1
|
Wilms JN, van der Nat V, Ghaffari MH, Steele MA, Sauerwein H, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum-fed calves. J Dairy Sci 2024; 107:2797-2817. [PMID: 37944801 DOI: 10.3168/jds.2023-23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves. Upon 24 to 96 h after birth, 63 calves were acquired from dairy farms and incorporated into the study. Calves were blocked based on arrival day and randomly assigned within each block to one of 3 treatments differing in MR fat composition (n = 21 per group): VG was based on vegetable fats including 80% rapeseed and 20% coconut fats; AN was formulated with animal fats including 65% lard and 35% dairy cream; and MX with a mixture of 80% lard and 20% coconut fats. All 3 MR contained 30% fat, 24% crude protein, and 36% lactose and were formulated to have a fatty acid profile resembling that of milk fat. From arrival onward (3.1 ± 0.84 d of age; means ± standard deviation), calves were group housed and were offered an ad libitum supply of MR at 135 g/L (13.5% solids). Weaning was gradual and induced between wk 7 and 10, after which calves were fed only solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the study. Calves were weighed, and blood was collected weekly until d 84 after arrival. Preweaning average daily gain was greater in calves fed AN (915 g/d) than other treatments (783 g/d), whereas no differences were detected in the weaning and postweaning phases. Preweaning MR intake was greater in calves fed AN than MX from wk 2 to 6 and was also higher in calves fed AN than VG in wk 5 and 6. Consistently, the number of rewarded visits during the ad libitum phase was greater in calves fed AN than MX, whereas VG showed no differences. This led to a higher preweaning total metabolizable energy intake in calves fed AN than in calves fed VG and MX. Serum cholesterol was higher, and serum albumin was lower in calves fed VG than other treatments. The proportion of high-density lipoprotein cholesterol in total plasma cholesterol was lower and that of low-density lipoprotein (LDL) cholesterol was higher in calves fed VG compared with other treatments. Overall, the fatty acid profile of plasma largely mirrored the MR fat composition during the preweaning period. Feeding AN enhanced MR intake and improved preweaning growth compared with other treatments. Feeding VG resulted in a marked increase in plasma cholesterol, particularly in the form of LDL cholesterol, which could be linked to an excessive intake of polyunsaturated fatty acids. These findings underscore the importance of formulating the fat content of MR to be similar to bovine milk fat.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - V van der Nat
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Adaptation Physiology Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
2
|
Wilms JN, Kleinveld N, Ghaffari MH, Sauerwein H, Steele MA, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences postprandial and oxidative metabolisms in dairy calves fed twice daily. J Dairy Sci 2024; 107:2818-2831. [PMID: 37923211 DOI: 10.3168/jds.2023-23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - N Kleinveld
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Animal Nutrition Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
3
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
4
|
Sorrentino ZA, Smith G, Palm L, Motwani K, Butterfield J, Archer C, Henderson R, Heldermon C, Gautam S, Brantly ML. An Erythritol-Sweetened Beverage Induces Satiety and Suppresses Ghrelin Compared to Aspartame in Healthy Non-Obese Subjects: A Pilot Study. Cureus 2020; 12:e11409. [PMID: 33194505 PMCID: PMC7657312 DOI: 10.7759/cureus.11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
Despite the reduced caloric content of artificially sweetened beverages (ASBs) relative to those sweetened with sucrose, consumption of ASBs fail to consistently decrease the risk of obesity and associated diseases. This failure may be due to the inability of ASBs to effectively reduce appetite and hence overall caloric intake. A variety of non-nutritive sweeteners (NNS), however, remain to be screened for effectiveness in promoting satiety and reducing calorie consumption. Erythritol is well-tolerated, low-calorie sugar alcohol widely used as a sugar substitute. It is unique among NNS due to its low sweetness index relative to glucose, meaning that it is typically served at much higher concentrations than other common NNS. Animal and human studies have noted correlations between osmolarity, satiety, and levels of satiety hormones, independent of the effects of sweetness or nutritive value. We hypothesized that consumption of a beverage sweetened with erythritol to the sweetness and osmolarity of a common soft drink will improve self-reported satiety and more strongly affect the magnitude of changes in the hormone ghrelin than would an iso sweet beverage sweetened only with aspartame, a sweetener with a high sweetness index relative to glucose. Using a randomized double-blind crossover trial, we found that serum ghrelin was significantly decreased after consumption of an erythritol-sweetened beverage compared to aspartame. Likewise, consumption of the erythritol-sweetened beverage increased various measures of satiety in volunteers. Knowledge gained from this project demonstrates that high-osmolarity NNS may be useful in formulating ASBs that are satiating and low in calories.
Collapse
Affiliation(s)
| | - Garrett Smith
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Lindsey Palm
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Kartik Motwani
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - John Butterfield
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Christian Archer
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Rebecca Henderson
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Coy Heldermon
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Shiva Gautam
- Medicine, University of Florida College of Medicine, Jacksonville, USA
| | - Mark L Brantly
- Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
5
|
McCarty TR, Thompson CC. Bariatric and Metabolic Therapies Targeting the Small Intestine. ACTA ACUST UNITED AC 2020; 22:145-153. [PMID: 32905221 DOI: 10.1016/j.tige.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity and type 2 diabetes (T2DM) necessitates an increased reliance on effective and safe endoscopic therapies. While surgery is highly effective, endoscopic therapies may be able to reach a greater number of affected individuals and help to reduce the burden of disease worldwide. Although current endoscopic treatments entail space occupying gastric devices as well as suturing or plication, innovative, non-Food and Drug Administration (FDA) approved small bowel specific endoscopic bariatric and metabolic therapies have been developed within the last several years. Small intestine therapies include endoluminal bypass liners, duodenal mucosal resurfacing, endoscopic anastomosis systems, and restricted duodenal flow treatments. These endoscopic bariatric and metabolic therapies rely upon foregut and hindgut mechanisms to achieve weight loss and improve glucose homeostasis. This review will detail these important small bowel mechanisms and evaluates current small bowel endoscopic treatments.
Collapse
Affiliation(s)
- Thomas R McCarty
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
6
|
Herwig E, Schwean-Lardner K, Van Kessel A, Savary RK, Classen HL. Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS One 2020; 15:e0228647. [PMID: 32032378 PMCID: PMC7006927 DOI: 10.1371/journal.pone.0228647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
The objective of this research was to evaluate activation of the ileal brake in broiler chickens using diets containing semi-purified wheat (WS; rapidly and highly digested) and pea (PS; slowly and poorly digested) starch. Diets were formulated to contain six WS:PS ratios (100:0, 80:20, 60:40, 40:60, 20:80, 0:100) and each starch ratio was fed to 236 Ross 308 male broilers housed in 4 litter floor pens. At 28 d of age, the effect of PS concentration was assessed on starch digestion, digestive tract morphology, and digesta pH and short-chain fatty acid (SCFA) concentration. Glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) status were assessed in serum (ELISA) and via gene expression in jejunal and ileal tissue (proglucagon for GLP-1). Data were analyzed using regression analyses, and significance was accepted at P ≤ 0.05. Increasing dietary PS resulted in reduced starch digestibility in the small intestine, but had no effect in the colon. Crop content pH responded quadratically to PS level with an estimated minimum at 55% PS. Total SCFA increased linearly in the crop with PS level, but changed in a quadratic fashion in the ileum (estimated maximum at 62% PS). Ceacal SCFA concentrations were highest for the 80 and 100% PS levels. The relative empty weight (crop, small intestine, colon), length (small intestine) and content (crop jejunum, Ileum) of digestive tract sections increased linearly with increasing PS concentration. Dietary treatment did not affect serum GLP-1 or PYY or small intestine transcript abundance. In conclusion, feeding PS increased the presence of L-cell activators (starch, SCFA) and increased trophic development and content of the digestive tract, suggestive of L-cell activation. However, no direct evidence of ileal brake activation was found by measuring venous blood levels of GLP-1 or PYY or corresponding gene expression in small intestine tissue.
