidenced by changes in the proximal canonical insulin-signaling pathway.
Collapse
Affiliation(s)
- Stephan Nieuwoudt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Elizabeth Martelli
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | - John P Kirwan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; .,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
25
|
Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985) 2016; 122:38-47. [PMID: 27789766 DOI: 10.1152/japplphysiol.00286.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)-1·min-1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM-1·min-1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D (P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion (P < 0.05) but did not increase with insulin in either group (P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 (P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Daniel P Credeur
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine-Division of Endocrinology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and.,Department of Child Health, University of Missouri, Columbia, Missouri
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
26
|
Brouwers B, Hesselink MKC, Schrauwen P, Schrauwen-Hinderling VB. Effects of exercise training on intrahepatic lipid content in humans. Diabetologia 2016; 59:2068-79. [PMID: 27393135 PMCID: PMC5016557 DOI: 10.1007/s00125-016-4037-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver (NAFL) is the most common liver disorder in western society. Various factors may play a role in determining hepatic fat content, such as delivery of lipids to the liver, de novo lipogenesis, hepatic lipid oxidation, secretion of intrahepatic lipids to the circulation or a combination of these. If delivery of lipids to the liver outweighs the sum of hepatic lipid oxidation and secretion, the intrahepatic lipid (IHL) content starts to increase and NAFL may develop. NAFL is closely related to obesity and insulin resistance and a fatty liver increases the vulnerability to type 2 diabetes development. Exercise training is a cornerstone in the treatment and prevention of type 2 diabetes. There is a large body of literature describing the beneficial metabolic consequences of exercise training on skeletal muscle metabolism. Recent studies have started to investigate the effects of exercise training on liver metabolism but data is still limited. Here, first, we briefly discuss the routes by which IHL content is modulated. Second, we review whether and how these contributing routes might be modulated by long-term exercise training. Third, we focus on the effects of acute exercise on IHL metabolism, since exercise also might affect hepatic metabolism in the physically active state. This will give insight into whether the effect of exercise training on IHL could be explained by the accumulated effect of acute bouts of exercise, or whether adaptations might occur only after long-term exercise training. The primary focus of this review will be on observations made in humans. Where human data is missing, data obtained from well-accepted animal models will be used.
Collapse
Affiliation(s)
- Bram Brouwers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Maastricht, the Netherlands
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center +, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Maastricht, the Netherlands
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center +, Maastricht, the Netherlands
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Maastricht, the Netherlands
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center +, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center +, Maastricht, the Netherlands.
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center +, Maastricht, the Netherlands.
- Department of Radiology, Maastricht University Medical Center +, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
27
|
Locher JL, Goldsby TU, Goss AM, Kilgore ML, Gower B, Ard JD. Calorie restriction in overweight older adults: Do benefits exceed potential risks? Exp Gerontol 2016; 86:4-13. [PMID: 26994938 DOI: 10.1016/j.exger.2016.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023]
Abstract
The evidence regarding recommendations of calorie restriction as part of a comprehensive lifestyle intervention to promote weight loss in obese older adults has remained equivocal for more than a decade. The older adult population is the fastest growing segment of the US population and a greater proportion of them are entering old age obese. These older adults require treatments based on solid evidence. Therefore the purpose of this review is three-fold: 1) to provide a more current status of the knowledge regarding recommendations of calorie restriction as part of a comprehensive lifestyle intervention to promote weight loss in obese older adults, 2) to determine what benefits and/or risks calorie restriction adds to exercise interventions in obese older adults, and 3) to consider not only outcomes related to changes in body composition, bone health, cardiometabolic disease risk, markers of inflammation, and physical function, but, also patient-centered outcomes that evaluate changes in cognitive status, quality of life, out-of-pocket costs, and mortality. Seven randomized controlled trials were identified that examined calorie restriction while controlling for exercise intervention effects. Overall, the studies found that calorie restriction combined with exercise is effective for weight loss. Evidence was mixed regarding other outcomes. The risk-benefit ratio regarding calorie restriction in older adults remains uncertain. Greater long-term follow-up is necessary, and complementary effectiveness studies are needed to identify strategies currently used by obese older adults in community settings.
