1
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
2
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
4
|
Wang Y, Chen Q, Wu S, Sun X, Yin R, Ouyang Z, Yin H, Wei Y. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1. Acta Pharm Sin B 2023; 13:3906-3918. [PMID: 37719371 PMCID: PMC10502278 DOI: 10.1016/j.apsb.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 09/19/2023] Open
Abstract
Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.
Collapse
Affiliation(s)
- Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Guo Q, Li Y, Dai X, Wang B, Zhang J, Cao H. Polysaccharides: The Potential Prebiotics for Metabolic Associated Fatty Liver Disease (MAFLD). Nutrients 2023; 15:3722. [PMID: 37686754 PMCID: PMC10489936 DOI: 10.3390/nu15173722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is recognized as the most prevalent chronic liver disease globally. However, its pathogenesis remains incompletely understood. Recent advancements in the gut-liver axis offer novel insights into the development of MAFLD. Polysaccharides, primarily derived from fungal and algal sources, abundantly exist in the human diet and exert beneficial effects on glycometabolism, lipid metabolism, inflammation, immune modulation, oxidative stress, and the release of MAFLD. Numerous studies have demonstrated that these bioactivities of polysaccharides are associated with their prebiotic properties, including the ability to modulate the gut microbiome profile, maintain gut barrier integrity, regulate metabolites produced by gut microbiota such as lipopolysaccharide (LPS), short-chain fatty acids (SCFAs), and bile acids (BAs), and contribute to intestinal homeostasis. This narrative review aims to present a comprehensive summary of the current understanding of the protective effects of polysaccharides on MAFLD through their interactions with the gut microbiota and its metabolites. Specifically, we highlight the potential molecular mechanisms underlying the prebiotic effects of polysaccharides, which may give new avenues for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Qin Guo
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Yun Li
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Dai
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Bangmao Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Jie Zhang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| |
Collapse
|
6
|
Shin YS, Hwang DB, Won DH, Kim SY, Kim C, Park JW, Jeon Y, Yun JW. The Wnt/β-catenin signaling pathway plays a role in drug-induced liver injury by regulating cytochrome P450 2E1 expression. Toxicol Res 2023; 39:443-453. [PMID: 37398564 PMCID: PMC10313641 DOI: 10.1007/s43188-023-00180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 07/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure and drug withdrawal. Cytochrome P450 (CYP) 2E1 is involved in the metabolism of several drugs, and can induce liver injury through the production of toxic metabolites and the generation of reactive oxygen species. This study aimed to elucidate the role of Wnt/β-catenin signaling in CYP2E1 regulation for drug-induced hepatotoxicity. To achieve this, mice were administered cisplatin or acetaminophen (APAP) 1 h after treatment with the CYP2E1 inhibitor dimethyl sulfoxide (DMSO), and histopathological and serum biochemical analyses were performed. APAP treatment induced hepatotoxicity, as evidenced by an increase in liver weight and serum ALT levels. Moreover, histological analysis indicated severe injury, including apoptosis, in the liver tissue of APAP-treated mice, which was confirmed by TUNEL assay. Additionally, APAP treatment suppressed the antioxidant capacity of the mice and increased the expression of the DNA damage markers γ-H2AX and p53. However, these effects of APAP on hepatotoxicity were significantly attenuated by DMSO treatment. Furthermore, the activation of Wnt/β-catenin signaling using the Wnt agonist CHIR99021 (CHIR) increased CYP2E1 expression in rat liver epithelial cells (WB-F344), whereas treatment with the Wnt/β-catenin antagonist IWP-2 inhibited nuclear β-catenin and CYP2E1 expression. Interestingly, APAP-induced cytotoxicity in WB-F344 cells was exacerbated by CHIR treatment and suppressed by IWP-2 treatment. Overall, these results showed that the Wnt/β-catenin signaling is involved in DILI through the upregulation of CYP2E1 expression by directly binding the transcription factor β-cat/TCF to the Cyp2e1 promoter, thus exacerbating DILI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00180-6.
Collapse
Affiliation(s)
- Yoo-Sub Shin
- Department of Research and Development, SML Genetree, Seoul, 05855 Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
7
|
Zhao Y, Li M, Guo J, Fang J, Geng R, Wang Y, Liu T, Kang SG, Huang K, Tong T. Cedrol, a Major Component of Cedarwood Oil, Ameliorates High-Fat Diet-Induced Obesity in Mice. Mol Nutr Food Res 2023; 67:e2200665. [PMID: 37143286 DOI: 10.1002/mnfr.202200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/28/2023] [Indexed: 05/06/2023]
Abstract
SCOPE Excellent health-promoting effects of cedrol (CED), including anti-inflammatory, anti-arthritic, and antinociceptive effects, have been reported. The present study aims to investigate the preventive effects of CED on high-fat diet (HFD)-induced obesity and the related metabolic syndrome, and to delineate the underlying mechanism. METHODS AND RESULTS Ten-week-old C57BL/6J mice are fed chow, HFD, or HFD supplemented with CED (0.2% w/w) for 19 weeks. Results demonstrate that CED effectively reduces HFD-induced body weight gain, decreases visceral fat pad weight, and significantly prevents adipocyte hypertrophy in mice. HFD-induced hepatic steatosis, glucose intolerance, insulin resistance, and gluconeogenesis are ameliorated by CED supplementation. 16S rRNA analysis reveals that CED does not change gut microbiota composition at the phylum and genus levels, indicating that CED may have limited effects on gut microbiota in HFD-fed mice. Further transcriptome analysis of epididymal white adipose tissue reveals reprogrammed RNA profiles by CED. CONCLUSION These results demonstrate that incorporating CED in the diet can prevent HFD-induced obesity and related metabolic syndrome, and highlight that CED can be a promising dietary component for obesity therapeutic intervention.
Collapse
Affiliation(s)
- Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tingting Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| |
Collapse
|
8
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Alfhili MA, Alsughayyir J, Basudan A, Alfaifi M, Awan ZA, Algethami MR, Al-Sheikh YA. Blood indices of omega-3 and omega-6 polyunsaturated fatty acids are altered in hyperglycemia. Saudi J Biol Sci 2023; 30:103577. [PMID: 36816730 PMCID: PMC9932443 DOI: 10.1016/j.sjbs.2023.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) may favorably influence the risk and clinical course of diabetes mellitus (DM). In particular, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) alleviate oxidative injury and insulin resistance characteristic of DM. Uncertainty still remains, however, as to the composition and proportions of blood PUFAs in relation to fasting blood glucose levels. This study, thus, aims to examine the patterns of blood PUFA indices in normoglycemic (NG) and hyperglycemic (HG) Saudi subjects. Age, gender, FA profiles, and laboratory records of 143 subjects collected from September 2014 to March 2018 were retrospectively analyzed. Means, prevalence rates, associations, risk measures, and the diagnostic accuracy of PUFAs were determined. HG subjects had significantly lower AA (0.70%, 95% CI: 0.59-0.80% vs 0.46%, 95% CI: 0.38-0.53%) and higher EPA/AA ratio (0.36, 95% CI: 0.30-0.42 vs 0.69, 95% CI: 0.61-0.77). Gender-wise comparisons revealed that ώ-6/ώ-3 ratio was the only PUFA index significantly elevated in HG males (0.36, 95% CI: 0.26-0.45 vs 5.68, 95% CI: 4.98-6.38) while both DHA (2.91%, 95% CI: 2.54-3.29% vs 3.37%, 95% CI: 3.13-3.60%) and ώ-3 index (3.1%, 95% CI: 2.70-3.49% vs 3.63%, 95% CI: 3.38-3.88%) were significantly elevated in HG females. Furthermore, reduced AA and elevated EPA/AA ratio were more prevalent in HG subjects (26.53 vs 28.72 and 30.61 vs 38.29, respectively) and exhibited the highest diagnostic accuracy for HG among all PUFA indices. Altogether, our study revealed that distinct, gender-specific blood PUFA indices are differentially regulated in HG subjects which may be valuable for DM management.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Department of Clinical Pathology, Al-Borg Medical Laboratories, Jeddah, Saudi Arabia
| | | | - Yazeed A. Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
10
|
Cho S, Yang X, Won KJ, Leone VA, Chang EB, Guzman G, Ko Y, Bae ON, Lee H, Jeong H. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 2023; 15:2231590. [PMID: 37431867 PMCID: PMC10337503 DOI: 10.1080/19490976.2023.2231590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.
