1
|
Virostko J, Tirkes T. Cross-sectional imaging of the pancreas in diabetes. Abdom Radiol (NY) 2024; 49:2116-2124. [PMID: 38557767 PMCID: PMC11213663 DOI: 10.1007/s00261-024-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Diabetes mellitus presents a global health challenge characterized by dysregulated glucose metabolism and insulin resistance. Pancreas dysfunction contributes to the development and progression of diabetes. Cross-sectional imaging modalities have provided new insight into the structural and functional alterations of the pancreas in individuals with diabetes. This review summarizes MRI and CT studies that characterize pancreas alterations in both type 1 and type 2 diabetes and discusses future applications of these techniques.
Collapse
Affiliation(s)
- John Virostko
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, 10 E 24th Street, Austin, TX, 78712, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Song Y, Chen B, Zeng K, Cai K, Sun H, Liu D, Liu P, Xu G, Jiang G. Intravoxel incoherent motion diffusion-weighted imaging of pancreas: Probing evidence of β-cell dysfunction in asymptomatic adults with hyperglycemia in vivo. Magn Reson Imaging 2024; 108:161-167. [PMID: 38336114 DOI: 10.1016/j.mri.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Early evaluation of β-cell dysfunction of hyperglycemic patients in asymptomatic adults would be valuable for timely prevention of the diabetes. This study aimed to evaluate functional changes in the pancreas using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and determine whether it could be used as a non-invasive method of assessing β-cell dysfunction. METHODS This prospective cohort study was conducted from August 2022 to November 2022 in Jinan University Affiliated Guangdong Second General Hospital. Three groups were enrolled and underwent IVIM-DWI: confirmed patients with type 2 diabetes (T2DM); hyperglycemic patients in asymptomatic adults; and the volunteers with normal glucose tolerance (NGT). Imaging parameters were obtained: apparent diffusion coefficient (ADC), the true diffusion coefficient (Dt), the pseudo-diffusion coefficient (Dp), and the perfusion fraction (f). The β-cell function indexes were calculated from blood examinations: composite insulin sensitivity index (ISI), 60-min insulinogenic index (IGI60), and the disposition index (DI). We compared imaging parameters among three groups, calculated the diagnostic performance of them for differentiating different groups, and the reproducibility of them was evaluated using intraclass correlation coefficient (ICC). RESULTS The imaging parameters except f gradually decreased among the groups with significant differences for ADC (p < 0.0001), Dt (p < 0.0001), and Dp (p = 0.013). Dt demonstrated the best diagnostic performance for differentiating asymptomatic patients from NGT (Area Under Curve [AUC] = 0.815, p < 0.0001). IVIM-DWI parameters correlated with composite ISI and DI, of which, Dt has the highest correlation with DI (Pearson correlation coefficient [r] = 0.546, p < 0.0001). The ICC of IVIM-DWI parameters was very good, Dt was highest (Interobserver ICC = 0.938, 95% Confidence Interval [CI], 0.899-0.963; Intraobserver ICC = 0.941, 95% CI, 0.904-0.965). CONCLUSION IVIM-DWI is a non-invasive quantitative method that can identify β-cell dysfunction in the pancreas.
Collapse
Affiliation(s)
- Yingying Song
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China; Department of Radiology, Affiliated Hospital of Jianghan University, #168 Xianggang Road, Wuhan, Hubei 430015, PR China
| | - Bo Chen
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Kejing Zeng
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Hui Sun
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China
| | - Deqing Liu
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Ping Liu
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China.
| | - Gugen Xu
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China.
| | - Guihua Jiang
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China.
| |
Collapse
|
3
|
Slak Rupnik M, Hara M. Local Dialogues Between the Endocrine and Exocrine Cells in the Pancreas. Diabetes 2024; 73:533-541. [PMID: 38215069 PMCID: PMC10958587 DOI: 10.2337/db23-0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
For many years, it has been taught in medical textbooks that the endocrine and exocrine parts of the pancreas have separate blood supplies that do not mix. Therefore, they have been studied by different scientific communities, and patients with pancreatic disorders are treated by physicians in different medical disciplines, where endocrine and exocrine function are the focus of endocrinologists and gastroenterologists, respectively. The conventional model that every islet in each pancreatic lobule receives a dedicated arterial blood supply was first proposed in 1932, and it has been inherited to date. Recently, in vivo intravital recording of red blood cell flow in mouse islets as well as in situ structural analysis of 3D pancreatic vasculature from hundreds of islets provided evidence for preferentially integrated pancreatic blood flow in six mammalian species. The majority of islets have no association with the arteriole, and there is bidirectional blood exchange between the two segments. Such vascularization may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to a topologically and temporally specific plasma content, which could underlie an adaptive sensory function as well as common pathogeneses of both portions of the organ in pancreatic diseases, including diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Weir GC, Bonner-Weir S. Conflicting Views About Interactions Between Pancreatic α-Cells and β-Cells. Diabetes 2023; 72:1741-1747. [PMID: 37983524 PMCID: PMC10658062 DOI: 10.2337/db23-0292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/16/2023] [Indexed: 11/22/2023]
Abstract
In type 1 diabetes, the reduced glucagon response to insulin-induced hypoglycemia has been used to argue that β-cell secretion of insulin is required for the full glucagon counterregulatory response. For years, the concept has been that insulin from the β-cell core flows downstream to suppress glucagon secretion from the α-cells in the islet mantle. This core-mantle relationship has been supported by perfused pancreas studies that show marked increases in glucagon secretion when insulin was neutralized with antisera. Additional support comes from a growing number of studies focused on vascular anatomy and blood flow. However, in recent years this core-mantle view has generated less interest than the argument that optimal insulin secretion is due to paracrine release of glucagon from α-cells stimulating adjacent β-cells. This mechanism has been evaluated by knockout of β-cell receptors and impairment of α-cell function by inhibition of Gi designer receptors exclusively activated by designer drugs. Other studies that support this mechanism have been obtained by pharmacological blocking of glucagon-like peptide 1 receptor in humans. While glucagon has potent effects on β-cells, there are concerns with the suggested paracrine mechanism, since some of the supporting data are from isolated islets. The study of islets in static incubation or perifusion systems can be informative, but the normal paracrine relationships are disrupted by the isolation process. While this complicates interpretation of data, arguments supporting paracrine interactions between α-cells and β-cells have growing appeal. We discuss these conflicting views of the relationship between pancreatic α-cells and β-cells and seek to understand how communication depends on blood flow and/or paracrine mechanisms.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
5
|
Mateus Gonçalves L, Fahd Qadir MM, Boulina M, Makhmutova M, Pereira E, Almaça J. Pericyte dysfunction and impaired vasomotion are hallmarks of islets during the pathogenesis of type 1 diabetes. Cell Rep 2023; 42:112913. [PMID: 37531253 PMCID: PMC10529889 DOI: 10.1016/j.celrep.2023.112913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Pancreatic islets are endocrine organs that depend on their microvasculature to function. Along with endothelial cells, pericytes comprise the islet microvascular network. These mural cells are crucial for microvascular stability and function, but it is not known if/how they are affected during the development of type 1 diabetes (T1D). Here, we investigate islet pericyte density, phenotype, and function using living pancreas slices from donors without diabetes, donors with a single T1D-associated autoantibody (GADA+), and recent onset T1D cases. Our data show that islet pericyte and capillary responses to vasoactive stimuli are impaired early on in T1D. Microvascular dysfunction is associated with a switch in the phenotype of islet pericytes toward myofibroblasts. Using publicly available RNA sequencing (RNA-seq) data, we further found that transcriptional alterations related to endothelin-1 signaling and vascular and extracellular matrix (ECM) remodeling are hallmarks of single autoantibody (Aab)+ donor pancreata. Our data show that microvascular dysfunction is present at early stages of islet autoimmunity.
