1
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
Seesing MFJ, Janssen HJB, Geraedts TCM, Weijs TJ, van Ark I, Leusink-Muis T, Folkerts G, Garssen J, Ruurda JP, Nieuwenhuijzen GAP, van Hillegersberg R, Luyer MDP. Exploring the Modulatory Effect of High-Fat Nutrition on Lipopolysaccharide-Induced Acute Lung Injury in Vagotomized Rats and the Role of the Vagus Nerve. Nutrients 2023; 15:nu15102327. [PMID: 37242210 DOI: 10.3390/nu15102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
During esophagectomy, the vagus nerve is transected, which may add to the development of postoperative complications. The vagus nerve has been shown to attenuate inflammation and can be activated by a high-fat nutrition via the release of acetylcholine. This binds to α7 nicotinic acetylcholine receptors (α7nAChR) and inhibits α7nAChR-expressing inflammatory cells. This study investigates the role of the vagus nerve and the effect of high-fat nutrition on lipopolysaccharide (LPS)-induced lung injury in rats. Firstly, 48 rats were randomized in 4 groups as follows: sham (sparing vagus nerve), abdominal (selective) vagotomy, cervical vagotomy and cervical vagotomy with an α7nAChR-agonist. Secondly, 24 rats were randomized in 3 groups as follows: sham, sham with an α7nAChR-antagonist and cervical vagotomy with an α7nAChR-antagonist. Finally, 24 rats were randomized in 3 groups as follows: fasting, high-fat nutrition before sham and high-fat nutrition before selective vagotomy. Abdominal (selective) vagotomy did not impact histopathological lung injury (LIS) compared with the control (sham) group (p > 0.999). There was a trend in aggravation of LIS after cervical vagotomy (p = 0.051), even after an α7nAChR-agonist (p = 0.090). Cervical vagotomy with an α7nAChR-antagonist aggravated lung injury (p = 0.004). Furthermore, cervical vagotomy increased macrophages in bronchoalveolar lavage (BAL) fluid and negatively impacted pulmonary function. Other inflammatory cells, TNF-α and IL-6, in the BALF and serum were unaffected. High-fat nutrition reduced LIS after sham (p = 0.012) and selective vagotomy (p = 0.002) compared to fasting. vagotomy. This study underlines the role of the vagus nerve in lung injury and shows that vagus nerve stimulation using high-fat nutrition is effective in reducing lung injury, even after selective vagotomy.
Collapse
Affiliation(s)
- Maarten F J Seesing
- Department of Surgery, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| | | | - Tessa C M Geraedts
- Department of Surgery, Catharina Hospital, 5623 Eindhoven, The Netherlands
| | - Teus J Weijs
- Department of Surgery, Catharina Hospital, 5623 Eindhoven, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands
- Danone Nutricia Research & Innovation, Immunology, 3584 Utrecht, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| | | | - Richard van Hillegersberg
- Department of Surgery, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| | - Misha D P Luyer
- Department of Surgery, Catharina Hospital, 5623 Eindhoven, The Netherlands
| |
Collapse
|
3
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
4
|
Dyatlova AS, Kochenda OL, Lavrov NV, Korneva EA. c-Fos Expression in Rat Medulla Oblongata after Subdiaphragmatic Vagotomy and Various Antigens Administration. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Boziki M, Grigoriadis N, Papaefthymiou A, Doulberis M, Polyzos SA, Gavalas E, Deretzi G, Karafoulidou E, Kesidou E, Taloumtzis C, Theotokis P, Sofou E, Katsinelos P, Vardaka E, Fludaras I, Touloumtzi M, Koukoufiki A, Simeonidou C, Liatsos C, Kountouras J. The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochem Int 2021; 144:104938. [PMID: 33535070 DOI: 10.1016/j.neuint.2020.104938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The localization of bacterial components and/or metabolites in the central nervous system may elicit neuroinflammation and/or neurodegeneration. Helicobacter pylori (a non-commensal symbiotic gastrointestinal pathogen) infection and its related metabolic syndrome have been implicated in the pathogenesis of gastrointestinal tract and central nervous system disorders, thus medications affecting the nervous system - gastrointestinal tract may shape the potential of Helicobacter pylori infection to trigger these pathologies. Helicobacter pylori associated metabolic syndrome, by impairing gut motility and promoting bacterial overgrowth and translocation, might lead to brain pathologies. Trimebutine maleate is a prokinetic drug that hastens gastric emptying, by inducing the release of gastrointestinal agents such as motilin and gastrin. Likewise, it appears to protect against inflammatory signal pathways, involved in inflammatory disorders including brain pathologies. Trimebutine maleate also acts as an antimicrobial agent and exerts opioid agonist effect. This study aimed to investigate a hypothesis regarding the recent advances in exploring the potential role of gastrointestinal tract microbiota dysbiosis-related metabolic syndrome and Helicobacter pylori in the pathogenesis of gastrointestinal tract and brain diseases. We hereby proposed a possible neuroprotective role for trimebutine maleate by altering the dynamics of the gut-brain axis interaction, thus suggesting an additional effect of trimebutine maleate on Helicobacter pylori eradication regimens against these pathologies.
Collapse
Affiliation(s)
- Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Greece; Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, 5001, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Emmanuel Gavalas
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, 56429, Macedonia, Greece
| | - Eleni Karafoulidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Evangelia Kesidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Charilaos Taloumtzis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece; 424 General Military Hospital of Thessaloniki, Department of Gastroenterology, Thessaloniki, 56429, Macedonia, Greece
| | - Paschalis Theotokis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Electra Sofou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Elisabeth Vardaka
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 574 00, Thessaloniki, Macedonia, Greece
| | - Ioannis Fludaras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Maria Touloumtzi
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Argiro Koukoufiki
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Macedonia, Greece
| | - Christos Liatsos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Gastroenterology, 401 Army General Hospital of Athens, Athens, 115 25, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece.