Collapse
Affiliation(s)
- Julie L Locher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Health Care Organization and Policy, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - TaShauna U Goldsby
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Office of Energetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Amy M Goss
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Meredith L Kilgore
- Department of Health Care Organization and Policy, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Barbara Gower
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jamy D Ard
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, United States
| |
Collapse
|
28
|
Bouaziz W, Schmitt E, Kaltenbach G, Geny B, Vogel T. Health benefits of endurance training alone or combined with diet for obese patients over 60: a review. Int J Clin Pract 2015; 69:1032-49. [PMID: 25963846 DOI: 10.1111/ijcp.12648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The prevalence of obesity is rapidly increasing in older patients and it is ubiquitous in many developed countries. Obesity is related to various negative health outcomes, making it a major public health target for intervention. PURPOSE The aim of this study was to explore and summarise the literature that addresses endurance training alone or combined with nutrition interventions to combat obesity in obese patients over age 60. METHODS We searched online electronic databases up to September 2014 for original observational and intervention studies published between 1995 and 2014 on the relationship between endurance training alone or combined with a diet in obese patients over 60 regarding health outcomes. RESULTS Twenty-six studies examined interventions aimed specifically at promoting endurance training alone or combined with diet for older obese patients over 60. These studies demonstrated a positive effect of this intervention on the primary prevention of cardiovascular disease, and a significant beneficial effect on the lipid profile. Improvement of body composition and insulin sensitivity, and a reduction in blood pressure were also well established. CONCLUSIONS Overall, this review demonstrates a positive effect of endurance training alone or combined with diet on health outcomes and metabolic benefits in older adults. Clinicians can now use this evidence to formulate actions to encourage the older obese to profit from the health benefits of endurance training and diet. This will not only help reduce the dramatic increase in the number of older obese but also help prevent sarcopenic obesity, which is a complex challenge for healthcare professionals.
Collapse
Affiliation(s)
- W Bouaziz
- Geriatric Department, University Hospital, Strasbourg, France
- Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - E Schmitt
- Geriatric Department, University Hospital, Strasbourg, France
- Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - G Kaltenbach
- Geriatric Department, University Hospital, Strasbourg, France
| | - B Geny
- Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
- Functional Explorations Department, University Hospital, Strasbourg, France
| | - T Vogel
- Geriatric Department, University Hospital, Strasbourg, France
- Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| |
Collapse
|
29
|
Abstract
There is a general perception that increased physical activity will improve glucose homeostasis in all individuals. While this is an attractive concept, this conclusion may be overly simplistic and even misleading. The topic was reviewed extensively over 30 years ago and it was concluded that acute exercise enhances glucose uptake. However, in some cases the chronic influence of interventions utilizing exercise may have little effect on glucose metabolism. Moreover, insulin resistance often returns to near baseline levels within a couple of days following cessation of the exercise bout; leaving the overall effectiveness of the intervention in question. Since improving glucose homeostasis should be the focal endpoint of any intervention designed to mitigate the overwhelming degree of insulin resistance in individuals at risk for metabolic disease, it is essential to evaluate the key components of a successful approach.
Collapse
Affiliation(s)
- Tyler E Keshel
- Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA
| | - Robert H Coker
- Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA ; Center for Translational Research in Aging and Longevity, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
30
|
Long MT, Pedley A, Massaro JM, Hoffmann U, Esliger DW, Vasan RS, Fox CS, Murabito JM. Hepatic steatosis is associated with lower levels of physical activity measured via accelerometry. Obesity (Silver Spring) 2015; 23:1259-66. [PMID: 25959049 PMCID: PMC4446168 DOI: 10.1002/oby.21058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prior studies on the association of physical activity (PA) and nonalcoholic fatty liver disease are limited by reliance on subjective measures of PA. We examined the association between objectively measured PA and hepatic steatosis defined by computed tomography (CT). METHODS We conducted a cross-sectional study of 1,060 Framingham Heart Study participants who participated in the Multidetector CT 2 substudy and who underwent assessment of PA via accelerometry. Hepatic steatosis was estimated by liver attenuation, as measured by CT. We explored the relationship between liver attenuation and PA using multivariable regression models. RESULTS In multivariable-adjusted models, we observed an inverse association between PA and liver attenuation. Each 30 minutes/day increase in moderate to vigorous PA (MVPA) was associated with a reduced odds of hepatic steatosis (OR = 0.62, P < 0.001). This association was attenuated and no longer statistically significant after adjustment for body mass index (BMI) (OR = 0.77, P = 0.05) or visceral adipose tissue (VAT) (OR = 0.83, P = 0.18). Participants who met the national PA recommendations of engaging in ≥150 minutes/week of MVPA had the lowest odds of hepatic steatosis, even after adjusting for BMI (OR = 0.63, P = 0.007) or VAT (OR = 0.67, P = 0.03). CONCLUSIONS There is an inverse association between PA and hepatic steatosis. Participants who met the national PA guidelines had the lowest prevalence of hepatic steatosis.
Collapse
Affiliation(s)
- Michelle T. Long
- Division of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
| | - Alison Pedley
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
| | - Joseph M. Massaro
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Department of Mathematics and Statistics, Boston University, Boston, MA
| | - Udo Hoffmann
- Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dale W. Esliger
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Ramachandran S. Vasan
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Section of Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Caroline S. Fox
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Division of Endocrinology, Hypertension, and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Joanne M. Murabito
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
31
|
Piva SR, Susko AM, Khoja SS, Josbeno DA, Fitzgerald GK, Toledo FGS. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin Geriatr Med 2015; 31:67-87, viii. [PMID: 25453302 PMCID: PMC4254543 DOI: 10.1016/j.cger.2014.08.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2DM) often coexist in older adults. Those with T2DM are more susceptible to developing arthritis, which has been traditionally attributed to common risk factors, namely, age and obesity. Alterations in lipid metabolism and hyperglycemia might directly impact cartilage health and subchondral bone, contributing to the development/progression of OA. Adequate management of older persons with both conditions benefits from a comprehensive understanding of the associated risk factors. We discuss common risk factors and emerging links between OA and T2DM, emphasizing the importance of physical activity and the implications of safe and effective physical activity.