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Maria Boulina
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Huang H, Shang Y, Li H, Feng Q, Liu Y, Chen J, Dong H. Co-transplantation of Islets-Laden Microgels and Biodegradable O 2-Generating Microspheres for Diabetes Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38448-38458. [PMID: 35980755 DOI: 10.1021/acsami.2c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic islets transplantation is an optimal alternative to exogenous insulin injection for long-term effective type 1 diabetes treatment. However, direct islets transplantation without any protection can induce cell necrosis due to severe host immune rejection. Insufficient O2 supply induced by the lack of capillary network at the early stage of islets transplantation is another critical constraint limiting islets survival and insulin-secretion function. In this paper, we design a novel co-transplantation system composed of islets-laden nanocomposite microgels and O2-generating microspheres. In particular, nanocomposite microgels confer the encapsulated islets with simultaneous physical protection and chemical anti-inflammation/immunosuppression by covalently anchoring rapamycin-loaded cyclodextrin nanoparticles to microgel network. Meanwhile, O2-generating microspheres prepared by blending inorganic peroxides in biodegradable polycaprolactone and polylactic acid can generate in situ O2 gas and thus avoid hypoxia environment around transplanted islets. In vivo therapeutic effect of diabetic mice proves the reversion of the high blood glucose level back to normoglycemia and superior glucose tolerance for at least 90 days post co-transplantation. In brief, the localized drug and oxygen codelivery, as well as physical protection provided by our co-transplantation system, has the potential to overcome to a large extent the inflammatory, hypoxia, and host immune rejection after islets transplantation. This new strategy may have wider application in other cell replacement therapies.
Collapse
Affiliation(s)
- Hanhao Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yulian Shang
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Tamayo A, Gonçalves LM, Rodriguez-Diaz R, Pereira E, Canales M, Caicedo A, Almaça J. Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Glucose Homeostasis in Mice. Diabetes 2022; 71:1679-1693. [PMID: 35587617 PMCID: PMC9490358 DOI: 10.2337/db21-1104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022]
Abstract
The pancreatic islet depends on blood supply to efficiently sense plasma glucose levels and deliver insulin and glucagon into the circulation. Long believed to be passive conduits of nutrients and hormones, islet capillaries were recently found to be densely covered with contractile pericytes with the capacity to locally control blood flow. Here, we determined the contribution of pericyte regulation of islet blood flow to plasma insulin and glucagon levels and glycemia. Selective optogenetic activation of pericytes in intraocular islet grafts contracted capillaries and diminished blood flow. In awake mice, acute light-induced stimulation of islet pericytes decreased insulin and increased glucagon plasma levels, producing hyperglycemic effects. Interestingly, pericytes are the targets of sympathetic nerves in the islet, suggesting that sympathetic control of hormone secretion may occur in part by modulating pericyte activity and blood flow. Indeed, in vivo activation of pericytes with the sympathetic agonist phenylephrine decreased blood flow in mouse islet grafts, lowered plasma insulin levels, and increased glycemia. We further show that islet pericytes and blood vessels in living human pancreas slices responded to sympathetic input. Our findings indicate that pericytes mediate vascular responses in the islet that are required for adequate hormone secretion and glucose homeostasis. Vascular and neuronal alterations that are commonly seen in the islets of people with diabetes may impair regulation of islet blood flow and thus precipitate islet dysfunction.
Collapse
Affiliation(s)
- Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Melissa Canales
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Program of Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Briggs JK, Schonblum A, Landsman L, Benninger RK. Going With the Flow: Pericyte-Regulated Islet Blood Flow Influences Glucose Homeostasis. Diabetes 2022; 71:1611-1613. [PMID: 35881835 PMCID: PMC9999034 DOI: 10.2337/dbi22-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Jennifer K. Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anat Schonblum
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard K.P. Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Corresponding author: Richard K.P. Benninger,
| |
Collapse
|
9
|
Pham VT, Ciccaglione M, Ramirez DG, Benninger RKP. Ultrasound Imaging of Pancreatic Perfusion Dynamics Predicts Therapeutic Prevention of Diabetes in Preclinical Models of Type 1 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1336-1347. [PMID: 35473669 PMCID: PMC9149043 DOI: 10.1016/j.ultrasmedbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In type 1 diabetes (T1D), immune-cell infiltration into islets of Langerhans (insulitis) and β-cell decline occur years before diabetes presents. There is a lack of validated clinical approaches for detecting insulitis and β-cell decline, to diagnose eventual diabetes and monitor the efficacy of therapeutic interventions. We previously determined that contrast-enhanced ultrasound measurements of pancreas perfusion dynamics predict disease progression in T1D pre-clinical models. Here, we test whether these measurements predict therapeutic prevention of T1D. We performed destruction-reperfusion measurements with size-isolated microbubbles in non-obese diabetic (NOD)-severe combined immunodeficiency (SCID) mice receiving an adoptive transfer of diabetogenic splenocytes. Mice received vehicle control or the following treatments: (i) anti-CD3 to block T-cell activation; (ii) anti-CD4 to deplete CD4+ T cells; (iii) verapamil to reduce β-cell apoptosis; or (iv) tauroursodeoxycholic acid (TUDCA) to reduce β-cell endoplasmic reticulum stress. We compared measurements of pancreas perfusion dynamics with subsequent progression to diabetes. Anti-CD3, anti-CD4, and verapamil delayed diabetes development. Blood flow dynamics was significantly altered in treated mice with delayed/absent diabetes development compared with untreated mice. Conversely, blood flow dynamics in treated mice with unchanged diabetes development was similar to that in untreated mice. Thus, measurement of pancreas perfusion dynamics predicts the successful prevention of diabetes. This strategy may provide a clinically deployable predictive marker for therapeutic prevention in asymptomatic T1D.