Collapse
Affiliation(s)
- Eugenia Herwig
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachel K. Savary
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Dunshea FR, Bittner EP, Pluske JR, Black JL. Role of the gut, melanocortin system and malonyl-CoA in control of feed intake in non-ruminant animals. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regulation of feed intake is under complex control, involving physical, chemical, hormonal and neuronal responses. Understanding the regulation of feed intake in farm animals is key to optimisation of intake to meet production and profitability goals. Fundamental mechanisms regulating feed intake include constraints imposed by the gut, systems monitoring current and long-term energy status to increase or decrease intake, and hedonic, reward-related drives. Feed intake is closely related to the rate of passage of digesta and the capacity of the gastrointestinal tract. Indigestible fibre increases the rate of digesta passage and feed intake until excess distension sends signals of satiety to the brain. The presence of partially digested nutrients and products of microbial fermentation in the distal intestines releases peptides (PYY, OXM, GPL-1, Apo A-IV, amylin) from gut and pancreas to activate the intestinal brake, which slows the rate of passage and reduces feed intake. These peptides also act on orexigenic (NPY, AgRP) and anorexigenic (POMC, CART) peptides of the melanocortin system of the hypothalamus to reduce intake over the long term. Immediate energy status of the animal is monitored through the ratio of AMP : ATP via adenosine monophosphate-activated kinase and mammalian target of rapamycin, whereas the overall animal energy status is monitored by insulin, leptin and ghrelin. These energy-monitoring systems control short- and long-term intakes through the melanocortin system of the hypothalamus, primarily via malonyl-CoA, to alter the relative expression of orexigenic and anorexigenic peptides. Gut and hypothalamic control of feed intake can be over-ridden by hedonic, reward-related centres of the brain, predominantly through the release of dopamine. These hedonic responses can lead to over-consumption and obesity under some circumstances or reduced feed intake under stressful or other negative environmental situations. Knowledge of these mechanisms can be used to identify practical strategies for either increasing or decreasing voluntary intake in pigs.
Collapse
|
8
|
Lehmann A, Hornby PJ. Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G887-98. [PMID: 27012770 DOI: 10.1152/ajpgi.00068.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 01/31/2023]
Abstract
The Na(+)-glucose cotransporter 1 (SGLT1/SLC5A1) is predominantly expressed in the small intestine. It transports glucose and galactose across the apical membrane in a process driven by a Na(+) gradient created by Na(+)-K(+)-ATPase. SGLT2 is the major form found in the kidney, and SGLT2-selective inhibitors are a new class of treatment for type 2 diabetes mellitus (T2DM). Recent data from patients treated with dual SGLT1/2 inhibitors or SGLT2-selective drugs such as canagliflozin (SGLT1 IC50 = 663 nM) warrant evaluation of SGLT1 inhibition for T2DM. SGLT1 activity is highly dynamic, with modulation by multiple mechanisms to ensure maximal uptake of carbohydrates (CHOs). Intestinal SGLT1 inhibition lowers and delays the glucose excursion following CHO ingestion and augments glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) secretion. The latter is likely due to increased glucose exposure of the colonic microbiota and formation of metabolites such as L cell secretagogues. GLP-1 and PYY secretion suppresses food intake, enhances the ileal brake, and has an incretin effect. An increase in colonic microbial production of propionate could contribute to intestinal gluconeogenesis and mediate positive metabolic effects. On the other hand, a threshold of SGLT1 inhibition that could lead to gastrointestinal intolerability is unclear. Altered Na(+) homeostasis and increased colonic CHO may result in diarrhea and adverse gastrointestinal effects. This review considers the potential mechanisms contributing to positive metabolic and negative intestinal effects. Compounds that inhibit SGLT1 must balance the modulation of these mechanisms to achieve therapeutic efficacy for metabolic diseases.
Collapse
Affiliation(s)
- Anders Lehmann
- Division of Endocrinology, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and
| | - Pamela J Hornby
- Cardiovascular and Metabolic Disease, Janssen Research and Development, LLC, Spring House, Pennsylvania
| |
Collapse
|
9
|
Abstract
The ability to "see" both incoming and circulating nutrients plays an essential role in the maintenance of energy homeostasis. As such, nutrient-sensing mechanisms in both the gastrointestinal tract and the brain have been implicated in the regulation of energy intake and glucose homeostasis. The intestinal wall is able to differentiate individual nutrients through sensory machinery expressed in the mucosa and provide feedback signals, via local gut peptide action, to maintain energy balance. Furthermore, both the hypothalamus and hindbrain detect circulating nutrients and respond by controlling energy intake and glucose levels. Conversely, nutrient sensing in the intestine plays a role in stimulating food intake and preferences. In this review, we highlight the emerging evidence for the regulation of energy balance through nutrient-sensing mechanisms in the intestine and the brain, and how disruption of these pathways could result in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Hamr
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada,
| | | | | | | |
Collapse
|
10
|
Davidson TL, Tracy AL, Schier LA, Swithers SE. A view of obesity as a learning and memory disorder. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2014; 40:261-79. [PMID: 25453037 PMCID: PMC4247176 DOI: 10.1037/xan0000029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This articles describes how a cascade of associative relationships involving the sensory properties of foods, the nutritional consequences of their consumption, and perceived internal states may play an important role in the learned control of energy intake and body weight regulation. In addition, we describe ways in which dietary factors in the current environment can promote excess energy intake and body weight gain by degrading these relationships or by interfering with the neural substrates that underlie the ability of animals to use them to predict the nutritive or energetic consequences of intake. We propose that an expanded appreciation of the diversity of orosensory, gastrointestinal, and energy state signals about which animals learn, combined with a greater understanding of predictive relationships in which these cues are embedded, will help generate new information and novel approaches to addressing the current global problems of obesity and metabolic disease.
Collapse
|
11
|
Overduin J, Tylee TS, Frayo RS, Cummings DE. Hyperosmolarity in the small intestine contributes to postprandial ghrelin suppression. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1108-16. [PMID: 24789208 PMCID: PMC4059977 DOI: 10.1152/ajpgi.00072.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasma levels of the orexigenic hormone ghrelin are suppressed by meals with an efficacy dependent on their macronutrient composition. We hypothesized that heterogeneity in osmolarity among macronutrient classes contributes to these differences. In three studies, the impact of small intestinal hyperosmolarity was examined in Sprague-Dawley rats. In study 1, isotonic, 2.5×, and 5× hypertonic solutions of several agents with diverse absorption and metabolism properties were infused duodenally at a physiological rate (3 ml/10 min). Jugular vein blood was sampled before and at 30, 60, 90, 120, 180, 240, and 300 min after infusion. Plasma ghrelin was suppressed dose dependently and most strongly by glucose. Hyperosmolar infusions of lactulose, which transits the small intestine unabsorbed, and 3-O-methylglucose (3-O-MG), which is absorbed like glucose but remains unmetabolized, also suppressed ghrelin. Glucose, but not lactulose or 3-O-MG, infusions increased plasma insulin. In study 2, intestinal infusions of hyperosmolar NaCl suppressed ghrelin, a response that was not attenuated by coinfusion with the neural blocker lidocaine. In study 3, we reconfirmed that the low-osmolar lipid emulsion Intralipid suppresses ghrelin more weakly than isocaloric (but hypertonic) glucose. Importantly, raising Intralipid's osmolarity to that of the glucose solution by nonabsorbable lactulose supplementation enhanced ghrelin suppression to that seen after glucose. Hyperosmolar ghrelin occurred particularly during the initial 3 postinfusion hours. We conclude that small intestinal hyperosmolarity 1) is sufficient to suppress ghrelin, 2) may combine with other postprandial mechanisms to suppress ghrelin, 3) might contribute to altered ghrelin regulation after gastric bypass surgery, and 4) may inform dietary modifications for metabolic health.