Collapse
Affiliation(s)
- Sungjoon Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaotong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyoung-Jae Won
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, College of Agriculture & Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugene B Chang
- Section of Gastroenterology, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Krieg L, Didt K, Karkossa I, Bernhart SH, Kehr S, Subramanian N, Lindhorst A, Schaudinn A, Tabei S, Keller M, Stumvoll M, Dietrich A, von Bergen M, Stadler PF, Laurencikiene J, Krüger M, Blüher M, Gericke M, Schubert K, Kovacs P, Chakaroun R, Massier L. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 2022; 71:2179-2193. [PMID: 34598978 PMCID: PMC9554031 DOI: 10.1136/gutjnl-2021-324603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.
Collapse
Affiliation(s)
- Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Konrad Didt
- Department for Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Stephan H Bernhart
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephanie Kehr
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | - Andreas Lindhorst
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Schaudinn
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Maria Keller
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany,Faculty of Life Science, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - Martin Krüger
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany,Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gericke
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany,Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden .,Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
12
|
Wang Y, Charkoftaki G, Davidson E, Orlicky DJ, Tanguay RL, Thompson DC, Vasiliou V, Chen Y. Oxidative stress, glutathione, and CYP2E1 in 1,4-dioxane liver cytotoxicity and genotoxicity: insights from animal models. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100389. [PMID: 37483863 PMCID: PMC10361651 DOI: 10.1016/j.coesh.2022.100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
1,4-Dioxane (DX) is an emerging drinking water contaminant worldwide, which poses a threat to public health due to its demonstrated liver carcinogenicity and potential for human exposure. The lack of drinking water standards for DX is attributed to undetermined mechanisms of DX carcinogenicity. This mini-review provides a brief discussion of a series of mechanistic studies, wherein unique mouse models were exposed to DX in drinking water to elucidate redox changes associated with DX cytotoxicity and genotoxicity. The overall conclusions from these studies support a direct genotoxic effect by high dose DX and imply that oxidative stress involving CYP2E1 activation may play a causal role in DX liver genotoxicity and potentially carcinogenicity. The mechanistic data derived from these studies can serve as important references to refine the assessment of carcinogenic pathways that may be triggered at environmentally relevant low doses of DX in future animal and human studies.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Zhang Y, Zhang L, Xu P, Qin X, Wang P, Cheng Y, Yao B, Wang X. Cytochrome P450 2E1 gene knockout or inhibition prevents obesity induced by high-fat diet via regulating energy expenditure. Biochem Pharmacol 2022; 202:115160. [PMID: 35780828 DOI: 10.1016/j.bcp.2022.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1), an important member of the CYP metabolic enzyme family in the liver, regulates the disposal of drugs and the biotransformation of endogenous substances. Although previous studies have found that CYP2E1 is related to energy metabolism, the role of CYP2E1 in energy homeostasis remains unclear. Herein this study shows that the deletion of Cyp2e1 gene in rats can prevent obesity, fatty liver and insulin resistance induced by high-fat diet. Mechanism studies uncover that Cyp2e1 deficiency not only increases the expression of thermogenic genes in brown adipose tissue (BAT) and subcutaneous adipose tissue (SAT), but also promotes fatty acid metabolism in the liver and BAT. In particular, Cyp2e1 deficiency elevates energy expenditure through an increase of liver-generated acylcarnitines, which promote BAT thermogenesis and increase β-oxidation. Interestingly, disulfiram as a CYP2E1 inhibitor can also prevent obesity induced by high-fat diet in normal rats. In general, this study explains the relationship between CYP2E1 and energy metabolism, and provides a new perspective for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Lei Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Peipei Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xuan Qin
- Center of Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Peili Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yi Cheng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
14
|
Wang J, Wu J, Li W, Wang X, Liu R, Liu T, Xiao J. Linking Mitochondrial Function to Insulin Resistance: Focusing on Comparing the Old and the Young. Front Nutr 2022; 9:892719. [PMID: 35811955 PMCID: PMC9260383 DOI: 10.3389/fnut.2022.892719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term intake of high-energy diet can lead to decreased insulin sensitivity and even insulin resistance, eventually leading to diabetes. Diabetes often occurs in middle-aged and elderly people. However, there is growing evidence that the incidence rate of young body is increasing over the years. This means that insulin resistance can be caused by excessive energy intake in both young and old people. In this study, high-fat diet (HFD) and normal diet were fed to rats of elderly experimental group (EE), elderly control group (EC), young experimental group (YE), and young control group (YC), respectively, for 8 weeks, by which insulin resistance model was obtained. Insulin sensitivity was measured, histopathology changes in liver and skeletal muscle tissues were observed, and mitochondrial fusion and division and cell senescence were detected in four groups of rats. The results showed that both young and elderly rats developed significant insulin resistance, fat deposition, decline of mitochondrial function and mitochondrial biosynthesis in liver and skeletal muscle, and cell aging after HFD feeding. In addition, the degree of mitochondrial dysfunction and aging in young rats was similar to that of aged rats fed a normal diet after HFD. This experiment provides a reference for an in-depth study of the regulatory mechanisms of cellular energy metabolism in this state.
Collapse
Affiliation(s)
- Jingxuan Wang
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junnan Wu
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Li
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Wang
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruifang Liu
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tao Liu
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhua Xiao
- Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Jianhua Xiao
| |
Collapse
|
15
|
Zhang Y, Yan T, Wang T, Liu X, Hamada K, Sun D, Sun Y, Yang Y, Wang J, Takahashi S, Wang Q, Krausz KW, Jiang C, Xie C, Yang X, Gonzalez FJ. Crosstalk between CYP2E1 and PPAR α substrates and agonists modulate adipose browning and obesity. Acta Pharm Sin B 2022; 12:2224-2238. [PMID: 35646522 PMCID: PMC9136617 DOI: 10.1016/j.apsb.2022.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, including fibroblast growth factor (FGF) 21, that upon release from the liver, enhanced adipose browning and energy expenditure to decrease obesity. Nineteen metabolites were increased in Cyp2e1-null mice as revealed by global untargeted metabolomics, among which four compounds, lysophosphatidylcholine and three polyunsaturated fatty acids were found to be directly metabolized by CYP2E1 and to serve as PPARα agonists, thus explaining how CYP2E1 deficiency causes hepatic PPARα activation through increasing cellular levels of endogenous PPARα agonists. Translationally, a CYP2E1 inhibitor was found to activate the PPARα–FGF21–beige adipose axis and decrease obesity in wild-type mice, but not in liver-specific Ppara-null mice. The present results establish a metabolic crosstalk between PPARα and CYP2E1 that supports the potential for a novel anti-obesity strategy of activating adipose tissue browning by targeting the CYP2E1 to modulate endogenous metabolites beyond its canonical role in xenobiotic-metabolism.
Collapse
|
16
|
Purohit A, Alam MJ, Kandiyal B, Shalimar, Das B, Banerjee SK. Gut microbiome and non-alcoholic fatty liver disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:187-206. [DOI: 10.1016/bs.pmbts.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. Int J Mol Sci 2021; 23:ijms23010426. [PMID: 35008852 PMCID: PMC8745242 DOI: 10.3390/ijms23010426] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut-liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host's immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut-liver axis in ALD and NAFLD.