Collapse
Affiliation(s)
- Vinh T Pham
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Ciccaglione
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
10
|
Tirkes T, Chinchilli VM, Bagci U, Parker JG, Zhao X, Dasyam AK, Feranec N, Grajo JR, Shah ZK, Poullos PD, Spilseth B, Zaheer A, Xie KL, Wachsman AM, Campbell-Thompson M, Conwell DL, Fogel EL, Forsmark CE, Hart PA, Pandol SJ, Park WG, Pratley RE, Yazici C, Laughlin MR, Andersen DK, Serrano J, Bellin MD, Yadav D. Design and Rationale for the Use of Magnetic Resonance Imaging Biomarkers to Predict Diabetes After Acute Pancreatitis in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium. Pancreas 2022; 51:586-592. [PMID: 36206463 PMCID: PMC9756870 DOI: 10.1097/mpa.0000000000002080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ABSTRACT This core component of the Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study will examine the hypothesis that advanced magnetic resonance imaging (MRI) techniques can reflect underlying pathophysiologic changes and provide imaging biomarkers that predict diabetes mellitus (DM) after acute pancreatitis (AP). A subset of participants in the DREAM study will enroll and undergo serial MRI examinations using a specific research protocol. The aim of the study is to differentiate at-risk individuals from those who remain euglycemic by identifying parenchymal features after AP. Performing longitudinal MRI will enable us to observe and understand the natural history of post-AP DM. We will compare MRI parameters obtained by interrogating tissue properties in euglycemic, prediabetic, and incident diabetes subjects and correlate them with metabolic, genetic, and immunological phenotypes. Differentiating imaging parameters will be combined to develop a quantitative composite risk score. This composite risk score will potentially have the ability to monitor the risk of DM in clinical practice or trials. We will use artificial intelligence, specifically deep learning, algorithms to optimize the predictive ability of MRI. In addition to the research MRI, the DREAM study will also correlate clinical computed tomography and MRI scans with DM development.
Collapse
Affiliation(s)
- Temel Tirkes
- From the Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA
| | | | - Jason G Parker
- From the Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Xuandong Zhao
- From the Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Joseph R Grajo
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Zarine K Shah
- Department of Radiology, Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Benjamin Spilseth
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN
| | - Atif Zaheer
- Department of Radiology, Johns Hopkins Medicine, Baltimore, MD
| | - Karen L Xie
- Department of Radiology, University of Illinois at Chicago, Chicago, IL
| | - Ashley M Wachsman
- Department of Radiology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Evan L Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN
| | - Christopher E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA
| | | | - Cemal Yazici
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Dana K Andersen
- Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jose Serrano
- Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
11
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
12
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
13
|
Rustenbeck I, Schulze T, Morsi M, Alshafei M, Panten U. What Is the Metabolic Amplification of Insulin Secretion and Is It (Still) Relevant? Metabolites 2021; 11:metabo11060355. [PMID: 34199454 PMCID: PMC8229681 DOI: 10.3390/metabo11060355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.
Collapse
Affiliation(s)
- Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Correspondence: ; Tel.: +49-(0)53-139-156-70
| | - Torben Schulze
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| |
Collapse
|
14
|
de Boer P, Giepmans BN. State-of-the-art microscopy to understand islets of Langerhans: what to expect next? Immunol Cell Biol 2021; 99:509-520. [PMID: 33667022 PMCID: PMC8252556 DOI: 10.1111/imcb.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real‐time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come.
Collapse
Affiliation(s)
- Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Ng Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. Am J Physiol Endocrinol Metab 2021; 320:E716-E731. [PMID: 33586491 PMCID: PMC8238131 DOI: 10.1152/ajpendo.00649.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cells perform glucose-stimulated insulin secretion, a process at the center of type 2 diabetes etiology. Efforts to understand how β-cells behave in healthy and stressful conditions have revealed a wide degree of morphological, functional, and transcriptional heterogeneity. Sources of heterogeneity include β-cell topography, developmental origin, maturation state, and stress response. Advances in sequencing and imaging technologies have led to the identification of β-cell subtypes, which play distinct roles in the islet niche. This review examines β-cell heterogeneity from morphological, functional, and transcriptional perspectives, and considers the relevance of topography, maturation, development, and stress response. It also discusses how these factors have been used to identify β-cell subtypes, and how heterogeneity is impacted by diabetes. We examine open questions in the field and discuss recent technological innovations that could advance understanding of β-cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
16
|
Fontaine AK, Ramirez DG, Littich SF, Piscopio RA, Kravets V, Schleicher WE, Mizoguchi N, Caldwell JH, Weir RFF, Benninger RKP. Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia. Sci Rep 2021; 11:3670. [PMID: 33574598 PMCID: PMC7878862 DOI: 10.1038/s41598-021-83361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation. Optogenetic tools, however, provide the potential for cell-type specific neural stimulation using genetic targeting and/or spatially shaped excitation light. Here, we demonstrate light-activated stimulation of the endocrine pancreas by targeting parasympathetic (cholinergic) axons. In a mouse model expressing ChannelRhodopsin2 (ChR2) in cholinergic cells, serum insulin and glucose were measured in response to (1) ultrasound image-guided optical stimulation of axon terminals in the pancreas or (2) optical stimulation of axons of the cervical vagus nerve. Measurements were made in basal-glucose and glucose-stimulated conditions. Significant increases in plasma insulin occurred relative to controls under both pancreas and cervical vagal stimulation, while a rapid reduction in glycemic levels were observed under pancreatic stimulation. Additionally, ultrasound-based measurements of blood flow in the pancreas were increased under pancreatic stimulation. Together, these results demonstrate the utility of in-vivo optogenetics for studying the neural regulation of endocrine pancreas function and suggest its therapeutic potential for the control of insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Arjun K Fontaine
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA.
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA.
| | - David G Ramirez
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | - Samuel F Littich
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | - Vira Kravets
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | | | - Naoko Mizoguchi
- Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - John H Caldwell
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Richard F Ff Weir
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA.