Collapse
Affiliation(s)
- Sara R Piva
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Suite 210, Pittsburgh, PA 15219, USA.
| | - Allyn M Susko
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Suite 210, Pittsburgh, PA 15219, USA
| | - Samannaaz S Khoja
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Suite 210, Pittsburgh, PA 15219, USA
| | - Deborah A Josbeno
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Suite 210, Pittsburgh, PA 15219, USA
| | - G Kelley Fitzgerald
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Suite 210, Pittsburgh, PA 15219, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop Street, BST E1140, Pittsburgh, PA 15261, USA
| |
Collapse
|
32
|
Narendran P, Solomon TP, Kennedy A, Chimen M, Andrews RC. The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes. Diabetologia 2015; 58:10-8. [PMID: 25367458 DOI: 10.1007/s00125-014-3412-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is characterised by immune-mediated destruction of insulin-producing beta cells. Significant beta cell function is usually present at the time of diagnosis with type 1 diabetes, and preservation of this function has important clinical benefits. The last 30 years have seen a number of largely unsuccessful trials for beta cell preservation, some of which have been of therapies that have potential for significant harm. There is a need to explore new, more tolerable approaches to preserving beta cell function that can be implemented on a large clinical scale. Here we review the evidence for physical exercise as a therapy for the preservation of beta cell function in patients with newly diagnosed type 1 diabetes. We highlight possible mechanisms by which exercise could preserve beta cell function and then present evidence from other models of diabetes that demonstrate that exercise preserves beta cell function. We conclude by proposing that there is now a need for studies to explore whether exercise can preserve beta cell in patients newly diagnosed with type 1 diabetes.
Collapse
Affiliation(s)
- Parth Narendran
- The Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK,
| | | | | | | | | |
Collapse
|
33
|
Helajärvi H, Pahkala K, Heinonen OJ, Juonala M, Oikonen M, Tammelin T, Hutri-Kähönen N, Kähönen M, Lehtimäki T, Mikkilä V, Viikari J, Raitakari OT. Television viewing and fatty liver in early midlife. The Cardiovascular Risk in Young Finns Study. Ann Med 2015; 47:519-26. [PMID: 26362414 DOI: 10.3109/07853890.2015.1077989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Both sedentary behaviour and fatty liver are associated with increased risk of obesity and non-communicable diseases, but their relationship remains unknown. We investigated the relationship of television (TV) viewing time with serum gamma-glutamyltransferase (GGT) and Fatty Liver Index (FLI), and ultrasonographically assessed liver fat. METHODS A total of 1,367 adults of the population-based Cardiovascular Risk in Young Finns study (748 women, 619 men, aged 34-49 years) had fasting serum GGT, triglycerides, weight, height, and waist circumference, and self-reported TV time data from 2001, 2007, and 2011. Changes in GGT and FLI, and liver ultrasound images in 2011 were studied in groups with constantly low (≤ 1 h/d), moderate (1-3 h/d), or high (≥ 3 h/d) daily TV time, and in groups with ≥ 1 hour increase/decrease in daily TV time between 2001 and 2011. RESULTS Constantly high TV time was associated with higher GGT and FLI (P < 0.02 in both), and 2.3-fold (95% CI 1.2-4.5) increased risk of fatty liver regardless of age, sex, leisure-time and occupational physical activity, energy intake, diet composition, alcohol use, sleep duration, socioeconomic status, and smoking. Adjustment for BMI partly attenuated the associations. CONCLUSIONS High TV viewing increases fatty liver risk. It may be one mechanism linking sedentary behaviour with increased cardiometabolic disease risks.