Collapse
|
18
|
Dang TTH, Choi M, Pham HG, Yun JW. Cytochrome P450 2F2 (CYP2F2) negatively regulates browning in 3T3-L1 white adipocytes. Eur J Pharmacol 2021; 908:174318. [PMID: 34252443 DOI: 10.1016/j.ejphar.2021.174318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/31/2023]
Abstract
Cytochromes P450 (CYPs) are a multigene superfamily of constitutively expressed and inducible enzymes responsible for the detoxification of many endogenous and exogenous compounds and for the metabolism of numerous medications. The cytochrome P450 2F2 (CYP2F2) subfamily is preferentially expressed in the respiratory tract, but its functional role in adipocytes has never been explored. We found that CYP2F2 was highly expressed during the differentiation of the C3H10T1/2 murine mesenchymal stem cells to adipocytes and here we have explored its functional role in adipocytes. The expression of thermogenic marker proteins such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), PR domain containing 16 (PRDM16), and uncoupling protein 1 (UCP1) and beige-fat specific genes were significantly increased in Cyp2f2-deficient 3T3-L1 adipocytes. Moreover, Cyp2f2 silencing led to reduced adipogenesis and lipogenesis, and enhanced lipid catabolism through the increased expression of lipolytic and fatty acid oxidative enzymes. A mechanistic study to identify molecular signals for CYP2F2-mediated negative regulation in the browning of white adipocytes revealed that CYP2F2 impairs the beta-3 adrenergic receptor (β3-AR) activation as well as its downstream regulators including protein kinase A (PKA), p38 mitogen-activated protein kinase (p38 MAPK), and activating transcription factor 2 (ATF2). This data provides evidence that CYP2F2 is a negative regulator of lipid catabolism and browning in white adipocytes, suggesting that inhibitors of CYP2F2 could be potential drugs for the treatment of obesity with a focus on enhancing energy expenditure.
Collapse
Affiliation(s)
- Trang Thi Huyen Dang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Huong Giang Pham
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
19
|
Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities-A Review. Int J Mol Sci 2021; 22:10050. [PMID: 34576213 PMCID: PMC8467064 DOI: 10.3390/ijms221810050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by disturbances in carbohydrate, protein, and lipid metabolism, often accompanied by oxidative stress. Diabetes treatment is a complicated process in which, in addition to the standard pharmacological action, it is necessary to append a comprehensive approach. Introducing the aspect of non-pharmacological treatment of diabetes allows one to alleviate its many adverse complications. Therefore, it seems important to look for substances that, when included in the daily diet, can improve diabetic parameters. Magnolol, a polyphenolic compound found in magnolia bark, is known for its health-promoting activities and multidirectional beneficial effects on the body. Accordingly, the goal of this review is to systematize the available scientific literature on its beneficial effects on type 2 diabetes and its complications. Taking the above into consideration, the article collects data on the favorable effects of magnolol on parameters related to glycemia, lipid metabolism, or oxidative stress in the course of diabetes. After careful analysis of many scientific articles, it can be concluded that this lignan is a promising agent supporting the conventional therapies with antidiabetic drugs in order to manage diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| |
Collapse
|
20
|
Kim DH, Sim Y, Hwang JH, Kwun IS, Lim JH, Kim J, Kim JI, Baek MC, Akbar M, Seo W, Kim DK, Song BJ, Cho YE. Ellagic Acid Prevents Binge Alcohol-Induced Leaky Gut and Liver Injury through Inhibiting Gut Dysbiosis and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10091386. [PMID: 34573017 PMCID: PMC8465052 DOI: 10.3390/antiox10091386] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major liver disease worldwide and can range from simple steatosis or inflammation to fibrosis/cirrhosis, possibly through leaky gut and systemic endotoxemia. Many patients with alcoholic steatohepatitis (ASH) die within 60 days after clinical diagnosis due to the lack of an approved drug, and thus, synthetic and/or dietary agents to prevent ASH and premature deaths are urgently needed. We recently reported that a pharmacologically high dose of pomegranate extract prevented binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Herein, we investigate whether a dietary antioxidant ellagic acid (EA) contained in many fruits, including pomegranate and vegetables, can protect against binge alcohol-induced leaky gut, endotoxemia, and liver inflammation. Pretreatment with a physiologically-relevant dose of EA for 14 days significantly reduced the binge alcohol-induced gut barrier dysfunction, endotoxemia, and inflammatory liver injury in mice by inhibiting gut dysbiosis and the elevated oxidative stress and apoptosis marker proteins. Pretreatment with EA significantly prevented the decreased amounts of gut tight junction/adherent junction proteins and the elevated gut leakiness in alcohol-exposed mice. Taken together, our results suggest that EA could be used as a dietary supplement for alcoholic hepatitis patients.
Collapse
Affiliation(s)
- Dong-ha Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Yejin Sim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jin-hyeon Hwang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jae-Hwan Lim
- Department of Biological Science, Andong National University, Andong 36729, Korea;
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jee-In Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA;
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda, Bethesda, MD 20892, USA
- Correspondence: (B.-J.S.); (Y.-E.C.)
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
- Correspondence: (B.-J.S.); (Y.-E.C.)
| |
Collapse
|
21
|
CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int J Mol Sci 2021; 22:ijms22158221. [PMID: 34360999 PMCID: PMC8348366 DOI: 10.3390/ijms22158221] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.
Collapse
|
22
|
Cytochrome P450 2E1 (CYP2E1) positively regulates lipid catabolism and induces browning in 3T3-L1 white adipocytes. Life Sci 2021; 278:119648. [PMID: 34043994 DOI: 10.1016/j.lfs.2021.119648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
AIMS Browning induction (beiging) of white adipocytes is an emerging prospective strategy to defeat obesity and its related metabolic disorders. Cytochrome P450 2E1 (CYP2E1), a membrane protein which belongs to the cytochrome P450 superfamily, reportedly functions in the xenobiotic metabolism in the body, especially ethanol metabolism. Although previous studies have reported the effect of CYP2E1 on obesity in animal models, the data remains controversial. In the current study, we investigate for the first time, the role of CYP2E1 in lipid metabolism in 3T3-L1 white adipocytes, with a focus on fat browning. METHODS 3T3-L1 white adipocytes and Cyp2e1 siRNA were applied to investigate the role of CYP2E1 in white adipocytes. After that, cells were seperately exposed to β3-AR agonist, β3-AR antagonist and p38 inhibitor to identify the pathway which CYP2E1 was involved in to regulate browning event in white adipocytes. KEY FINDINGS We found that CYP2E1 deficiency results in reduced adipogenesis and lipogenesis as well as brown adipocyte-like phenotype induction. A mechanistic study to identify the molecular signals for CYP2E1 regulation in the browning of white adipocytes revealed that CYP2E1 inhibition deters the β3-adrenergic receptor activation and its downstream targets. SIGNIFICANCE Our data unveilved a previously unknown mechanism in the regulation of browning by CYP2E1 in 3T3-L1 white adipocytes, suggesting that CYP2E1 is a promising molecular target for the treatment of obesity and its related diseases.
Collapse
|
23
|
Gil-Gómez A, Brescia P, Rescigno M, Romero-Gómez M. Gut-Liver Axis in Nonalcoholic Fatty Liver Disease: the Impact of the Metagenome, End Products, and the Epithelial and Vascular Barriers. Semin Liver Dis 2021; 41:191-205. [PMID: 34107545 DOI: 10.1055/s-0041-1723752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a systemic, dynamic, heterogeneous, and multiaxis entity, the pathogenesis of which is still uncertain. The gut-liver axis is regulated and stabilized by a complex network encompassing a metabolic, immune, and neuroendocrine cross-talk between the gut, the microbiota, and the liver. Changes in the gut-liver axis affect the metabolism of lipids and carbohydrates in the hepatocytes, and they impact the balance of inflammatory mediators and cause metabolic deregulation, promoting NAFLD and its progression to nonalcoholic steatohepatitis. Moreover, the microbiota and its metabolites can play direct and indirect roles in gut barrier function and fibrosis development. In this review, we will highlight findings from the recent literature focusing on the gut-liver axis and its relation to NAFLD. Finally, we will discuss the impact of technical issues, design bias, and other limitations on current knowledge of the gut microbiota in the context of NAFLD.