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA.
| |
Collapse
|
17
|
The vascular architecture of the pancreatic islets: A homage to August Krogh. Comp Biochem Physiol A Mol Integr Physiol 2021; 252:110846. [DOI: 10.1016/j.cbpa.2020.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/15/2023]
|
18
|
Clavijo Jordan V, Hines CDG, Gantert LT, Wang S, Conarello S, Preihs C, Chirayil S, Klimas M, Evelhoch JL, Sherry AD. Imaging Beta-Cell Function in the Pancreas of Non-Human Primates Using a Zinc-Sensitive MRI Contrast Agent. Front Endocrinol (Lausanne) 2021; 12:641722. [PMID: 34122330 PMCID: PMC8187943 DOI: 10.3389/fendo.2021.641722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Non-invasive beta cell function measurements may provide valuable information for improving diabetes diagnostics and disease management as the integrity and function of pancreatic beta cells have been found to be compromised in Type-1 and Type-2 diabetes. Currently, available diabetes assays either lack functional information or spatial identification of beta cells. In this work, we introduce a method to assess the function of beta cells in the non-human primate pancreas non-invasively with MRI using a Gd-based zinc(II) sensor as a contrast agent, Gd-CP027. Additionally, we highlight the role of zinc(II) ions in the paracrine signaling of the endocrine pancreas via serological measurements of insulin and c-peptide. Non-human primates underwent MRI exams with simultaneous blood sampling during a Graded Glucose Infusion (GGI) with Gd-CP027 or with a non-zinc(II) sensitive contrast agent, gadofosveset. Contrast enhancement of the pancreas resulting from co-release of zinc(II) ion with insulin was observed focally when using the zinc(II)-specific agent, Gd-CP027, whereas little enhancement was detected when using gadofosveset. The contrast enhancement detected by Gd-CP027 increased in parallel with an increased dose of infused glucose. Serological measurements of C-peptide and insulin indicate that Gd-CP027, a high affinity zinc(II) contrast agent, potentiates their secretion only as a function of glucose stimulation. Taken in concert, this assay offers the possibility of detecting beta cell function in vivo non-invasively with MRI and underscores the role of zinc(II) in endocrine glucose metabolism.
Collapse
Affiliation(s)
- Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Liza T. Gantert
- Translational Biomarkers, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Shubing Wang
- Biometrics Research, Merck & Co., Inc., Kenilworth, NJ, United States
| | | | - Christian Preihs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- VitalQuan, LLC, Dallas, TX, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Klimas
- Translational Biomarkers, Merck & Co., Inc., Kenilworth, NJ, United States
| | | | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- VitalQuan, LLC, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: A. Dean Sherry,
| |
Collapse
|
19
|
Ramirez DG, Abenojar E, Hernandez C, Lorberbaum DS, Papazian LA, Passman S, Pham V, Exner AA, Benninger RKP. Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes. Nat Commun 2020; 11:2238. [PMID: 32382089 PMCID: PMC7206014 DOI: 10.1038/s41467-020-15957-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
In type1 diabetes (T1D) autoreactive T-cells infiltrate the islets of Langerhans, depleting insulin-secreting β-cells (insulitis). Insulitis arises during an asymptomatic phase, prior to clinical diagnosis of T1D. Methods to diagnose insulitis and β-cell mass changes during this asymptomatic phase are limited, precluding early therapeutic intervention. During T1D the islet microvasculature increases permeability, allowing nanoparticles to access the microenvironment. Contrast enhanced ultrasound (CEUS) uses shell-stabilized gas bubbles to provide acoustic backscatter in vasculature. Here, we report that sub-micron sized 'nanobubble' ultrasound contrast agents can be used to measure increased islet microvasculature permeability and indicate asymptomatic T1D. Through CEUS and histological analysis, pre-clinical models of T1D show accumulation of nanobubbles specifically within pancreatic islets, correlating with insulitis. Importantly, accumulation is detected early in disease progression and decreases with successful therapeutic intervention. Thus, sub-micron sized nanobubble ultrasound contrast agents provide a predicative marker for disease progression and therapeutic reversal early in asymptomatic T1D.
Collapse
Affiliation(s)
- David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Hernandez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - David S Lorberbaum
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lucine A Papazian
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha Passman
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vinh Pham
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
20
|
Li WH. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol 2020; 103:14-19. [PMID: 32081627 DOI: 10.1016/j.semcdb.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
The islet of Langerhans contains at least five types of endocrine cells producing distinct hormones. In response to nutrient or neuronal stimulation, islet endocrine cells release biochemicals including peptide hormones to regulate metabolism and to control glucose homeostasis. It is now recognized that malfunction of islet cells, notably insufficient insulin release of β-cells and hypersecretion of glucagon from α-cells, represents a causal event leading to hyperglycemia and frank diabetes, a disease that is increasing at an alarming rate to reach an epidemic level worldwide. Understanding the mechanisms regulating stimulus-secretion coupling and investigating how islet β-cells maintain a robust secretory activity are important topics in islet biology and diabetes research. To facilitate such studies, a number of biological systems and assay platforms have been developed for the functional analysis of islet cells. These technologies have enabled detailed analyses of individual islets at the cellular level, either in vitro, in situ, or in vivo.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, United States.
| |
Collapse
|
21
|
Lammert E, Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol 2019; 432:1407-1418. [PMID: 31711959 DOI: 10.1016/j.jmb.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
22
|
Staels W, Heremans Y, Heimberg H, De Leu N. VEGF-A and blood vessels: a beta cell perspective. Diabetologia 2019; 62:1961-1968. [PMID: 31414144 DOI: 10.1007/s00125-019-4969-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.
Collapse
Affiliation(s)
- Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Institut Cochin, CNRS, INSERM, Université de Paris, F-75014, Paris, France
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Endocrinology, UZ Brussel, Brussels, Belgium.
- Department of Endocrinology, ASZ Aalst, Aalst, Belgium.
| |
Collapse
|
23
|
Espes D, Manell E, Rydén A, Carlbom L, Weis J, Jensen-Waern M, Jansson L, Eriksson O. Pancreatic perfusion and its response to glucose as measured by simultaneous PET/MRI. Acta Diabetol 2019; 56:1113-1120. [PMID: 31028528 PMCID: PMC6746678 DOI: 10.1007/s00592-019-01353-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
AIMS Perfusion of the pancreas and the islets of Langerhans is sensitive to physiological stimuli and is dysregulated in metabolic disease. Pancreatic perfusion can be assessed by both positron emission tomography (PET) and magnetic resonance imaging (MRI), but the methods have not been directly compared or benchmarked against the gold-standard microsphere technique. METHODS Pigs (n = 4) were examined by [15O]H2O PET and intravoxel incoherent motion (IVIM) MRI technique simultaneously using a hybrid PET/MRI scanner. The pancreatic perfusion was measured both at basal conditions and after intravenous (IV) administration of up to 0.5 g/kg glucose. RESULTS Pancreatic perfusion increased by 35%, 157%, and 29% after IV 0.5 g/kg glucose compared to during basal conditions, as assessed by [15O]H2O PET, IVIM MRI, and microspheres, respectively. There was a correlation between pancreatic perfusion as assessed by [15O]H2O PET and IVIM MRI (r = 0.81, R2 = 0.65, p < 0.01). The absolute quantification of pancreatic perfusion (ml/min/g) by [15O]H2O PET was within a 15% error of margin of the microsphere technique. CONCLUSION Pancreatic perfusion by [15O]H2O PET was in agreement with the microsphere technique assessment. The IVIM MRI method has the potential to replace [15O]H2O PET if the pancreatic perfusion is sufficiently large, but not when absolute quantitation is required.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, 751 83, Uppsala, Sweden
| | - Elin Manell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anneli Rydén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lina Carlbom
- Department of Surgical Sciences, Uppsala University, 751 83, Uppsala, Sweden
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, 751 83, Uppsala, Sweden
| | - Marianne Jensen-Waern
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Jansson
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden.