Collapse
Affiliation(s)
- Harri Helajärvi
- a Paavo Nurmi Centre, Department of Health and Physical Activity , University of Turku , Turku , Finland
| | - Katja Pahkala
- a Paavo Nurmi Centre, Department of Health and Physical Activity , University of Turku , Turku , Finland.,b Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku , Turku , Finland
| | - Olli J Heinonen
- a Paavo Nurmi Centre, Department of Health and Physical Activity , University of Turku , Turku , Finland
| | - Markus Juonala
- c Department of Medicine , University of Turku, Division of Medicine, Turku University Hospital , Turku , Finland.,d Murdoch Children's Research Institute , Parkville, Victoria , Australia
| | - Mervi Oikonen
- b Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku , Turku , Finland
| | - Tuija Tammelin
- e LIKES Research Center for Sport and Health Sciences , Jyväskylä , Finland
| | - Nina Hutri-Kähönen
- f Department of Pediatrics , University of Tampere and Tampere University Hospital , Tampere , Finland
| | - Mika Kähönen
- g Department of Clinical Physiology , University of Tampere and Tampere University Hospital , Tampere , Finland
| | - Terho Lehtimäki
- h Department of Clinical Chemistry , Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere , Tampere , Finland
| | - Vera Mikkilä
- b Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku , Turku , Finland.,i Division of Nutrition, Department of Food and Environmental Sciences , University of Helsinki , Helsinki , Finland
| | - Jorma Viikari
- c Department of Medicine , University of Turku, Division of Medicine, Turku University Hospital , Turku , Finland
| | - Olli T Raitakari
- b Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku , Turku , Finland.,j Department of Clinical Physiology and Nuclear Medicine , Turku University Hospital , Turku , Finland
| |
Collapse
|
34
|
Phillips SA, Mahmoud AM, Brown MD, Haus JM. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog Cardiovasc Dis 2014; 57:521-34. [PMID: 25529367 DOI: 10.1016/j.pcad.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Physical inactivity is a major risk factor for the development of obesity and other cardiovascular (CV) disease (CVD). Vascular endothelial dysfunction is a key event in the development of CVD and is associated with a sedentary lifestyle in otherwise healthy adults. In addition, vascular endothelial dysfunction may be exacerbated in sedentary individuals who are obese and insulin resistant, since excess body fat is associated with elevated levels of pro-atherogenic inflammatory adipokines and cytokines that reduce the nitric oxide (NO) and other upstream paracrine signaling substances which reduces vascular health. Since blood flow-related shear stress is a major stimulus to NO release from the endothelium, disturbed flow or low shear stress is the likely mechanism by which vascular endothelial function is altered with inactivity. Evidence shows that regular physical exercise has beneficial effects on CVD and the risk factors that promote peripheral arterial function and health. Both aerobic and resistance exercise training are generally believed to improve endothelial function and are commonly recommended for CV health, including the management of obesity, hypertension, and insulin resistance. However, many factors including age, disease status, and race appear to influence these outcomes. Although evidence supporting the health benefits of exercise is compelling, the optimum prescription (volume and intensity) and the exact mechanism underlying the effects of exercise training on arterial function and cardiometabolic risk has yet to be identified. The focus of this review will be on the evidence supporting exercise interventions for peripheral arterial function.
Collapse
Affiliation(s)
- Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL.
| | - Abeer M Mahmoud
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Michael D Brown
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Jacob M Haus
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
35
|
Malin SK, Kashyap SR, Hammel J, Miyazaki Y, DeFronzo RA, Kirwan JP. Adjusting glucose-stimulated insulin secretion for adipose insulin resistance: an index of β-cell function in obese adults. Diabetes Care 2014; 37:2940-6. [PMID: 25139885 PMCID: PMC4207203 DOI: 10.2337/dc13-3011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The hyperbolic relationship between insulin secretion and sensitivity has been used to assess in vivo β-cell function (i.e., the disposition index). The disposition index emphasizes the importance of taking into account both skeletal muscle and hepatic insulin resistance to depict insulin secretion. However, we propose that adipose tissue insulin resistance also needs to be accounted for when characterizing glucose-stimulated insulin secretion (GSIS) because elevated plasma free fatty acids (FFAs) impair β-cell function. RESEARCH DESIGN AND METHODS To characterize the adipose disposition index, we used [1-(14)C] palmitate infusion to determine basal FFA turnover rate/adipose insulin resistance and an oral glucose tolerance test to characterize the first (i.e., 0-30 min) and second phase (i.e., 60-120 min) of GSIS. We validated a simplified version of the tracer infusion calculation as the product of (1/plasma FFA concentration × plasma insulin concentration) × GSIS in 44 obese insulin-resistant subjects. RESULTS The plasma FFA and palmitate tracer infusion calculations of the first- and second-phase disposition index were strongly correlated (r = 0.86, P < 0.000001 and r = 0.89, P < 0.000001, respectively). The first- and second-phase adipose disposition index derived from plasma FFA also was tightly associated with fasting hyperglycemia (r = -0.87, P < 0.00001 and r = -0.89, P < 0.00001, respectively) and 2-h glucose concentrations (r = -0.86, P < 0.00001 and r = -0.90, P < 0.00001). CONCLUSIONS Adjusting GSIS for adipose insulin resistance provides an index of β-cell function in obese subjects across the glucose spectrum. Plasma FFA-derived calculations of β-cell function may provide additional insight into the role of adipose tissue in glucose regulation.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, OH