| |
Collapse
|
6
|
Sohrabi M, Pecoraro HL, Combs CK. Gut Inflammation Induced by Dextran Sulfate Sodium Exacerbates Amyloid-β Plaque Deposition in the AppNL-G-F Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1235-1255. [PMID: 33427741 PMCID: PMC8122495 DOI: 10.3233/jad-201099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although it is known that the brain communicates with the gastrointestinal (GI) tract via the well-established gut-brain axis, the influence exerted by chronic intestinal inflammation on brain changes in Alzheimer's disease (AD) is not fully understood. We hypothesized that increased gut inflammation would alter brain pathology of a mouse model of AD. OBJECTIVE Determine whether colitis exacerbates AD-related brain changes. METHODS To test this idea, 2% dextran sulfate sodium (DSS) was dissolved in the drinking water and fed ad libitum to male C57BL/6 wild type and AppNL-G-F mice at 6-10 months of age for two cycles of three days each. DSS is a negatively charged sulfated polysaccharide which results in bloody diarrhea and weight loss, changes similar to human inflammatory bowel disease (IBD). RESULTS Both wild type and AppNL-G-F mice developed an IBD-like condition. Brain histologic and biochemical assessments demonstrated increased insoluble Aβ1-40/42 levels along with the decreased microglial CD68 immunoreactivity in DSS treated AppNL-G-F mice compared to vehicle treated AppNL-G-F mice. CONCLUSION These data demonstrate that intestinal dysfunction is capable of altering plaque deposition and glial immunoreactivity in the brain. This study increases our knowledge of the impact of peripheral inflammation on Aβ deposition via an IBD-like model system.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo ND
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| |
Collapse
|
7
|
McCormick CM, Smith K, Baumbach JL, de Lima APN, Shaver M, Hodges TE, Marcolin ML, Ismail N. Adolescent social instability stress leads to immediate and lasting sex-specific changes in the neuroendocrine-immune-gut axis in rats. Horm Behav 2020; 126:104845. [PMID: 32846188 DOI: 10.1016/j.yhbeh.2020.104845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Social instability stress (SS; daily 1 h isolation and change of cage partner from postnatal day (P) 30-45) in adolescence produces elevations in corticosterone during the procedure in male and female rats, but no lasting changes in hypothalamic-pituitary-adrenal (HPA) responses to psychological stressors, although deficits in social and cognitive function are evident in adulthood. Here we investigated the effects of SS in corticosterone response to an immune challenge (lipopolysaccharide, LPS, 0.1 mg/kg), on gene expression in the hippocampus, and on gut microbiota, when tested soon- (P46) or long- (P70) after SS. The temporal pattern of corticosterone release after LPS differed between SS and control rats irrespective of the time since SS exposure in females, whereas in males, SS did not alter corticosterone release after LPS. Expression of genes in the hippocampus relevant to immune and HPA function differed between saline-treated SS and control rats depending on sex and time tested, but with lasting consequences of SS in both sexes. LPS-treatment altered hippocampal gene expression, with bigger effects of LPS evident in control than in SS female rats, and the opposite in male rats. Further, effects sometimes depended on the age at time of LPS treatment. SS and control rats differed in both fecal and colon microbiome composition in all but P46 males, and stress history, sex, and age influenced the effects of an immune challenge on the gut microbiome. In sum, adolescent stress history has consequences for immune function into adulthood that may involve effects on the gut microbiome.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Kevin Smith
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | - Madeleine Shaver
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Kobrzycka A, Napora P, Pearson BL, Pierzchała-Koziec K, Szewczyk R, Wieczorek M. Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation. J Neuroinflammation 2019; 16:150. [PMID: 31324250 PMCID: PMC6642550 DOI: 10.1186/s12974-019-1544-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection. METHODS We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of Escherichia coli lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization. RESULTS The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection. CONCLUSIONS Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
Collapse
Affiliation(s)
- Anna Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Napora
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | | | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
The vagus nerve role in antidepressants action: Efferent vagal pathways participate in peripheral anti-inflammatory effect of fluoxetine. Neurochem Int 2019; 125:47-56. [DOI: 10.1016/j.neuint.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/25/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
|
10
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
11
|
Chang Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med 2018; 6:2050312118798941. [PMID: 30210795 PMCID: PMC6131272 DOI: 10.1177/2050312118798941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
Objective: Far infrared radiation has been widely used in a variety of healthcare
institutions and clinical research. Previous studies have shown that far
infrared radiation can promote blood circulation and enhance the functioning
of the immune system. Many patients receiving peritoneal dialysis have been
co-treated with far infrared radiation to reduce the occurrence of
inflammation. This study seeks to evaluate the effects of far infrared
radiation therapy on inflammation. Method: We used the lipopolysaccharide-induced peritonitis mouse model to study the
effect of far infrared radiation treatment. Sixteen mice were randomly
divided into two groups, a far infrared radiation treatment group
(n = 8) and a non-far infrared radiation treatment
group (n = 8). Collected blood samples were studied by
analyzing the RNA level of peripheral blood mononuclear cells and the plasma
protein levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α),
and endothelial nitric oxide synthase (eNOS). Results: The administration of far infrared radiation inhibited the RNA levels of
interleukin-6 and TNF-α after stimulation by lipopolysaccharide. The far
infrared radiation treatment inhibited the endothelial nitric oxide synthase
RNA levels at 1 h, but the RNA levels returned close to the baseline level
after 2 h. In the control group, the endothelial nitric oxide synthase RNA
levels were continuously decreasing. The interleukin-6 concentration in the
plasma of the far infrared radiation group showed significant inhibition
30 min after lipopolysaccharide stimulation. The tumor necrosis factor alpha
RNA concentration in plasma of the far infrared radiation group was
significantly reduced 2 h after lipopolysaccharide stimulation. Conclusion: Far infrared radiation therapy can inhibit interleukin-6 and tumor necrosis
factor alpha RNA levels of peripheral blood mononuclear cells and recover
endothelial nitric oxide synthase expression. These results demonstrate that
far infrared radiation therapy might aid in reducing the level of
inflammation experienced by patients going through peritoneal dialysis
treatment.
Collapse
Affiliation(s)
- Yuanmay Chang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan.,Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Sylvia KE, Demas GE. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Horm Behav 2018; 99:41-49. [PMID: 29427583 PMCID: PMC5880698 DOI: 10.1016/j.yhbeh.2018.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 02/07/2023]
Abstract
The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
13
|
Fields CT, Chassaing B, Castillo-Ruiz A, Osan R, Gewirtz AT, de Vries GJ. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biol Sex Differ 2018; 9:7. [PMID: 29351816 PMCID: PMC5775597 DOI: 10.1186/s13293-018-0166-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gut dysbiosis is observed in several neuropsychiatric disorders exhibiting increases in anxiety behavior, and recent work suggests links between gut inflammation and such disorders. One source of this inflammation may be lipopolysaccharide (LPS), a toxic component of gram-negative bacteria. Here, we (1) determine whether oral gavage of LPS, as a model of gut-derived endotoxemia, affects anxiety-like and/or repetitive behaviors; (2) test whether these changes depend on TLR4 signaling; and (3) test the extent to which gut-derived endotoxin and TLR4 antagonism affects males and females differently. METHODS In experiment 1, male wild-type (WT) and Tlr4-/- mice were tested for locomotor, anxiety-like, and repetitive behaviors in an automated open field test apparatus, 2 h after oral gavage of LPS or saline. In experiment 2, male and female WT mice received an oral gavage of LPS and an injection of one or two TLR4 antagonists that target different TLR4 signaling pathways ((+)-naloxone and LPS derived from R. sphaeroides (LPS-RS)). Univariate and multivariate analyses were used to identify effects of treatment, sex, and genotype and their interaction. RESULTS In experiment 1, oral gavage of LPS increased anxiety-like behavior in male WT mice but not in Tlr4-/- mice. In experiment 2, oral gavage of LPS increased anxiety-like and decreased repetitive behaviors in WT mice of both sexes. Neither antagonist directly blocked the effects of orally administered LPS. However, treatment with (+)-naloxone, which blocks the TRIF pathway of TLR4, had opposing behavioral effects in males and females (independent of LPS treatment). We also identified sex differences in the expression of interleukin-6, a pro-inflammatory cytokine, in the gut both in basal conditions and in response to LPS. CONCLUSION In spite of the ubiquitous nature of LPS in the gut lumen, this is the first study to demonstrate that intestinally derived LPS can initiate behavioral aspects of the sickness response. While an increased enteric load of LPS increases anxiety-like behavior in both sexes, it likely does so via sex-specific mechanisms. Similarly, TLR4 signaling may promote baseline expression of repetitive behavior differently in males and females. This study lays the groundwork for future interrogations into connections between gut-derived endotoxin and behavioral pathology in males and females.