| |
Collapse
|
24
|
Abstract
BACKGROUND Current therapeutic strategies for type 1 (T1DM) and type 2 diabetes mellitus (T2DM) rely on increasing or substituting endogenous insulin secretion in combination with lifestyle changes. β-cell regeneration, a process whereby new β-cells arise from progenitors, self-renewal or transdifferentiation, has the potential to become a viable route to insulin self-sufficiency. Current regeneration strategies capture many of the transcriptomic and protein features of native β-cells, generating cells capable of glucose-dependent insulin secretion in vitro and alleviation of hyperglycemia in vivo. However, whether novel β-cells display appreciable heterogeneity remains poorly understood, with potential consequences for long-term functional robustness. SCOPE OF REVIEW The review brings together crucial discoveries in the β-cell regeneration field with state-of-the-art knowledge regarding β-cell heterogeneity. Aspects that might aid production of longer-lasting and more plastic regenerated β-cells are highlighted and discussed. MAJOR CONCLUSIONS Different β-cell regeneration approaches result in a similar outcome: glucose-sensitive, insulin-positive cells that mimic the native β-cell phenotype but which lack normal plasticity. The β-cell subpopulations identified to date expand our understanding of β-cell survival, proliferation and function, signposting the direction for future regeneration strategies. Therefore, regenerated β-cells should exhibit stimulus-dependent differences in gene and protein expression, as well as establish a functional network with different β-cells, all while coexisting with other cell types on a three-dimensional platform.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lewis Everett
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
25
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Ullsten S, Lau J, Carlsson PO. Decreased β-Cell Proliferation and Vascular Density in a Subpopulation of Low-Oxygenated Male Rat Islets. J Endocr Soc 2019; 3:1608-1616. [PMID: 31404404 PMCID: PMC6682409 DOI: 10.1210/js.2019-00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
Low-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets showed a similar endocrine cell composition as other islets but had lower vascular density and β-cell proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least 8 hours. Although they have previously been observed to be less functionally active, their islet cell composition was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood vessels than other islets. Notably, β-cell regeneration preferentially occurred in better-oxygenated islets.
Collapse
Affiliation(s)
- Sara Ullsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Reissaus CA, Piñeros AR, Twigg AN, Orr KS, Conteh AM, Martinez MM, Kamocka MM, Day RN, Tersey SA, Mirmira RG, Dunn KW, Linnemann AK. A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo. Sci Rep 2019; 9:8449. [PMID: 31186447 PMCID: PMC6559992 DOI: 10.1038/s41598-019-44777-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche.
Collapse
Affiliation(s)
| | - Annie R Piñeros
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashley N Twigg
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Kara S Orr
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abass M Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle M Martinez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Malgorzata M Kamocka
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard N Day
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth W Dunn
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
Huising MO, van der Meulen T, Huang JL, Pourhosseinzadeh MS, Noguchi GM. The Difference δ-Cells Make in Glucose Control. Physiology (Bethesda) 2018; 33:403-411. [PMID: 30303773 PMCID: PMC6347098 DOI: 10.1152/physiol.00029.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The role of beta and α-cells to glucose control are established, but the physiological role of δ-cells is poorly understood. Delta-cells are ideally positioned within pancreatic islets to modulate insulin and glucagon secretion at their source. We review the evidence for a negative feedback loop between delta and β-cells that determines the blood glucose set point and suggest that local δ-cell-mediated feedback stabilizes glycemic control.
Collapse
Affiliation(s)
- Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California , Davis, California
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Jessica L Huang
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| |
Collapse
|
30
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
31
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
32
|
Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models. Nat Commun 2018; 9:1742. [PMID: 29717116 PMCID: PMC5931596 DOI: 10.1038/s41467-018-03953-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
In type 1 diabetes (T1D), immune-cell infiltration into the islets of Langerhans (insulitis) and β-cell decline occurs many years before diabetes clinically presents. Non-invasively detecting insulitis and β-cell decline would allow the diagnosis of eventual diabetes, and provide a means to monitor therapeutic intervention. However, there is a lack of validated clinical approaches for specifically and non-invasively imaging disease progression leading to T1D. Islets have a denser microvasculature that reorganizes during diabetes. Here we apply contrast-enhanced ultrasound measurements of pancreatic blood-flow dynamics to non-invasively and predictively assess disease progression in T1D pre-clinical models. STZ-treated mice, NOD mice, and adoptive-transfer mice demonstrate altered islet blood-flow dynamics prior to diabetes onset, consistent with islet microvasculature reorganization. These assessments predict both time to diabetes onset and future responders to antiCD4-mediated disease prevention. Thus contrast-enhanced ultrasound measurements of pancreas blood-flow dynamics may provide a clinically deployable predictive marker for disease progression in pre-symptomatic T1D and therapeutic reversal.