| | - Jeff Hammel
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yoshi Miyazaki
- University of Texas Health Science Center, Diabetes Division, San Antonio, TX
| | - Ralph A DeFronzo
- University of Texas Health Science Center, Diabetes Division, San Antonio, TX
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
36
|
Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol (1985) 2014; 117:239-45. [PMID: 24947026 PMCID: PMC4122691 DOI: 10.1152/japplphysiol.01064.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 06/12/2014] [Indexed: 02/03/2023] Open
Abstract
Defects in mitochondrial dynamics, the processes of fission, fusion, and mitochondrial autophagy, may contribute to metabolic disease including type 2 diabetes. Dynamin-related protein-1 (Drp1) is a GTPase protein that plays a central role in mitochondrial fission. We hypothesized that aerobic exercise training would decrease Drp1 Ser(616) phosphorylation and increase fat oxidation and insulin sensitivity in obese (body mass index: 34.6 ± 0.8 kg/m(2)) insulin-resistant adults. Seventeen subjects performed supervised exercise for 60 min/day, 5 days/wk at 80-85% of maximal heart rate for 12 wk. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and fat oxidation was determined by indirect calorimetry. Skeletal muscle biopsies were obtained from the vastus lateralis muscle before and after the 12-wk program. The exercise intervention increased insulin sensitivity 2.1 ± 0.2-fold (P < 0.01) and fat oxidation 1.3 ± 0.3-fold (P < 0.01). Phosphorylation of Drp1 at Ser(616) was decreased (pre vs. post: 0.81 ± 0.15 vs. 0.58 ± 0.14 arbitrary units; P < 0.05) following the intervention. Furthermore, reductions in Drp1 Ser(616) phosphorylation were negatively correlated with increases in fat oxidation (r = -0.58; P < 0.05) and insulin sensitivity (rho = -0.52; P < 0.05). We also examined expression of genes related to mitochondrial dynamics. Dynamin1-like protein (DNM1L; P < 0.01), the gene that codes for Drp1, and Optic atrophy 1 (OPA1; P = 0.05) were significantly upregulated following the intervention, while there was a trend towards an increase in expression of both mitofusin protein MFN1 (P = 0.08) and MFN2 (P = 0.07). These are the first data to suggest that lifestyle-mediated improvements in substrate metabolism and insulin sensitivity in obese insulin-resistant adults may be regulated through decreased activation of the mitochondrial fission protein Drp1.
Collapse
Affiliation(s)
- Ciaran E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Metabolic Translational Research Center, Cleveland Clinic, Cleveland, Ohio; and
| | - Nicola Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Metabolic Translational Research Center, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
37
|
Malin SK, Haus JM, Solomon TPJ, Blaszczak A, Kashyap SR, Kirwan JP. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2013; 305:E1292-8. [PMID: 24064339 PMCID: PMC3840211 DOI: 10.1152/ajpendo.00441.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
38
|
Effect of low-intensity ergometer aerobic training on glucose tolerance in severely impaired nondiabetic stroke patients. J Stroke Cerebrovasc Dis 2013; 23:e187-93. [PMID: 24231135 DOI: 10.1016/j.jstrokecerebrovasdis.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To investigate whether low-intensity ergometer aerobic training has beneficial effect on glucose tolerance in nondiabetic patients with severely impaired stroke. METHODS Fifty-four severely impaired stroke survivors were recruited and randomly assigned to the experimental group and control group. They have no diabetes history with fasting plasma glucose less than 7 mmol/L. Both groups participated in a 6-week rehabilitation training program with low-intensity ergometer aerobic training added only in the experimental group 3 times per week. Primary outcome variables were fasting glucose, fasting insulin, 2-hour glucose, and homeostasis model assessment-insulin resistance (HOMA-IR) in oral glucose tolerance test before and after intervention. RESULTS Before intervention, 36 of 54 (66.7%) were diagnosed with impaired glucose status or diabetic glucose tolerance totally. The average 2-hour plasma glucose level was 9.14 ± 1.39 mmol/L. After intervention, aerobic training significantly improved fasting insulin (from 8.51 ± 2.01 μU/mL to 7.11 ± 2.02 μU/mL), 2-hour glucose level (from 9.13 ± 1.14 mmol/L to 7.22 ± 1.23 mmol/L), and HOMA-IR (from 1.62 ± 1.01 to 1.29 ± .79) in the intervention group compared with the control group (P < .05). Aerobic training also significantly improved their glucose tolerance state (P < .05). CONCLUSIONS Preliminary findings suggest that abnormal glucose tolerance may be highly present among severely impaired nondiabetic stroke patients and low-intensity ergometer aerobic training may have beneficial role in improving glucose tolerance.