Collapse
Affiliation(s)
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | | | - Remus Osan
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303 USA
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | - Geert J. de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
14
|
de Kloet AD, Herman JP. Fat-brain connections: Adipocyte glucocorticoid control of stress and metabolism. Front Neuroendocrinol 2018; 48:50-57. [PMID: 29042142 DOI: 10.1016/j.yfrne.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Glucocorticoids act via multiple mechanisms to mobilize energy for maintenance and restoration of homeostasis. In adipose tissue, glucocorticoids can promote lipolysis and facilitate adipocyte differentiation/growth, serving both energy-mobilizing and restorative processes during negative energy balance. Recent data suggest that adipose-dependent feedback may also be involved in regulation of stress responses. Adipocyte glucocorticoid receptor (GR) deletion causes increased HPA axis stress reactivity, due to a loss of negative feedback signals into the CNS. The fat-to-brain signal may be mediated by neuronal mechanisms, release of adipokines or increased lipolysis. The ability of adipose GRs to inhibit psychogenic as well as metabolic stress responses suggests that (1) feedback regulation of the HPA axis occurs across multiple bodily compartments, and (2) fat tissue integrates psychogenic stress signals. These studies support a link between stress biology and energy metabolism, a connection that has clear relevance for numerous disease states and their comorbidities.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
| |
Collapse
|
15
|
Sylvia KE, Demas GE. Overcoming neonatal sickness: Sex-specific effects of sickness on physiology and social behavior. Physiol Behav 2017; 179:324-332. [PMID: 28689742 DOI: 10.1016/j.physbeh.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/11/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Early-life environmental stressors, including sickness, have the potential to disrupt development in ways that could severely impact fitness. Despite what is known about the effects of sickness on reproduction, the precise physiological mechanisms have not yet been determined. The goal of this study was to investigate the effects of a neonatal immune challenge on adult reproductive physiology and opposite-sex social behavior. Male and female Siberian hamster (Phodopus sungorus) pups were administered lipopolysaccharide ([LPS]; a cell wall component of gram-negative bacteria) or saline injections on postnatal days 3 and 5 and body mass, food intake, and measures of reproductive maturity were taken throughout development. In adulthood, hamsters were placed in staged mating pairs with reproductively mature individuals of the opposite sex, during which a series of behaviors were scored. We found that although males and females showed no change in food intake, body mass, or reproductive behaviors, LPS-treated females had abnormal estrous cycles and smaller ovaries. Females also showed increased investigation of and increased aggression towards males in a reproductive context. In contrast, LPS-treated males showed no change in any physiological measures, nor did they show any changes in behavior. The present findings demonstrate that females may be more robustly affected by neonatal sickness than males and that these effects could have potential impacts on reproductive success. Collectively, the results of this study can be used to expand upon what is already known about sickness and reproduction, specifically the importance of social behaviors involved in pre-copulation and information necessary to choose the appropriate mate.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res 2017; 66:553-565. [PMID: 28406691 DOI: 10.33549/physiolres.933480] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a primary cause of dementia in the middle-aged and elderly worldwide. Animal models for AD are widely used to study the disease mechanisms as well as to test potential therapeutic agents for disease modification. Among the non-genetically manipulated neuroinflammation models for AD, lipopolysaccharide (LPS)-induced animal model is commonly used. This review paper aims to discuss the possible factors that influence rats' response following LPS injection. Factors such as dose of LPS, route of administration, nature and duration of exposure as well as age and gender of animal used should be taken into account when designing a study using LPS-induced memory impairment as model for AD.
Collapse
Affiliation(s)
- R Zakaria
- Department of Physiology and Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| | | | | | | | | | | |
Collapse
|
17
|
In Reply. Anesthesiology 2016; 125:604-5. [PMID: 27529857 DOI: 10.1097/aln.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Vargas N, Marino F. Heat stress, gastrointestinal permeability and interleukin-6 signaling - Implications for exercise performance and fatigue. Temperature (Austin) 2016; 3:240-251. [PMID: 27857954 PMCID: PMC4964994 DOI: 10.1080/23328940.2016.1179380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Exercise in heat stress exacerbates performance decrements compared to normothermic environments. It has been documented that the performance decrements are associated with reduced efferent drive from the central nervous system (CNS), however, specific factors that contribute to the decrements are not completely understood. During exertional heat stress, blood flow is preferentially distributed away from the intestinal area to supply the muscles and brain with oxygen. Consequently, the gastrointestinal barrier becomes increasingly permeable, resulting in the release of lipopolysaccharides (LPS, endotoxin) into the circulation. LPS leakage stimulates an acute-phase inflammatory response, including the release of interleukin (IL)-6 in response to an increasingly endotoxic environment. If LPS translocation is too great, heat shock, neurological dysfunction, or death may ensue. IL-6 acts initially in a pro-inflammatory manner during endotoxemia, but can attenuate the response through signaling the hypothalamic pituitary adrenal (HPA)-axis. Likewise, IL-6 is believed to be a thermoregulatory sensor in the gut during the febrile response, hence highlighting its role in periphery – to – brain communication. Recently, IL-6 has been implicated in signaling the CNS and influencing perceptions of fatigue and performance during exercise. Therefore, due to the cascade of events that occur during exertional heat stress, it is possible that the release of LPS and exacerbated response of IL-6 contributes to CNS modulation during exertional heat stress. The purpose of this review is to evaluate previous literature and discuss the potential role for IL-6 during exertional heat stress to modulate performance in favor of whole body preservation.
Collapse
Affiliation(s)
- Nicole Vargas
- School of Exercise Science, Sport & Health, Charles Sturt University , Bathurst, NSW, Australia
| | - Frank Marino
- School of Exercise Science, Sport & Health, Charles Sturt University , Bathurst, NSW, Australia
| |
Collapse
|
19
|
Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, Volpe BT, Diamond B. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 2016; 11:e0144215. [PMID: 26790027 PMCID: PMC4720404 DOI: 10.1371/journal.pone.0144215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.
Collapse
Affiliation(s)
- Gerard Honig
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Simone Mader
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huiyi Chen
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Amit Porat
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mahendar Ochani
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T. Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
21
|
Quinn MA, Cidlowski JA. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression. FASEB J 2015; 30:971-82. [PMID: 26581598 DOI: 10.1096/fj.15-278309] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression.
