1
|
Montastier É, Ye RZ, Noll C, Amrani M, Frisch F, Fortin M, Bouffard L, Phoenix S, Sarrhini O, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Nicotinic acid increases adipose tissue dietary fatty acid trapping and reduces postprandial hepatic and cardiac fatty acid uptake in prediabetes. Eur J Pharmacol 2025:177563. [PMID: 40157702 DOI: 10.1016/j.ejphar.2025.177563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Increased adipose tissue (AT) dietary fatty acids (DFA) trapping limits fatty acid exposure to lean organs in the face of elevated postprandial nonesterified fatty acid (NEFA) flux from excess AT intracellular lipolysis in prediabetes. We hypothesized that pharmacological inhibition of postprandial AT intracellular lipolysis using short-acting nicotinic acid (NA) would increase AT DFA trapping and limit AT NEFA spillover to lean organs in subjects with prediabetes. Twenty subjects with impaired glucose tolerance and 19 individuals with normal glucose tolerance underwent four postprandial studies with positron emission tomography/computed tomography with radio-labeled fatty acid tracers and stable isotopic palmitate tracers. Over the 6-h postprandial period, NA increased AT DFA partitioning with reciprocal reduction in liver and in muscle. NA also robustly reduced cardiac and liver total (DFA + NEFA) postprandial fatty acid uptake. Short-acting NA administered postprandially thus enhances AT DFA trapping and markedly reduces postprandial hepatic and cardiac fatty acid uptake. (clinicaltrials.gov NCT02808182).
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada.
| |
Collapse
|
2
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Devesa A, Fuster V, Vazirani R, García-Lunar I, Oliva B, España S, Moreno-Arciniegas A, Sanz J, Perez-Herreras C, Bueno H, Lara-Pezzi E, García-Alvarez A, de Vega VM, Fernández-Friera L, Trivieri MG, Fernández-Ortiz A, Rossello X, Sanchez-Gonzalez J, Ibanez B. Cardiac Insulin Resistance in Subjects With Metabolic Syndrome Traits and Early Subclinical Atherosclerosis. Diabetes Care 2023; 46:2050-2057. [PMID: 37713581 PMCID: PMC10632182 DOI: 10.2337/dc23-0871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE Experimental evidence suggests that metabolic syndrome (MetS) is associated with changes in cardiac metabolism. Whether this association occurs in humans is unknown. RESEARCH DESIGN AND METHODS 821 asymptomatic individuals from the Progression of Early Subclinical Atherosclerosis (PESA) study (50.6 [46.9-53.6] years, 83.7% male) underwent two whole-body 18F-fluorodeoxyglucose positron emission tomography-magnetic resonance (18F-FDG PET-MR) 4.8 ± 0.6 years apart. Presence of myocardial 18F-FDG uptake was evaluated qualitatively and quantitatively. No myocardial uptake was grade 0, while positive uptake was classified in grades 1-3 according to target-to-background ratio tertiles. RESULTS One hundred fifty-six participants (19.0%) showed no myocardial 18F-FDG uptake, and this was significantly associated with higher prevalence of MetS (29.0% vs. 13.9%, P < 0.001), hypertension (29.0% vs. 18.0%, P = 0.002), and diabetes (11.0% vs. 3.2%, P < 0.001), and with higher insulin resistance index (HOMA-IR, 1.64% vs. 1.23%, P < 0.001). Absence of myocardial uptake was associated with higher prevalence of early atherosclerosis (i.e., arterial 18F-FDG uptake, P = 0.004). On follow-up, the associations between myocardial 18F-FDG uptake and risk factors were replicated, and MetS was more frequent in the group without myocardial uptake. The increase in HOMA-IR was associated with a progressive decrease in myocardial uptake (P < 0.001). In 82% of subjects, the categorization according to presence/absence of myocardial 18F-FDG uptake did not change between baseline and follow-up. MetS regression on follow-up was associated with a significant (P < 0.001) increase in myocardial uptake. CONCLUSIONS Apparently healthy individuals without cardiac 18F-FDG uptake have higher HOMA-IR and higher prevalence of MetS traits, cardiovascular risk factors, and early atherosclerosis. An improvement in cardiometabolic profile is associated with the recovery of myocardial 18F-FDG uptake at follow-up.
Collapse
Affiliation(s)
- Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ravi Vazirani
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- University Hospital La Moraleja, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre and i+12 Research Institute, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana García-Alvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Hospital Clinic-Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Vicente Martínez de Vega
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Universitario Quirón, Madrid, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Universitario HM Montepríncipe-Centro Integral de Enfermedades Cardiovasculares (CIEC), Madrid, Spain
| | - Maria G. Trivieri
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- University Hospital La Moraleja, Madrid, Spain
- Cardiology Department, Hospital Universitari Son Espases- Institut d'Investigacio Sanitaria Illes Balears (IDISBA), Palma de Mallorca, Spain
| | | | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz University Hospital, Madrid, Spain
| |
Collapse
|
4
|
Ye RZ, Montastier É, Noll C, Frisch F, Fortin M, Bouffard L, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC. Total Postprandial Hepatic Nonesterified and Dietary Fatty Acid Uptake Is Increased and Insufficiently Curbed by Adipose Tissue Fatty Acid Trapping in Prediabetes With Overweight. Diabetes 2022; 71:1891-1901. [PMID: 35748318 PMCID: PMC9862339 DOI: 10.2337/db21-1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
Excessive lean tissue uptake of fatty acids (FAs) is important in the development of insulin resistance and may be caused by impaired dietary FA (DFA) storage and/or increased nonesterified FA (NEFA) flux from adipose tissue intracellular lipolysis. Cardiac and hepatic total postprandial FA uptake of NEFA+DFA has, however, never been reported in prediabetes with overweight. In this study, 20 individuals with impaired glucose tolerance (IGT) and 19 participants with normal glucose tolerance (NGT) and normal fasting glucose underwent postprandial studies with whole-body positron emission tomography/computed tomography (PET/CT) with oral [18F]fluoro-thia-heptadecanoic acid and dynamic PET/CT with intravenous [11C]palmitate. Hepatic (97 [range 36-215] mmol/6 h vs. 68 [23-132] mmol/6 h, P = 0.03) but not cardiac (11 [range 4-24] mmol/6 h vs. 8 [3-20] mmol/6 h, P = 0.09) uptake of most sources of postprandial FA (NEFA + DFA uptake) integrated over 6 h was higher in IGT versus NGT. DFA accounted for lower fractions of total cardiac (21% [5-47] vs. 25% [9-39], P = 0.08) and hepatic (19% [6-52] vs. 28% [14-50], P = 0.04) uptake in IGT versus NGT. Increased adipose tissue DFA trapping predicted lower hepatic DFA uptake and was associated with higher total cardiac FA uptake. Hence, enhanced adipose tissue DFA trapping in the face of increased postprandial NEFA flux is insufficient to fully curb increased postprandial lean organ FA uptake in prediabetes with overweight (ClinicalTrials.gov; NCT02808182).
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
5
|
Attenuation of ROS/Chloride Efflux-Mediated NLRP3 Inflammasome Activation Contributes to Alleviation of Diabetic Cardiomyopathy in Rats after Sleeve Gastrectomy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4608914. [PMID: 35498125 PMCID: PMC9042617 DOI: 10.1155/2022/4608914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) can develop in diabetes mellitus and is a major cause of morbidity and mortality. Surgical bariatric surgery procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes and have benefits regarding systolic and diastolic myocardial function. The NLR family pyrin domain containing 3 (NLRP3) inflammasome appears to participate in the development of DCM. However, whether SG surgery affects myocardial NLRP3 inflammasome-related pyroptosis to improve cardiac function remains unclear. This study was aimed at investigating the effect of SG surgery on NLRP3-associated pyroptosis in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a metabolic benefit of SG, including a reduced body weight, food intake, and blood glucose levels and restored glucose tolerance and insulin sensitivity postoperatively. We observed a marked decline in glucose uptake in rats with DCM, and this was restored after SG. Also, SG alleviated the dysfunction of myocardial contraction and diastole, delayed the progression of DCM, and reduced the NLRP3 inflammasome-mediated myocardial pyroptosis in vivo. H9c2 cardiomyocytes showed membrane disruption and DNA damage under a high glucose stimulus, which suggested myocardial pyroptosis. Using a ROS scavenger or chloride channel blocker in vitro restored myocardial NLRP3-mediated pyroptosis. Furthermore, we found that chloride efflux acted downstream of ROS generation. In conclusion, SG may ameliorate or even reverse the progression of DCM. Our study provides evidence that the SG operation alleviates NLRP3 inflammasome dysregulation in DCM. Clearance of ROS overburden and suppression of chloride efflux due to SG might act as the proximal event before inhibition of NLRP3 inflammasome in the myocardium, thus contributing to morphological and functional alleviation of DCM.