Collapse
Affiliation(s)
- Joost Overduin
- University of Washington School of Medicine, Seattle, Washington; and Veterans Affairs Puget Sound Health Care System Seattle, Washington
| | - Tracy S. Tylee
- University of Washington School of Medicine, Seattle, Washington; and Veterans Affairs Puget Sound Health Care System Seattle, Washington
| | - R. Scott Frayo
- University of Washington School of Medicine, Seattle, Washington; and Veterans Affairs Puget Sound Health Care System Seattle, Washington
| | - David E. Cummings
- University of Washington School of Medicine, Seattle, Washington; and Veterans Affairs Puget Sound Health Care System Seattle, Washington
| |
Collapse
|
12
|
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R840-53. [PMID: 23926132 PMCID: PMC3798804 DOI: 10.1152/ajpregu.00297.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/03/2013] [Indexed: 01/06/2023]
Abstract
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York
| | | | | |
Collapse
|
13
|
Shin HS, Ingram JR, McGill AT, Poppitt SD. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating? Physiol Behav 2013; 120:114-23. [PMID: 23911804 DOI: 10.1016/j.physbeh.2013.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/09/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake and suppress food intake has to date been little investigated, although both clearly have GI mediated effects. This review provides an overview of the mechanisms and mediators of activation of the ileal brake and assesses whether it may play an important role in appetite suppression.
Collapse
Affiliation(s)
- H S Shin
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
14
|
Kentish SJ, O'Donnell TA, Frisby CL, Li H, Wittert GA, Page AJ. Altered gastric vagal mechanosensitivity in diet-induced obesity persists on return to normal chow and is accompanied by increased food intake. Int J Obes (Lond) 2013; 38:636-42. [PMID: 23897220 DOI: 10.1038/ijo.2013.138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/10/2013] [Accepted: 07/20/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Gastric vagal afferents convey satiety signals in response to mechanical stimuli. The sensitivity of these afferents is decreased in diet-induced obesity. Leptin, secreted from gastric epithelial cells, potentiates the response of vagal afferents to mechanical stimuli in lean mice, but has an inhibitory effect in high-fat diet (HFD)-induced obese mice. We sought to determine whether changes in vagal afferent function and response to leptin in obesity were reversible by returning obese mice consuming a HFD to standard laboratory chow diet (SLD). METHODS Eight-week-old female C57BL/6 mice were either fed a SLD (N=20) or HFD (N=20) for 24 weeks. A third group was fed a HFD for 12 weeks and then a SLD for a further 12 weeks (RFD, N=18). An in vitro gastro-oesophageal vagal afferent preparation was used to determine the mechanosensitivity of gastric vagal afferents and the modulatory effect of leptin (0.1-10 nM) was examined. Retrograde tracing and quantitative RT-PCR were used to determine the expression of leptin receptor (LepR) messenger RNA (mRNA) in whole nodose and specific cell bodies traced from the stomach. RESULTS After 24 weeks, both the HFD and RFD mice had increased body weight, gonadal fat mass, plasma leptin, plasma insulin and daily energy consumption compared with the SLD mice. The HFD and RFD mice had reduced tension receptor mechanosensitivity and leptin further inhibited responses to tension in HFD, RFD but not SLD mice. Mucosal receptors from both the SLD and RFD mice were potentiated by leptin, an effect not seen in HFD mice. LepR expression was unchanged in the whole nodose, but was reduced in the mucosal afferents of the HFD and RFD mice. CONCLUSION Disruption of gastric vagal afferent function by HFD-induced obesity is only partially reversible by dietary change, which provides a potential mechanism preventing maintenance of weight loss.
Collapse
Affiliation(s)
- S J Kentish
- Nerve-Gut Research Laboratory, Hanson Institute, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | - C L Frisby
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - H Li
- Nerve-Gut Research Laboratory, Hanson Institute, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - G A Wittert
- Nerve-Gut Research Laboratory, Hanson Institute, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - A J Page
- 1] Nerve-Gut Research Laboratory, Hanson Institute, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia [2] Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
15
|
Seimon RV, Brennan IM, Russo A, Little TJ, Jones KL, Standfield S, Wishart JM, Horowitz M, Feinle-Bisset C. Gastric emptying, mouth-to-cecum transit, and glycemic, insulin, incretin, and energy intake responses to a mixed-nutrient liquid in lean, overweight, and obese males. Am J Physiol Endocrinol Metab 2013; 304:E294-300. [PMID: 23211514 DOI: 10.1152/ajpendo.00533.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Observations relating to the impact of obesity on gastric emptying (GE) and the secretion of gut hormones are inconsistent, probably because of a lack of studies in which GE, gastrointestinal hormone release, and energy intake (EI) have been evaluated concurrently with previous patterns of nutrient intake. GE is known to be a major determinant of postprandial glycemia and incretin secretion in health and type 2 diabetes. The aims of this study were to determine the effects of a mixed-nutrient drink on GE, oro-cecal transit, blood glucose, insulin and incretin concentrations and EI, and the relationship between the glycemic response to the drink with GE in lean, overweight, and obese subjects. Twenty lean, 20 overweight, and 20 obese males had measurements of GE, oro-cecal transit, and blood glucose, insulin, GLP-1, and GIP concentrations for 5 h after ingestion of a mixed-nutrient drink (500 ml, 532 kcal); EI at a subsequent buffet lunch was determined. Habitual EI was also quantified. Glycemic and insulinemic responses to the drink were greater in the obese (both P < 0.05) when compared with both lean and overweight, with no significant differences in GE, intragastric distribution, oro-cecal transit, incretins, or EI (buffet lunch or habitual) between groups. The magnitude of the rise in blood glucose after the drink was greater when GE was relatively more rapid (r = -0.55, P < 0.05). In conclusion, in the absence of differences in habitual EI, both GE and incretin hormones are unaffected in the obese despite greater glucose and insulin responses, and GE is a determinant of postprandial glycemia.