Collapse
Affiliation(s)
- Antonio Gil-Gómez
- SeLiver Group at Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Brescia
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Manuel Romero-Gómez
- SeLiver Group at Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
24
|
Mechanism of Huo-Xue-Qu-Yu Formula in Treating Nonalcoholic Hepatic Steatosis by Regulating Lipid Metabolism and Oxidative Stress in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6026319. [PMID: 34007294 PMCID: PMC8102110 DOI: 10.1155/2021/6026319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Huo-Xue-Qu-Yu formula (HXQYF) is a prescription consisting of Ginkgo biloba leaf and Paeonia lactiflora Pall. for treating hyperlipidemia and NAFLD in China. Here, we investigated the hepatic and renal function, oxidative stress and lipid metabolism, and potential mechanisms of HXQYF on nonalcoholic fatty liver disease (NAFLD) rat models. NAFLD rat models were induced with high-fat diet (HFD) and 10% fructose water for 18 weeks and orally administered with or without HXQYF simultaneously. The results showed that HXQYF (22.5, 45, 90 mg/kg) significantly improved blood lipid levels via reducing serum TC, TG, LDL-C, and APOB values and elevating HDL-C and APOA1 levels in NAFLD rats. The higher levels of ALT, AST, CR, and BUN in serum induced by HFD were reduced by HXQYF. HE staining showed that HXQYF (90 mg/kg) reduced the accumulation of fat droplets and alleviated inflammatory response in liver cells. Three doses of HXQYF exhibited notable antioxidant effects by elevating SOD, GSH, and CAT activities and decreasing MDA and OH-1 levels in the liver. Furthermore, abnormal lipid metabolism caused by HFD was alleviated by HXQYF, which was associated with the upregulation of PPAR-α, AdipoR2, and CPT1 mRNAs as well as the downregulation of CYP2E1 and SREBP-1c mRNAs in liver tissue. In conclusion, our work verified that HXQYF could reduce the degree of hepatic steatosis, suppress oxidative stress, and attenuate lipid metabolism, thus preventing NAFLD.
Collapse
|
25
|
Wang Y, You Y, Tian Y, Sun H, Li X, Wang X, Wang Y, Liu J. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15154-15163. [PMID: 33300795 DOI: 10.1021/acs.jafc.0c05060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, Pediococcus pentococcus PP04 isolated from the Northeast pickled cabbage had good gastrointestinal tolerance and can colonize in the intestine stably. C57BL/6N mice were fed a high-fat diet to build animal models and treated with Pediococcus pentosaceus PP04 to evaluate the antihyperlipidemia effect. After 8 weeks, the indicators of hyperlipidemia, liver injury, and inflammation were measured. The treatment of P. pentosaceus PP04 reduced the gain of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), leptin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lipopolysaccharides (LPS), and tumor necrosis factor-α (TNF-α) significantly. The western blotting results suggested P. pentosaceus PP04 ameliorated high-fat diet-induced hyperlipidemia by the AMPK signaling pathway, which stimulated lipolysis via upregulation of PPARα and inhibited lipogenesis by downregulation of SREBP-1c, fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1) mainly. Furthermore, P. pentosaceus PP04 improved high-fat diet-induced oxidative stress effectively by triggering the Nrf2/CYP2E1 signaling pathway that enhanced the antioxidant activity including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Ying You
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuan Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
26
|
Gao XX, Zhang F, Xing J, Jia JP, Tian JS, Zhang JJ, Qin XM. Metabolic profiling of RB-2 and RB-4, two analogs of polyacetylene from Bupleurum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1045-1064. [PMID: 31674206 DOI: 10.1080/10286020.2019.1681409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
RB-2 and RB-4 are two structural analogs of polyacetylene from Radix Bupleuri that show antidepressant effects. However, no metabolic data are available to elucidate their systemic homeostasis. Mass spectrometry combined with liver microsomes and recombinant drug-metabolizing enzymes were performed to profile the biotransformations of RB-2/RB-4 in vitro and in vivo. Oxidation should be the major metabolic pathways for them in phase I, while CYP2C9 and CYP2E1 was the major contributor. In phase II, conjugational groups usually combined with the metabolites from phase I. This study provides an important reference basis for the safety evaluation and rational application of RB-2/RB-4.
Collapse
Affiliation(s)
- Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jie Xing
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jin-Ping Jia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jun-Jie Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
27
|
Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD. Front Microbiol 2020; 11:567654. [PMID: 33117316 PMCID: PMC7575719 DOI: 10.3389/fmicb.2020.567654] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease throughout the world. The relationship between gut microbiota and NAFLD has been extensively investigated. The gut microbiota is involved in the regulation of NAFLD by participating in the fermentation of indigestible food, interacting with the intestinal mucosal immune system, and influencing the intestinal barrier function, leading to signaling alteration. Meanwhile, the microbial metabolites not only affect the signal transduction pathway in the gut but also reach the liver far away from gut. In this review, we focus on the effects of certain key microbial metabolites such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and endogenous ethanol and indole in NAFLD, and also summarize several potential therapies targeting the gut-liver axis and modulation of gut microbiota metabolites including antibiotics, prebiotics, probiotics, bile acid regulation, and fecal microbiota transplantation. Understanding the complex interactions between microbial metabolites and NAFLD may provide crucial insight into the pathogenesis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
28
|
Kubo M. Diurnal Rhythmicity Programs of Microbiota and Transcriptional Oscillation of Circadian Regulator, NFIL3. Front Immunol 2020; 11:552188. [PMID: 33013924 PMCID: PMC7511535 DOI: 10.3389/fimmu.2020.552188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian rhythms are a very exquisite mechanism to influence on transcriptional levels and physiological activities of various molecules that affect cell metabolic pathways. Long-term alteration of circadian rhythms increases the risk of cardiovascular diseases, hypertension, hypertriglyceridemia, and metabolic syndrome. A drastic change in dietary patterns can affect synchronizing the circadian clock within the metabolic system. Therefore, the interaction between the host and the bacterial community colonizing the mammalian gastrointestinal tract has a great impact on the circadian clock in diurnal programs. Here, we propose that the microbiota regulates body composition through the transcriptional oscillation of circadian regulators. The transcriptional regulator, NFIL3 (also called E4BP4) is a good example. Compositional change of the commensal bacteria influences the rhythmic expression of NFIL3 in the epithelium, which subsequently controls obesity and insulin resistance. Therefore, control of circadian regulators would be a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
29
|
Dornas W, Schuppan D. Mitochondrial oxidative injury: a key player in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G400-G411. [PMID: 32597705 DOI: 10.1152/ajpgi.00121.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. NAFLD is tightly linked to the metabolic syndrome, insulin resistance, and oxidative stress. Globally, its inflammatory form, nonalcoholic steatohepatitis (NASH), has become the main cause of liver-related morbidity and mortality, mainly due to liver cirrhosis and primary liver cancer. One hallmark of NASH is the presence of changes in mitochondrial morphology and function that are accompanied by a blocked flow of electrons in the respiratory chain, which increases formation of mitochondrial reactive oxygen species in a self-perpetuating vicious cycle. Consequences are oxidation of DNA bases and mitochondrial DNA depletion that are coupled with genetic and acquired mitochondrial DNA mutations, all impairing the resynthesis of respiratory chain polypeptides. In general, several maladaptations of pathways that usually maintain energy homeostasis occur with the early and late excess metabolic stress in NAFLD and NASH. We discuss the interplay between hepatocyte mitochondrial stress and inflammatory responses, focusing primarily on events initiated and maintained by mitochondrial free radical-induced damage in NAFLD. Importantly, mitochondrial oxidative stress and dysfunction are modulated by key pharmacological targets that are related to excess production of reactive oxygen species, mitochondrial turnover and the mitochondrial unfolded protein response, mitophagy, and mitochondrial biogenesis. However, the efficacy of such interventions depends on NAFLD/NASH disease stage.