Collapse
Affiliation(s)
- Matthew A Quinn
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
22
|
Feleder C, Sertac Yilmaz M, Peng J, Göktalay G, Millington WR. The OVLT initiates the fall in arterial pressure evoked by high dose lipopolysaccharide: evidence that dichotomous, dose-related mechanisms mediate endotoxic hypotension. J Neuroimmunol 2015. [PMID: 26198924 DOI: 10.1016/j.jneuroim.2015.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that lipopolysaccharide (LPS) lowers arterial pressure through two different mechanisms depending on the dose. Previously, we found that a low hypotensive dose of LPS (1mg/kg) lowers arterial pressure by activating vagus nerve afferents. Here we report that hypotension evoked by high dose LPS (15mg/kg) can be prevented by injecting lidocaine into the OVLT but not by vagotomy or inactivation of the NTS. The hypotension produced by both LPS doses was correlated with elevated extracellular norepinephrine concentrations in the POA and prevented by blocking alpha-adrenergic receptors. Thus, initiation of endotoxic hypotension is dose-related, mechanistically.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - M Sertac Yilmaz
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - Jianya Peng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Gökhan Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - William R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States.
| |
Collapse
|
23
|
Polat H, Mamuk S, Akarsu ES. Hormonal synchronization of lipopolysaccharide-induced hypothermic response in rats. J Endocrinol Invest 2013; 36:816-24. [PMID: 23612418 DOI: 10.3275/8945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent experimental evidence suggests that lipopolysaccharide (LPS)-induced hypothermia is an adaptive thermoregulatory strategy against immunological challenge in rats. We hypothesized that the hormones which are predominantly responsible for energy homeostasis may have efferent signaling roles for development of the hypothermia. AIM The aim of the study was to evaluate the changes of hypothalamic-pituitary-thyroid (HPT) and hypothalamic- pituitary-adrenal (HPA) axis hormones, leptin and erythropoietin at various phases of LPS-induced hypothermia such as the initial phase, nadir and the end of the response in blood sampled rats. MATERIAL AND METHODS Body temperature of adult male albino Wistar rats was recorded by biotelemetry. E. coli O111:B4 LPS (250 μg/kg, ip) was injected alone or with SC-560, a cyclooxygenase-1 selective inhibitor (1 mg/kg, sc). RESULTS Serum FT4 levels elevated at the initial phase, but FT3 levels decreased at nadir and remained low at the end of the response. Meanwhile, no change was observed in TSH levels. Serum adrenocorticotropic hormone (ACTH) levels reduced at the initial phase and serum corticosterone levels decreased at nadir without any change in serum corticotropin-releasing hormone (CRH) levels throughout the hypothermia. Serum leptin levels increased only at the end of the response. No change was observed in the levels of serum erythropoietin. SC-560 treatment abolished both LPS-induced hypothermia and respective hormonal changes. CONCLUSION Data suggest that HPT axis hormones may contribute to development of LPS-induced hypothermia in rats. Data also support the view that leptin may have a role for the recovery of hypothermic response.
Collapse
Affiliation(s)
- H Polat
- Aksaray University, Faculty of Art and Science, Department of Biology, 68100 Aksaray, Turkey.
| | | | | |
Collapse
|
24
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
25
|
Abstract
The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
He Y, Qu QC, Wang BX, DU FY, Guo ZH. FOS protein expression and role of the vagus nerve in the rat medullary visceral zone in multiple organ dysfunction syndrome caused by subarachnoid hemorrhage. Exp Ther Med 2012; 5:223-228. [PMID: 23251272 PMCID: PMC3523947 DOI: 10.3892/etm.2012.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023] Open
Abstract
This study was designed to observe the role of FOS protein expression in the rat medullary visceral zone (MVZ) in multiple organ dysfunction syndrome (MODS) caused by subarachnoid hemorrhage (SAH), with and without severing the vagus nerve. We also investigated the regulatory and control mechanisms of the MVZ and the vagus nerve in MODS following SAH. A model of MODS following SAH was established by injecting arterial blood into the Willis’ circle. The vagus nerve was cut off and blocked. The FOS protein expression in the MVZ was detected by immunohistochemistry. The positive expression levels of FOS in the MVZ in the SAH and SAH + severed-down vagus nerve (SDV) groups were higher than those in the normal control, sham surgery and SDV groups (P<0.01). However, expression in the SAH+SDV group was lower than that in the SAH group (P<0.01). Inflammatory damage was observed in each visceral organ at every time-phased point in the SAH group and the SAH+SDV group. The most apparent damage was at 24–36 h, consistent with the peak of FOS protein expression; the SAH+SDV group presented a greater level of damage. The inflammatory changes in surrounding visceral organs following SAH correlated with FOS protein expression in the MVZ, which indicates that the MVZ participates in the functional control of surrounding visceral organs following SAH. Severing the subphrenic vagus nerve increases the incidence of MODS following SAH and enhances SAH-induced inflammatory damage to the surrounding visceral organs, which indicates that the vagus nerve plays a role in the protection of the surrounding visceral organs in MODS following SAH.
Collapse
Affiliation(s)
- Yan He
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021; ; Department of Neurology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | | | | | | | | |
Collapse
|
27
|
Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, Davies PA, Moss SJ, Lu WY, Orser BA. Memory deficits induced by inflammation are regulated by α5-subunit-containing GABAA receptors. Cell Rep 2012; 2:488-96. [PMID: 22999935 PMCID: PMC4391624 DOI: 10.1016/j.celrep.2012.08.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022] Open
Abstract
Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA) receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
VIP deficient mice exhibit resistance to lipopolysaccharide induced endotoxemia with an intrinsic defect in proinflammatory cellular responses. PLoS One 2012; 7:e36922. [PMID: 22615845 PMCID: PMC3355097 DOI: 10.1371/journal.pone.0036922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with immunomodulatory properties. The administration of this peptide has been shown to have beneficial effects in murine models of inflammatory diseases including septic shock, rheumatoid arthritis, multiple sclerosis (MS) and Crohn's disease. However, the role of the endogenous peptide in inflammatory disease remains obscure because VIP-deficient mice were recently found to exhibit profound resistance in a model of MS. In the present study, we analyzed the response of female VIP deficient (KO) mice to intraperitoneal lipopolysaccharide (LPS) administration. We observed significant resistance to LPS in VIP KO mice, as evidenced by lower mortality and reduced tissue damage. The increased survival was associated with decreased levels of proinflammatory cytokines (TNFα, IL-6 and IL-12) in sera and peritoneal suspensions of these mice. Moreover, the expression of TNFα and IL-6 mRNA was reduced in peritoneal cells, spleens and lungs from LPS-treated VIP KO vs. WT mice, suggesting that the resistance might be mediated by an intrinsic defect in the responsiveness of immune cells to endotoxin. In agreement with this hypothesis, peritoneal cells isolated from VIP KO naive mice produced lower levels of proinflammatory cytokines in response to LPS in vitro. Finally, decreased NF-κB pathway activity in peritoneal cells was observed both in vivo and in vitro, as determined by assay of phosphorylated I-κB. The results demonstrate that female VIP KO mice exhibit resistance to LPS-induced shock, explainable in part by the presence of an intrinsic defect in the responsiveness of inflammatory cells to endotoxin.