Collapse
Affiliation(s)
- Radhika V Seimon
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council Centre of Australia Clinical Research Excellence in Nutritional Physiology, Interactions and Outcomes, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zukerman S, Ackroff K, Sclafani A. Post-oral glucose stimulation of intake and conditioned flavor preference in C57BL/6J mice: a concentration-response study. Physiol Behav 2012. [PMID: 23200639 DOI: 10.1016/j.physbeh.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent study, intragastric (IG) self-infusion of 16% glucose stimulated 1-h intake and conditioned a preference for a flavored saccharin solution in C57BL/6J mice (Zukerman et al., 2011). Experiment 1 of the present study presents a concentration-response analysis of IG glucose-induced intake stimulation monitored by recording licking response every min of the 1h/day sessions. Separate groups of food-restricted mice consumed a flavored saccharin solution (the CS-) paired with IG self-infusions of water (Test 0) followed by a different flavored solution (the CS+) paired with IG self-infusions of 2, 4, 8, 16, or 32% glucose (Tests 1-3). Following additional CS- and CS+ training sessions, a two-bottle CS+ vs. CS- choice test was conducted without infusions. Self-infusions of 8%, 16% or 32% glucose stimulated CS+ licking within 12 min of the first test session and even earlier in subsequent test sessions, and also conditioned significant CS+ preferences in the two-bottle test. The stimulation of early licking and CS+ preference increased as a function of glucose concentration. The amount of glucose solute self-infused increased with sugar concentration as did post-infusion blood glucose levels. The 2% glucose infusion did not stimulate CS+ intake and the 2% and 4% infusions failed to produce a CS+ preference in the 1-h test. Experiment 2 revealed that intraperitoneal self-infusions of 8% glucose, unlike IG glucose self-infusions, failed to stimulate CS+ licking or preference despite producing maximal increases in blood glucose levels. Taken together, these and other findings suggest that glucose rapidly produces concentration-dependent intestinal signals that stimulate intake and condition flavor preferences while post-oral satiation signals limit total amounts consumed.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, 11210, USA
| | | | | |
Collapse
|
17
|
Ventura AK, Beauchamp GK, Mennella JA. Infant regulation of intake: the effect of free glutamate content in infant formulas. Am J Clin Nutr 2012; 95:875-81. [PMID: 22357724 PMCID: PMC3302362 DOI: 10.3945/ajcn.111.024919] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We recently discovered that infants randomly assigned to a formula high in free amino acids (extensive protein hydrolysate formula; ePHF) during infancy consumed less formula to satiation and gained less weight than did infants fed an isocaloric formula low in free amino acids (cow milk formula; CMF). OBJECTIVE Because ePHF and CMF differ markedly in concentrations of free glutamate, we tested the hypothesis that the higher glutamate concentrations in ePHF promote satiation and satiety. DESIGN In this counterbalanced, within-subject study, infants <4 mo of age (n = 30) visited our laboratory for 3 sets of 2 consecutive infant-led formula meals over 3 test days. Infants were fed 1 of 3 isocaloric formulas during each first meal: CMF, ePHF, or CMF with added free glutamate to approximate concentrations in ePHF (CMF+glu). When infants signaled hunger again, they were fed a second meal of CMF. From these data, we calculated satiety ratios for each of the 3 formulas by dividing the intermeal interval by the amount of formula consumed during that particular first meal. RESULTS Infants consumed significantly less CMF+glu (P < 0.02) and ePHF (P < 0.04) than CMF during the first meals. They also showed greater levels of satiety after consuming CMF+glu or ePHF: satiety ratios for CMF+glu (P < 0.03) and ePHF (P < 0.05) were significantly higher than for CMF. CONCLUSION These findings suggest a role of free glutamate in infant intake regulation and call into question the claim that formula feeding impairs infants' abilities to self regulate energy intake.
Collapse
|
18
|
Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity — Oral and gastrointestinal sensory contributions. Physiol Behav 2011; 104:613-20. [DOI: 10.1016/j.physbeh.2011.04.038] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/15/2011] [Accepted: 04/26/2011] [Indexed: 02/08/2023]
|
19
|
DePaula AL, Stival AR, Halpern A, Vencio S. Surgical treatment of morbid obesity: mid-term outcomes of the laparoscopic ileal interposition associated to a sleeve gastrectomy in 120 patients. Obes Surg 2011; 21:668-75. [PMID: 20652440 DOI: 10.1007/s11695-010-0232-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the mid-term outcomes of the laparoscopic ileal interposition associated to a sleeve gastrectomy (LII-SG) for the treatment of morbid obesity. The procedure was performed in 120 patients: 71 women and 49 men with mean age of 41.4 years. Mean body mass index (BMI) was 43.4 ± 4.2 kg/m². Patients had to meet requirements of the 1991 NIH conference criteria for bariatric operations. Associated comorbidities were observed in all patients, including dyslipidemia in 51.7%, hypertension in 35.8%, type 2 diabetes in 15.8%, degenerative joint disease in 55%, gastroesophageal reflux disease in 36.7%, sleep apnea in 10%, and cardiovascular problems in 5.8%. Mean follow-up was 38.4 ± 10.2 months, range 25.2-61.1. There was no conversion to open surgery nor operative mortality. Early major complications were diagnosed in five patients (4.2%). Postoperatively, 118 patients were evaluated. Late major complications were observed in seven patients (5.9%). Reoperations were performed in six (5.1%). Mean postoperative BMI was 25.7 ± 3.17 kg/m², and 86.4% were no longer obese. Mean %EWL was 84.5 ± 19.5%. Hypertension was resolved in 88.4% of the patients, dyslipidemia in 82.3%, and T2DM in 84.2%. The LII-SG provided an adequate weight loss and resolution of associated diseases during mid-term outcomes evaluation. There was an acceptable morbidity with no operative mortality. It seems that chronic ileal brake activation determined sustained reduced food intake and increased satiety over time. LII-SG could be regularly used as a surgical alternative for the treatment of morbid obesity.
Collapse
Affiliation(s)
- Aureo L DePaula
- Department of Surgery, Hospital de Especialidades, Goiania, Brazil.
| | | | | | | |
Collapse
|
20
|
Marathe CS, Rayner CK, Jones KL, Horowitz M. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:279530. [PMID: 21747825 PMCID: PMC3124003 DOI: 10.1155/2011/279530] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone secreted predominantly by the distal small intestine and colon and released in response to enteral nutrient exposure. GLP-1-based therapies are now used widely in the management of type 2 diabetes and have the potential to be effective antiobesity agents. Although widely known as an incretin hormone, there is a growing body of evidence that GLP-1 also acts as an enterogastrone, with profound effects on the gastrointestinal motor system. Moreover, the effects of GLP-1 on gastrointestinal motility appear to be pivotal to its effect of reducing postprandial glycaemic excursions and may, potentially, represent the dominant mechanism. This review summarizes current knowledge of the enterogastrone properties of GLP-1, focusing on its effects on gut motility at physiological and pharmacological concentrations, and the motor actions of incretin-based therapies. While of potential importance, the inhibitory action of GLP-1 on gastric acid secretion is beyond the scope of this paper.
Collapse
Affiliation(s)
- Chinmay S. Marathe
- 1Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
- 2Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide SA 5000, Australia
| | - Christopher K. Rayner
- 1Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
- 2Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide SA 5000, Australia
- *Christopher K. Rayner:
| | - Karen L. Jones
- 1Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
- 2Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide SA 5000, Australia
| | - Michael Horowitz
- 1Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
- 2Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide SA 5000, Australia
| |
Collapse
|
21
|
Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: modification by diet and obesity. Front Neurosci 2010; 4:178. [PMID: 21088697 PMCID: PMC2981385 DOI: 10.3389/fnins.2010.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/23/2010] [Indexed: 01/25/2023] Open
Abstract
Dietary fat interacts with receptors in both the oral cavity and the gastrointestinal (GI) tract to regulate fat and energy intake. This review discusses recent developments in our understanding of the mechanisms underlying the effects of fat, through its digestive products, fatty acids (FAs), on GI function and energy intake, the role of oral and intestinal FA receptors, and the implications that changes in oral and small intestinal sensitivity in response to ingested fat may have for the development of obesity.
Collapse
Affiliation(s)
- Tanya J. Little
- Discipline of Medicine, Royal Adelaide Hospital, University of AdelaideAdelaide, SA, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interactions and Outcomes, University of AdelaideAdelaide, SA, Australia
| | - Christine Feinle-Bisset
- Discipline of Medicine, Royal Adelaide Hospital, University of AdelaideAdelaide, SA, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interactions and Outcomes, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
22
|
Glendinning JI, Beltran F, Benton L, Cheng S, Gieseke J, Gillman J, Spain HN. Taste does not determine daily intake of dilute sugar solutions in mice. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1333-41. [PMID: 20702804 DOI: 10.1152/ajpregu.00331.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions.