Collapse
Affiliation(s)
- Waleska Dornas
- Department of Biochemistry, Center for Cellular and Molecular Therapy, Universidade Federal de São Paulo, São Paulo, Brazil.,Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Abplanalp WT, Wickramasinghe NS, Sithu SD, Conklin DJ, Xie Z, Bhatnagar A, Srivastava S, O'Toole TE. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2020; 167:426-437. [PMID: 30346588 DOI: 10.1093/toxsci/kfy252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benzene is a ubiquitous pollutant associated with hematotoxicity but its metabolic effects are unknown. We sought to determine if and how exposure to volatile benzene impacted glucose handling. We exposed wild type C57BL/6 mice to volatile benzene (50 ppm × 6 h/day) or HEPA-filtered air for 2 or 6 weeks and measured indices of oxidative stress, inflammation, and insulin signaling. Compared with air controls, we found that mice inhaling benzene demonstrated increased plasma glucose (p = .05), insulin (p = .03), and HOMA-IR (p = .05), establishing a state of insulin and glucose intolerance. Moreover, insulin-stimulated Akt phosphorylation was diminished in the liver (p = .001) and skeletal muscle (p = .001) of benzene-exposed mice, accompanied by increases in oxidative stress and Nf-κb phosphorylation (p = .025). Benzene-exposed mice also demonstrated elevated levels of Mip1-α transcripts and Socs1 (p = .001), but lower levels of Irs-2 tyrosine phosphorylation (p = .0001). Treatment with the superoxide dismutase mimetic, TEMPOL, reversed benzene-induced effects on oxidative stress, Nf-κb phosphorylation, Socs1 expression, Irs-2 tyrosine phosphorylation, and systemic glucose intolerance. These findings suggest that exposure to benzene induces insulin resistance and that this may be a sensitive indicator of inhaled benzene toxicity. Persistent ambient benzene exposure may be a heretofore unrecognized contributor to the global human epidemics of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292
| | - Nalinie S Wickramasinghe
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Srinivas D Sithu
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Daniel J Conklin
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Zhengzhi Xie
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Sanjay Srivastava
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Timothy E O'Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| |
Collapse
|
31
|
Costa-Urrutia P, Colistro V, Jiménez-Osorio AS, Cárdenas-Hernández H, Solares-Tlapechco J, Ramirez-Alcántara M, Granados J, Ascencio-Montiel IDJ, Rodríguez-Arellano ME. Genome-Wide Association Study of Body Mass Index and Body Fat in Mexican-Mestizo Children. Genes (Basel) 2019; 10:E945. [PMID: 31752434 PMCID: PMC6895864 DOI: 10.3390/genes10110945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Childhood obesity is a major health problem in Mexico. Obesity prevalence estimated by body mass index (BMI) is almost half than that estimated by percent body fat (%BF) in the Childhood Obesity pediatric cohort (COIPIS). OBJECTIVE We performed a genome-wide association study (GWAS) of BMI and %BF in 828 children from the COIPIS to identify markers of predisposition to high values for both phenotypes used for obesity classification. METHODS For the GWAS we used the LAT Axiom 1, Affymetrix and 2.5 million single loci from the 1000 Genomes Phase 3 imputation panel. We used a linear model, adjusted by age, sex, and Amerindian ancestry assuming an additive inheritance model. RESULTS Genome-wide significance (p ≤ 5.0 × 10-8) and 80% of statistical power was reached for associations of two loci in two genes (CERS3 and CYP2E1) to BMI. Also, 11 loci in six genes (ANKS1B, ARNTL2, KCNS3, LMNB1, SRGAP3, TRPC7) reached genome-wide significance for associations to %BF, though not 80% of statistical power. DISCUSSION None of the SNPs were previously reported as being associated to BMI or %BF. In addition, different loci were found for BMI and %BF. These results highlight the importance of gaining deeper understanding of genetic markers of predisposition to high values for the phenotypes used for obesity diagnosis.
Collapse
Affiliation(s)
- Paula Costa-Urrutia
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| | - Valentina Colistro
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, 2125 General Flores Avenue, Montevideo P.C11800, Uruguay;
| | - Angélica Saraí Jiménez-Osorio
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| | - Helios Cárdenas-Hernández
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| | - Jacqueline Solares-Tlapechco
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| | - Miryam Ramirez-Alcántara
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| | - Julio Granados
- División de Inmunogenética, Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. 15 Vasco de Quiroga Avenue. Mexico City P.C.14080, Mexico;
| | - Iván de Jesús Ascencio-Montiel
- Coordinación de Vigilancia de Epidemiología, Instituto Mexicano de Seguro Social, 120 Mier y Pesado Street, del Valle Benito Juárez, Mexico City C.P. 03100 Mexico;
| | - Martha Eunice Rodríguez-Arellano
- Laboratorio de Medicina Genómica, Hospital Regional Lic. Adolfo López Mateos, ISSSTE. 1321 Universidad Avenue, Álvaro Obregón, Florida, Mexico City P.C0103, Mexico; (P.C.-U.); (A.S.J.-O.); (H.C.-H.); (J.S.-T.); (M.R.-A.)
| |
Collapse
|
32
|
Lee DH, Jung YY, Park MH, Jo MR, Han SB, Yoon DY, Roh YS, Hong JT. Peroxiredoxin 6 Confers Protection Against Nonalcoholic Fatty Liver Disease Through Maintaining Mitochondrial Function. Antioxid Redox Signal 2019; 31:387-402. [PMID: 31007045 DOI: 10.1089/ars.2018.7544] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aims: Nonalcoholic fatty liver disease (NAFLD) is accompanied by excessive reactive oxygen species (ROS) production, which has been suggested in several studies to link with mitochondrial function. However, the mechanistic role of ROS-mediated regulation of mitochondrial function in NAFLD has not been elucidated. Since peroxiredoxin 6 (PRDX6) is the only member of the antioxidant PRDX family that translocates to damaged mitochondria, we investigated the PRDX6-mediated antisteatotic mechanism using genetically modified mice and cells. Results: PRDX6 mice were more protective to lipid accumulation, liver injury, and insulin resistance after a high-fat diet. Mechanistically, PRDX6 is required for induction of mitochondrial antioxidant action and beta-oxidation through maintaining mitochondrial integrity and subsequently prevents ROS-induced lipogenesis. Interestingly, oxidative stress-induced Notch signaling was suppressed in PRDX6 mice compared with wild-type mice, and genetic and pharmacological inhibition of Notch signaling improved lipid accumulation. Finally, PRDX knockdown or Notch inhibition reduced induction of mitophagy. PRDX6 antagonizes positive feedback loop between lipid accumulation and ROS production through regulation of mitochondrial function. Innovation: For the first time, we demonstrate that PRDX6 maintains mitochondria integrity under oxidative stress and protects against NAFLD progression by inhibition of Notch signaling. Conclusion: This study describes a novel molecular mechanism underlying the antisteatotic activity of PRDX6, which may be a new therapeutic strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dong Hun Lee
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Yu Yeon Jung
- 2 Department of Dental Hygiene, Gwangyang Health Sciences University, Gwangyang, South Korea
| | - Mi Hee Park
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Mi Ran Jo
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Sang Bae Han
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Do Young Yoon
- 3 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Yoon Seok Roh
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Jin Tae Hong
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
33
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of cardiometabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. It is rapidly becoming the most prevalent liver disease worldwide. A sizable minority of NAFLD patients develop nonalcoholic steatohepatitis (NASH), which is characterized by inflammatory changes that can lead to progressive liver damage, cirrhosis, and hepatocellular carcinoma. Recent studies have shown that in addition to genetic predisposition and diet, the gut microbiota affects hepatic carbohydrate and lipid metabolism as well as influences the balance between pro‐inflammatory and anti‐inflammatory effectors in the liver, thereby impacting NAFLD and its progression to NASH. In this review, we will explore the impact of gut microbiota and microbiota‐derived compounds on the development and progression of NAFLD and NASH, and the unexplored factors related to potential microbiome contributions to this common liver disease.