Collapse
|
39
|
Malin SK, Huang H, Mulya A, Kashyap SR, Kirwan JP. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome. Peptides 2013; 47:142-7. [PMID: 23872069 PMCID: PMC3825405 DOI: 10.1016/j.peptides.2013.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 12/29/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P<0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P<0.001) and decreased HOMA-IR by 15% (P<0.05). Training decreased plasma DPP-4 by 10% (421.8±30.1 vs. 378.3±32.5ng/ml; P<0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r=-0.59; P<0.04), HOMA-IR (r=0.59; P<0.04) and fat oxidation (r=-0.54; P<0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r=-0.64; P<0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Hazel Huang
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sangeeta R. Kashyap
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, OH
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
40
|
Miranda RA, Branco RCS, Gravena C, Barella LF, da Silva Franco CC, Andreazzi AE, de Oliveira JC, Picinato MC, de Freitas Mathias PC. Swim training of monosodium L-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets. Endocrine 2013; 43:571-8. [PMID: 22983867 DOI: 10.1007/s12020-012-9798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/06/2012] [Indexed: 12/24/2022]
Abstract
The goal of the present study was to investigate changes on glucose homoeostasis and of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) signalling in pancreatic islets from MSG-obese mice submitted to or not submitted to swim training. Swim training of 90-day-old MSG mice was used to evaluate whether signalling pathways of the IR and IRS-1 in islets are involved with the insulin resistance and glucose intolerance observed in this obese animal model. The results showed that IR tyrosine phosphorylation (pIR) was reduced by 42 % in MSG-obese mice (MSG, 6.7 ± 0.2 arbitrary units (a.u.); control, 11.5 ± 0.4 a.u.); on the other hand, exercise training increased pIR by 76 % in MSG mice without affecting control mice (MSG, 11.8 ± 0.3; control, 12.8 ± 0.2 a.u.). Although the treatment with MSG increased IRS-1 tyrosine phosphorylation (pIRS-1) by 96 % (MSG, 17.02 ± 0.6; control, 8.7 ± 0.2 a.u.), exercise training also increased it in both groups (control, 13.6 ± 0.1; MSG, 22.2 ± 1.1 a.u.). Current research shows that the practice of swim training increases the tyrosine phosphorylation of IRS-1 which can modulate the effect caused by obesity in insulin receptors.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá/UEM, Block H67, Room 19, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kraushaar LE, Krämer A. Web-Enabled Feedback Control Over Energy Balance Promotes an Increase in Physical Activity and a Reduction of Body Weight and Disease Risk in Overweight Sedentary Adults. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2013; 15:579-87. [DOI: 10.1007/s11121-013-0398-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care 2013; 36:104-10. [PMID: 22961574 PMCID: PMC3526221 DOI: 10.2337/dc11-2399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether early, insulin-mediated microvascular recruitment in skeletal muscle predicts steady-state glucose metabolism in the setting of physiological elevation of free fatty acid concentrations. RESEARCH DESIGN AND METHODS We measured insulin's microvascular and metabolic effects in 14 healthy young adults during a 2-h euglycemic insulin clamp. Plasma free fatty acid concentrations were raised (Intralipid and heparin infusion) for 3 h before the clamp and maintained at postprandial concentrations during the clamp. Microvascular blood volume (MBV) was measured by contrast-enhanced ultrasound (CEU) continuously from baseline through the first 30 min of the insulin clamp. Muscle glucose and insulin uptake were measured by the forearm balance method. RESULTS The glucose infusion rate (GIR) necessary to maintain euglycemia during the clamp varied by fivefold across subjects (2.5-12.5 mg/min/kg). The early MBV responses to insulin, as indicated by CEU video intensity, ranged widely, from a 39% decline to a 69% increase. During the clamp, steady state forearm muscle glucose uptake and GIR each correlated significantly with the change in forearm MBV (P < 0.01). To explore the basis for the wide range of vascular and metabolic insulin sensitivity observed, we also measured V(O(2max)) in a subset of eight subjects. Fitness (V(O(2max))) correlated significantly with the GIR, the forearm glucose uptake, and the percentage change in MBV during the insulin clamp (P < 0.05 for each). CONCLUSIONS Early microvascular responses to insulin strongly associate with steady state skeletal muscle insulin-mediated glucose uptake. Physical fitness predicts both metabolic and vascular insulin responsiveness.