Collapse
|
6
|
Li S, Dong S, Xu Q, Shi B, Li L, Zhang W, Zhu J, Cheng Y, Zhang G, Zhong M. Sleeve Gastrectomy-Induced AMPK Activation Attenuates Diabetic Cardiomyopathy by Maintaining Mitochondrial Homeostasis via NR4A1 Suppression in Rats. Front Physiol 2022; 13:837798. [PMID: 35360240 PMCID: PMC8961133 DOI: 10.3389/fphys.2022.837798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by impaired diastolic and systolic myocardial performance and is a major cause of morbidity and mortality in patients with diabetes. Surgical bariatric procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes (T2DM) and have benefits with myocardial function. Maintaining cardiac mitochondrial homeostasis is a promising therapeutic strategy for DCM. However, whether SG surgery affects mitochondrial function and its underlying mechanism remains unclear. This study aimed to investigate the effect of SG surgery on mitochondrial homeostasis and intracellular oxidative stress in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose and high fat-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a remarkably metabolic benefit of SG, including a reduced body weight, food intake, blood glucose levels, and restored glucose tolerance and insulin sensitivity post-operatively. Also, SG ameliorated the pathological cardiac hypertrophy, myocardial fibrosis and the dysfunction of myocardial contraction and diastole, consequently delayed the progression of DCM. Also, SG restored the mitochondrial dysfunction and fragmentation through the AMPK signaling activation mediated nuclear receptor subfamily 4 group A member 1 (NR4A1)/DRP1 suppression in vivo. H9c2 cardiomyocytes showed that activation of AMPK could reverse the mitochondrial dysfunction somehow. Collectively, our study provided evidence that SG surgery could alleviate mitochondrial dysfunction in DCM. Moreover, AMPK-activated NR4A1/DRP1 repression might act as a significant reason for maintaining mitochondrial homeostasis in the myocardium, thus contributing to morphological and functional alleviation of DCM.
Collapse
Affiliation(s)
- Songhan Li
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Xu
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Shi
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wenjie Zhang
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Mingwei Zhong,
| |
Collapse
|
7
|
High fructose and streptozotocin induced diabetic impairments are mitigated by Indirubin-3-hydrazone via downregulation of PKR pathway in Wistar rats. Sci Rep 2021; 11:12924. [PMID: 34155273 PMCID: PMC8217483 DOI: 10.1038/s41598-021-92345-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Metabolic disorders are becoming more common in young population due to increased consumption of carbohydrate rich diet, lack of physical activity and stress. Fructose is used as a sweetener in many carbonated beverages and is a known inducer of oxidative stress and hypertension. Up-regulation of the double-stranded RNA-dependent protein kinase (PKR) causes impairment in insulin signaling pathway and metabolic dysfunctions in type 2 diabetes mellitus. In the present study we investigated the role of PKR and associated pathways in high fructose (HF) and streptozotocin (STZ) induced diabetes and whether indirubin-3-hydrazone (IHZ), a novel PKR inhibitor can reverse the HF and STZ induced diabetic impairments in Wistar rats. Diabetes was induced by feeding rats 20% high fructose in drinking water for 6 weeks and by giving a single dose of STZ (35 mg/kg., i.p) at the end of week 5. Glucose and lipid levels were measured by using assay kits. Expression of PKR and its downstream genes were determined by immunohistochemistry, qRT-PCR and western blotting techniques. Histo-pathological studies were performed using H&E staining. Fibrosis was detected in insulin sensitive tissues and organs using Sirius red and Masson’s trichrome staining and apoptosis by TUNEL assay. HF and STZ induced hyperglycemia, fibrosis, oxidative stress, and inflammation in liver, pancreas, skeletal muscle and adipose tissue are mediated via PKR pathway and its downstream effectors, and these effects were attenuated by PKR inhibitor IHZ. Thus, inhibition of PKR can protect insulin sensitive organs and tissues from HF induced diabetic impairments via the inhibition of c-Jun N-terminal kinase (JNK) pathway.
Collapse
|
8
|
Diao J, Zhao H, You P, You H, Wu H, Shou X, Cheng G. Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway. Biochem Biophys Res Commun 2021; 546:29-34. [PMID: 33561745 DOI: 10.1016/j.bbrc.2021.01.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial injury plays an essential role in the pathogenesis of diabetic cardiomyopathy (DCM). Previous studies demonstrated that rosmarinic acid (RA) treatment prevented high glucose-induced mitochondrial injury in vitro. However, whether RA can ameliorate cardiac function by preventing mitochondrial injury in DCM is unknown. The SIRT1/PGC-1α pathway has emerged as an important regulator of metabolic control and other mitochondrial functions. The present study was undertaken to determine the effects of RA on mitochondrial and cardiac function in DCM as well as the involvement of the SIRT1/PGC-1α pathway. Our results revealed that RA improved cardiac systolic and diastolic function and prevented mitochondrial injury in DCM, as shown by the reduced blood glucose and lipid levels, increased mitochondrial membrane potential levels, improved adenosine triphosphate synthesis, and inhibited apoptosis (P < 0.05). Moreover, RA upregulated the expression of SIRT1 and PGC-1α in DCM mice and high glucose-treated H9c2 cardiomyocytes (P < 0.05). Further mechanistic studies in H9c2 cardiomyocytes revealed that suppression of SIRT1 by Sh-SIRT1 counteracted the effects of RA on high glucose-induced abnormal metabolism of glucose and lipids, oxidative stress and apoptosis (P < 0.05). Taken together, these data indicate that RA prevented mitochondrial injury and cardiac dysfunction in DCM mice, and the SIRT1/PGC-1α pathway mediated the protective effects of RA.
Collapse
Affiliation(s)
- Jiayu Diao
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Xi'an Honghui Hospital, China
| | - Penghua You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China
| | - Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China
| | - Haoyu Wu
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China
| | - Xiling Shou
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China
| | - Gong Cheng
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, China.
| |
Collapse
|
9
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Assessment of insulin resistance in the skeletal muscle of mice using positron emission tomography/computed tomography imaging. Biochem Biophys Res Commun 2020; 528:499-505. [PMID: 32513534 DOI: 10.1016/j.bbrc.2020.05.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022]
Abstract
Measuring glucose uptake in the skeletal muscle in vivo is an effective method to determine glucose metabolism abnormalities as the skeletal muscle is the principal tissue responsible for glucose disposal and is a major site of peripheral insulin resistance. In this study, we investigated the pathological glucose metabolism dynamics of the skeletal muscle of C57BL/6J mice in a noninvasive and time-sequential manner using positron emission tomography/computed tomography (PET/CT), an imaging technique that uses radioactive substances to visualize and measure metabolic processes in the body, with [18F]-fluoro-2-deoxy-D-glucose (FDG). FDG-PET/CT imaging revealed that insulin administration and exercise load significantly increased FDG accumulation in the skeletal muscle of C57BL/6J mice. FDG accumulation was lower in the skeletal muscle of 14-week-old db/db diabetic model mice exhibiting remarkable insulin resistance compared to that of 7-week-old db/db mice. Based on the continuous observation of FDG accumulation over time in diet-induced obese (DIO) mice, FDG accumulation significantly decreased in 17-week-old mice after the acquisition of insulin resistance. Although insulin-induced glucose uptake in the skeletal muscle was markedly attenuated in 20-week-old DIO mice that had already developed insulin resistance, exercise load effectively increased FDG uptake in the skeletal muscle. Thus, we successfully confirmed that glucose uptake accompanied by insulin administration and exercise load increased in the skeletal muscle using PET-CT. FDG-PET/CT might be an effective tool that could noninvasively capture the chronological changes of metabolic abnormalities in the skeletal muscle of mice.