Collapse
Affiliation(s)
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Oren Shibolet
- Department of Gastroenterology and Liver Disease, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Zagury Y, Chen S, Edelman R, Karnieli E, Livney YD. β-Lactoglobulin delivery system for enhancing EGCG biological efficacy in HFD obesity mice model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Krois CR, Vuckovic MG, Huang P, Zaversnik C, Liu CS, Gibson CE, Wheeler MR, Obrochta KM, Min JH, Herber CB, Thompson AC, Shah ID, Gordon SP, Hellerstein MK, Napoli JL. RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding. Cell Mol Life Sci 2019; 76:2425-2447. [PMID: 30788515 PMCID: PMC6531335 DOI: 10.1007/s00018-019-03046-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/26/2022]
Abstract
RDH1 is one of the several enzymes that catalyze the first of the two reactions to convert retinol into all-trans-retinoic acid (atRA). Here, we show that Rdh1-null mice fed a low-fat diet gain more weight as adiposity (17% males, 13% females) than wild-type mice by 20 weeks old, despite neither consuming more calories nor decreasing activity. Glucose intolerance and insulin resistance develop following increased adiposity. Despite the increase in white fat pads, epididymal white adipose does not express Rdh1, nor does muscle. Brown adipose tissue (BAT) and liver express Rdh1 at relatively high levels compared to other tissues. Rdh1 ablation lowered body temperatures during ambient conditions. Given the decreased body temperature, we focused on BAT. A lack of differences in BAT adipogenic gene expression between Rdh1-null mice and wild-type mice, including Pparg, Prdm16, Zfp516 and Zfp521, indicated that the phenotype was not driven by brown adipose hyperplasia. Rather, Rdh1 ablation eliminated the increase in BAT atRA that occurs after re-feeding. This disruption of atRA homeostasis increased fatty acid uptake, but attenuated lipolysis in primary brown adipocytes, resulting in increased lipid content and larger lipid droplets. Rdh1 ablation also decreased mitochondrial proteins, including CYCS and UCP1, the mitochondria oxygen consumption rate, and disrupted the mitochondria membrane potential, further reflecting impaired BAT function, resulting in both BAT and white adipose hypertrophy. RNAseq revealed dysregulation of 424 BAT genes in null mice, which segregated predominantly into differences after fasting vs after re-feeding. Exceptions were Rbp4 and Gbp2b, which increased during both dietary conditions. Rbp4 encodes the serum retinol-binding protein-an insulin desensitizer. Gbp2b encodes a GTPase. Because Gbp2b increased several hundred-fold, we overexpressed it in brown adipocytes. This caused a shift to larger lipid droplets, suggesting that GBP2b affects signaling downstream of the β-adrenergic receptor during basal thermogenesis. Thus, Rdh1-generated atRA in BAT regulates multiple genes that promote BAT adaptation to whole-body energy status, such as fasting and re-feeding. These gene expression changes promote optimum mitochondria function and thermogenesis, limiting adiposity. Attenuation of adiposity and insulin resistance suggests that RDH1 mitigates metabolic syndrome.
Collapse
Affiliation(s)
- Charles R Krois
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Department of Chemistry and Geology, Minnesota State University, 241 Ford Hall, Mankato, MN, 56001, USA
| | - Marta G Vuckovic
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 North 59th Avenue, Glendale, AZ, 85308, USA
| | - Claire Zaversnik
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- AgroSup Dijon, 26 Bd Petitjean, 21000, Dijon, France
| | - Conan S Liu
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Sidney Kimmel Medical College, 1025 Walnut Street, Philadelphia, PA, 19104, USA
| | - Candice E Gibson
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
| | - Madelyn R Wheeler
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- UC Davis School of Medicine, 4102 Sherman Way, Sacramento, CA, 95817, USA
| | - Kristin M Obrochta
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Biomarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Jin H Min
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL, 33314, USA
| | - Candice B Herber
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- University of California, San Francisco, Rock Hall 281, 1550 4th Street, San Francisco, CA, 94158, USA
| | - Airlia C Thompson
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Stanford University, Lorry Lokey Building Room 164, 337 Campus Drive, Stanford, CA, 94305-5020, USA
| | - Ishan D Shah
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Keith Administration (KAM) 100, Los Angeles, CA, 90089-9020, USA
| | - Sean P Gordon
- DOE Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA, 94598, USA
| | - Marc K Hellerstein
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA, 94720-3104, USA.
| |
Collapse
|
36
|
The Combination of Mulberry Extracts and Silk Amino Acids Alleviated High Fat Diet-Induced Nonalcoholic Hepatic Steatosis by Improving Hepatic Insulin Signaling and Normalizing Gut Microbiome Dysbiosis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8063121. [PMID: 31275421 PMCID: PMC6582910 DOI: 10.1155/2019/8063121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Mulberry water extracts (MB) and silk amino acids (SA) are reported to improve oxidative stress and inflammation, respectively. We hypothesized whether the mixture of mulberry water extracts and silk amino acids can alleviate nonalcoholic fatty liver disease (NAFLD) induced by high fat diets. Male Sprague Dawley rats were orally provided with high fat diets containing different ratios of MB and SA (1:3, MS1:3, or 1:5, MS1:5) or cellulose (the disease-control) for 12 weeks. Rats had 200 or 600 mg/kg bw of MS1:3 and MS1:5 (MS1:3-L, MS1:3-H; MS1:5-L, and MS1:5-H). Rats in the normal-control group were fed the 20% fat diet with cellulose. Disease-control rats exhibited much greater triglyceride (TG) deposition in the liver than the normal-control rats along with increased body weight gain, visceral fat mass, serum concentrations of cholesterol, triglyceride and nonesterified fatty acid (NEFA), and insulin resistance. Disease-control rats also had liver damage with increased oxidative stress and inflammation compared to the normal-control rats. MS1:3-H and MS1:5-H were found to have greater hepatic glycogen accumulation and decreased hepatic TG, insulin resistance, and dyslipidemia, with MS1:5-H being similar to the normal-control. MS1:3-H alleviated oxidative stress with lower hepatic lipid peroxide compared to MS1:5-H whereas MS1:5-H ameliorated inflammation and hepatocyte damage better than MS1:3-H. Both MS1:3-H and MS1:5-H potentiated hepatic insulin signaling (pAkt⟶pACC) and reduced the mRNA expression of TG synthesis genes mRNA (FAS and SREBP-1c). In the gut microbiome MS1:3-H elevated the ratio of Bacteroidales to Clostridiales in the cecum better than MS1:5-H but MS1:5-H reduced the proinflammatory Turicibacterales. In conclusion, both MS1:3-H and MS1:5-H prevented liver damage induced by high fat diets, mainly by suppressing oxidative stress and inflammation, respectively. MS1:3 and MS1:5 might be used as therapeutic agent for NAFLD.