Collapse
|
33
|
Pancreatic Islet Blood Flow Dynamics in Primates. Cell Rep 2018; 20:1490-1501. [PMID: 28793270 PMCID: PMC5575201 DOI: 10.1016/j.celrep.2017.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/05/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Blood flow regulation in pancreatic islets is critical for function but poorly understood. Here, we establish an in vivo imaging platform in a non-human primate where islets transplanted autologously into the anterior chamber of the eye are monitored non-invasively and longitudinally at single-cell resolution. Engrafted islets were vascularized and innervated and maintained the cytoarchitecture of in situ islets in the pancreas. Blood flow velocity in the engrafted islets was not affected by increasing blood glucose levels and/or the GLP-1R agonist liraglutide. However, islet blood flow was dynamic in nature and fluctuated in various capillaries. This was associated with vasoconstriction events resembling a sphincter-like action, most likely regulated by adrenergic signaling. These observations suggest a mechanism in primate islets that diverts blood flow to cell regions with higher metabolic demand. The described imaging technology applied in non-human primate islets may contribute to a better understanding of human islet pathophysiology. Monkey islets transplanted autologously into the anterior chamber of the eye (ACE) Monkey ACE islets imaged in vivo, longitudinally, and at single-cell resolution Monkey islet blood flow is dynamic and unaffected by glucose/liraglutide treatment Directional blood flow may be explained by islet structure-function relationship
Collapse
|
34
|
Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A. The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow. Cell Metab 2018; 27:630-644.e4. [PMID: 29514070 PMCID: PMC5876933 DOI: 10.1016/j.cmet.2018.02.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cover 40% of the microvasculature, are contractile, and are innervated by sympathetic axons. Sympathetic adrenergic input increases pericyte activity and reduces capillary diameter and local blood flow. By contrast, activating beta cells by increasing glucose concentration inhibits pericytes, dilates islet capillaries, and increases local blood flow. These effects on pericytes are mediated by endogenous adenosine, which is likely derived from ATP co-released with insulin. Pericyte coverage of islet capillaries drops drastically in type 2 diabetes, suggesting that, under diabetic conditions, islets lose this mechanism to control their own blood supply. This may lead to inadequate insulin release into the circulation, further deteriorating glycemic control.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jonathan Weitz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular Cell and Developmental Biology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Westacott MJ, Ludin NWF, Benninger RKP. Spatially Organized β-Cell Subpopulations Control Electrical Dynamics across Islets of Langerhans. Biophys J 2017; 113:1093-1108. [PMID: 28877492 DOI: 10.1016/j.bpj.2017.07.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022] Open
Abstract
Understanding how heterogeneous cells within a multicellular system interact and affect overall function is difficult without a means of perturbing individual cells or subpopulations. Here we apply optogenetics to understand how subpopulations of β-cells control the overall [Ca2+]i response and insulin secretion dynamics of the islets of Langerhans. We spatiotemporally perturbed electrical activity in β-cells of channelrhodopsin2-expressing islets, mapped the [Ca2+]i response, and correlated this with the cellular metabolic activity and an in silico electrophysiology model. We discovered organized regions of metabolic activity across the islet, and these affect the way in which β-cells electrically interact. Specific regions acted as pacemakers by initiating calcium wave propagation. Our findings reveal the functional architecture of the islet, and show how distinct subpopulations of cells can disproportionality affect function. These results also suggest ways in which other neuroendocrine systems can be regulated, and demonstrate how optogenetic tools can discern their functional architecture.
Collapse
Affiliation(s)
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado.
| |
Collapse
|
36
|
Pénicaud L. Autonomic nervous system and pancreatic islet blood flow. Biochimie 2017; 143:29-32. [PMID: 29017926 DOI: 10.1016/j.biochi.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
Abstract
Vascularization and innervation of the islet of Langerhans are highly interconnected and are critical for intercellular and intertissular communication. They are both involved in the control of islet blood flow which has been shown to have an important role in the control of endocine secretion. Both parameters are disturbed during the course of metabolic pathologies and particularly diabetes. A better understanding of these mechanisms has and will greatly benefit from the rapidly-emerging technologies particularly in vivo imaging enabling to study both anatomy and functions of the islet.
Collapse
|
37
|
Abstract
Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.In this chapter, we explore the structural and functional features of pancreatic islets from mice, pigs, nonhuman primates, and humans because of their prevalent use in nonclinical, preclinical, and clinical applications.
Collapse
|
38
|
Rojas-Canales D, Penko D, Myo Min KK, Parham KA, Peiris H, Haberberger RV, Pitson SM, Drogemuller C, Keating DJ, Grey ST, Coates PT, Bonder CS, Jessup CF. Local Sphingosine Kinase 1 Activity Improves Islet Transplantation. Diabetes 2017; 66:1301-1311. [PMID: 28174291 DOI: 10.2337/db16-0837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022]
Abstract
Pancreatic islet transplantation is a promising clinical treatment for type 1 diabetes, but success is limited by extensive β-cell death in the immediate posttransplant period and impaired islet function in the longer term. Following transplantation, appropriate vascular remodeling is crucial to ensure the survival and function of engrafted islets. The sphingosine kinase (SK) pathway is an important regulator of vascular beds, but its role in the survival and function of transplanted islets is unknown. We observed that donor islets from mice deficient in SK1 (Sphk1 knockout) contain a reduced number of resident intraislet vascular endothelial cells. Furthermore, we demonstrate that the main product of SK1, sphingosine-1-phosphate, controls the migration of intraislet endothelial cells in vitro. We reveal in vivo that Sphk1 knockout islets have an impaired ability to cure diabetes compared with wild-type controls. Thus, SK1-deficient islets not only contain fewer resident vascular cells that participate in revascularization, but likely also a reduced ability to recruit new vessels into the transplanted islet. Together, our data suggest that SK1 is important for islet revascularization following transplantation and represents a novel clinical target for improving transplant outcomes.
Collapse
Affiliation(s)
- Darling Rojas-Canales
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Daniella Penko
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Kay K Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Kate A Parham
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Heshan Peiris
- Department of Human Physiology, Flinders University, Bedford Park, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | | | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Chris Drogemuller
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology, Flinders University, Bedford Park, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Shane T Grey
- Garvan Medical Institute, Darlinghurst, Australia
| | - Patrick T Coates
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, Australia
| | - Claudine S Bonder
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Claire F Jessup
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
- Department of Anatomy & Histology, Flinders University, Bedford Park, Australia
| |
Collapse
|
39
|
Berclaz C, Szlag D, Nguyen D, Extermann J, Bouwens A, Marchand PJ, Nilsson J, Schmidt-Christensen A, Holmberg D, Grapin-Botton A, Lasser T. Label-free fast 3D coherent imaging reveals pancreatic islet micro-vascularization and dynamic blood flow. BIOMEDICAL OPTICS EXPRESS 2016; 7:4569-4580. [PMID: 27895996 PMCID: PMC5119596 DOI: 10.1364/boe.7.004569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 05/14/2023]
Abstract
In diabetes, pancreatic β-cells play a key role. These cells are clustered within structures called islets of Langerhans inside the pancreas and produce insulin, which is directly secreted into the blood stream. The dense vascularization of islets of Langerhans is critical for maintaining a proper regulation of blood glucose homeostasis and is known to be affected from the early stage of diabetes. The deep localization of these islets inside the pancreas in the abdominal cavity renders their in vivo visualization a challenging task. A fast label-free imaging method with high spatial resolution is required to study the vascular network of islets of Langerhans. Based on these requirements, we developed a label-free and three-dimensional imaging method for observing islets of Langerhans using extended-focus Fourier domain Optical Coherence Microscopy (xfOCM). In addition to structural imaging, this system provides three-dimensional vascular network imaging and dynamic blood flow information within islets of Langerhans. We propose our method to deepen the understanding of the interconnection between diabetes and the evolution of the islet vascular network.