Collapse
Affiliation(s)
- J I Glendinning
- Dept. of Biological Sciences, Barnard College, Columbia Univ., 3009 Broadway, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Golding M, Wooster TJ. The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2009.11.006] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Ackroff K, Yiin YM, Sclafani A. Post-oral infusion sites that support glucose-conditioned flavor preferences in rats. Physiol Behav 2009; 99:402-11. [PMID: 20026145 DOI: 10.1016/j.physbeh.2009.12.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 01/27/2023]
Abstract
Rats learn to prefer a flavored solution (CS+) paired with a gastrointestinal glucose infusion over an alternate flavor (CS-) paired with a non-caloric infusion. Prior work implicates a post-gastric site of glucose action, which is the focus of this study. In Exp. 1, male rats (8-10/group) were infused in the duodenum (ID), mid-jejunum (IJ), or distal ileum (II) with 8% glucose or water as they drank saccharin-sweetened CS+ and CS- solutions, respectively, in one-bottle 30-min sessions. Two-bottle tests (no infusions) were followed by a second train-test cycle. By the second test, the ID and IJ groups preferred the CS+ (69%, 67%) to the CS- but the II group did not (48%). Satiation tests showed that ID and IJ infusions of glucose reduced intake of a palatable solution similarly, while II infusions were ineffective. In Exp. 2, rats (10/group) drank CS solutions in one-bottle, 30-min sessions and were given 2-h ID or hepatic portal vein (HP) infusions. The CS+ and CS- were paired with 10 ml infusions of 10% glucose and 0.9% saline, respectively. Following 8 training sessions, the ID group preferred the CS+ (67%) to the CS- but the HP group did not (47%) in a two-bottle test. The similar CS+ preferences displayed by ID and IJ, but not II groups implicate the jejunum as a critical site for glucose-conditioned preferences. A pre-absorptive glucose action is indicated by the CS+ preference displayed by ID but not HP rats in Exp. 2. Our data were obtained with non-nutritive CS solutions. HP glucose infusions are reported to condition preferences for a flavored food that itself has pre- and post-absorptive actions. Thus, there may be multiple sites for glucose conditioning with the upper or mid-intestines being the first site of action.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Seimon RV, Feltrin KL, Meyer JH, Brennan IM, Wishart JM, Horowitz M, Feinle-Bisset C. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. Am J Physiol Regul Integr Comp Physiol 2009; 296:R912-20. [PMID: 19211720 DOI: 10.1152/ajpregu.90934.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraduodenal infusions of both lipid and glucose modulate antropyloroduodenal motility and stimulate plasma CCK, with lipid being more potent than glucose. Both stimulate glucagon-like peptide-1, but only lipid stimulates peptide YY (PYY), while only glucose raises blood glucose and stimulates insulin. When administered in combination, lipid and carbohydrate may, thus, have additive effects on energy intake. However, elevated blood glucose levels do not suppress energy intake, and the effect of insulin is controversial. We hypothesized that increasing the ratio of maltodextrin, a complex carbohydrate, relative to lipid would be associated with a reduction in effects on antropyloroduodenal pressures, gut hormones, appetite, and energy intake, when compared with lipid alone. Ten healthy males were studied on three occasions in double-blind, randomized order. Antropyloroduodenal pressures, plasma CCK, PYY and insulin, blood glucose, and appetite were measured during 90-min intraduodenal infusions of 1) 3 kcal/min lipid (L3), 2) 2 kcal/min lipid and 1 kcal/min maltodextrin (L2/CHO1), or 3) 1 kcal/min lipid and 2 kcal/min maltodextrin (L1/CHO2). Energy intake at a buffet lunch consumed immediately after the infusion was quantified. Reducing the lipid (thus, increasing the carbohydrate) content of the infusion was associated with reduced stimulation of basal pyloric pressures (r = 0.76, P < 0.01), plasma CCK (r = 0.66, P < 0.01), and PYY (r = 0.98, P < 0.001), and reduced suppression of antral (r = -0.64, P < 0.05) and duodenal (r = -0.69, P < 0.05) pressure waves, desire-to-eat (r = -0.8, P < 0.001), and energy intake (r = 0.74, P < 0.01), with no differences in phasic (isolated) pyloric pressures. In conclusion, in healthy males, intraduodenal lipid is a more potent modulator of gut function, associated with greater suppression of energy intake, when compared with isocaloric combinations of lipid and maltodextrin.
Collapse
Affiliation(s)
- Radhika V Seimon
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Kemp CJ, D'Alessio DA, Scott RO, Kelm GR, Meller ST, Barrera JG, Seeley RJ, Clegg DJ, Benoit SC. Voluntary consumption of ethyl oleate reduces food intake and body weight in rats. Physiol Behav 2007; 93:912-8. [PMID: 18234242 DOI: 10.1016/j.physbeh.2007.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 11/15/2022]
Abstract
Previous studies have shown that administration of the fatty acids, linoleic and oleic acid, either by intragastric or intraintestinal infusion, suppresses food intake and body weight in rats. While still not fully understood, gut-mediated satiety mechanisms likely are potential effectors of this robust response to gastrointestinal fatty acid infusions. The objective of this study was to assess the effects of voluntary access to an oleic acid derivative, ethyl oleate (EO), on subsequent food intake and body weight in rats. Animals were randomized either to a 12.5% EO diet or a soybean oil diet as a "breakfast," followed either by two one-hour or one five-hour access periods to standard rodent diet, and food intake and body weights were collected. Across 14 days access, rats consuming EO on both feeding schedules gained less weight and consumed less total kilocalories than rats consuming the SO diet. Further, plasma levels of glucose and insulin were comparable in both EO and SO diet groups. In summary, EO was found to increase weight loss in rats maintained on a 75% food-restriction regimen, and attenuate weight-gain upon resumption of an ad-libitum feeding regimen. These data indicate that voluntary access to EO promoted short-term satiety, compared to SO diet, and that these effects contributed to an important and novel attenuated weight gain in EO-fed animals.
Collapse
Affiliation(s)
- Christopher J Kemp
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237 USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pilichiewicz AN, Papadopoulos P, Brennan IM, Little TJ, Meyer JH, Wishart JM, Horowitz M, Feinle-Bisset C. Load-dependent effects of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2170-8. [PMID: 17942490 DOI: 10.1152/ajpregu.00511.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both load and duration of small intestinal lipid infusion affect antropyloroduodenal motility and CCK and peptide YY (PYY) release at loads comparable to and higher than the normal gastric emptying rate. We determined 1) the effects of intraduodenal lipid loads well below the mean rate of gastric emptying on, and 2) the relationships between antropyloroduodenal motility, CCK, PYY, appetite, and energy intake. Sixteen healthy males were studied on four occasions in double-blind, randomized fashion. Antropyloroduodenal motility, plasma CCK and PYY, and appetite perceptions were measured during 50-min IL (Intralipid) infusions at: 0.25 (IL0.25), 1.5 (IL1.5), and 4 (IL4) kcal/min or saline (control), after which energy intake at a buffet meal was quantified. IL0.25 stimulated isolated pyloric pressure waves (PWs) and CCK release, albeit transiently, and suppressed antral PWs, PW sequences, and hunger (P < 0.05) but had no effect on basal pyloric pressure or PYY when compared with control. Loads >/= 1.5 kcal/min were required for the stimulation of basal pyloric pressures and PYY and suppression of duodenal PWs (P < 0.05). All of these effects were related to the lipid load (R > 0.5 or < -0.5, P < 0.05). Only IL4 reduced energy intake (in kcal: control, 1,289 +/- 62; IL0.25, 1,282 +/- 44; IL1.5, 1,235 +/- 71; and IL4, 1,139 +/- 65 compared with control and IL0.25, P < 0.05). In conclusion, in healthy males the effects of intraduodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, appetite, and energy intake are load dependent, and the threshold loads required to elicit responses vary for these parameters.
Collapse
|
29
|
Little TJ, Horowitz M, Feinle-Bisset C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity. Am J Clin Nutr 2007; 86:531-41. [PMID: 17823414 DOI: 10.1093/ajcn/86.3.531] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The presence of fat in the small intestine slows gastric emptying, stimulates the release of many gastrointestinal hormones, and suppresses appetite and energy intake as a result of the digestion of fats into free fatty acids; the effects of free fatty acids are, in turn, dependent on their chain length. Given these effects of fat, it is paradoxical that high dietary fat intakes have been linked to increased energy intake and body weight and are considered to play a significant role in the pathogenesis of obesity. However, increasing evidence indicates that a chronic increase in dietary fat is associated with an attenuation of the feedback signals arising from the small intestine induced by fat, with a consequent relative acceleration of gastric emptying, modulation of gastrointestinal hormone secretion, and attenuation of the suppression of energy intake. This review addresses the gastrointestinal factors involved in the regulation of appetite and energy intake, with a particular focus on 1) the gastrointestinal mechanisms triggered by small intestinal fat that modulate energy intake, 2) the potential role of a high dietary fat intake in the development of obesity, and 3) implications for the prevention and management of obesity.