Collapse
|
37
|
Heintz MM, Kumar R, Rutledge MM, Baldwin WS. Cyp2b-null male mice are susceptible to diet-induced obesity and perturbations in lipid homeostasis. J Nutr Biochem 2019; 70:125-137. [PMID: 31202118 DOI: 10.1016/j.jnutbio.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Obesity is an endemic problem in the United States and elsewhere, and data indicate that in addition to overconsumption, exposure to specific chemicals enhances obesity. CYP2B metabolizes multiple endo- and xenobiotics, and recent data suggests that repression of Cyp2b activity increases dyslipidemia and age-onset obesity, especially in males. To investigate the role played by Cyp2b in lipid homeostasis and obesity, we treated wildtype and Cyp2b-null mice with a normal (ND) or 60% high-fat diet (HFD) for 10 weeks and determined metabolic and molecular changes. Male HFD-fed Cyp2b-null mice weigh 15% more than HFD-fed wildtype mice, primarily due to an increase in white adipose tissue (WAT); however, Cyp2b-null female mice did not demonstrate greater body mass or WAT. Serum parameters indicate increased ketosis, leptin and cholesterol in HFD-fed Cyp2b-null male mice compared to HFD-fed wildtype mice. Liver triglycerides and liver:serum triglyceride ratios were higher than their similarly treated wildtype counterparts in Cyp2b-null male mice, indicating a role for Cyp2b in fatty acid metabolism regardless of diet. Furthermore, RNAseq demonstrates that hepatic gene expression in ND-fed Cyp2b-null male mice is similar to HFD-fed WT male mice, suggestive of fatty liver disease progression and a role for Cyp2b in lipid homeostasis. Females did not show as demonstrative changes in liver health, and significantly fewer changes in gene expression, as well as gene expression associated with liver disease. Overall our data indicates that the repression or inhibition of CYP2B may exacerbate metabolic disorders and cause obesity by perturbing fatty acid metabolism, especially in males.
Collapse
Affiliation(s)
- Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | - Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC 29634
| | | | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634; Biological Sciences, Clemson University, Clemson, SC 29634.
| |
Collapse
|
38
|
Wang K, Chen X, Ward SC, Liu Y, Ouedraogo Y, Xu C, Cederbaum AI, Lu Y. CYP2A6 is associated with obesity: studies in human samples and a high fat diet mouse model. Int J Obes (Lond) 2019; 43:475-486. [PMID: 29568101 PMCID: PMC6102101 DOI: 10.1038/s41366-018-0037-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND/OBJECTIVES CYP2A6 (CYP2A5 in mice) is mainly expressed in the liver. Hepatic CYP2A6 expression is increased in patients with non-alcoholic fatty liver disease (NAFLD). In mice, hepatic CYP2A5 is induced by high fat diet (HFD) feeding. Hepatic CYP2A5 is also increased in monosodium glutamate-induced obese mice. NAFLD is associated with obesity. In this study, we examined whether obesity is related to CYP2A6. SUBJECTS/METHODS Obesity genetic association study: The SAGE is a comprehensive genome-wide association study (GWAS) with case subjects having a lifetime history of alcohol dependence and control subjects never addicted to alcohol. We used 1030 control individuals with self-reported height and weight. A total of 12 single nucleotide polymorphisms (SNP) within the CYP2A6 gene were available. Obesity was determined as a BMI ≥30: 30-34.9 (Class I obesity) and ≥35 (Class II and III obesity). Animal experiment study: CYP2A5 knockout (cyp2a5-/-) mice and wild type (cyp2a5+/+) mice were fed HFD for 14 weeks. Body weight was measured weekly. After an overnight fast, the mice were sacrificed. Liver and blood were collected for biochemical assays. RESULTS Single marker analysis showed that three SNPs (rs8192729, rs7256108, and rs7255443) were associated with class I obesity (p < 0.05). The most significant SNP for obesity was rs8192729 (odds ratio (OR) = 1.94, 95% confidence intervals = 1.21-3.10, p = 0.00582). After HFD feeding, body weight was increased in cyp2a5-/- mice to a greater extent than in cyp2a5+/+ mice, and fatty liver was more pronounced in cyp2a5-/- mice than in cyp2a5+/+ mice. PPARα deficiency in cyp2a5-/- mice developed more severe fatty liver, but body weight was not increased significantly. CONCLUSION CYP2A6 is associated with human obesity; CYP2A5 protects against obesity and NAFLD in mice. PPARα contributes to the CYP2A5 protective effects on fatty liver but it opposes to the protective effects on obesity.
Collapse
Affiliation(s)
- Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xue Chen
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Stephen C. Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Youssoufou Ouedraogo
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Arthur I. Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
39
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
40
|
Feng D, Amgalan D, Singh R, Wei J, Wen J, Wei TP, McGraw TE, Kitsis RN, Pessin JE. SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. J Clin Invest 2018; 128:3941-3956. [PMID: 30102258 PMCID: PMC6118598 DOI: 10.1172/jci99217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.
Collapse
Affiliation(s)
- Daorong Feng
- Department of Medicine
- Department of Molecular Pharmacology
| | | | - Rajat Singh
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianwen Wei
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, and
| | - Jennifer Wen
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Richard N. Kitsis
- Department of Medicine
- Department of Cell Biology, and
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
41
|
Roychowdhury S, Selvakumar PC, Cresci GAM. The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease. Med Sci (Basel) 2018; 6:E47. [PMID: 29874807 PMCID: PMC6024579 DOI: 10.3390/medsci6020047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with prevalence increasing in parallel with the rising incidence in obesity. Believed to be a "multiple-hit" disease, several factors contribute to NAFLD initiation and progression. Of these, the gut microbiome is gaining interest as a significant factor in NAFLD prevalence. In this paper, we provide an in-depth review of the progression of NAFLD, discussing the mechanistic modes of hepatocyte injury and the potential role for manipulation of the gut microbiome as a therapeutic strategy in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation & Immunity, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | - Gail A M Cresci
- Department of Inflammation & Immunity, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
- Department of Pediatric Gastroenterology, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
- Director for Nutrition Research Center for Human Nutrition, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J Adv Res 2018; 11:43-55. [PMID: 30034875 PMCID: PMC6052660 DOI: 10.1016/j.jare.2018.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA 20:4n-6) is an essential component of cell membranes and modulates cell membrane fluidity. AA is metabolized by cyclo-oxygenase (COX), lipoxygenase (LOX) and cytochrome P450 enzymes to form several metabolites that have important biological actions. Of all the actions, role of AA in the regulation of blood pressure and its ability to prevent both type 1 and type 2 diabetes mellitus seems to be interesting. Studies showed that AA and its metabolites especially, lipoxin A4 (LXA4) and epoxyeicosatrienoic acids (EETs), potent anti-inflammatory metabolites, have a crucial role in the pathobiology of hypertension and diabetes mellitus. AA, LXA4 and EETs regulate smooth muscle function and proliferation, voltage gated ion channels, cell membrane fluidity, membrane receptors, G-coupled receptors, PPARs, free radical generation, nitric oxide formation, inflammation, and immune responses that, in turn, participate in the regulation blood pressure and pathogenesis of diabetes mellitus. In this review, role of AA and its metabolites LXA4 and EETs in the pathobiology of hypertension, pre-eclampsia and diabetes mellitus are discussed. Based on several lines of evidences, it is proposed that a combination of aspirin and AA could be of benefit in the prevention and management of hypertension, pre-eclampsia and diabetes mellitus.