Collapse
|
11
|
Noll C, Montastier É, Amrani M, Kunach M, Frisch F, Fortin M, Bouffard L, Dubreuil S, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Laville M, Carpentier AC. Seven-day overfeeding enhances adipose tissue dietary fatty acid storage and decreases myocardial and skeletal muscle dietary fatty acid partitioning in healthy subjects. Am J Physiol Endocrinol Metab 2020; 318:E286-E296. [PMID: 31891539 DOI: 10.1152/ajpendo.00474.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increased myocardial partitioning of dietary fatty acids (DFA) and decreased left ventricular (LV) function is associated with insulin resistance in prediabetes. We hypothesized that enhanced myocardial DFA partitioning and reduced LV function might be induced concomitantly with reduced insulin sensitivity upon a 7-day hypercaloric (+50% in caloric intake), high-saturated fat (~11%energy), and simple carbohydrates (~54%energy) diet (HIGHCAL) versus an isocaloric diet (ISOCAL) with a moderate amount of saturated fat (~8%energy) and carbohydrates (~50%energy). Thirteen healthy subjects (7 men/6 women) underwent HIGHCAL versus ISOCAL in a randomized crossover design, with organ-specific DFA partitioning and LV function measured using the oral 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and [11C]acetate positron emission tomography methods at the end of both interventions. HIGHCAL induced a decrease in insulin sensitivity indexes with no significant change in body composition. HIGHCAL led to increased subcutaneous abdominal (+4.2 ± 1.6%, P < 0.04) and thigh (+2.4 ± 1.2%, P < 0.08) adipose tissue storage and reduced cardiac (-0.31 ± 0.11 mean standard uptake value [(SUV), P < 0.03] and skeletal muscle (-0.17 ± 0.08 SUV, P < 0.05) DFA partitioning without change in LV function. We conclude that early increase in adipose tissue DFA storage protects the heart and skeletal muscles from potential deleterious effects of DFA.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martine Laville
- Department of Endocrinology, Diabetology and Nutrition, Groupement Hospitalier Lyon Sud, Fédération Hospitalo-Universitaire DO-IT, Hospices Civils de Lyon, Pierre Bénite, France
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Ko KY, Wang SY, Yen RF, Shiau YC, Hsu JC, Tsai HY, Lee CL, Chiu KM, Wu YW. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J Nucl Cardiol 2020; 27:269-279. [PMID: 30109593 DOI: 10.1007/s12350-018-1395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to prospectively quantify the rate of myocardial glucose uptake (MRGlu) in myocardium with different perfusion-metabolism patterns and determine its prognostic value in patients with ischemic cardiomyopathy. METHODS AND RESULTS 79 patients with ischemic cardiomyopathy were prospectively enrolled for dynamic cardiac FDG PET, and then followed for at least 6 months. Perfusion-metabolism patterns were determined based on visual score analysis of 201Tl SPECT and FDG PET. MRGlu was analyzed using the Patlak kinetic model. The primary end-point was cardiovascular mortality. Significantly higher MRGlu was observed in viable compared with non-viable areas. Negative correlations were found between MRGlu in transmural match and a history of hyperlipidemia, statin usage, and triglyceride levels. Diabetic patients receiving dipeptidyl peptidase-4 inhibitors (DPP4i) had a significantly lower MRGlu in transmural match, mismatch, and reverse mismatch. Patients with MRGlu in transmural match ≥ 23.40 or reverse mismatch ≥ 36.90 had a worse outcome. CONCLUSIONS Myocardial glucose utilization was influenced by substrates and medications, including statins and DPP4i. MRGlu could discriminate between viable and non-viable myocardium, and MRGlu in transmural match and reverse mismatch may be prognostic predictors of cardiovascular death in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jung-Cheng Hsu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Lin Lee
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Non-canonical mTORC2 Signaling Regulates Brown Adipocyte Lipid Catabolism through SIRT6-FoxO1. Mol Cell 2020; 75:807-822.e8. [PMID: 31442424 DOI: 10.1016/j.molcel.2019.07.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Collapse
|
14
|
Huang X, Wu D, Cheng Y, Zhang X, Liu T, Liu Q, Xia P, Zhang G, Hu S, Liu S. Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal-jejunal bypass. J Diabetes Investig 2019; 10:626-638. [PMID: 30290074 PMCID: PMC6497603 DOI: 10.1111/jdi.12948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Duodenal-jejunal bypass (DJB) surgery has been reported to effectively relieve diabetic cardiomyopathy (DCM). However, the specific mechanisms remain largely unknown. The present study was designed to determine the alterations of myocardial glucose uptake (MGU) after DJB and their effects on DCM. MATERIALS AND METHODS Duodenal-jejunal bypass and sham surgeries were carried out in diabetic rats induced by a high-fat diet and a low dose of streptozotocin, with chow-diet fed rats as controls. Bodyweight, food intake, glucose homeostasis and lipid profiles were measured at indicated time-points. Cardiac function was evaluated by transthoracic echocardiography and hemodynamic measurement. Cardiac remodeling was assessed by a series of morphometric analyses along with transmission electron microscopy. Positron-emission tomography with fluorine-18 labeled fluorodeoxyglucose was carried out to evaluate the MGU in vivo. Furthermore, myocardial glucose transporters (GLUT; GLUT1 and GLUT4), myocardial insulin signaling and GLUT-4 translocation-related proteins were investigated to elucidate the underlying mechanisms. RESULTS The DJB group showed restored systolic and diastolic cardiac function, along with significant remission in cardiac hypertrophy, cardiac fibrosis, lipid deposit and ultrastructural disorder independent of weight loss compared with the sham group. Furthermore, the DJB group showed upregulated myocardial insulin signaling, hyperphosphorylation of AKT substrate of 160 kDa (AS160) and TBC1D1, along with preserved soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins, facilitating the GLUT-4 translocation to the myocardial cell surface and restoration of MGU. CONCLUSIONS The present findings provide evidence that restoration of MGU is implicated in the alleviation of DCM after DJB through facilitating GLUT-4 translocation, suggesting a potential choice for treatment of human DCM if properly implemented.
Collapse
Affiliation(s)
- Xin Huang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Dong Wu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yugang Cheng
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Teng Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Qiaoran Liu
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Pingtian Xia
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Guangyong Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Sanyuan Hu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Shaozhuang Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
15
|
Sahin N, Orhan C, Erten F, Tuzcu M, Defo Deeh PB, Ozercan IH, Juturu V, Kazim S. Effects of allyl isothiocyanate on insulin resistance, oxidative stress status, and transcription factors in high-fat diet/streptozotocin-induced type 2 diabetes mellitus in rats. J Biochem Mol Toxicol 2019; 33:e22328. [PMID: 30927557 DOI: 10.1002/jbt.22328] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Allyl isothiocyanate (AITC), a dietary phytochemical found in some cruciferous vegetables, is commonly used as an antimicrobial, anticancer, and antioxidant agent. In the present study, we investigated the effects of AITC on insulin resistance and transcription factors in a diabetic rat model. A total of 42 Wistar rats were divided into six groups and orally treated for 12 weeks as follows: (i) control; (ii) AITC (100 mg/kg body weight [BW]); (iii) high fat diet (HFD); (iv) HFD + AITC (100 mg/kg BW); (v) HFD + streptozotocin (STZ, 40 mg/kg BW); and (vi) HFD + STZ + AITC. Administration of AITC reduced blood glucose, total cholesterol, triglycerides, and creatinine levels, but increased (P < 0.001) total antioxidant capacity. In AITC-treated rats, the glucose transporter-2, peroxisome proliferator-activated receptor gamma, p-insulin receptor substrate-1, and nuclear factor erythroid-derived 2 in the liver and kidney were increased while nuclear factor-kappa B was downregulated (P < 0.05). In conclusion, AITC possesses antidiabetic, antioxidant, and anti-inflammatory activities in HFD/STZ-induced T2DM in rats. These findings may further justify the importance of AITC in phytomedicine.