Collapse
Affiliation(s)
- Tanya J Little
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
30
|
Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T, Wishart J, Feinle-Bisset C. Effects of lauric acid on upper gut motility, plasma cholecystokinin and peptide YY, and energy intake are load, but not concentration, dependent in humans. J Physiol 2007; 581:767-77. [PMID: 17331985 PMCID: PMC2075194 DOI: 10.1113/jphysiol.2007.129650] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Animal studies suggest that the effects of fatty acids on gastric emptying and pancreatic secretion are both concentration and load dependent, while their suppressive effect on energy intake is only load dependent. We postulated that, in humans, the modulation of antropyloroduodenal pressure waves, plasma cholecystokinin (CCK) and peptide YY (PYY) concentrations and energy intake by intraduodenal lauric acid, a fatty acid with 12 carbon atoms ('C12') would be load, but not concentration, dependent. Two groups of 12 healthy males were each studied on three separate occasions in double-blind randomized fashion. Antropyloroduodenal pressure waves, plasma CCK and PYY, and appetite perceptions were measured during intraduodenal infusions of C12 at (1) different loads of (i) 0.2, (ii) 0.3 and (iii) 0.4 kcal min(-1) (all 56 mM) for 90 min, and (2) different concentrations of (i) 40, (ii) 56 and (iii) 72 mM (all 0.4 kcal min(-1)) for 60 min. Energy intake at a buffet meal consumed immediately following each infusion was quantified. Suppression of antral and duodenal pressure waves, stimulation of pyloric pressure waves, stimulation of plasma CCK and PYY, and suppression of energy intake, were related to the load of C12 administered (r>0.65, P<0.05). In contrast, there were no concentration-dependent effects of C12 on any of these parameters. In conclusion, in humans, the effects of intraduodenal C12 on antropyloroduodenal motility, plasma CCK and PYY and energy intake appear to be related to load, but not concentration, at least at the loads and concentrations evaluated.
Collapse
Affiliation(s)
- Kate L Feltrin
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste-like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes.
Collapse
Affiliation(s)
- David E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | |
Collapse
|
32
|
Rubio VC, Sánchez-Vázquez FJ, Madrid JA. Influence of nutrient preload on encapsulated macronutrient selection in European sea bass. Physiol Behav 2006; 89:662-9. [PMID: 17011001 DOI: 10.1016/j.physbeh.2006.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/27/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The sea bass is a teleost that is able to regulate its energy intake by selecting from pure macronutrient sources, although the regulatory mechanisms involved in this selection are unknown. Nutrient preloads are known to reduce food intake and modify macronutrient selection patterns in mammals, but no information is available on its effects in fish. The aim of the present work was to determine the effect of orally administered macronutrient preloads of protein (P), fat (F) or carbohydrate (CH) on the subsequent macronutrient selection, using for the purpose feed consisting of CH, P or F packaged separately in gelatin capsules. The macronutrient preloads left the total food intake unaltered, but caused differential changes in the pattern of macronutrient selection. The CH preload increased the selection of CH (39%) and decreased that of P (20%), independently of the fish's previous nutritional preferences. The F preload induced an F increase (32%) and a P decrease (18%) in P-preferring fish, but not in F-preferring fish in which the macronutrient selection pattern remained unaffected. The P preload stimulated F selection by 42% in P-preferring fish, but left the macronutrient selection pattern unchanged in F-preferring fish. In conclusion, oral macronutrient preloads affected the pattern of macronutrient selection in fish, acting by post-ingestive mechanisms. The effect was influenced by the fish's previous nutritional preference and/or status, which could depend on its metabolic capacity.
Collapse
Affiliation(s)
- V C Rubio
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| | | | | |
Collapse
|
33
|
Freeman SL, Bohan D, Darcel N, Raybould HE. Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Am J Physiol Gastrointest Liver Physiol 2006; 291:G439-45. [PMID: 16675747 DOI: 10.1152/ajpgi.00079.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The presence of glucose in the intestinal lumen elicits a number of changes in gastrointestinal function, including inhibition of gastric emptying and food intake and stimulation of pancreatic and intestinal secretion. The present study tested the hypothesis that Na(+)-glucose cotransporter (SGLT)-3, a member of the SGLT family of transport proteins, is involved in detection of luminal glucose in the intestine. Gastric emptying, measured in awake rats, was significantly inhibited by perfusion of the intestine with glucose (60 and 90 mg); this effect was mimicked by alpha-methyl glucose (nonmetabolizable substrate of SGLT-1 and -3) but not 2-deoxy-d-glucose (substrate for GLUT-2) or isoosmotic mannitol. Gastric motility and intestinal fluid secretion, measured in anesthetised rats, were significantly inhibited and stimulated, respectively, by duodenal glucose but not galactose, which has a much lower affinity for SGLT-3 than glucose. Duodenal glucose but not galactose stimulated the release of 5-HT into mesenteric lymph and stimulated the discharge of duodenal vagal afferent fibers. mRNA for SGLT-3 was identified in the duodenal mucosa. Together these data suggest that detection of glucose in the intestine may involve SGLT-3, possibly expressed by enterochromaffin cells in the intestinal mucosa, and release of 5-HT.
Collapse
Affiliation(s)
- S L Freeman
- School of Veterinary Medicine, Dept. of Anatomy, Physiology, and Cell Biology, Univ. of California, 1321 Haring Hall, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
34
|
Pilichiewicz AN, Little TJ, Brennan IM, Meyer JH, Wishart JM, Otto B, Horowitz M, Feinle-Bisset C. Effects of load, and duration, of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2006; 290:R668-77. [PMID: 16210415 DOI: 10.1152/ajpregu.00606.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterally administered lipid modulates antropyloroduodenal motility, gut hormone release, appetite, and energy intake. We hypothesized that these effects would be dependent on both the load, and duration, of small intestinal exposure to lipid. Eleven healthy men were studied on four occasions in a double-blind, randomized, fashion. Antropyloroduodenal motility, plasma CCK and peptide YY (PYY) concentrations, and appetite perceptions were measured during intraduodenal infusion of lipid (Intralipid) at 1) 1.33 kcal/min for 50 min, 2) 4 kcal/min for 50 min, and 3) 1.33 kcal/min for 150 min, or 4) saline for 150 min. Immediately after the infusions, energy intake was quantified. Pressure wave sequences (PWSs) were suppressed, and basal pyloric pressure, isolated pyloric pressure waves (IPPWs), plasma CCK and PYY stimulated (all P < 0.05), during the first 50 min of lipid infusion, in a load-dependent fashion. The effect of the 4 kcal/min infusion was sustained so that the suppression of antral pressure waves (PWs) and PWSs and increase in PYY remained evident after cessation of the infusion (all P < 0.05). The prolonged lipid infusion (1.33 kcal/min for 150 min) suppressed antral PWs, stimulated CCK and PYY and basal pyloric pressure (all P < 0.05), and tended to stimulate IPPWs when compared with saline throughout the entire infusion period. There was no significant effect of any of the lipid infusions on appetite or energy intake, although nausea was slightly higher (P < 0.05) with the 4 kcal/min infusion. In conclusion, both the load, and duration, of small intestinal lipid influence antropyloroduodenal motility and patterns of CCK and PYY release.