Collapse
|
43
|
Smolders L, Mensink RP, Boekschoten MV, de Ridder RJ, Plat J. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans. Clin Nutr 2018. [DOI: 10.1016/j.clnu.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Abstract
This study was aimed to clarify the effect of honokiol (Hon) on the activity of Cytochrome P450 (CYP450) enzymes, and the level of mRNA expression of liver and kidney transporters in type 2 diabetic rats induced by high-fat diet and strepotozotocin. Rats were randomly divided into normal control (NC) group, diabetic control (DC) group and Hon groups (n = 6). The activities of hepatic CYP1A2, CYP2E1, CYP2C, CYP2B, CYP3A and CYP4A, and the mRNA expression levels of hepatic and renal transporters, were determined. Compared to the NC group, the activities of CYP1A2, CYP2E1, CYP4A and CYP2C in DC group were increased by 2.36-, 2.10-, 2.55- and 1.86-fold, respectively. The mRNA expression levels of hepatic Oat2, Oatp2b1 and Oatp1a5, and renal Oct1, Octn2, Oatp2b1 and Oatp1a5, were significantly down-regulated, while the mRNA expression levels of hepatic Octn2, Oatp3a1, Oatp1a1 and Mdr2, and renal Oat2, Mrp4 and Bcrp, were significantly upregulated. Compared to the DC group, Hon treatment significantly inhibited the activity of hepatic CYP2E1, CYP4A, 3A and CYP1A2 by 45.6%, 29.2%, 22.7% and 20.7% in Hon high dose group, respectively. Moreover, Hon treatment significantly inhibited the mRNA expression levels of renal Bcrp and Mrp4 by 2.63-fold and 1.54-fold, while significantly upregulated the mRNA expression levels of hepatic Oat2 and Oatp2b1 by 1.52-fold and 1.54-fold in Hon high dose group, respectively. The results suggested that under the diabetes condition, the changes of CYP450 activity and transporter expression inevitably interfere the normal transport, metabolism and efficacy of drugs. The present work firstly reported that Hon treatment ameliorated the abnormal change of hepatic CYP activity (including CYP2E1, CYP4A and CYP1A2) and the transporter mRNA expression (including hepatic Oat2 and Oatp2b1, renal Bcrp and Mrp4) in type 2 diabetic rats induced by high-fat diet and strepotozotocin, which are associated with the occurrence and development of diabetes.
Collapse
|
45
|
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL 3 and the circadian clock. Science 2018; 357:912-916. [PMID: 28860383 DOI: 10.1126/science.aan0677] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
The intestinal microbiota has been identified as an environmental factor that markedly affects energy storage and body-fat accumulation in mammals, yet the underlying mechanisms remain unclear. Here we show that the microbiota regulates body composition through the circadian transcription factor NFIL3. Nfil3 transcription oscillates diurnally in intestinal epithelial cells, and the amplitude of the circadian oscillation is controlled by the microbiota through group 3 innate lymphoid cells, STAT3 (signal transducer and activator of transcription 3), and the epithelial cell circadian clock. NFIL3 controls expression of a circadian lipid metabolic program and regulates lipid absorption and export in intestinal epithelial cells. These findings provide mechanistic insight into how the intestinal microbiota regulates body composition and establish NFIL3 as an essential molecular link among the microbiota, the circadian clock, and host metabolism.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofei Yu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Attignon EA, Distel E, Le-Grand B, Leblanc AF, Barouki R, de Oliveira E, Aggerbeck M, Blanc EB. Down-regulation of the expression of alcohol dehydrogenase 4 and CYP2E1 by the combination of α-endosulfan and dioxin in HepaRG human cells. Toxicol In Vitro 2017; 45:309-317. [DOI: 10.1016/j.tiv.2017.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 01/27/2023]
|
47
|
The Contribution of Singlet Oxygen to Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8765972. [PMID: 29081894 PMCID: PMC5610878 DOI: 10.1155/2017/8765972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.
Collapse
|
48
|
Preziosi ME, Singh S, Valore EV, Jung CL, Popovic B, Poddar M, Nagarajan S, Ganz T, Monga SP. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. J Hepatol 2017; 67:360-369. [PMID: 28341391 PMCID: PMC5515705 DOI: 10.1016/j.jhep.2017.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. METHODS Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. RESULTS KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. CONCLUSIONS The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. LAY SUMMARY Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked human disease. Administration of an antioxidant prevented hepatic injury in this model.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Sucha Singh
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Erika V. Valore
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Chun-Ling Jung
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | | | - Minakshi Poddar
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Shanmugam Nagarajan
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Tomas Ganz
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Satdarshan P Monga
- Department of Pathology (Division of Experimental Pathology), University of Pittsburgh, Pennsylvania, United States; Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States; Department of Medicine (Division of Gastroenterology, Hepatology and Nutrition), University of Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
49
|
Bondarenko LB, Shayakhmetova GM, Voronina AK, Kovalenko VM. Age-dependent features of CYP3A, CYP2C, and CYP2E1 functioning at metabolic syndrome. J Basic Clin Physiol Pharmacol 2017; 27:603-610. [PMID: 27371822 DOI: 10.1515/jbcpp-2016-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Complex investigations of cytochrome P450 (CYP) isoforms with metabolic syndrome (MS) development are limited, and specific features of adolescent's metabolisms are generally disregarded. The aim of present study was a comparative estimation of MS-mediated changes in CYP3A, CYP2C, and CYP2E1 mRNA expression and enzymatic activities, as well as antioxidant system parameters of adult and pubertal rats. METHODS Wistar albino male rats of two age categories [young animals of 21 days age (50-70 g) and adults (160-180 g)] were divided into four groups (eight animals in each group): (1) control 1 (intact young rats), (2) control 2 (intact adult rats), (3) MS3 (young rats with MS), and (4) MS4 (adult rats with MS). The MS was induced by full replacement of drinking water by 20% fructose solution (200 g/L). After 60 days of MS modeling, the investigation of rat liver CYP3A, CYP2C, and CYP2E1 mRNA expressions, their enzyme-marker activities, as well as the antioxidant system parameters was conducted. RESULTS Levels of liver CYP2E1 mRNA expression increased with MS: 40% (adults) and 80% (pubertal rats). Pubertal rats had also increased CYP3A2 mRNA expression (30%) and decreased CYP2C mRNA expression (30%). Changes in CYP2E1 and CYP2C enzymatic activities were consistent with the changes of corresponding gene expressions at both age-groups with MS. Simultaneously, liver reduced glutathione contents, and glutathione transferase and reductase activities were decreased in pubertal animals. CONCLUSIONS CYP isoform expression rates and glutathione system were greatly violated with MS. The greater changes were observed in pubertal rats with MS.
Collapse
|
50
|
Hartman JH, Miller GP, Meyer JN. Toxicological Implications of Mitochondrial Localization of CYP2E1. Toxicol Res (Camb) 2017; 6:273-289. [PMID: 28989700 DOI: 10.1039/c7tx00020k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) metabolizes an extensive array of pollutants, drugs, and other small molecules, often resulting in bioactivation to reactive metabolites. Therefore, it is unsurprising that it has been the subject of decades of research publications and reviews. However, while CYP2E1 has historically been studied in the endoplasmic reticulum (erCYP2E1), active CYP2E1 is also present in mitochondria (mtCYP2E1). Relatively few studies have specifically focused on mtCYP2E1, but there is growing interest in this form of the enzyme as a driver in toxicological mechanisms given its activity and location. Many previous studies have linked total CYP2E1 to conditions that involve mitochondrial dysfunction (fasting, diabetes, non-alcoholic steatohepatitis, and obesity). Furthermore, a large number of reactive metabolites that are formed by CYP2E1 through metabolism of drugs and pollutants have been demonstrated to cause mitochondrial dysfunction. Finally, there appears to be significant inter-individual variability in targeting to the mitochondria, which could constitute a source of variability in individual response to exposures. This review discusses those outcomes, the biochemical properties and toxicological consequences of mtCYP2E1, and highlights important knowledge gaps and future directions. Overall, we feel that this exciting area of research is rich with new and important questions about the relationship between mtCYP2E1, mitochondrial dysfunction, and pathology.
Collapse
Affiliation(s)
| | - Grover P Miller
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC
| |
Collapse
|