Collapse
Affiliation(s)
- Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Fusun Erten
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Patrick B Defo Deeh
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ibrahim H Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Vijaya Juturu
- Research and Development, OmniActive Health Technologies Inc, Morristown, New Jersey
| | - Sahin Kazim
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| |
Collapse
|
16
|
Labbé SM, Caron A, Festuccia WT, Lecomte R, Richard D. Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. Am J Physiol Endocrinol Metab 2018; 315:E815-E824. [PMID: 30153064 DOI: 10.1152/ajpendo.00210.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brown adipose tissue (BAT) thermogenesis is a key controller of energy metabolism. In response to cold or other adrenergic stimuli, brown adipocytes increase their substrate uptake and oxidative activity while uncoupling ATP synthesis from the mitochondrial respiratory chain activity. Brown adipocytes are found in classic depots such as in the interscapular BAT (iBAT). They can also develop in white adipose tissue (WAT), such as in the inguinal WAT (iWAT), where their presence has been associated with metabolic improvements. We previously reported that the induction of oxidative metabolism in iWAT is low compared with that of iBAT, even after sustained adrenergic stimulation. One explanation to this apparent lack of thermogenic ability of iWAT is the presence of an active iBAT, which may prevent the full activation of iWAT. In this study, we evaluated whether iBAT denervation-induced browning of white fat enhanced the thermogenic activity of iWAT following cold acclimation, under beta-3 adrenergic stimulation (CL 316,243). Following a bilateral denervation of iBAT, we assessed energy balance, evaluated the oxidative activity of iBAT and iWAT using 11C-acetate, and quantified the dynamic glucose uptake of those tissues using 2-deoxy-2-[18F]- fluoro-d-glucose. Our results indicate that despite portraying marked browning and mildly enhanced glucose uptake, iWAT of cold-adapted mice does not exhibit significant oxidative activity following beta-3 adrenergic stimulation in the absence of a functional iBAT. The present results suggest that iWAT is not readily recruitable as a thermogenic organ even when functional iBAT is lacking.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| | - Alexandre Caron
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| | - William T Festuccia
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Roger Lecomte
- Département de Médecine nucléaire et de Radiologie, Centre d'Imagerie moléculaire de Sherbrooke, Université de Sherbrooke , Sherbrooke , Canada
| | - Denis Richard
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| |
Collapse
|
17
|
Birkenfeld AL, Jordan J, Dworak M, Merkel T, Burnstock G. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts. Pharmacol Ther 2018; 194:132-144. [PMID: 30149104 DOI: 10.1016/j.pharmthera.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant therapeutic advances in heart failure (HF) therapy, the morbidity and mortality associated with this disease remains unacceptably high. The concept of metabolic dysfunction as an important underlying mechanism in HF is well established. Cardiac function is inextricably linked to metabolism, with dysregulation of cardiac metabolism pathways implicated in a range of cardiac complications, including HF. Modulation of cardiac metabolism has therefore become an attractive clinical target. Cardiac metabolism is based on the integration of adenosine triphosphate (ATP) production and utilization pathways. ATP itself impacts the heart not only by providing energy, but also represents a central element in the purinergic signaling pathway, which has received considerable attention in recent years. Furthermore, novel drugs that have received interest in HF include angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors, whose favorable cardiovascular profile has been at least partly attributed to their effects on metabolism. This review, describes the major metabolic pathways and concepts of the healthy heart (including fatty acid oxidation, glycolysis, Krebs cycle, Randle cycle, and purinergic signaling) and their dysregulation in the progression to HF (including ketone and amino acid metabolism). The cardiac implications of HF comorbidities, including metabolic syndrome, diabetes mellitus and cachexia are also discussed. Finally, the impact of current HF and diabetes therapies on cardiac metabolism pathways and the relevance of this knowledge for current clinical practice is discussed. Targeting cardiac metabolism may have utility for the future treatment of patients with HF, complementing current approaches.
Collapse
Affiliation(s)
- Andreas L Birkenfeld
- Medical Clinic III, Universitätsklinikum "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital, Faculty of Medicine, Dresden, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center and Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | | | | | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free Campus, University College Medical School, London, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Huang X, Liu S, Wu D, Cheng Y, Han H, Wang K, Zhang G, Hu S. Facilitated Ca 2+ homeostasis and attenuated myocardial autophagy contribute to alleviation of diabetic cardiomyopathy after bariatric surgery. Am J Physiol Heart Circ Physiol 2018; 315:H1258-H1268. [PMID: 30141985 DOI: 10.1152/ajpheart.00274.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bariatric surgery has been reported to relieve diabetic cardiomyopathy (DCM) effectively. However, the mechanisms remain largely unknown. To determine the effects of bariatric surgery on DCM via modulation of myocardial Ca2+ homeostasis and autophagy, sleeve gastrectomy (SG), duodenal-jejunal bypass (DJB), and sham surgeries were performed in diabetic rats induced by high-fat diet and a low dose of streptozotocin. Cardiac remodeling was assessed by a series of morphometric and histological analyses. Transthoracic echocardiography and hemodynamic measurements were performed to determine cardiac function. Ca2+ homeostasis was evaluated by measuring Ca2+ transients with fura-2 AM in isolated ventricular myocytes along with detection of the abundance of Ca2+ regulatory proteins in the myocardium. Myocardial autophagic flux was determined by expression of autophagy-related proteins in the absence and presence of chloroquine. Both SG and DJB surgery alleviated DCM morphologically and functionally. Ca2+ transients exhibited a significantly higher amplitude and faster decay after SG and DJB, which could be partially explained by increased expression of ryanodine receptor 2, sarco(endo)plasmic reticulum Ca2+-2ATPase, 12.6-kDa FK506-binding protein, and hyperphosphorylation of phospholamban. In addition, a lower level of light chain 3B and higher level of p62 were detected after both SG and DJB, which was not reversed by chloroquine treatment and associated with activated mammalian target of rapamycin and attenuated AMP-activated protein kinase signaling pathway. Collectively, these results provided evidence that bariatric surgery could alleviate DCM effectively, which may result, at least in part, from facilitated Ca2+ homeostasis and attenuated autophagy, suggesting a potential choice for treatment of DCM when properly implemented. NEW & NOTEWORTHY The present study is the first to investigate the modulation of myocardial Ca2+ homeostasis and autophagy after bariatric surgery and to examine its effects on diabetic cardiomyopathy. Bariatric surgery could facilitate myocardial Ca2+ homeostasis and attenuate myocardial autophagy, contributing to the alleviation of cardiomyopathy morphologically and functionally in a diabetic rat model.
Collapse
Affiliation(s)
- Xin Huang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China.,State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Dong Wu
- State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Yugang Cheng
- State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Haifeng Han
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| |
Collapse
|
19
|
Early Imaging Biomarker of Myocardial Glucose Adaptations in High-Fat-Diet-Induced Insulin Resistance Model by Using 18F-FDG PET and [U- 13C]glucose Nuclear Magnetic Resonance Tracer. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8751267. [PMID: 30116165 PMCID: PMC6079607 DOI: 10.1155/2018/8751267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Background High-fat diet (HFD) induces systemic insulin resistance leading to myocardial dysfunction. We aim to characterize the early adaptations of myocardial glucose utility to HFD-induced insulin resistance. Methods Male Sprague–Dawley rats were assigned into two groups, fed a regular chow diet or HFD ad libitum for 10 weeks. We used in vivo imaging of cardiac magnetic resonance (CMR), 18F-FDG PET, and ex vivo nuclear magnetic resonance (NMR) metabolomic analysis for the carbon-13-labeled glucose ([U-13C]Glc) perfused myocardium. Results As compared with controls, HFD rats had a higher ejection fraction and a smaller left ventricular end-systolic volume (P < 0.05), with SUVmax of myocardium on 18F-FDG PET significantly increased in 4 weeks (P < 0.005). The [U-13C]Glc probed the increased glucose uptake being metabolized into pyruvate and acetyl-CoA, undergoing oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, and then synthesized into glutamic acid and glutamine, associated with overexpressed LC3B (P < 0.05). Conclusions HFD-induced IR associated with increased glucose utility undergoing oxidative phosphorylation via the TCA cycle in the myocardium is supported by overexpression of glucose transporter, acetyl-CoA synthase. Noninvasive imaging biomarker has potentials in detecting the metabolic perturbations prior to the decline of the left ventricular function.