Collapse
|
29
|
Liu E, Lewis K, Al-Saffar H, Krall CM, Singh A, Kulchitsky VA, Corrigan JJ, Simons CT, Petersen SR, Musteata FM, Bakshi CS, Romanovsky AA, Sellati TJ, Steiner AA. Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1372-83. [PMID: 22513748 DOI: 10.1152/ajpregu.00023.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 10(9) or 1 × 10(10) CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition.
Collapse
Affiliation(s)
- Elaine Liu
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm 2012; 2012:467620. [PMID: 22547905 PMCID: PMC3321608 DOI: 10.1155/2012/467620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/27/2011] [Indexed: 01/08/2023] Open
Abstract
The particular importance of the vagus nerve for the pathophysiology of peritonitis becomes more and more apparent. In this work we provide evidence for the vagal modulation of inflammation in the murine model of colon ascendens stent peritonitis (CASP). Vagotomy significantly increases mortality in polymicrobial sepsis. This effect is not accounted for by the dilatation of gastric volume following vagotomy. As the stimulation of cholinergic receptors by nicotine has no therapeutic effect, the lack of nicotine is also not the reason for the reduced survival rate. In fact, increased septic mortality is a consequence of the absent modulating influence of the vagus nerve on the immune system: we detected significantly elevated serum corticosterone levels in vagotomised mice 24 h following CASP and a decreased ex vivo TNF-alpha secretion of Kupffer cells upon stimulation with LPS. In conclusion, the vagus nerve has a modulating influence in polymicrobial sepsis by attenuating the immune dysregulation.
Collapse
|
31
|
Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, Baracos VE, Marks DL. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2011; 208:2449-63. [PMID: 22084407 PMCID: PMC3256966 DOI: 10.1084/jem.20111020] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Systemic and CNS-delimited inflammation triggers skeletal muscle catabolism in a manner dependent on glucocorticoid signaling. Skeletal muscle catabolism is a co-morbidity of many chronic diseases and is the result of systemic inflammation. Although direct inflammatory cytokine action on muscle promotes atrophy, nonmuscle sites of action for inflammatory mediators are less well described. We demonstrate that central nervous system (CNS)–delimited interleukin 1β (IL-1β) signaling alone can evoke a catabolic program in muscle, rapidly inducing atrophy. This effect is dependent on hypothalamic–pituitary–adrenal (HPA) axis activation, as CNS IL-1β–induced atrophy is abrogated by adrenalectomy. Furthermore, we identified a glucocorticoid-responsive gene expression pattern conserved in models of acute and chronic inflammatory muscle atrophy. In contrast with studies suggesting that the direct action of inflammatory cytokines on muscle is sufficient to induce catabolism, adrenalectomy also blocks the atrophy program in response to systemic inflammation, demonstrating that glucocorticoids are requisite for this process. Additionally, circulating levels of glucocorticoids equivalent to those produced under inflammatory conditions are sufficient to cause profound muscle wasting. Together, these data suggest that a significant component of inflammation-induced muscle catabolism occurs indirectly via a relay in the CNS.
Collapse
Affiliation(s)
- Theodore P Braun
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hains LE, Loram LC, Taylor FR, Strand KA, Wieseler JL, Barrientos RM, Young JJ, Frank MG, Sobesky J, Martin TJ, Eisenach JC, Maier SF, Johnson JD, Fleshner M, Watkins LR. Prior laparotomy or corticosterone potentiates lipopolysaccharide-induced fever and sickness behaviors. J Neuroimmunol 2011; 239:53-60. [PMID: 21907418 DOI: 10.1016/j.jneuroim.2011.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022]
Abstract
Stimulating sensitized immune cells with a subsequent immune challenge results in potentiated pro-inflammatory responses translating into exacerbated sickness responses (i.e. fever, pain and lethargy). Both corticosterone (CORT) and laparotomy cause sensitization, leading to enhanced sickness-induced neuroinflammation or pain (respectively). However, it is unknown whether this sensitization affects all sickness behaviors and immune cell responses equally. We show that prior CORT and prior laparotomy potentiated LPS-induced fever but not lethargy. Prior CORT, like prior laparotomy, was able to potentiate sickness-induced pain. Release of nitric oxide (NO) from peritoneal macrophages stimulated ex vivo demonstrates that laparotomy, but not CORT sensitizes these cells.
Collapse
|
33
|
Clyde LA, Lechuga TJ, Ebner CA, Burns AE, Kirby MA, Yellon SM. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats. Biol Reprod 2010; 84:587-94. [PMID: 21106964 DOI: 10.1095/biolreprod.110.086207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX+VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX+VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX+VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix in the prepartum cervix. These findings support the contention that immigration of immune cells and enhanced innervation are involved in processes that remodel the cervix and time parturition.
Collapse
Affiliation(s)
- Lindsey A Clyde
- Department of Physiology, Pathology, and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Early life activation of toll-like receptor 4 reprograms neural anti-inflammatory pathways. J Neurosci 2010; 30:7975-83. [PMID: 20534845 DOI: 10.1523/jneurosci.6078-09.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened corticosterone response to LPS in adults after early life exposure to LPS. In postnatal LPS-treated rats, hypothalamic corticotrophin-releasing hormone mRNA, pituitary proopiomelanocortin mRNA, and circulating adrenocorticotrophic hormone were all increased after adult exposure to LPS without significant modification to hippocampal or hypothalamic glucocorticoid receptor mRNA or protein or vagally mediated afferent signaling to the brain. Postnatal LPS administration did cause a persistent upregulation of the LPS Toll-like receptor-4 (TLR4) mRNA in liver and spleen, but not in brain, pituitary, or adrenal gland. In addition, cyclooxygenase-2 (COX-2), which is a prostaglandin biosynthetic enzyme and is normally undetectable in most peripheral tissue, was constitutively expressed in the liver. Adult immune activation of the upregulated TLR4 and COX-2 caused a rapid, amplified rise in circulating, but not brain, prostaglandin E(2) that induced an early, enhanced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, postnatal LPS reprograms the neuroimmune axis by priming peripheral tissues to create a novel, prostaglandin-mediated activation of the HPA axis brought about by increased constitutive expression of TLR4 and COX-2.
Collapse
|
35
|
Bachstetter AD, Jernberg J, Schlunk A, Vila JL, Hudson C, Cole MJ, Shytle RD, Tan J, Sanberg PR, Sanberg CD, Borlongan C, Kaneko Y, Tajiri N, Gemma C, Bickford PC. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One 2010; 5:e10496. [PMID: 20463965 PMCID: PMC2864748 DOI: 10.1371/journal.pone.0010496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative influence of TNFalpha to reduce neural stem cell proliferation. These results support the hypothesis that a diet enriched with spirulina and other nutraceuticals may help protect the stem/progenitor cells from insults.