Collapse
Affiliation(s)
- Amelia N Pilichiewicz
- Department of Medicine, University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Summary Cholecystokinin (CCK), a peptide that is distributed widely throughout the gastrointestinal tract and the central nervous system, has a number of physiological effects including the stimulation of gallbladder contraction and pancreatic and gastric acid secretion, slowing of gastric emptying and suppression of energy intake. This review focuses on current knowledge relating to (i) the effects of CCK on energy intake; (ii) the role for CCK in the pathophysiology of obesity; and (iii) the therapeutic potential for strategies which modulate the action or secretion of CCK in the management of obesity. While CCK plays a role in the acute regulation of appetite and energy intake, there is little evidence to suggest that specific CCK receptor agonists, or modulation of the actions of endogenous CCK by dietary manipulation, have sustainable inhibitory effects on energy intake. Hence, it appears unlikely that manipulating the pathways by which CCK modulates energy intake will prove to be an effective strategy in the long term management of obesity.
Collapse
Affiliation(s)
- T J Little
- University of Adelaide Department of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
36
|
Little TJ, Feltrin KL, Horowitz M, Smout AJPM, Rades T, Meyer JH, Pilichiewicz AN, Wishart J, Feinle-Bisset C. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1090-8. [PMID: 15961531 DOI: 10.1152/ajpregu.00290.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported that intraduodenal infusion of lauric acid (C12) (0.375 kcal/min, 106 mM) stimulates isolated pyloric pressure waves (IPPWs), inhibits antral and duodenal pressure waves (PWs), stimulates release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), and suppresses energy intake and that these effects are much greater than those seen in response to isocaloric decanoic acid (C10) infusion. Administration of C12 was, however, associated with nausea, confounding interpretation of the results. The aim of this study was to evaluate the effects of different intraduodenal doses of C12 on antropyloroduodenal (APD) motility, plasma CCK and GLP-1 concentrations, appetite, and energy intake. Thirteen healthy males were studied on 4 days in double-blind, randomized fashion. APD pressures, plasma CCK and GLP-1 concentrations, and appetite perceptions were measured during 90-min ID infusion of C12 at 0.1 (14 mM), 0.2 (28 mM), or 0.4 (56 mM) kcal/min or saline (control; rate 4 ml/min). Energy intake was determined at a buffet meal immediately following infusion. C12 dose-dependently stimulated IPPWs, decreased antral and duodenal motility, and stimulated secretion of CCK and GLP-1 (r > 0.4, P < 0.05 for all). C12 (0.4 kcal/min) suppressed energy intake compared with control, C12 (0.1 kcal/min), and C12 (0.2 kcal/min) (P < 0.05). These effects were observed in the absence of nausea. In conclusion, intraduodenal C12 dose-dependently modulated APD motility and gastrointestinal hormone release in healthy male subjects, whereas effects on energy intake were only apparent with the highest dose infused (0.4 kcal/min), possibly because only at this dose was modulation of APD motility and gastrointestinal hormone secretion sufficient for a suppressant effect on energy intake.
Collapse
Affiliation(s)
- Tanya J Little
- Department of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide SA 5000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Savastano DM, Carelle M, Covasa M. Serotonin-type 3 receptors mediate intestinal Polycose- and glucose-induced suppression of intake. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1499-508. [PMID: 15718390 DOI: 10.1152/ajpregu.00745.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ondansetron, a selective serotonin-type 3 (5-HT(3)) receptor antagonist, was used to test the hypothesis that duodenal infusion of isosmotic solutions of Polycose or its hydrolytic product glucose suppressed intake through 5-HT(3) receptors. Polycose suppressed sucrose intake across both concentrations infused (132 mM, 7.6 +/- 0.6 ml; 263 mM, 2.3 +/- 0.5 ml), compared with intake under control conditions (12.6 +/- 0.3 ml, P <0.001). Pretreatment with 1.0 mg/kg ondansetron attenuated reduction of sucrose intake induced only by the highest concentration of Polycose (4.6 +/- 0.8 ml, P = 0.004). Dose-response testing revealed that suppression of food intake by 263 mM Polycose was equally attenuated by ondansetron administered at 1.0, 2.0, and 5.0 mg/kg but not when given at 0.125, 0.25, and 0.5 mg/kg. Acarbose, an alpha-glucosidase inhibitor, attenuated Polycose-induced suppression of food intake, and pretreatment with 1.0 mg/kg ondansetron had no further effect. Suppression of intake after 990 mM glucose but not mannitol infusion was attenuated by pretreatment with 1.0 mg/kg ondansetron. The competitive SGLT(1) inhibitor, phloridzin, had no effect on 60-min 990 mM glucose-induced suppression of intake or the ability of ondansetron to attenuate this suppression of intake. Conversely, glucose-induced suppression of intake was attenuated by phloridzin at earlier time points and further attenuated when rats were pretreated with 1.0 mg/kg ondansetron. Ondansetron administration alone had no effect on intake at any dose tested. We conclude that 5-HT(3) receptors participate in the inhibition of food intake by intraduodenal infusion of carbohydrate solutions through a posthydrolytic, preabsorptive mechanism.
Collapse
Affiliation(s)
- David M Savastano
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, 126 South Henderson, University Park, PA 16802, USA.
| | | | | |
Collapse
|
38
|
Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJPM, Wishart J, Pilichiewicz AN, Rades T, Chapman IM, Feinle-Bisset C. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr Comp Physiol 2004; 287:R524-33. [PMID: 15166004 DOI: 10.1152/ajpregu.00039.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal effects of intraluminal fats may be critically dependent on the chain length of fatty acids released during lipolysis. We postulated that intraduodenal administration of lauric acid (12 carbon atoms; C12) would suppress appetite, modulate antropyloroduodenal pressure waves (PWs), and stimulate the release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) more than an identical dose of decanoic acid (10 carbon atoms; C10). Eight healthy males (19-47 yr old) were studied on three occasions in a double-blind, randomized fashion. Appetite perceptions, antropyloroduodenal PWs, and plasma CCK and GLP-1 concentrations were measured during a 90-min intraduodenal infusion of 1) C12, 2) C10, or 3) control (rate: 2 ml/min, 0.375 kcal/min for C12/C10). Energy intake at a buffet meal, immediately after completion of the infusion, was also quantified. C12, but not C10, suppressed appetite perceptions (P < 0.001) and energy intake (control: 4,604 +/- 464 kJ, C10: 4,109 +/- 588 kJ, and C12: 1,747 +/- 632 kJ; P < 0.001, C12 vs. control/C10). C12, but not C10, also induced nausea (P < 0.001). C12 stimulated basal pyloric pressures and isolated pyloric PWs and suppressed antral and duodenal PWs compared with control (P < 0.05 for all). C10 transiently stimulated isolated pyloric PWs (P = 0.001) and had no effect on antral PWs but markedly stimulated duodenal PWs (P = 0.004). C12 and C10 increased plasma CCK (P < 0.001), but the effect of C12 was substantially greater (P = 0.001); C12 stimulated GLP-1 (P < 0.05), whereas C10 did not. In conclusion, there are major differences in the effects of intraduodenal C12 and C10, administered at 0.375 kcal/min, on appetite, energy intake, antropyloroduodenal PWs, and gut hormone release in humans.