Collapse
|
20
|
Joubert M, Manrique A, Cariou B, Prieur X. Diabetes-related cardiomyopathy: The sweet story of glucose overload from epidemiology to cellular pathways. DIABETES & METABOLISM 2018; 45:238-247. [PMID: 30078623 DOI: 10.1016/j.diabet.2018.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes (T2D) is a major risk factor for heart failure (HF). Although the number of cases of myocardial infarction in the T2D population has been reduced by 25% over the last 10 years, the incidence of HF is continuously increasing, making it the most worrying diabetes complication. This strongly reinforces the urgent need for innovative therapeutic interventions to prevent cardiac dysfunction in T2D patients. To this end, epidemiological, imaging and animal studies have aimed to highlight the mechanisms involved in the development of diabetic cardiomyopathy. Epidemiological observations clearly show that hyperglycaemia correlates with severity of cardiac dysfunction and mortality in T2D patients. Both animal and cellular studies have demonstrated that, in the context of diabetes, the heart loses its ability to utilize glucose, therefore leading to glucose overload in cardiomyocytes that, in turn, promotes oxidative stress, accumulation of advanced glycation end-products (AGEs) and chronic activation of the hexosamine pathway. These have all been found to activate apoptosis and to alter heart contractility, calcium signalling and mitochondrial function. Although, in the past, tight glycaemic control has failed to improve cardiac function in T2D patients, recent clinical trials have reported cardiovascular benefit with hypoglycaemic antidiabetic drugs of the SGLT2-inhibitor family. This review, based on clinical evidence from mechanistic studies as well as several large clinical trials, covers 15 years of research, and strongly supports the idea that hyperglycaemia and glucose overload play a central role in the pathophysiology of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- M Joubert
- Diabetes care unit, Caen university hospital, 14033 Caen cedex, France; EA4650, UNICAEN, 14000 Caen, France
| | - A Manrique
- Nuclear medicine unit, Caen university hospital, 14033 Caen cedex, France; EA4650, UNICAEN, 14000 Caen, France
| | - B Cariou
- Institut du thorax, Inserm, CNRS, University of Nantes, CHU Nantes, 44000 Nantes, France
| | - X Prieur
- Institut du thorax, Inserm, CNRS, University of Nantes, 44000 Nantes, France.
| |
Collapse
|
21
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
22
|
Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré JM, Carpentier AC, Geraldes P, Sarret P. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 2018; 8:424. [PMID: 29323186 PMCID: PMC5765114 DOI: 10.1038/s41598-017-18896-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is fueled by added fructose consumption. Here, we thus combined high-fat/high-fructose diet, with multiple low-dose injections of streptozotocin (HF/HF/Stz) to emulate the long-term complications of T2DM. HF/HF/Stz rats, monitored over 56 weeks, exhibited metabolic dysfunctions associated with the different stages of the T2DM disease progression in humans: an early prediabetic phase characterized by an hyperinsulinemic period with modest dysglycemia, followed by a late stage of T2DM with frank hyperglycemia, normalization of insulinemia, marked dyslipidemia, hepatic fibrosis and pancreatic β-cell failure. Histopathological analyses combined to [18F]-FDG PET imaging further demonstrated the presence of several end-organ long-term complications, including reduction in myocardial glucose utilization, renal dysfunction as well as microvascular neuropathy and retinopathy. We also provide for the first time a comprehensive µ-PET whole brain imaging of the changes in glucose metabolic activity within discrete cerebral regions in HF/HF/Stz diabetic rats. Altogether, we developed and characterized a unique non-genetic preclinical model of T2DM adapted to the current diet and lifestyle that recapitulates the major metabolic features of the disease progression, from insulin resistance to pancreatic β-cell dysfunction, and closely mimicking the target-organ damage occurring in type 2 diabetic patients at advanced stages.
Collapse
Affiliation(s)
- David André Barrière
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| | - Christophe Noll
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Geneviève Roussy
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Anissa Kessai
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karyn Kirby
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karine Belleville
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Nicolas Beaudet
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
23
|
Hu X, Xiao RP. MG53 and disordered metabolism in striated muscle. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1984-1990. [PMID: 29017896 DOI: 10.1016/j.bbadis.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
MG53 is a member of tripartite motif family (TRIM) that expressed most abundantly in striated muscle. Using rodent models, many studies have demonstrated the MG53 not only facilitates membrane repair after ischemia reperfusion injury, but also contributes to the protective effects of both pre- and post-conditioning. Recently, however, it has been shown that MG53 participates in the regulation of many metabolic processes, especially insulin signaling pathway. Thus, sustained overexpression of MG53 may contribute to the development of various metabolic disorders in striated muscle. In this review, using cardiac muscle as an example, we will discuss muscle metabolic disturbances associated with diabetes and the current understanding of the underlying molecular mechanisms; in particular, the pathogenesis of diabetic cardiomyopathy. We will focus on the pathways that MG53 regulates and how the dysregulation of MG53 leads to metabolic disorders, thereby establishing a causal relationship between sustained upregulation of MG53 and the development of muscle insulin resistance and metabolic disorders. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Ko KY, Wu YW, Liu CW, Cheng MF, Yen RF, Yang WS. Longitudinal evaluation of myocardial glucose metabolism and contractile function in obese type 2 diabetic db/db mice using small-animal dynamic 18F-FDG PET and echocardiography. Oncotarget 2017; 8:87795-87808. [PMID: 29152121 PMCID: PMC5675673 DOI: 10.18632/oncotarget.21202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
The aim was to evaluate sequential changes of myocardial glucose utilization and LV systolic function in db/db mice. Eight db/db and eight wild-type mice underwent plasma substrate analysis and dynamic 18F-FDG PET at week 8 (W8), W10, W12, W14, and W16. 18F-FDG uptake constant Ki and the rate of myocardial glucose uptake (MRGlu) were derived via Patlak graphic analysis. Another 8 db/db and 8 wild-type mice received echocardiography at W8, W12, and W16 and LV structure and function were measured. The db/db mice showed increased weights and glucose levels as they aged. The index of homeostasis model assessment-estimated insulin resistance, insulin, and free fatty acid concentrations were higher in db/db mice compared with wild-type. MRGlu of db/db mice across all time points was markedly higher than that of wild-type. An age-dependent elevation of MRGlu was observed in db/db mice. Ki and MRGlu of db/db mice showed negative correlation with triglyceride levels. When two groups were pooled together, Ki and MRGlu were significantly proportional to glucose levels. No significant difference in LV structure and function was noted between db/db and control mice. In conclusion, we demonstrated altered myocardial glucose utilization preceding the onset of LV systolic dysfunction in db/db mice.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan.,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Wei Liu
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Internal Medicine, Tri-Service General Hospital, Songshan Branch, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medicine and Graduate Institute of Medical Genomics & Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,R & D Branch Office, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Creus A, Benmelej A, Villafañe N, Lombardo YB. Dietary Salba (Salvia hispanica L) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2017; 121:30-39. [PMID: 28651695 DOI: 10.1016/j.plefa.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
This study reports the effects of dietary Salba (chia) seeds on the mechanisms underlying impaired glucose metabolism in the heart of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD). Wistar rats were fed a SRD for 3 months. Afterwards, half the animals continued with the SRD; in the other half's diet chia seeds replaced corn oil (CO) for three months (SRD+chia). In the control group, corn starch replaced sucrose. The replacement of CO by chia seeds in the SRD restored the activities of key enzymes involved in heart glucose metabolism decreasing fatty acid oxidation. Chia seeds normalized insulin stimulated GLUT-4 transporter, the abundance of IRS-1 and pAMPK, changed the profile of fatty acid phospholipids, reduced left-ventricle collagen deposition and normalized hypertension and dyslipidemia. New evidence is provided concerning the effects of dietary chia seeds in improving the altered metabolic fate of glucose in the heart of dyslipemic insulin-resistant rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Adriana Benmelej
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Noelia Villafañe
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
26
|
Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol Metab 2017; 6:447-458. [PMID: 28462079 PMCID: PMC5404102 DOI: 10.1016/j.molmet.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Objective The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. Methods We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. Results Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. Conclusion We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status. Whole-body DEPTOR KO mice are viable and do not display abnormalities. Liver-specific DEPTOR KO mice are hypoglycemic when fasted. Loss of DEPTOR promotes mTORC1 and increases oxidative metabolism. Rapamycin corrects hypoglycemia in liver-specific DEPTOR KO mice.