Collapse
Affiliation(s)
- Corinne Berclaz
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Daniel Szlag
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - David Nguyen
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Jérôme Extermann
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
- Hepia, University of Applied Science of Western Switzerland, 1202 Genève,
Switzerland
| | - Arno Bouwens
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | - Paul J. Marchand
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| | | | | | - Dan Holmberg
- EMV Immunology, Lund University, 22100 Lund,
Sweden
| | | | - Theo Lasser
- Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),1015 Lausanne,
Switzerland
| |
Collapse
|
40
|
Carlbom L, Espes D, Lubberink M, Eriksson O, Johansson L, Jansson L, Korsgren O, Ahlström H, Carlsson PO. Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes. Diabetologia 2016; 59:1968-72. [PMID: 27306617 DOI: 10.1007/s00125-016-4016-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals. METHODS Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references. RESULTS Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion. CONCLUSIONS/INTERPRETATION Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.
Collapse
Affiliation(s)
- Lina Carlbom
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, SE-751 23, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Leif Jansson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, SE-751 23, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, SE-751 23, Uppsala, Sweden.
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Christoffersson G, von Herrath MG. A Deeper Look into Type 1 Diabetes - Imaging Immune Responses during Onset of Disease. Front Immunol 2016; 7:313. [PMID: 27574523 PMCID: PMC4983548 DOI: 10.3389/fimmu.2016.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T lymphocytes execute the killing of insulin-producing beta cells during onset of type 1 diabetes mellitus (T1D). The research community has come far in dissecting the major events in the development of this disease, but still the trigger and high-resolved information of the immunological events leading up to beta cell loss are missing. During the past decades, intravital imaging of immune responses has led to significant scientific breakthroughs in diverse models of disease, including T1D. Dynamic imaging of immune cells at the pancreatic islets during T1D onset has been made possible through the development of both advanced microscopes, and animal models that allow long-term immobilization of the pancreas. The use of these modalities has revealed a milling microenvironment at the pancreatic islets during disease onset with a plethora of active players. Clues to answering the remaining questions in this disease may lie in intravital imaging, including how key immune cells traffic to and from the pancreas, and how cells interact at this target tissue. This review highlights and discusses recent studies, models, and techniques focused to understand the immune responses during T1D onset through intravital imaging.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA, USA
| |
Collapse
|
42
|
Michau A, Hodson DJ, Fontanaud P, Guillou A, Espinosa-Carrasco G, Molino F, Peters CJ, Robinson IC, Le Tissier P, Mollard P, Schaeffer M. Metabolism Regulates Exposure of Pancreatic Islets to Circulating Molecules In Vivo. Diabetes 2016; 65:463-75. [PMID: 26581596 DOI: 10.2337/db15-1168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cells modulate insulin secretion through rapid sensing of blood glucose and integration of gut-derived signals. Increased insulin demand during pregnancy and obesity alters islet function and mass and leads to gestational diabetes mellitus and type 2 diabetes in predisposed individuals. However, it is unclear how blood-borne factors dynamically access the islets of Langerhans. Thus, understanding the changes in circulating molecule distribution that accompany compensatory β-cell expansion may be key to developing novel antidiabetic therapies. Here, using two-photon microscopy in vivo in mice, we demonstrate that islets are almost instantly exposed to peaks of circulating molecules, which rapidly pervade the tissue before clearance. In addition, both gestation and short-term high-fat-diet feeding decrease molecule extravasation and uptake rates in vivo in islets, independently of β-cell expansion or islet blood flow velocity. Together, these data support a role for islet vascular permeability in shaping β-cell adaptive responses to metabolic demand by modulating the access and sensing of circulating molecules.
Collapse
Affiliation(s)
- Aurélien Michau
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - David J Hodson
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, U.K. Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Pierre Fontanaud
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Anne Guillou
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Gabriel Espinosa-Carrasco
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Lymphocyte Differentiation, Tolerance, and Metabolism Laboratory, Institute for Regenerative Medicine and Biotherapy, U1183, Montpellier, France
| | - François Molino
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France Charles Coulomb Laboratory, University of Montpellier, CNRS, UMR-5221, Montpellier, France
| | - Catherine J Peters
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, London, U.K
| | - Iain C Robinson
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, London, U.K
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, U.K
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| | - Marie Schaeffer
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France INSERM, U1191, Montpellier, France University of Montpellier, Montpellier, France
| |
Collapse
|
43
|
Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 2015. [PMID: 26215305 DOI: 10.1007/s00125-015-3699-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human genome project and its search for factors underlying human diseases has fostered a major human research effort. Therefore, unsurprisingly, in recent years we have observed an increasing number of studies on human islet cells, including disease approaches focusing on type 1 and type 2 diabetes. Yet, the field of islet and diabetes research relies on the legacy of rodent-based investigations, which have proven difficult to translate to humans, particularly in type 1 diabetes. Whole islet physiology and pathology may differ between rodents and humans, and thus a comprehensive cross-species as well as species-specific view on islet research is much needed. In this review we summarise the current knowledge of interspecies islet cytoarchitecture, and discuss its potential impact on islet function and future perspectives in islet pathophysiology research.
Collapse
Affiliation(s)
- Rafael Arrojo e Drigo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Juan Diez
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Dinesh Kumar Srinivasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Per-Olof Berggren
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore.
- Imperial College London, London, UK.
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital L1, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore.
- Imperial College London, London, UK.
- Department of Internal Medicine 1, Ulm University Medical Centre, Ulm, Germany.
| |
Collapse
|
44
|
Honka H, Koffert J, Hannukainen JC, Tuulari JJ, Karlsson HK, Immonen H, Oikonen V, Tolvanen T, Soinio M, Salminen P, Kudomi N, Mari A, Iozzo P, Nuutila P. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab 2015; 100:2015-23. [PMID: 25734253 DOI: 10.1210/jc.2014-4236] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Bariatric surgery leads to a rapid and sustained weight loss often accompanied with improvement in glucose homeostasis. OBJECTIVE The objective of this study was to investigate the effects of bariatric surgery on pancreatic lipid metabolism, blood flow, and glycemic control. DESIGN This was a longitudinal study. SETTING The study was conducted in a clinical research center. PARTICIPANTS This study included 27 morbidly obese and 15 healthy control subjects. INTERVENTIONS Measurements were performed using positron emission tomography with the palmitate analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid and radiowater ([(15)O]H2O) and computed tomography. In morbidly obese subjects, positron emission tomography/computed tomography imaging studies were performed before and 6 months after bariatric surgery (either Roux-en-Y gastric bypass or sleeve gastrectomy). MAIN OUTCOME MEASURES Pancreatic fat and fat-free volume, fatty acid uptake and blood flow were measured as well as parameters of β-cell function, glucose tolerance, and insulin sensitivity. RESULTS Six months after bariatric surgery, 23% excess weight loss was observed (P < .0001), and diabetes remission was seen in 7 of 10 patients. When compared with preoperative values, after surgery, notable decreases in pancreatic fat volume (P < .01), fatty acid uptake, and blood flow (both P < .05) were seen, whereas no change was seen in pancreatic fat-free volume. The decrease in pancreatic fat volume and the preservation of blood flow were associated with favorable glucose homeostasis and β-cell function. CONCLUSIONS Bariatric surgery elicits marked alterations in pancreatic lipid metabolism and blood flow, which may contribute to the observed improvement in glucose homeostasis and remission of type 2 diabetes.