Collapse
Affiliation(s)
- Emma M Eggleston
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | |
Collapse
|
43
|
Malin SK, Kirwan JP. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults. Diabetes Obes Metab 2012; 14:835-41. [PMID: 22510250 PMCID: PMC3407343 DOI: 10.1111/j.1463-1326.2012.01608.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM Lifestyle modification, consisting of exercise and weight loss, delays the progression from prediabetes to type 2 diabetes (T2D). However, no study has determined the efficacy of exercise training on glucose metabolism in the different prediabetes subtypes. METHODS Seventy-six older (65.1 ± 0.6 years) obese adults with impaired fasting glucose (IFG; n = 12), impaired glucose tolerance (IGT; n = 9) and combined glucose intolerance (IFG + IGT = CGI; n = 22) were compared with normal glucose tolerant (NGT; n = 15) and T2D (n = 18) groups after 12 weeks of exercise training (60 min/day for 5 days/week at ~85% HR(max)). An oral glucose tolerance test was used to assess glucose levels. Insulin sensitivity (IS; euglycaemic hyperinsulinaemic clamp at 40 mU/m(2)/min), β-cell function (glucose-stimulated insulin secretion corrected for IS), body composition (hydrostatic weighing/computed tomography scan) and cardiovascular fitness (treadmill VO(2) max) were also assessed. RESULTS Exercise training reduced weight and increased cardiovascular fitness (p < 0.05). Exercise training lowered fasting glucose levels in IFG, CGI and T2D (p < 0.05) and 2-h glucose levels in IGT, CGI and T2D (p < 0.05). However, 2-h glucose levels were not normalized in adults with CGI compared with IGT (p < 0.05). β-Cell function improved similarly across groups (p < 0.05). Although not statistically significant, IS increased approximately 40% in IFG and IGT, but only 17% in CGI. CONCLUSION The magnitude of improvement in glucose metabolism after 12 weeks of exercise training is not uniform across the prediabetes subtypes. Given the high risk of progressing to T2D, adults with CGI may require more aggressive therapies to prevent diabetes.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH, 44195
| |
Collapse
|
44
|
Malin SK, Niemi N, Solomon TP, Haus JM, Kelly KR, Filion J, Rocco M, Kashyap SR, Barkoukis H, Kirwan JP. Exercise training with weight loss and either a high- or low-glycemic index diet reduces metabolic syndrome severity in older adults. ANNALS OF NUTRITION & METABOLISM 2012; 61:135-41. [PMID: 23036993 PMCID: PMC3586384 DOI: 10.1159/000342084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/21/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low (LoGIx)- or high (HiGIx)-glycemic index diet on the severity of the metabolic syndrome (Z-score). METHODS Twenty-one adults (66.2±1.1 years; BMI=35.3±0.9 kg/m2) with the metabolic syndrome were randomized to 12 weeks of exercise (60 min/day for 5 days/week at about 85% HRmax) and provided a LoGIx (n=11) or HiGIx (n=10) diet. Z-scores were determined from: blood pressure, triglycerides (TGs), high-density lipoproteins (HDLs), fasting plasma glucose (FPG), and waist circumference (WC) before and after the intervention. Body composition, aerobic fitness, insulin resistance, and nonesterfied fatty acid (NEFA) suppression were also assessed. RESULTS LoGIx and HiGIx diets decreased body mass and insulin resistance and increased aerobic fitness comparably (p<0.05). LoGIx and HiGIx diets decreased the Z-score similarly as each intervention decreased blood pressure, TGs, FPG and WC (p<0.05). The HiGIx diet tended to suppress NEFA during insulin stimulation compared with the LoGIx diet (p=0.06). CONCLUSIONS Our findings highlight that exercise with weight loss reduces the severity of the metabolic syndrome whether individuals were randomized to a HiGIx or a LoGIx diet.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
| | - Nicole Niemi
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
| | | | - Jacob M. Haus
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
| | - Karen R. Kelly
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
| | - Julianne Filion
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Michael Rocco
- Department of Preventive Cardiology, Cleveland Clinic, Cleveland, OH 44195
| | - Sangeeta R. Kashyap
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, OH, 44195
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Hope Barkoukis
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
| | - John P. Kirwan
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH, 44195
| |
Collapse
|
45
|
Pattullo V, Douglas MW, George J. Organelle dysfunction in hepatitis C virus-associated steatosis: anything to learn from nonalcoholic steatohepatitis? Expert Rev Gastroenterol Hepatol 2011; 5:265-77. [PMID: 21476921 DOI: 10.1586/egh.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) spans a pathological spectrum from nonalcoholic steatosis to steatohepatitis. The pathophysiology of this disorder is complex, but includes insulin resistance and disrupted lipid and carbohydrate homeostasis, which at a subcellular level results in oxidative stress, free fatty acid-mediated lipotoxicity, defects in mitochondrial function, endoplasmic reticulum stress and cytokine-mediated toxicity. In chronic hepatitis C (CHC), systemic metabolic derangements similar to NAFLD may be operative, but in addition, virus-specific factors contribute to steatosis. The mechanisms for steatosis in CHC appear to share common pathways with those observed in NAFLD. This article outlines our current understanding of the subcellular mechanisms of steatosis in NAFLD and CHC, including their similarities and differences.