Collapse
|
27
|
Blondin DP, Frisch F, Phoenix S, Guérin B, Turcotte ÉE, Haman F, Richard D, Carpentier AC. Inhibition of Intracellular Triglyceride Lipolysis Suppresses Cold-Induced Brown Adipose Tissue Metabolism and Increases Shivering in Humans. Cell Metab 2017; 25:438-447. [PMID: 28089568 DOI: 10.1016/j.cmet.2016.12.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 12/10/2016] [Indexed: 11/24/2022]
Abstract
Indirect evidence from human studies suggests that brown adipose tissue (BAT) thermogenesis is fueled predominantly by fatty acids hydrolyzed from intracellular triglycerides (TGs). However, no direct experimental evidence to support this assumption currently exists in humans. The aim of this study was to determine the role of intracellular TG in BAT thermogenesis, in cold-exposed men. Using positron emission tomography with 11C-acetate and 18F-fluorodeoxyglucose, we showed that oral nicotinic acid (NiAc) administration, an inhibitor of intracellular TG lipolysis, suppressed the cold-induced increase in BAT oxidative metabolism and glucose uptake, despite no difference in BAT blood flow. There was a commensurate increase in shivering intensity and shift toward a greater reliance on glycolytic muscle fibers without modifying total heat production. Together, these findings show that intracellular TG lipolysis is critical for BAT thermogenesis and provides experimental evidence for a reciprocal role of BAT thermogenesis and shivering in cold-induced thermogenesis in humans.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Frédérique Frisch
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Serge Phoenix
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Éric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC G1V 4G5, Canada
| | - André C Carpentier
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. RECENT FINDINGS We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. SUMMARY In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
29
|
Caron A, Labbé SM, Carter S, Roy MC, Lecomte R, Ricquier D, Picard F, Richard D. Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue. Biochimie 2017; 134:118-126. [PMID: 28130074 DOI: 10.1016/j.biochi.2017.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Uncoupling protein 2 (UCP2) was discovered in 1997 and classified as an uncoupling protein largely based on its homology of sequence with UCP1. Since its discovery, the uncoupling function of UCP2 has been questioned and there is yet no consensus on the true function of this protein. UCP2 was first proposed to be a reactive oxygen species (ROS) regulator and an insulin secretion modulator. More recently, it was demonstrated as a regulator of the mitochondrial fatty acid oxidation, which prompted us to investigate its role in the metabolic and thermogenic functions of brown adipose tissue. We first investigated the role of UCP2 in affecting the glycolysis capacity by evaluating the extracellular flux in cells lacking UCP2. We thereafter investigated the role of UCP2 in BAT thermogenesis with positron emission tomography using the metabolic tracers [11C]-acetate (metabolic activity), 2-deoxy-2-[18F]-fluoro-d-glucose (18FDG, glucose uptake) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid [18FTHA, non-esterified fatty acid (NEFA) uptake]. The effect of the β3-adrenoreceptor (ADRB3) selective agonist, CL316,243 (CL), on BAT 18FDG and 18FTHA uptakes, as well as 11C-acetate activity was assessed in UCP2KO and UCP2WT mice exposed at room temperature or adapted to cold. Our results suggest that despite the fact that UCP2 does not have the uncoupling potential of UCP1, its contribution to BAT thermogenesis and to the adaptation to cold exposure appears crucial. Notably, we found that the absence of UCP2 promoted a shift toward glucose utilization and increased glycolytic capacity in BAT, which conferred a better oxidative/thermogenic activity/capacity following an acute adrenergic stimulation. However, following cold exposure, a context of high-energy demand, BAT of UCP2KO mice failed to adapt and thermogenesis was impaired. We conclude that UCP2 regulates BAT thermogenesis by favouring the utilization of NEFA, a process required for the adaptation to cold.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sébastien M Labbé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sophie Carter
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Pharmacie, Faculté de Pharmacie, Université Laval, Québec, Québec, Canada
| | - Marie-Claude Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada
| | - Roger Lecomte
- Département de Médecine Nucléaire et de Radiologie, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Daniel Ricquier
- Université Paris Descartes, Faculté de Médecine, Institut Cochin, 24, Rue du Faubourg Saint- Jacques, 75014, Paris, France
| | - Frédéric Picard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Pharmacie, Faculté de Pharmacie, Université Laval, Québec, Québec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
30
|
Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, Gélinas Y, Lecomte R, Bossé Y, Chimin P, Festuccia WT, Richard D, Laplante M. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Sci Rep 2016; 6:37223. [PMID: 27876792 PMCID: PMC5120333 DOI: 10.1038/srep37223] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Blandine Secco
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Guillaume Lamoureux
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Gélinas
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Roger Lecomte
- Centre d'imagerie moléculaire de Sherbrooke (CIMS), Département de Médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Patricia Chimin
- Department of Physiology &Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - William T Festuccia
- Department of Physiology &Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Denis Richard
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
32
|
Labbé SM, Caron A, Chechi K, Laplante M, Lecomte R, Richard D. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice. Am J Physiol Endocrinol Metab 2016; 311:E260-8. [PMID: 27143559 PMCID: PMC4967144 DOI: 10.1152/ajpendo.00545.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/27/2016] [Indexed: 11/22/2022]
Abstract
Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Kanta Chechi
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Roger Lecomte
- Departments of Nuclear Medicine and Radiobiology, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Richard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada; and
| |
Collapse
|
33
|
Mather KJ, Hutchins GD, Perry K, Territo W, Chisholm R, Acton A, Glick-Wilson B, Considine RV, Moberly S, DeGrado TR. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am J Physiol Endocrinol Metab 2016; 310:E452-60. [PMID: 26732686 PMCID: PMC4796267 DOI: 10.1152/ajpendo.00437.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/19/2015] [Indexed: 01/13/2023]
Abstract
Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[(18)F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([(11)C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m(-2)·min(-1)) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM.
Collapse
Affiliation(s)
- K J Mather
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - G D Hutchins
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - K Perry
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - W Territo
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - R Chisholm
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - A Acton
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - B Glick-Wilson
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - R V Considine
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - S Moberly
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - T R DeGrado
- Indiana University School of Medicine, Indianapolis, Indiana; and Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1535-43. [PMID: 26923433 DOI: 10.1016/j.bbalip.2016.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
35
|
|
36
|
TEOFILOVIĆ A, BURSAĆ B, DJORDJEVIC A, VOJNOVIĆ MILUTINOVIĆ D, MATIĆ G, VELIČKOVIĆ N. High dietary fructose load aggravates lipid metabolism in the liver of Wistar rats through imbalance between lipogenesis and fatty acid oxidation. Turk J Biol 2016. [DOI: 10.3906/biy-1512-40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
37
|
Noll C, Labbé SM, Pinard S, Shum M, Bilodeau L, Chouinard L, Phoenix S, Lecomte R, Carpentier AC, Gallo-Payet N. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet. Adipocyte 2016; 5:43-52. [PMID: 27144096 DOI: 10.1080/21623945.2015.1115582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022] Open
Abstract
The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[(1) (8)F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model.