Collapse
Affiliation(s)
- Kate L Feltrin
- NHMRC Senior Research Fellow, Department of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hayes MR, Moore RL, Shah SM, Covasa M. 5-HT3 receptors participate in CCK-induced suppression of food intake by delaying gastric emptying. Am J Physiol Regul Integr Comp Physiol 2004; 287:R817-23. [PMID: 15191908 DOI: 10.1152/ajpregu.00295.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotonin type 3 (5-HT(3)) receptors have been shown to participate in the negative-feedback control of food intake. We previously reported that cholecystokinin (CCK)-induced suppression of food intake is partly mediated through 5-HT(3) receptors when rats were tested on a preferred liquid diet, but whether such an effect occurs when they are tested on a solid maintenance diet is unknown. In the present study, we examined the effects of ondansetron, a selective 5-HT(3) antagonist, on CCK-induced suppression of solid chow intake. Intraperitoneal administration of ondansetron significantly attenuated 30- and 60-min CCK-induced reduction of food intake, with suppression being completely reversed by 120 min. It is not known whether 5-HT(3) receptors directly mediate CCK-induced satiation or whether their participation depends on CCK acting as part of a feedback cascade to inhibit ongoing intake. Because CCK-induced inhibition of sham feeding does not depend on additive gastric/postgastric-feedback signals, we examined the ability of ondansetron to reverse CCK-induced satiation in sham-feeding rats. Ondansetron did not attenuate reduction of sham feeding by CCK, suggesting that ondansetron does not directly antagonize CCK-satiation signals. CCK suppresses real feeding through a delay in gastric emptying. Ondansetron could attenuate CCK-induced reduction of food intake by reversing CCK-induced inhibition of gastric emptying. We found that blockade of 5-HT(3) receptors attenuates CCK-induced inhibition of gastric emptying of a solid meal, as well as saline and glucose loads. We conclude that 5-HT(3) receptors mediate CCK-induced satiation through indirect mechanisms as part of a feedback cascade involving inhibition of gastric emptying.
Collapse
Affiliation(s)
- Matthew R Hayes
- Dept. of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State Univ., 126 South Henderson, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Given the global rates of obesity and the potential link to dietary fat intake, understanding the role of fat in the regulation of food intake is critical. Some short-term, laboratory-based studies demonstrate poor compensation for manipulation of fat content, leading to passive overconsumption, while others demonstrate compensation to levels similar to other macronutrients. The observation of compensation in the short term does not concur with long-term rates of obesity increase. This review discusses factors that may explain at a physiological level these discrepancies, in particular fat structure, dietary adaptation, and palatability. RECENT FINDINGS Medium-chain triglycerides have been demonstrated to be more satiating and promote weight loss. Recent data suggest different gastrointestinal transduction mechanisms elicit vagal afferent firing for fatty acids of different chain length. Dietary adaptation to fat can influence the sensitivity of the feedback response, which appears to be nutrient specific and relate to gastric emptying rates and hormonal feedback. Fat content has been found to influence palatability of foods. Recently it has been demonstrated that increasing palatability can partially override the satiating effects of covertly manipulated macronutrient preloads. Recent data suggest that hormonal influences may also affect the palatability response. SUMMARY It is becoming increasingly clear that although energy density of diets is a major factor determining intake, macronutrient structure, subject, dietary and taste differences can all play an important modulatory influence on the final response on food intake. Further understanding of these factors and interactions may provide strategies to help aid weight regulation.
Collapse
|
41
|
Cox JE, Tyler WJ, Randich A, Kelm GR, Bharaj SS, Jandacek RJ, Meller ST. Suppression of food intake, body weight, and body fat by jejunal fatty acid infusions. Am J Physiol Regul Integr Comp Physiol 2000; 278:R604-10. [PMID: 10712279 DOI: 10.1152/ajpregu.2000.278.3.r604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three experiments investigated effects of jejunal lipid infusions given on 4 or 21 consecutive days in adult, male Sprague-Dawley rats. In experiment 1, 7-h infusions of linoleic or oleic acid (0.2 ml/h for 7 h; total load = 11.5 kcal) on 4 consecutive days reduced total intake (ad libitum consumption of the liquid diet Boost, Mead Johnson, plus load) by approximately 15% and decreased weight gain compared with 4-day tests with saline administration. In experiment 2, linoleic acid at 0.1 ml/h for 7 h (5.7 kcal) was ineffective, whereas the same load delivered in 3.5 h produced effects similar in magnitude to those in the first experiment. In experiment 3, jejunal infusions of linoleic acid (0.2 ml/h for 7 h) on 21 consecutive days reduced mean total intake by 16%, body weight by 10%, and carcass fat by 48% compared with controls receiving saline. The net decrease in caloric intake may reflect the combined activation of pre- and postabsorptive mechanisms, and it suggests a possible treatment for obesity.
Collapse
Affiliation(s)
- J E Cox
- Department of Psychology, University of Alabama at Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Rayner CK, Park HS, Wishart JM, Kong M, Doran SM, Horowitz M. Effects of intraduodenal glucose and fructose on antropyloric motility and appetite in healthy humans. Am J Physiol Regul Integr Comp Physiol 2000; 278:R360-6. [PMID: 10666136 DOI: 10.1152/ajpregu.2000.278.2.r360] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral fructose empties from the stomach more rapidly and may suppress food intake more than oral glucose. The purpose of the study was to evaluate the effects of intraduodenal infusions of fructose and glucose on antropyloric motility and appetite. Ten healthy volunteers were given intraduodenal infusions of 25% fructose, 25% glucose, or 0.9% saline (2 ml/min for 90 min). Antropyloric pressures, blood glucose, and plasma insulin, gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) were measured concurrently; a buffet meal was offered at the end of the infusion. Intraduodenal fructose and glucose suppressed antral waves (P < 0. 0005 for both), stimulated isolated pyloric pressure waves (P < 0.05 for both), and increased basal pyloric pressure (P = 0.10 and P < 0. 05, respectively) compared with saline, without any significant difference between them. Intraduodenal glucose increased blood glucose (P < 0.0005), as well as plasma insulin (P < 0.0005) and GIP (P < 0.005) more than intraduodenal fructose, whereas there was no difference in the GLP-1 response. Intraduodenal fructose suppressed food intake compared with saline (P < 0.05) and glucose (P = 0.07). We conclude that, when infused intraduodenally at 2 kcal/min for 90 min 1) fructose and glucose have comparable effects on antropyloric pressures, 2) fructose tends to suppress food intake more than glucose, despite similar GLP-1 and less GIP release, and 3) GIP, rather than GLP-1, probably accounts for the greater insulin response to glucose than fructose.
Collapse
Affiliation(s)
- C K Rayner
- University of Adelaide Department of Medicine, Royal Adelaide Hospital, Adelaide 5000, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D, Schwartz MW. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res 1999; 848:114-23. [PMID: 10612703 DOI: 10.1016/s0006-8993(99)01974-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin and leptin are hypothesized to be 'adiposity signals' for the long-term regulation of body weight by the brain. Accordingly, a change in the plasma levels of leptin or insulin indicates a state of altered energy homeostasis and adiposity, and the brain responds by adjusting food intake to restore adipose tissue mass to a regulated level. The candidate site for the brain's detection of leptin adiposity signaling is the hypothalamic arcuate nucleus, where leptin inhibits expression neuropeptide Y and increases expression of the pro-opiomelanocortin (POMC) precursor of alphaMSH. Insulin also inhibits arcuate nucleus expression of neuropeptide Y but its effects on other hypothalamic signaling systems are not known. Leptin-responsive neurons in the arcuate nucleus are hypothesized to project to the paraventricular nucleus and lateral hypothalamic area where they are proposed to influence the expression of peptides that regulate food intake. Future development of this model will incorporate brain pathways for integration of leptin and insulin adiposity signaling to the hypothalamus with meal-related signals that act in the caudal brainstem. Recent research showing that leptin and insulin enhance the satiety action of peripheral CCK, thereby causing meals to be terminated earlier and reducing cumulative food intake, suggests that hypothalamic pathways that are sensitive to leptin and insulin adiposity signals have anatomical connections with caudal brainstem neurons that respond to meal-related signals and regulate meal size. The recent findings that insulin alters the expression and function of neural transporters for dopamine and norepinephrine indicate that adiposity signals may influence food intake by acting on non-peptide neurotransmitter systems.
Collapse
Affiliation(s)
- D G Baskin
- Division of Endocrinology/Metabolism, VA Puget Sound Health Care System Medical Center, Seattle, WA 98108, USA.
| | | | | | | | | | | |
Collapse
|