Collapse
Affiliation(s)
- Venessa Pattullo
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | | | | |
Collapse
|
46
|
Miles MP, Depner CM, Kirwan RD, Frederickson SJ. Influence of macronutrient intake and anthropometric characteristics on plasma insulin after eccentric exercise. Metabolism 2010; 59:1456-64. [PMID: 20153875 DOI: 10.1016/j.metabol.2010.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/20/2009] [Accepted: 01/19/2010] [Indexed: 01/04/2023]
Abstract
To increase understanding of the interaction between macronutrients and insulin resistance (IR), this study sought to determine the influence of macronutrient intake and anthropometric differences on IR and inflammation responses to eccentric resistance exercise. Men and women (n = 12, 19-36 years old) participated in a crossover study and completed 6 sets of 10 unilateral maximal eccentric contractions of the elbow flexors and extensors followed by controlled diet conditions for the first 8 hours postexercise of carbohydrate/fat/protein proportions of either 75%/15%/10% (CHO) or 6%/70%/24% (FAT/PRO). Fasting glucose, insulin, homeostatic model assessment (HOMA) variables, and interleukin (IL)-1β were measured preexercise and 23 hours postexercise (additional measures of glucose and insulin 1 hour after meals consumed 0.5, 3, and 7 hours postexercise). Insulin increased more (P < .01) in the CHO compared with the FAT/PRO condition at 1.5, 4, and 8 hours postexercise. Insulin, HOMA-IR, and HOMA-β-cell function increased 23 hours postexercise in both conditions, whereas IL-1β increased 23 hours postexercise only in the CHO condition. Magnitude of change (Δ) for these variables associated positively with body mass index (BMI) and waist to hip ratio (WHR) in the CHO and inversely in the FAT/PRO condition; that is, r = 0.53 (P = .10) and r = -0.82 (P < .01) for BMI vs Δ insulin in CHO and FAT/PRO conditions, respectively. The Δ IL-1β associated with BMI (r = 0.62, P < .05) and WHR (r = 0.84, P < .01) in the CHO condition. The CHO enhanced IR and inflammation as BMI and WHR increased, whereas fat and protein enhanced IR as BMI and WHR decreased. Thus, BMI and WHR may need to be taken into account in the development of nutritional strategies to prevent IR.
Collapse
Affiliation(s)
- Mary P Miles
- Department of Health and Human Development, Montana State University, Box 173540, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
47
|
Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice. Nutr Metab (Lond) 2010; 7:59. [PMID: 20633301 PMCID: PMC2914080 DOI: 10.1186/1743-7075-7-59] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/16/2010] [Indexed: 01/15/2023] Open
Abstract
Background Calorie restriction (CR) and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat), low-fat diet with 30% calorie restriction (LR), high-fat diet (HC, 60% fat), high-fat diet with 30% calorie restriction (HR), high-fat diet with voluntary running exercise (HE), and high-fat diet with a combination of 30% calorie restriction and exercise (HRE). The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.
Collapse
|
48
|
Johnson NA, George J. Fitness versus fatness: moving beyond weight loss in nonalcoholic fatty liver disease. Hepatology 2010; 52:370-81. [PMID: 20578153 DOI: 10.1002/hep.23711] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid emergence of nonalcoholic fatty liver disease (NAFLD) as a cause of both liver-related morbidity and mortality and cardiometabolic risk has led to the search for effective lifestyle strategies to reduce liver fat. Lifestyle intervention comprising dietary restriction in conjunction with increased physical activity has shown clear hepatic benefits when weight loss approximating 3%-10% of body weight is achieved. Yet, the poor sustainability of weight loss challenges the current therapeutic focus on body weight and highlights the need for alternative strategies for NAFLD management. Epidemiologic data show an independent relationship between liver fat, physical activity, and fitness, and a growing body of longitudinal research demonstrates that increased physical activity participation per se significantly reduces hepatic steatosis and serum aminotransferases in individuals with NAFLD, independent of weight loss. Mechanistic insights to explain this interaction are outlined, and recommendations for the implementation of lifestyle intervention involving physical activity are discussed. In light of the often poor sustainability of weight loss strategies, and the viability of physical activity therapy, clinicians should assess physical fitness and physical activity habits, educate patients on the benefits of fitness outside of weight loss, and focus on behavior change which promotes physical activity adoption.
Collapse
Affiliation(s)
- Nathan A Johnson
- Discipline of Exercise and Sport Science, University of Sydney, Sydney, Australia
| | | |
Collapse
|
49
|
Current world literature. Curr Opin Lipidol 2010; 21:148-52. [PMID: 20616627 DOI: 10.1097/mol.0b013e3283390e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Haus JM, Solomon TPJ, Marchetti CM, Edmison JM, González F, Kirwan JP. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J Clin Endocrinol Metab 2010; 95:323-7. [PMID: 19906790 PMCID: PMC2805494 DOI: 10.1210/jc.2009-1101] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. RESEARCH DESIGN AND METHODS Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). RESULTS At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P < 0.05) and fat mass (P < 0.05). However, both lifestyle interventions reduced hepatic insulin resistance during basal (P = 0.005) and INS (P = 0.001) conditions, and insulin-mediated suppression of HGP during INS was equally improved in both groups (EU: -42 +/- 22%; HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). CONCLUSIONS Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.
Collapse
Affiliation(s)
- Jacob M Haus
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|