Collapse
Affiliation(s)
- Henri Honka
- Turku PET Centre (H.H., J.K., J.C.H., J.J.T., H.K.K., H.I., V.O., T.T., P.N.), University of Turku, 20520 Turku, Finland; Department of Endocrinology (M.S., P.N.) and Division of Digestive Surgery and Urology (P.S.), Turku University Hospital, 20520 Turku, Finland; Faculty of Medicine (N.K.), Kagawa University, Kagawa 760-0016, Japan; Institute of Biomedical Engineering (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (P.I.), National Research Council, 56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015; 7:e1024405. [PMID: 26030186 PMCID: PMC4589993 DOI: 10.1080/19382014.2015.1024405] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
| |
Collapse
|
46
|
Dadi PK, Vierra NC, Jacobson DA. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 2014; 155:3757-68. [PMID: 24932805 PMCID: PMC4164933 DOI: 10.1210/en.2013-2051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium entry through voltage-dependent Ca(2+) channels (VDCCs) is required for pancreatic β-cell insulin secretion. The 2-pore-domain acid-sensitive potassium channel (TASK-1) regulates neuronal excitability and VDCC activation by hyperpolarizing the plasma membrane potential (Δψp); however, a role for pancreatic β-cell TASK-1 channels is unknown. Here we examined the influence of TASK-1 channel activity on the β-cell Δψp and insulin secretion during secretagogue stimulation. TASK-1 channels were found to be highly expressed in human and rodent islets and localized to the plasma membrane of β-cells. TASK-1-like currents of mouse and human β-cells were blocked by the potent TASK-1 channel inhibitor, A1899 (250nM). Although inhibition of TASK-1 currents did not influence the β-cell Δψp in the presence of low (2mM) glucose, A1899 significantly enhanced glucose-stimulated (14mM) Δψp depolarization of human and mouse β-cells. TASK-1 inhibition also resulted in greater secretagogue-stimulated Ca(2+) influx in both human and mouse islets. Moreover, conditional ablation of mouse β-cell TASK-1 channels reduced K2P currents, increased glucose-stimulated Δψp depolarization, and augmented secretagogue-stimulated Ca(2+) influx. The Δψp depolarization caused by TASK-1 inhibition resulted in a transient increase in glucose-stimulated mouse β-cell action potential (AP) firing frequency. However, secretagogue-stimulated β-cell AP duration eventually increased in the presence of A1899 as well as in β-cells without TASK-1, causing a decrease in AP firing frequency. Ablation or inhibition of mouse β-cell TASK-1 channels also significantly enhanced glucose-stimulated insulin secretion, which improved glucose tolerance. Conversely, TASK-1 ablation did not perturb β-cell Δψp, Ca(2+) influx, or insulin secretion under low-glucose conditions (2mM). These results reveal a glucose-dependent role for β-cell TASK-1 channels of limiting glucose-stimulated Δψp depolarization and insulin secretion, which modulates glucose homeostasis.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | |
Collapse
|
47
|
Li T, Chen H, Khokhlova T, Wang YN, Kreider W, He X, Hwang JH. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1523-34. [PMID: 24613635 PMCID: PMC4048799 DOI: 10.1016/j.ultrasmedbio.2014.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 05/03/2023]
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped over the first few pulses ex vivo. Cavitation activity depended on the interplay between the destruction and circulation of cavitation nuclei, which are not only used up by HIFU treatment but also replenished or carried away by circulation in vivo. These findings are important for treatment planning and optimization in pHIFU-induced drug delivery, in particular for pancreatic tumors.
Collapse
Affiliation(s)
- Tong Li
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Hong Chen
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Tatiana Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Xuemei He
- Department of Ultrasound Imaging, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Joo Ha Hwang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Targeting SUR1/Abcc8-type neuroendocrine KATP channels in pancreatic islet cells. PLoS One 2014; 9:e91525. [PMID: 24621811 PMCID: PMC3951447 DOI: 10.1371/journal.pone.0091525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/13/2014] [Indexed: 01/25/2023] Open
Abstract
ATP-sensitive K+ (KATP) channels play a regulatory role in hormone-secreting pancreatic islet α-, β- and δ-cells. Targeted channel deletion would assist analysis and dissection of the intraislet regulatory network. Toward this end Abcc8/Sur1 flox mice were generated and tested by crossing with glucagon-(GCG)-cre mice to target α-cell KATP channels selectively. Agonist resistance was used to quantify the percent of α-cells lacking channels. 41% of Sur1loxP/loxP;GCG-cre+ and ∼64% of Sur1loxP/−;GCG-cre+ α-cells lacked KATP channels, while ∼65% of α-cells expressed enhanced yellow fluorescent protein (EYFP) in ROSA-EYFP/GCG-cre matings. The results are consistent with a stochastic two-recombination event mechanism and a requirement that both floxed alleles are deleted.
Collapse
|
49
|
Calderon B, Carrero JA, Unanue ER. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol 2014; 26:32-40. [PMID: 24556398 PMCID: PMC4118295 DOI: 10.1016/j.coi.2013.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
The islets of Langerhans normally contain resident antigen presenting cells (APCs), which in normal conditions are mostly represented by macrophages, with a few dendritic cells (DC). We present here the features of these islet APCs, making the point that they have a supportive function in islet homeostasis. Islet APCs express high levels of major histocompatibility complexes (MHC) molecules on their surfaces and are highly active in antigen presentation in the autoimmune diabetes of the NOD mouse: they do this by presenting peptides derived from molecules of the β-cells. These APCs also are instrumental in the localization of diabetogenic T cells into islets. The islet APC present exogenous peptides derived from secretory granules of the β-cell, giving rise to unique peptide-MHC complexes (pMHC) that activate those non-conventional T cells that bypass thymus selection.
Collapse
Affiliation(s)
- Boris Calderon
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA
| | - Javier A Carrero
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA
| | - Emil R Unanue
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA.
| |
Collapse
|
50
|
Short KW, Head WS, Piston DW. Connexin 36 mediates blood cell flow in mouse pancreatic islets. Am J Physiol Endocrinol Metab 2014; 306:E324-31. [PMID: 24326425 PMCID: PMC3920012 DOI: 10.1152/ajpendo.00523.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023]
Abstract
The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36(-/-)). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36(+/-) and Cx36(-/-) mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology.
Collapse
Affiliation(s)
- Kurt W Short
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|