Collapse
Affiliation(s)
- Adam D. Bachstetter
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jennifer Jernberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Andrea Schlunk
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jennifer L. Vila
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Charles Hudson
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Michael J. Cole
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - R. Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jun Tan
- Department of Psychiatry, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Paul R. Sanberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Cyndy D. Sanberg
- NaturaTherapeutics, Incorporated, Tampa, Florida, United States of America
| | - Cesario Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Carmelina Gemma
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| |
Collapse
|
36
|
Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, Rezvani N, Baker EM, Jekich BM, Wieseler JL, Somogyi AA, Martin D, Poole S, Judd CM, Maier SF, Watkins LR. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 2008; 22:1178-89. [PMID: 18599265 PMCID: PMC2783238 DOI: 10.1016/j.bbi.2008.05.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 01/21/2023] Open
Abstract
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345,Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - Benjamen D. Coats
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Susannah S. Lewis
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Yingning Zhang
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - David B. Sprunger
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Niloofar Rezvani
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Eric M. Baker
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Brian M. Jekich
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Julie L. Wieseler
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Andrew A. Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - David Martin
- Department of Pharmacology, Amgen, Thousand Oaks, California, USA, 91320
| | - Stephen Poole
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Charles M. Judd
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Steven F. Maier
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Linda R. Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: 303-492-2967, Ph: 303-492-7034
| |
Collapse
|
37
|
Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice. Physiol Behav 2006; 85:500-11. [PMID: 15996692 PMCID: PMC2293826 DOI: 10.1016/j.physbeh.2005.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/18/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
It is well established that peripheral administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS) can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, alter brain catecholamine and indoleamine metabolism, and affect behavior. However, the mechanisms of these effects are not fully understood. Stimulation of afferents of the vagus nerve has been implicated in the induction of Fos in the brain, changes in body temperature, brain norepinephrine, and some behavioral responses. In the present study, the IL-1beta- and LPS-induced changes in certain behaviors, HPA axis activation, and catecholamine and indoleamine metabolism were studied in mice following subdiaphragmatic vagotomy. IL-1beta and LPS induced the expected decreases in sweetened milk, food intake, and locomotor activity, and the responses to IL-1beta, but not LPS, were slightly attenuated in vagotomized mice. Subdiaphragmatic vagotomy also attenuated the IL-1beta- and LPS-induced increases in plasma ACTH and corticosterone, but the attenuations of the responses to IL-1beta were only marginally significant. There were also slight reductions in the responses in catecholamine and serotonin metabolism, and the increases in brain tryptophan in several brain regions. These results indicate that the vagus nerve is not the major pathway by which abdominal IL-1beta and LPS effect behavioral, HPA and brain catecholamine and indoleamine responses in the mouse. These results resemble those we observed in subdiaphragmatically vagotomized rats, but in that species the subdiaphragmatic vagotomy markedly attenuated the ACTH and corticosterone responses, and prevented the hypothalamic noradrenergic activation, as well as the fever. Overall the results indicate that the various responses to peripheral IL-1 and LPS involve multiple mechanisms including vagal afferents, and that there are species differences in the relative importance of the various mechanisms.
Collapse
Affiliation(s)
- Marek Wieczorek
- Laboratory of Neurophysiology, University of Lodz, 66 Rewolucji 1905 r st., 90-222 Lodz, Poland
| | | | | | | |
Collapse
|
38
|
Luyer MD, Greve JWM, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. ACTA ACUST UNITED AC 2005; 202:1023-9. [PMID: 16216887 PMCID: PMC2213207 DOI: 10.1084/jem.20042397] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune system in vertebrates senses exogenous and endogenous danger signals by way of complex cellular and humoral processes, and responds with an inflammatory reaction to combat putative attacks. A strong protective immunity is imperative to prevent invasion of pathogens; however, equivalent responses to commensal flora and dietary components in the intestine have to be avoided. The autonomic nervous system plays an important role in sensing luminal contents in the gut by way of hard-wired connections and chemical messengers, such as cholecystokinin (CCK). Here, we report that ingestion of dietary fat stimulates CCK receptors, and leads to attenuation of the inflammatory response by way of the efferent vagus nerve and nicotinic receptors. Vagotomy and administration of antagonists for CCK and nicotinic receptors significantly blunted the inhibitory effect of high-fat enteral nutrition on hemorrhagic shock-induced tumor necrosis factor-α and interleukin-6 release (P < 0.05). Furthermore, the protective effect of high-fat enteral nutrition on inflammation-induced intestinal permeability was abrogated by vagotomy and administration of antagonists for CCK and nicotinic receptors. These data reveal a novel neuroimmunologic pathway, controlled by nutrition, that may help to explain the intestinal hyporesponsiveness to dietary antigens, and shed new light on the functionality of nutrition.
Collapse
Affiliation(s)
- Misha D Luyer
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), University of Maastricht, 6200 MD, Maastricht, Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability: review. Curr Opin Neurol 2005; 18:117-23. [PMID: 15791140 DOI: 10.1097/01.wco.0000162851.44897.8f] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Preterm infants are at high risk for neurological sequelae and cognitive dysfunction. These problems have been attributed to a high occurrence of central nervous system (CNS) lesions, but suboptimal brain development appears to be just as important. In this brief review we present the hypothesis that systemic infection/inflammation can severely interfere with normal CNS function and development. RECENT FINDINGS We focus on the effects of lipopolysaccharide because it is often used to model the systemic inflammatory response induced by infections. The inflammatory signals are propagated across the intact or ruptured blood-brain barrier to the CNS by proinflammatory cytokines, prostaglandins, or lipopolysaccharide. Subsequently, microglia are triggered to release cytokines, oxygen free radicals and trophic factors, which will influence the CNS in various ways. Cognition, dendritic length and spine density, dopaminergic cells, neurogenesis and glial proliferation will be affected. Furthermore, CNS vulnerability and, in some instances, cerebral anomalies and white matter damage are produced. SUMMARY Hypothetically, all of these effects on the CNS triggered by inflammation may have severe consequences for the individual's ability to cope with environmental exposures during childhood and adulthood.
Collapse
Affiliation(s)
- Henrik Hagberg
- Perinatal Center, Institute for the Health of Women and Children, Sahlgrenska Academy, Goteborg, Sweden.
| | | |
Collapse
|
40
|
Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V, Campisi J, Langer S, Martin D, Green P, Fleshner M, Leinwand L, Maier SF, Watkins LR. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 2004; 24:7353-65. [PMID: 15317861 PMCID: PMC6729781 DOI: 10.1523/jneurosci.1850-04.2004] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present experiments examined the role of spinal proinflammatory cytokines [interleukin-1beta (IL-1)] and chemokines (fractalkine) in acute analgesia and in the development of analgesic tolerance, thermal hyperalgesia, and tactile allodynia in response to chronic intrathecal morphine. Chronic (5 d), but not acute (1 d), intrathecal morphine was associated with a rapid increase in proinflammatory cytokine protein and/or mRNA in dorsal spinal cord and lumbosacral CSF. To determine whether IL-1 release modulates the effects of morphine, intrathecal morphine was coadministered with intrathecal IL-1 receptor antagonist (IL-1ra). This regimen potentiated acute morphine analgesia and inhibited the development of hyperalgesia, allodynia, and analgesic tolerance. Similarly, intrathecal IL-1ra administered after the establishment of morphine tolerance reversed hyperalgesia and prevented the additional development of tolerance and allodynia. Fractalkine also appears to modulate the effects of intrathecal morphine because coadministration of morphine with intrathecal neutralizing antibody against the fractalkine receptor (CX3CR1) potentiated acute morphine analgesia and attenuated the development of tolerance, hyperalgesia, and allodynia. Fractalkine may be exerting these effects via IL-1 because fractalkine (CX3CL1) induced the release of IL-1 from acutely isolated dorsal spinal cord in vitro. Finally, gene therapy with an adenoviral vector encoding for the release of the anti-inflammatory cytokine IL-10 also potentiated acute morphine analgesia and attenuated the development of tolerance, hyperalgesia, and allodynia. Taken together, these results suggest that IL-1 and fractalkine are endogenous regulators of morphine analgesia and are involved in the increases in pain sensitivity that occur after chronic opiates.