Collapse
|
38
|
Noll C, Kunach M, Frisch F, Bouffard L, Dubreuil S, Jean-Denis F, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects. Diabetes 2015. [PMID: 26224886 DOI: 10.2337/db15-0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Farrah Jean-Denis
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
39
|
Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:949624. [PMID: 26583150 PMCID: PMC4637065 DOI: 10.1155/2015/949624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023]
Abstract
Patients with left ventricle (LV) volume overload (VO) remain in a compensated state for many years although severe dilation is present. The myocardial capacity to fulfill its energetic demand may delay decompensation. We performed a gene expression profile, a model of chronic VO in rat LV with severe aortic valve regurgitation (AR) for 9 months, and focused on the study of genes associated with myocardial energetics. Methods. LV gene expression profile was performed in rats after 9 months of AR and compared to sham-operated controls. LV glucose and fatty acid (FA) uptake was also evaluated in vivo by positron emission tomography in 8-week AR rats treated or not with fenofibrate, an activator of FA oxidation (FAO). Results. Many LV genes associated with mitochondrial function and metabolism were downregulated in AR rats. FA β-oxidation capacity was significantly impaired as early as two weeks after AR. Treatment with fenofibrate, a PPARα agonist, normalized both FA and glucose uptake while reducing LV dilation caused by AR. Conclusion. Myocardial energy substrate preference is affected early in the evolution of LV-VO cardiomyopathy. Maintaining a relatively normal FA utilization in the myocardium could translate into less glucose uptake and possibly lesser LV remodeling.
Collapse
|
40
|
Thackeray JT, Bankstahl JP, Bengel FM. Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice. J Nucl Med 2015; 56:1615-21. [DOI: 10.2967/jnumed.115.160820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022] Open
|
41
|
Zhuhua Z, Zhiquan W, Zhen Y, Yixin N, Weiwei Z, Xiaoyong L, Yueming L, Hongmei Z, Li Q, Qing S. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice. Exp Anim 2015; 64:435-42. [PMID: 26134356 PMCID: PMC4637381 DOI: 10.1538/expanim.14-0086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 11/01/2022] Open
Abstract
Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.
Collapse
Affiliation(s)
- Zhang Zhuhua
- Department of Endocrinology, Xinhua hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, P.R.China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Blondin DP, Labbé SM, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte ÉE, Haman F, Richard D, Carpentier AC. Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes. Diabetes 2015; 64:2388-97. [PMID: 25677914 DOI: 10.2337/db14-1651] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022]
Abstract
Spontaneous glucose uptake by brown adipose tissue (BAT) is lower in overweight or obese individuals and in diabetes. However, BAT metabolism has not been previously investigated in patients with type 2 diabetes during controlled cold exposure. Using positron emission tomography with (11)C-acetate, (18)F-fluoro-deoxyglucose ((18)FDG), and (18)F-fluoro-thiaheptadecanoic acid ((18)FTHA), a fatty acid tracer, BAT oxidative metabolism and perfusion and glucose and nonesterified fatty acid (NEFA) turnover were determined in men with well-controlled type 2 diabetes and age-matched control subjects under experimental cold exposure designed to minimize shivering. Despite smaller volumes of (18)FDG-positive BAT and lower glucose uptake per volume of BAT compared with young healthy control subjects, cold-induced oxidative metabolism and NEFA uptake per BAT volume and an increase in total body energy expenditure did not differ in patients with type 2 diabetes or their age-matched control subjects. The reduction in (18)FDG-positive BAT volume and BAT glucose clearance were associated with a reduction in BAT radiodensity and perfusion. (18)FDG-positive BAT volume and the cold-induced increase in BAT radiodensity were associated with an increase in systemic NEFA turnover. These results show that cold-induced NEFA uptake and oxidative metabolism are not defective in type 2 diabetes despite reduced glucose uptake per BAT volume and BAT "whitening."
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Sébastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Christophe Noll
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - André C Carpentier
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
43
|
Labrie M, Lalonde S, Najyb O, Thiery M, Daneault C, Des Rosiers C, Rassart E, Mounier C. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake. PLoS One 2015; 10:e0130230. [PMID: 26083030 PMCID: PMC4470830 DOI: 10.1371/journal.pone.0130230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver.
Collapse
Affiliation(s)
- Marilyne Labrie
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Simon Lalonde
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Ouafa Najyb
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Maxime Thiery
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Chrisitne Des Rosiers
- Department of Nutrition, Université de Montréal, Montréal, Québec, H3C 3J7,Canada
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Eric Rassart
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Catherine Mounier
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
- * E-mail:
| |
Collapse
|
44
|
Baraboi ED, Li W, Labbé SM, Roy MC, Samson P, Hould FS, Lebel S, Marceau S, Biertho L, Richard D. Metabolic changes induced by the biliopancreatic diversion in diet-induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch. Endocrinology 2015; 156:1316-29. [PMID: 25646712 DOI: 10.1210/en.2014-1785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the body weight and fat loss after the biliopancreatic diversion with duodenal switch (BPD/DS) remain to be fully delineated. The aim of this study was to examine the contributions of the two main components of BPD/DS, namely sleeve gastrectomy (SG) and duodenal switch (DS), on energy balance changes in rats rendered obese with a high-fat (HF) diet. Three different bariatric procedures (BPD/DS, SG, and DS) and three sham surgeries were performed in male Wistar rats. Sham-operated animals fed HF were either fed ad libitum (Sham HF) or pair weighed (Sham HF PW) by food restriction to the BPD/DS rats. A group of sham-operated rats was kept on standard chow and served as normal diet control (Sham Chow). All three bariatric surgeries resulted in a transient reduction in food intake. SG per se induced a delay in body weight gain. BPD/DS and DS led to a noticeable gut malabsorption and a reduction in body weight and fat gains along with significant elevations in plasma levels of glucagon-like peptide-1(7-36) and peptide YY. BPD/DS and DS elevated energy expenditure above that of Sham HF PW during the dark phase. However, they reduced the volume, oxidative metabolism, and expression of thermogenic genes in interscapular brown adipose tissue. Altogether the results of this study suggest that the DS component of the BPD/DS, which led to a reduction in digestible energy intake while sustaining energy expenditure, plays a key role in the improvement in the metabolic profile led by BPD/DS in rats fed a HF diet.
Collapse
Affiliation(s)
- Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Chemin Sainte-Foy, Québec, Canada G1V 4G5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Labbé SM, Caron A, Bakan I, Laplante M, Carpentier AC, Lecomte R, Richard D. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J 2015; 29:2046-58. [PMID: 25681456 DOI: 10.1096/fj.14-266247] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/30/2014] [Indexed: 11/11/2022]
Abstract
The present study was designed to investigate the effects of cold on brown adipose tissue (BAT) energy substrate utilization in vivo using the positron emission tomography tracers [(18)F]fluorodeoxyglucose (glucose uptake), 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid [nonesterified fatty acid (NEFA) uptake], and [(11)C]acetate (oxidative activity). The measurements were performed in rats adapted to 27°C, which were acutely subjected to cold (10°C) for 2 and 6 hours, and in rats chronically adapted to 10°C for 21 days, which were returned to 27°C for 2 and 6 hours. Cold exposure (acutely and chronically) led to increases in BAT oxidative activity, which was accompanied by concomitant increases in glucose and NEFA uptake. The increases were particularly high in cold-adapted rats and largely readily reduced by the return to a warm environment. The cold-induced increase in oxidative activity was meaningfully blunted by nicotinic acid, a lipolysis inhibitor, which emphasizes in vivo the key role of intracellular lipid in BAT thermogenesis. The changes in BAT oxidative activity and glucose and NEFA uptakes were paralleled by inductions of genes involved in not only oxidative metabolism but also in energy substrate replenishment (triglyceride and glycogen synthesis). The capacity of BAT for energy substrate replenishment is remarkable.