Collapse
Affiliation(s)
- Ian N Johnston
- Department of Psychology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ling PR, Smith RJ, Kie S, Boyce P, Bistrian BR. Effects of protein malnutrition on IL-6-mediated signaling in the liver and the systemic acute-phase response in rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R801-8. [PMID: 15371280 DOI: 10.1152/ajpregu.00715.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines the effects of malnutrition on IL-6 signaling pathways of rats fed 2% vs. 20% casein diets for 14 days. Effects of malnutrition on the abundance and IL-6-stimulated phosphorylation of signaling proteins in the JAK-STAT and MAP kinase pathways were examined in the liver. Changes of the acute-phase response as reflected by serum α1-acid glycoprotein (AG), TNF-α (TNF), and IL-1β (IL-1) were compared in the two dietary groups at 0, 4, 8, 16, and 24 h after IL-6 administration. Under basal conditions, the abundance of the IL-6 receptor, gp130, JAK1, STAT1, and STAT3 proteins and levels of phosphorylation of ERK1/2 and p38 were significantly increased in the liver in the 2% casein group compared with the 20% casein group. With IL-6 stimulation, the increased phosphorylation per unit of protein of these signaling proteins was not different in the liver between the two groups. Before IL-6 stimulation, serum levels of TNF, IL-1, IL-6, and AG were significantly higher in the 2% casein group than in the 20% casein group. After bolus injection of IL-6, changes in IL-1 and AG were similar in the two dietary groups, although a slight decline in AG level was noted after 8 h of IL-6 administration in the 2% protein group. These data demonstrate that protein malnutrition produces changes in inflammation-related proteins characteristic of a low-grade systemic inflammatory response and, thus, can serve as an inflammatory stimulus. The capacity for response to IL-6 is preserved, suggesting adaptive preservation of acute-phase responsiveness during malnutrition.
Collapse
Affiliation(s)
- Pei-Ra Ling
- Nutrition/Infection Laboratory, Rm. 569, 21-27 Burlington Bldg., Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
42
|
O'Connor KA, Holguin A, Hansen MK, Maier SF, Watkins LR. A method for measuring multiple cytokines from small samples. Brain Behav Immun 2004; 18:274-80. [PMID: 15050654 DOI: 10.1016/j.bbi.2003.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 11/25/2022] Open
Abstract
Commercially available enzyme-linked immunosorbent assay (ELISA) kits are commonly used to assess levels of proinflammatory cytokines in biological samples. Most of these kits require sample volumes of at least 50 microl. Thus, in order to examine multiple cytokines, volumes greater than 100 microl must be collected. However, the volume of many biological samples, especially those collected from the central nervous system (i.e., microdialysates, push-pull perfusions, or cerebrospinal fluid samples), is much less than 100 microl. Therefore, we developed a method for analyzing multiple cytokines from a single, low-volume biological sample, which involves serially assaying the samples on multiple proinflammatory cytokine ELISA kits. In many cases, assaying for one cytokine does not interfere with subsequent assay for another cytokine in the same sample. Moreover, when interference is observed, the interfering factor can be identified and its effect minimized.
Collapse
Affiliation(s)
- Kevin A O'Connor
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
43
|
Madiehe AM, Mitchell TD, Harris RBS. Hyperleptinemia and reduced TNF-alpha secretion cause resistance of db/db mice to endotoxin. Am J Physiol Regul Integr Comp Physiol 2003; 284:R763-70. [PMID: 12571077 DOI: 10.1152/ajpregu.00610.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin deficiency in ob/ob mice increases susceptibility to endotoxic shock, whereas leptin pretreatment protects them against LPS-induced lethality. Lack of the long-form leptin receptor (Ob-Rb) in db/db mice causes resistance. We tested the effects of LPS in C57BL/6J db(3J)/db(3J) (BL/3J) mice, which express only the circulating leptin receptors, compared with C57BL/6J db/db (BL/6J) mice, which express all short-form and circulating isoforms of the leptin receptor. Intraperitoneal injections of LPS significantly decreased rectal temperature and increased leptin, corticosterone, and free TNF-alpha in fed and fasted BL/3J and BL/6J mice. TNF-alpha was increased three- and fourfold in BL/3J and BL/6J, respectively. LPS (100 microg) caused 50% mortality of fasted BL/6J mice but caused no mortality in fasted BL/3J mice. Pretreatment of fasted BL/3J mice with 30 microg leptin prevented the drop in rectal temperature, blunted the increase in corticosterone, but had no effect on TNF-alpha induced by 100 microg LPS. Taken together, these data provide evidence that fasted BL/3J mice are more resistant than BL/6J mice to LPS toxicity, presumably due to the absence of leptin receptors in BL/3J mice. This resistance may be due to high levels of free leptin cross-reacting with other cytokine receptors.
Collapse
Affiliation(s)
- Abram M Madiehe
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
44
|
Johnson JD, O'Connor KA, Hansen MK, Watkins LR, Maier SF. Effects of prior stress on LPS-induced cytokine and sickness responses. Am J Physiol Regul Integr Comp Physiol 2003; 284:R422-32. [PMID: 12399247 DOI: 10.1152/ajpregu.00230.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has recently been reported that exposure to inescapable tailshock (IS) enhances the release of proinflammatory cytokines following bacterial challenge. However, it is not known whether the level of potentiation of proinflammatory cytokines is sufficient to exaggerate any of the physiological processes that are regulated by these cytokines. Thus, LPS was administered and fever, activity, hypothalamic-pituitary-adrenal (HPA) responses, and proinflammatory cytokine release were assessed during both the light and dark phases of the light cycle following IS. Exposure to IS resulted in elevated basal core body temperature during the light phase but not the dark phase and decreased activity during the dark phase but not the light phase. IS animals had significantly greater fever, corticosterone, and ACTH responses following LPS during both the light and dark phases, whereas enhanced proinflammatory cytokine responses were only observed during the light phase. These data suggest that enhanced proinflammatory cytokine responses are not necessary to observe enhanced HPA or fever responses.