Collapse
Affiliation(s)
- Sébastien M Labbé
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Alexandre Caron
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Inan Bakan
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathieu Laplante
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - André C Carpentier
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Roger Lecomte
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Richard
- *Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada; Department of Medicine, Centre de Recherche du Centre Hospitalier, and Departments of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
46
|
Lachance D, Dhahri W, Drolet MC, Roussel É, Gascon S, Sarrhini O, Rousseau JA, Lecomte R, Arsenault M, Couet J. Endurance training or beta-blockade can partially block the energy metabolism remodeling taking place in experimental chronic left ventricle volume overload. BMC Cardiovasc Disord 2014; 14:190. [PMID: 25518920 PMCID: PMC4279960 DOI: 10.1186/1471-2261-14-190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Background Patients with chronic aortic valve regurgitation (AR) causing left ventricular (LV) volume overload can remain asymptomatic for many years despite having a severely dilated heart. The sudden development of heart failure is not well understood but alterations of myocardial energy metabolism may be contributive. We studied the evolution of LV energy metabolism in experimental AR. Methods LV glucose utilization was evaluated in vivo by positron emission tomography (microPET) scanning of 6-month AR rats. Sham-operated or AR rats (n = 10-30 animals/group) were evaluated 3, 6 or 9 months post-surgery. We also tested treatment intervention in order to evaluate their impact on metabolism. AR rats (20 animals) were trained on a treadmill 5 times a week for 9 months and another group of rats received a beta-blockade treatment (carvedilol) for 6 months. Results MicroPET revealed an abnormal increase in glucose consumption in the LV free wall of AR rats at 6 months. On the other hand, fatty acid beta-oxidation was significantly reduced compared to sham control rats 6 months post AR induction. A significant decrease in citrate synthase and complex 1 activity suggested that mitochondrial oxidative phosphorylation was also affected maybe as soon as 3 months post-AR. Moderate intensity endurance training starting 2 weeks post-AR was able to partially normalize the activity of various myocardial enzymes implicated in energy metabolism. The same was true for the AR rats treated with carvedilol (30 mg/kg/d). Responses to these interventions were different at the level of gene expression. We measured mRNA levels of a number of genes implicated in the transport of energy substrates and we observed that training did not reverse the general down-regulation of these genes in AR rats whereas carvedilol normalized the expression of most of them. Conclusion This study shows that myocardial energy metabolism remodeling taking place in the dilated left ventricle submitted to severe volume overload from AR can be partially avoided by exercise or beta-blockade in rats. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-190) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacques Couet
- Groupe de recherche sur les valvulopathies, Centre de Recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada.
| |
Collapse
|
47
|
Blondin DP, Labbé SM, Phoenix S, Guérin B, Turcotte ÉE, Richard D, Carpentier AC, Haman F. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol 2014; 593:701-14. [PMID: 25384777 DOI: 10.1113/jphysiol.2014.283598] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Both brown adipose tissue (BAT) and skeletal muscle activation contribute to the metabolic response of acute cold exposure in healthy men even under minimal shivering. Activation of adipose tissue intracellular lipolysis is associated with BAT metabolic response upon acute cold exposure in healthy men. Although BAT glucose uptake per volume of tissue is important, the bulk of glucose turnover during cold exposure is mediated by skeletal muscle metabolic activation even when shivering is minimized. ABSTRACT Cold exposure stimulates the sympathetic nervous system (SNS), triggering the activation of cold-defence responses and mobilizing substrates to fuel the thermogenic processes. Although these processes have been investigated independently, the physiological interaction and coordinated contribution of the tissues involved in producing heat or mobilizing substrates has never been investigated in humans. Using [U-(13)C]-palmitate and [3-(3)H]-glucose tracer methodologies coupled with positron emission tomography using (11)C-acetate and (18)F-fluorodeoxyglucose, we examined the relationship between whole body sympathetically induced white adipose tissue (WAT) lipolysis and brown adipose tissue (BAT) metabolism and mapped the skeletal muscle shivering and metabolic activation pattern during a mild, acute cold exposure designed to minimize shivering response in 12 lean healthy men. Cold-induced increase in whole-body oxygen consumption was not independently associated with BAT volume of activity, BAT oxidative metabolism, or muscle metabolism or shivering intensity, but depended on the sum of responses of these two metabolic tissues. Cold-induced increase in non-esterified fatty acid (NEFA) appearance rate was strongly associated with the volume of metabolically active BAT (r = 0.80, P = 0.005), total BAT oxidative metabolism (r = 0.70, P = 0.004) and BAT glucose uptake (r = 0.80, P = 0.005), but not muscle glucose metabolism. The total glucose uptake was more than one order of magnitude greater in skeletal muscles compared to BAT during cold exposure (674 ± 124 vs. 12 ± 8 μmol min(-1), respectively, P < 0.001). Glucose uptake demonstrated that deeper, centrally located muscles of the neck, back and inner thigh were the greatest contributors of muscle glucose uptake during cold exposure due to their more important shivering response. In summary, these results demonstrate for the first time that the increase in plasma NEFA appearance from WAT lipolysis is closely associated with BAT metabolic activation upon acute cold exposure in healthy men. In humans, muscle glucose utilization during shivering contributes to a much greater extent than BAT to systemic glucose utilization during acute cold exposure.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Monge-Roffarello B, Labbe SM, Roy MC, Lemay ML, Coneggo E, Samson P, Lanfray D, Richard D. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 2014; 155:3448-58. [PMID: 24949658 DOI: 10.1210/en.2013-2092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Male
- Paraventricular Hypothalamic Nucleus/metabolism
- Peptides, Cyclic/metabolism
- Piperidines
- Pyrazoles
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/metabolism
Collapse
Affiliation(s)
- Boris Monge-Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada G1V 4G5
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Leblanc S, Battista MC, Noll C, Hallberg A, Gallo-Payet N, Carpentier AC, Vine DF, Baillargeon JP. Angiotensin II type 2 receptor stimulation improves fatty acid ovarian uptake and hyperandrogenemia in an obese rat model of polycystic ovary syndrome. Endocrinology 2014; 155:3684-93. [PMID: 24971613 DOI: 10.1210/en.2014-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.
Collapse
Affiliation(s)
- Samuel Leblanc
- Division of Endocrinology (S.L., M.-C.B., C.N., N.G.-P., A.C.C., J.-P.B.), Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4; Department of Medicinal Chemistry (A.H.), Biomedicinska Centrum, Uppsala University, Uppsala, Sweden 751 23; Alberta Institute for Human Nutrition, Metabolic and Cardiovascular Disease Laboratory (D.F.V.), University of Alberta, Edmonton, Alberta, Canada T6G 2E1; and Centre de Recherche Étienne-Lebel (N.G.-P., A.C.C., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Labbé SM, Noll C, Grenier-Larouche T, Kunach M, Bouffard L, Phoenix S, Guérin B, Baillargeon JP, Langlois MF, Turcotte EE, Carpentier AC. Improved cardiac function and dietary fatty acid metabolism after modest weight loss in subjects with impaired glucose tolerance. Am J Physiol Endocrinol Metab 2014; 306:E1388-96. [PMID: 24760989 DOI: 10.1152/ajpendo.00638.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using a novel positron emission tomography (PET) method with oral administration of 14(R,S)-[¹⁸F]-fluoro-6-thia-heptadecanoic acid (¹⁸FTHA), we recently demonstrated that subjects with impaired glucose tolerance (IGT) display an impairment in cardiac function associated with increased myocardial uptake of dietary fatty acids. Here, we determined whether modest weight loss induced by lifestyle changes might improve these cardiac metabolic and functional abnormalities. Nine participants with IGT, enrolled in a one-year lifestyle intervention trial, were invited to undergo determination of organ-specific postprandial dietary fatty acids partition using the oral ¹⁸FTHA method, and cardiac function and oxidative metabolic index using PET [¹¹C]acetate kinetics with ECG-gated PET ventriculography before and after the intervention. The intervention resulted in significant weight loss and reduction of waist circumference, with reduced postprandial plasma glucose, insulin, and triglycerides excursion. We observed a significant increase in stroke volume, cardiac output, and left ventricular ejection fraction associated with reduced myocardial oxidative metabolic index and fractional dietary fatty acid uptake. Modest weight loss corrects the exaggerated myocardial channeling of dietary fatty acids and improves myocardial energy substrate metabolism and function in IGT subjects.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Thomas Grenier-Larouche
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Serge Phoenix
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Marie-France Langlois
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| |
Collapse
|