Collapse
Affiliation(s)
- John D Johnson
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, Colorado 80309-0345, USA.
| | | | | | | | | |
Collapse
|
45
|
Johnson JD, O'Connor KA, Deak T, Spencer RL, Watkins LR, Maier SF. Prior stressor exposure primes the HPA axis. Psychoneuroendocrinology 2002; 27:353-65. [PMID: 11818171 DOI: 10.1016/s0306-4530(01)00057-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exposure to stressors often alters the subsequent responsiveness of many systems. The present study tested whether prior exposure to inescapable tailshock (IS) alters the corticosterone (CORT) or adrenocorticotropin hormone (ACTH) response to either an injection of bacterial endotoxin (lipopolysaccharide; LPS) or subsequent placement on a pedestal. Rats were exposed to IS or remained as home cage controls (HCC). 1, 4, 10, or 21 days later animals were injected i.p. with either 10 microg/kg LPS or equivolume sterile saline. Prior IS significantly increased plasma CORT 1 h, but not 2 or 5 h after LPS, compared to controls 1, 4, and 10 days, but not 21 days after IS. Exposure to IS 24 h earlier also significantly increased plasma ACTH 1 h after LPS. Additional animals were placed on a pedestal 24 h after IS, and plasma CORT was measured 15, 30, and 60 min later. IS significantly increased plasma CORT 15 min after pedestal exposure, but not after 30 or 60 min. These results suggest that exposure to IS sensitizes the CORT and ACTH response to subsequent HPA activation.
Collapse
Affiliation(s)
- John D Johnson
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Shaw KN, Commins S, O'Mara SM. Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 2001; 124:47-54. [PMID: 11423165 DOI: 10.1016/s0166-4328(01)00232-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effects of a single injection and a daily injection of lipopolysaccharide (LPS) on spatial learning and brain-derived neurotrophic factor (BDNF) expression in the rat dentate gyrus. LPS is derived from the cell wall of Gram-negative bacteria and is a potent endotoxin that causes the release of cytokines such as interleukin-1 and tumour necrosis factor. LPS is thought to activate both the neuroimmune and neuroendocrine systems; it also blocks long-term potentiation in the hippocampus. Here, we examined the effects of LPS on a form of hippocampal-dependent learning-spatial learning in the water maze. Rats were injected with LPS intraperitoneally (100 microg/kg) and trained in the water maze. The first group of rats were injected on day 1 of training, 4 h prior to learning the water maze task. Groups 2 and 3 were injected daily, again 4 h prior to the water-maze task; group 2 with LPS and group 3 with saline. A number of behavioural variables were recorded by a computerised tracking system for each trial. The behavioural results showed a single injection of LPS (group 1) impaired escape latency in both the acquisition and retention phases of the study, whereas a daily injection of LPS did not significantly impair acquisition or retention. BDNF expression was analysed in the dentate gyrus of all animals. No significant differences in BDNF expression were found between the three groups.
Collapse
Affiliation(s)
- K N Shaw
- Department of Psychology, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
47
|
Matsuzaki J, Kuwamura M, Yamaji R, Inui H, Nakano Y. Inflammatory responses to lipopolysaccharide are suppressed in 40% energy-restricted mice. J Nutr 2001; 131:2139-44. [PMID: 11481408 DOI: 10.1093/jn/131.8.2139] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To elucidate the suppressive effects of energy restriction on the inflammatory responses to lipopolysaccharide (LPS), mice were divided into a control group (fed 5.0 g diet/d; 71 kJ/d) and a 40% energy-restricted group (fed 3.0 g diet/d; 43 kJ/d) at 8-wk of age. Four weeks later, 25 microg of LPS was intraperitoneally injected. After the LPS injection, interleukin-1beta, interleukin-6 and tumor necrosis factor-alpha were elevated in serums in the 40% energy-restricted mice and in the controls, but the extent of the elevation was significantly lower in the restricted group. The LPS-induced expression of inducible nitric oxide synthase in the liver was significantly suppressed by the energy restriction. In addition, the LPS-induced elevations of serum aspartate and alanine aminotransferase activities, which are indexes of hepatic injury, were also significantly attenuated in the restricted group. Moreover, the extent of LPS-induced alterations in hepatic structure was less in the restricted mice than in controls. Serum corticosterone level in the restricted mice was higher than that in the controls before LPS treatment (P < 0.05). Furthermore, after LPS injection, the significantly higher level of corticosterone was maintained in the restricted mice, although the LPS treatment significantly enhanced the level even in the control group. These results suggest that the extreme inflammatory responses to endotoxin are prevented in the 40% energy-restricted mice, and corticosterone participates in the preventive effects.
Collapse
Affiliation(s)
- J Matsuzaki
- Departments of Applied Biological Chemistry, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | | | | | |
Collapse
|
48
|
Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci 2001. [PMID: 11306633 DOI: 10.1523/jneurosci.21-08-02808.2001] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perispinal (intrathecal) injection of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein gp120 creates exaggerated pain states. Decreases in response thresholds to both heat stimuli (thermal hyperalgesia) and light tactile stimuli (mechanical allodynia) are rapidly induced after gp120 administration. gp120 is the portion of HIV-1 that binds to and activates microglia and astrocytes. These glial cells have been proposed to be key mediators of gp120-induced hyperalgesia and allodynia because these pain changes are blocked by drugs thought to affect glial function preferentially. The aim of the present series of studies was to determine whether gp120-induced pain changes involve proinflammatory cytokines [interleukin-1beta (IL-1) and tumor necrosis factor-alpha (TNF-alpha)], substances released from activated glia. IL-1 and TNF antagonists each prevented gp120-induced pain changes. Intrathecal gp120 produced time-dependent, site-specific increases in TNF and IL-1 protein release into lumbosacral CSF; parallel cytokine increases in lumbar dorsal spinal cord were also observed. Intrathecal administration of fluorocitrate (a glial metabolic inhibitor), TNF antagonist, and IL-1 antagonist each blocked gp120-induced increases in spinal IL-1 protein. These results support the concept that activated glia in dorsal spinal cord can create exaggerated pain states via the release of proinflammatory cytokines.
Collapse
|
49
|
Hansen MK, O'Connor KA, Goehler LE, Watkins LR, Maier SF. The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol 2001; 280:R929-34. [PMID: 11247812 DOI: 10.1152/ajpregu.2001.280.4.r929] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that proinflammatory cytokines communicate to the brain via a neural pathway involving activation of vagal afferents by interleukin-1beta (IL-1beta), in addition to blood-borne routes. In support, subdiaphragmatic vagotomy blocks IL-1beta-induced, brain-mediated responses such as fever. However, vagotomy has also been reported to be ineffective. Neural signaling would be expected to be especially important at low doses of cytokine, when local actions could occur, but only very small quantities of cytokine would become systemic. Here, we examined core body temperature after intraperitoneal injections of three doses of recombinat human IL-1beta (rh-IL-1beta). Subdiaphragmatic vagotomy completely blocked the fever produced by 0.1 microg/kg, only partially blocked the fever produced by 0.5 microg/kg, and had no effect at all on the fever that followed 1.0 microg/kg rh-IL-1beta. Blood levels of rh-IL-1beta did not become greater than normal basal levels of endogenous rat IL-beta until the 0.5-microg/kg dose nor was IL-1beta induced in the pituitary until this dose. These results suggest that low doses of intraperitoneal IL-1beta induce fever via a vagal route and that dose may account for some of the discrepancies in the literature.
Collapse
Affiliation(s)
- M K Hansen
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|